EGR 265, Math Tools for Engineering Problem Solving November 15, 2010, 50 minutes

Name: ..

TEST III

Problem $1(9+9$ points $)$
(a) Let $f(x, y)=3 x^{3}-2 x^{2} y^{2}$. Find $f_{x x}+f_{y y}$.
(b) For the function $g(x, y)=(x+y) \ln y$ find g_{x}, g_{y} and $g_{y x}$.

Problem $2(9+9$ points $)$
(a) For the function $h(x, y)=\sqrt{x^{2}+y^{4}}$ find its direction and rate of steepest descent at the point $P(1,1)$.
(b) Find the directional derivative of $h(x, y)$ at $P(1,1)$ in the direction of the vector $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$.

Problem 3 (12+6 points)

(a) Find an equation for the tangent plane to the graph of $z=\cos (x+y)$ at the point $(\pi / 2,0,0)$.
(b) Also, find parametric equations for the normal line to the graph of $z=\cos (x+y)$ at $(\pi / 2,0,0)$.

Problem 4 (12 points)

Evaluate $\int_{C} \frac{x}{y} d s$, where the curve C is parameterized by $x=t^{3} / 3, y=t^{4} / 4,1 \leq t \leq 2$.

Problem 5 (12 points)

Find the work done by the force field

$$
F(x, y)=x e^{x} \mathbf{i}+2 x y \mathbf{j}
$$

along the curve C given by the graph of $y=x^{3}, 0 \leq x \leq 1$.

Problem $6(5+5$ points $)$

Determine for each of the following force fields if it is conservative.
(a) $F(x, y)=\sin (x) \cos (y) \mathbf{i}-\cos (x) \cos (y) \mathbf{j}$
(b) $F(x, y)=\left(3 x+y^{2}\right) \mathbf{i}+2 x y \mathbf{j}$

Problem 7 (12 points)

For the conservative force field $F(x, y)$ from Problem 6 find a potential function $\phi(x, y)$ and calculate the work done by the force field along the curve traced by the vector function $\mathbf{r}(t)=t \sin (\pi t) \mathbf{i}+t \cos (\pi t) \mathbf{j}, 1 / 2 \leq t \leq 1$.

Problem 8 (5 points Bonus)

Is it possible that a function $f(x, y)$ has partial derivatives $f_{x}=x^{2}+y^{2}$ and $f_{y}=3 x y$? If yes, find such a function $f(x, y)$. If no, give a reason why no such function exists.

