SPRING 2012 - MA 227 - FINAL EXAM FRIDAY MAY 4, 2012

NAME:

There are 14 questions, each worth 8 points; 100 (or more) points is Equivalent to 100% FOR the exam. Partial credit is awarded where appropriate. Show all working; your solution must include enough detail to justify any CONCLUSIONS YOU REACH IN ANSWERING THE QUESTION.

1. Let $\mathbf{r}(t)=\left(t^{2}, t, t^{4}\right)$. Find normal plane at point $t=1$.
2. Find the equation of the plane containing the points $(1,2,3),(1,1,-1)$ and $(-1,2,1)$.
3. Find the area of the parallelogram generated by the vectors $(2,2,-1)$ and $(-1,1,3)$.
4. Let $f(x, y)=x e^{y}-x^{2} y^{2}$. Find all second partial derivatives: $f_{x x}^{\prime \prime}, f_{x y}^{\prime \prime}, f_{y y}^{\prime \prime}$.
5. Find local maximum, minimum and saddle points (if any) of the function

$$
f(x, y)=x^{2}+4 x y+6 y^{2}-2 y+1 .
$$

6. Let $z=x^{2} y^{2}+\frac{1}{y}$. Find equation of the tangent plane at point $(1,1)$.
7. Find the maximum rate of change of $f(x, y)=y^{2}-\frac{x}{y}$ at the point $(1,-1)$. In which direction does it occur?
8. Find the area of the region D bounded by $y=x^{2}$ and $y=3 x$.
9. Sketch the region of integration and change the order of integration:

$$
\int_{0}^{1} \int_{x^{4}}^{x} f(x, y) d y d x
$$

10. Find the volume under the surface $z=x^{2}+y^{2}$ and above the ring $1 \leq x^{2}+y^{2} \leq 4$ in the $x y$ plane.
11. Acceleration of the particle is given by $\mathbf{a}=(0,1,1)$. Find velocity and position of the particle as functions of time if at time $t=0$ we have $\mathbf{v}(0)=(1,1,-1)$ and $\mathbf{r}(0)=(0,-1,1)$.
12. Find the absolute maximum and absolute minimum of the function $f(x, y)=x^{2}+$ $2 y^{2}-4 x+1$ on the region $0 \leq x \leq 3,-1 \leq y \leq 1$. Be sure to provide coordinates of the points and the values of absolute maximum and minimum.
13. Using spherical coordinates, calculate the integral $\iiint_{V} z d x d y d z$, where the region V is the spherical layer in the first octant: $\left\{1 \leq x^{2}+y^{2}+z^{2} \leq 4, x \geq 0, y \geq 0, z \geq 0\right\}$.
14. Find the volume of the solid above the region $D=\left\{(x, y): y^{2} \leq x \leq 1\right\}$ in $x y$ plane and below the surface $z=x y^{2}$.
