Next Frontier & a Mine of Opportunities in Math & Biology

Hassan M Fathallah-Shaykh

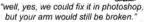
Departments of Neurology and Mathematics, University of Alabama at Birmingham

April 6, 2014

Thank you

Robert Palazzo

Yogesh Vohra


Rudi Weikard

Beverly Foster

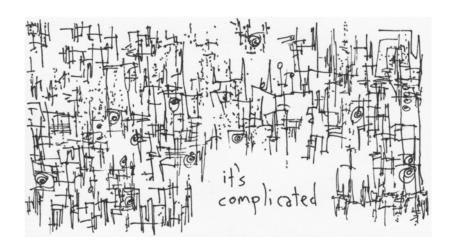
Cheryl Logan

Independent Disciplines/Schools/Departments

"The beauty of this is that it is only of theoretical importance, and there is no way it can be of any practical use whatsoever."

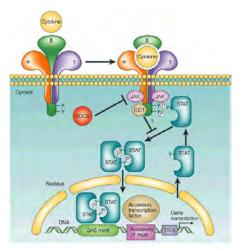
Statistics Close Relationship

"I can prove it or disprove it! What do you want me to do?"

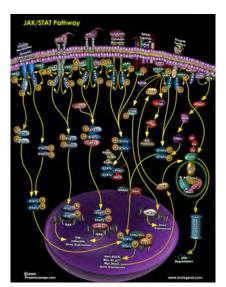


Overview

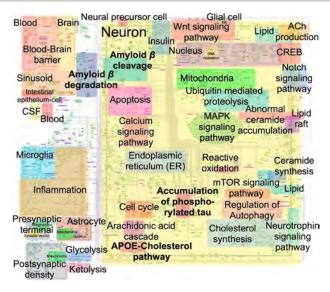
Mathematical Biology:


- Why math for biology/medicine?
- Why biology/medicine for math?
- Examples.
- Suggested Plan.
- Concluding Remarks.

Short Answer



JAK/STAT Signalling pathway

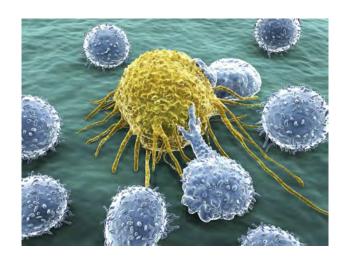


Nature Reviews | Immunology

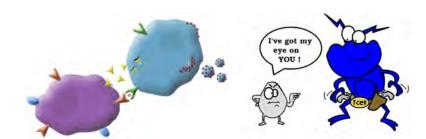
JAK/STAT Signalling pathway

Signalling in Alzheimer's Disease

Targeting & Time-Varying Networks



Cells Migrate



Cells Communicate

Cells Interact

Human Brain Project: Neuron

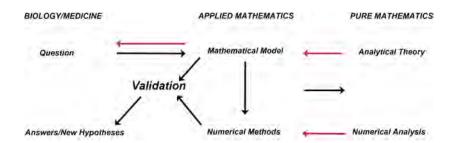
Human Brain Project: Synapses

Human Brain Project: Supercomputer

Remarks

Is it Hopeless?

Remarks



- It is awesome.
- the Next Frontier and a mine of opportunities.

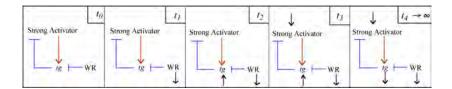
Remarks

- Mathematics deals with time-varying systems (dynamical), and large dimensional and infinite objects.
- Problems from biology/medicine are novel in mathematics.
- Problems from biology/medicine require close collaboration within various disciplines in mathematics and with biology.

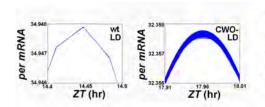
Suggested Plan

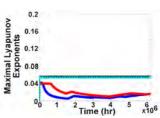
 Question: paradoxical effects of Clockwork Orange (Fathallah-Shaykh HM et al., Biophys J, 2009).

- Question: paradoxical effects of Clockwork Orange (Fathallah-Shaykh HM et al., Biophys J, 2009).
- Model predicts jitter and provides evidence of the chaotic dynamics of the Drosophila circadian clock (Fathallah-Shaykh HM, PlosOne 2010).


- Question: paradoxical effects of Clockwork Orange (Fathallah-Shaykh HM et al., Biophys J, 2009).
- Model predicts jitter and provides evidence of the chaotic dynamics of the Drosophila circadian clock (Fathallah-Shaykh HM, PlosOne 2010).
- Model gives a counter-example of the Kaplan-Yorke conjecture (Fathallah-Shaykh HM, Fractals, 2011).

