EGR 265, Math Tools for Engineering Problem Solving

November 15, 2010, 50 minutes

TEST III

Problem 1 (9+9 points)

(a) Let
$$f(x,y) = 3x^3 - 2x^2y^2$$
. Find $f_{xx} + f_{yy}$.

(b) For the function $g(x,y) = (x+y) \ln y$ find g_x , g_y and g_{yx} .

Problem 2 (9+9 points)

(a) For the function $h(x,y) = \sqrt{x^2 + y^4}$ find its direction **and** rate of steepest descent at the point P(1,1).

(b) Find the directional derivative of h(x,y) at P(1,1) in the direction of the vector $\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$.

Problem 3 (12+6 points)

(a) Find an equation for the tangent plane to the graph of $z = \cos(x+y)$ at the point $(\pi/2,0,0)$.

(b) Also, find parametric equations for the normal line to the graph of $z = \cos(x+y)$ at $(\pi/2,0,0)$.

Problem 4 (12 points)

Evaluate $\int_C \frac{x}{y} ds$, where the curve C is parameterized by $x = t^3/3$, $y = t^4/4$, $1 \le t \le 2$.

Problem 5 (12 points)

Find the work done by the force field

$$F(x,y) = xe^x \mathbf{i} + 2xy\mathbf{j}$$

along the curve C given by the graph of $y=x^3,\,0\leq x\leq 1.$

Problem 6 (5+5 points)

Determine for each of the following force fields if it is conservative.

(a)
$$F(x,y) = \sin(x)\cos(y)\mathbf{i} - \cos(x)\cos(y)\mathbf{j}$$

(b)
$$F(x,y) = (3x + y^2)\mathbf{i} + 2xy\mathbf{j}$$

Problem 7 (12 points)

For the conservative force field F(x,y) from Problem 6 find a potential function $\phi(x,y)$ and calculate the work done by the force field along the curve traced by the vector function $\mathbf{r}(t) = t \sin(\pi t)\mathbf{i} + t \cos(\pi t)\mathbf{j}$, $1/2 \le t \le 1$.

Problem 8 (5 points Bonus)

Is it possible that a function f(x, y) has partial derivatives $f_x = x^2 + y^2$ and $f_y = 3xy$? If yes, find such a function f(x, y). If no, give a reason why no such function exists.