Name: \qquad
Student Number:
Show all your work and give reasons for your answers. Good luck!
(1) Evaluate the following integrals:
(a) $\int \sqrt{x}\left(x^{2}+x^{-5}\right) d x$
(b) $\int 3 x^{5}\left(x^{6}+4\right)^{25} d x$
(c) $\int x^{2} \sin (x) d x$
(d) $\int \frac{4}{x^{2}+1} d x$
(e) $\int \frac{1}{x^{2}+x-2} d x$
(2) Use the right endpoint rule and a partition using 4 intervals ($\mathrm{n}=4$) to approximate the value of the definite integral $\int_{0}^{1 / 10} \sin \left(x^{2}\right) d x$. You do not need to multiply and add all the numbers; just write them down!
(3) Find the area between the graphs of the functions $x=y^{2}$ and $y=x$.
(4) Set up (but do not evaluate) an integral for the volume of revolution obtained by rotating the area bounded by the graph of $y=\tan (x)$, the line $y=2$ between $x=0$ and $x=\pi / 4$ about the line $x=-5$.
(5) Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x+1)^{n}}{n^{2}}$
(6) Find the MacLaurin series for the function $f(x)=\sin \left(x^{2}\right)$ and use this series to give the exact answer to $\int_{0}^{1 / 10} \sin \left(x^{2}\right) d x$. What is the error if you only add the first 4 terms of this series?
(7) Find an equation for the line of intersection of the planes $2 x-y+z=5$ and $-x+y=4$
(8) Find the equation of the plane through the point $(-1,1,2)$ and perpendicular to the line

$$
\left\{\begin{array}{l}
x=1+t \\
y=2-t \\
z=1-2 t
\end{array}\right.
$$

(9) Convert the coordinates of the point $(1,2,3)$ from Cartesian coordinates to:
(a) Cylindrical coordinates,
(b) Spherical coordinates.
(10) Find the distance from the point $(3,-1,4)$ to the line

$$
\left\{\begin{array}{l}
x=1+t \\
y=2-t \\
z=1-2 t
\end{array}\right.
$$

using vectors.

Name: \qquad
Student Number: \qquad
Show all your work and give reasons for your answers. Good luck!
(1) Use the right endpoint rule and a partition using 4 intervals ($\mathrm{n}=4$) to approximate the value of the definite integral $\int_{0}^{1 / 10} \sin \left(x^{2}\right) d x$. You do not need to multiply and add all the numbers; just write them down!
(2) Find the area between the graphs of the functions $x=y^{2}$ and $y=x$.
(3) Set up (but do not evaluate) an integral for the volume of revolution obtained by rotating the area bounded by the graph of $y=\tan (x)$, the line $y=2$ between $x=0$ and $x=\pi / 4$ about the line $x=-5$.
(4) Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x+1)^{n}}{n^{2}}$
(5) Find the MacLaurin series for the function $f(x)=\sin \left(x^{2}\right)$ and use this series to give the exact answer to $\int_{0}^{1 / 10} \sin \left(x^{2}\right) d x$. What is the error if you only add the first 4 terms of this series?
(6) Evaluate the following integrals:
(a) $\int \sqrt{x}\left(x^{2}+x^{-5}\right) d x$
(b) $\int 3 x^{5}\left(x^{6}+4\right)^{25} d x$
(c) $\int x^{2} \sin (x) d x$
(d) $\int \frac{4}{x^{2}+1} d x$
(e) $\int \frac{1}{x^{2}+x-2} d x$
(7) Find an equation for the line of intersection of the planes $2 x-y+z=5$ and $-x+y=4$
(8) Find the equation of the plane through the point $(-1,1,2)$ and perpendicular to the line

$$
\left\{\begin{array}{l}
x=1+t \\
y=2-t \\
z=1-2 t
\end{array}\right.
$$

(9) Convert the coordinates of the point $(1,2,3)$ from Cartesian coordinates to:
(a) Cylindrical coordinates,
(b) Spherical coordinates.
(10) Find the distance from the point $(3,-1,4)$ to the line

$$
\left\{\begin{array}{l}
x=1+t \\
y=2-t \\
z=1-2 t
\end{array}\right.
$$

using vectors.