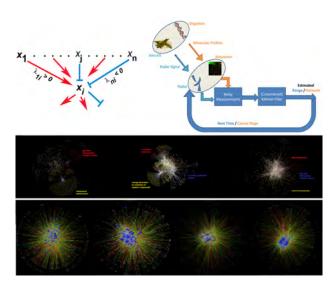
- Question: paradoxical effects of Clockwork Orange (Fathallah-Shaykh HM et al., Biophys J, 2009).
- Model predicts jitter and provides evidence of the chaotic dynamics of the Drosophila circadian clock (Fathallah-Shaykh HM, PlosOne 2010).
- Model gives a counter-example of the Kaplan-Yorke conjecture (Fathallah-Shaykh HM, Fractals, 2011).
- Model inspires theoretical results on matrices and the dynamics of networks (Fathallah-Shaykh et al., in review).


- Question: paradoxical effects of Clockwork Orange (Fathallah-Shaykh HM et al., Biophys J, 2009).
- Model predicts jitter and provides evidence of the chaotic dynamics of the Drosophila circadian clock (Fathallah-Shaykh HM, PlosOne 2010).
- Model gives a counter-example of the Kaplan-Yorke conjecture (Fathallah-Shaykh HM, Fractals, 2011).
- Model inspires theoretical results on matrices and the dynamics of networks (Fathallah-Shaykh et al., in review).
- Model application: POD for estimating the parameters of oscillating networks (Rehm et al., JCAM, 2013).


- Question: paradoxical effects of Clockwork Orange (Fathallah-Shaykh HM et al., Biophys J, 2009).
- Model predicts jitter and provides evidence of the chaotic dynamics of the Drosophila circadian clock (Fathallah-Shaykh HM, PlosOne 2010).
- Model gives a counter-example of the Kaplan-Yorke conjecture (Fathallah-Shaykh HM, Fractals, 2011).
- Model inspires theoretical results on matrices and the dynamics of networks (Fathallah-Shaykh et al., in review).
- Model application: POD for estimating the parameters of oscillating networks (Rehm et al., JCAM, 2013).
- Model application: discovering the time-varying molecular networks of the Drosophila embryo (Khan et al., EURASIP J Bioinform Syst Biol. 2014).

Suggested Resolution of Paradox

Jitter and Chaotic Dynamics



Counter-Example of The Kaplan-Yorke Conjecture

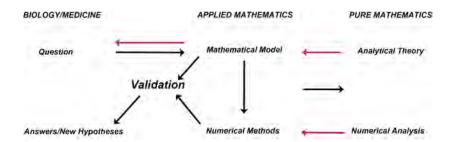
Table 1 The Fractal/Box-Counting and Kaplan-Yorke Dimensions of the wt and *cwo*-Mutant Models in LD and DD Conditions.

	wt LD	wt DD	$cwo ext{-} ext{Mutant}$ LD	cwo-Mutant DD
Kaplan-Yorke	4.3521	5.0085	5.3962	6.1017
Box-Counting	1.2345	0.8983	0.8793	0.8961

Time-Varying Networks

Some Theoretical Results

Theorem


Consider a system S^n and assume that A is LDS and $x_i(t_0) \in \prod_{i=1}^n (-\gamma_i, \mu_i), \forall i$, then

- \bullet σ is GAS if $\sigma \in \prod_{i=1}^n [-\gamma_i, \mu_i],$
- ② a critical point on the boundary is GAS if $\sigma \notin \prod_{i=1}^n [-\gamma_i, \mu_i]$.

Theorem

Consider a complete network with three vertices, which includes at least one positive edge. If $A \in P$ and A is not D-stable, then the system admits a nonconvergent bounded trajectory.

Suggested Plan

Collaborators and Students

- Nidhal Bouaynaya
- Uppender Manne
- Jerry Bona
- Sebastian Kadener
- Elizabeth Scribner
- Amanda Rehm

Grant Support/Funding

- NSF/NIGMS
- NSF
- NIH
- Societies
- Burroughs-Wellcome: Education

Tomorrow's Talks

- Philip Maini: "Modelling Collective Cell Motion in Biology."
 CH274. 8:00 am.
- Jim Keener: "Using Mathematics to Understand Biological Processes". BEC 256 School of Engineering, 11:00 am.
- Emmanuele DiBenedetto: "On the Local Behavior of Non-Negative Solutions to a Logarithmically Singular Equation." CH452, 2:30 pm.