Calculus I

FINAL EXAM

Version A
December $13^{\text {th }}, 2004$

Name: \qquad

- Show your work; clearly write down each step in your calculation/reasoning. No credit is given for a correct numerical answer without any justification.

1. (12 pts) Evaluate the following limits:
(a) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
(b) $\lim _{x \rightarrow \pi} \frac{3}{\sin ^{2} x}$
(c) $\lim _{x \rightarrow 0^{+}}(1+3 x)^{\frac{1}{x}}\left\{\right.$ Hint: use the fact that $\left.f(x)=e^{\ln f(x)}\right\}$
2. (10 pts) Find the equation of the tangent line to the graph of $y=f(x)=\frac{x}{x+2}$ at the point $(-1,-1)$.
3. (8pts) Differentiate

$$
x^{2} \ln x+e^{x^{2}}
$$

4. (8pts) Differentiate

$$
\cos \left(x+2 x^{2}\right)
$$

5. (10pts)Find y^{\prime} using implicit differentiation if $2 x y+x^{2}=e^{y}$.
6. (14pts) Use calculus to determine intervals of increase or decrease, local maxima/minima, intervals of concavity and inflection points of the function $f(x)=\frac{1}{5} x^{5}+\frac{1}{2} x^{4}-x^{3}+2$. (You may round off the y coordinate of the inflection point to 2 decimals). Use this information to sketch the graph of $f(x)$.
7. (a) (7pts) Let $f(x)=\sqrt[3]{4 x-4}$. Find the linear approximation of $f(x)$ at $x=3$.
(b) (3pts) Use the above linear approximation to estimate $f(2.97)$.
8. (10pts) Find the point on the line $y=2 x+2$ that is closest to the point $(5,2)$.
9. ($8 p t s$) Find the most general antiderivative of:

$$
\frac{2}{\sqrt{1-x^{2}}}+\cos x+e^{x}
$$

10. (10pts) Evaluate the following integral:

$$
\int_{1}^{3} \frac{1}{3 x}+3 x^{2} d x
$$

(BONUS, 2pts) Calculate the derivative of $f(x)=x^{2}$. (BONUS, 3pts) Calculate $\int_{-2}^{2} f(x) d x$ if $f(x)$ is given by

$$
f(x)= \begin{cases}\sqrt{4-x^{2}} & \text { if }-2 \leq x \leq 0 \\ 2 x+2 & \text { if } x \geq 0\end{cases}
$$

