UNIVERSITY OF ALABAMA SYSTEM
JOINT DOCTORAL PROGRAM IN APPLIED
MATHEMATICS
JOINT PROGRAM EXAMINATION
Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September 16, 2004

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work. Write your student ID number on every page of your exam.
1. Let V and W be vector spaces over F, and let $S : V \to W$ and $T : W \to V$ be linear transformations. Prove the following.

(a) If λ is a nonzero eigenvalue of TS then λ is also an eigenvalue of ST.

(b) Zero being an eigenvalue of TS does not imply that zero is an eigenvalue of ST.

2. Suppose the 2-condition number of a rectangular matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$
\kappa_2(A) := \frac{\sup_{\|x\|_2 = 1} \|Ax\|_2}{\inf_{\|x\|_2 = 1} \|Ax\|_2}.
$$

Prove that $(\kappa_2(A))^2 = \kappa_2(A^T A)$.

3. Compute the LU decomposition $A = LU$ for the matrix

$$
A = \begin{bmatrix}
0.01 & 2 \\
1 & 3
\end{bmatrix}.
$$

Compute $\|L\|_\infty \|U\|_\infty$. What does this imply about the numerical stability of solving a system of linear equations $Ax = y$ by LU decomposition without pivoting?

4. Apply the QR algorithm (without shift) to the matrix

$$
A = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}.
$$

Does it converge and produce the eigenvalues of A? Explain why? Apply the QR algorithm with the Rayleigh quotient shift. Does it help the convergence? Explain why?

5. Suppose that A is normal; i.e. $AA^H = A^HA$. Show that if A is also triangular, it must be diagonal. Use this to show that an $n \times n$ matrix is normal if and only if it has n orthonormal eigenvectors. (Hint: Show that A is normal if and only if its Schur form is normal.)

6. Let $\lambda_1, \cdots, \lambda_n$ be eigenvalues of A, and A be diagonalizable such that $X^{-1}AX = D = \text{diag}(\lambda_1, \cdots, \lambda_n)$. Prove that if $A' = A + E$ and λ' is an eigenvalue of A', then

$$
\min_{1 \leq i \leq n} |\lambda' - \lambda_i| \leq \kappa_\infty(X) \|E\|_\infty.
$$
7. Let $A = I + xy^T$, where x and y are nonzero n-vectors. Show that $\text{det}(A) = 1 + x^T y$. Determine the Jordan canonical form of the matrix A.

8. Let $T : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be the transformation defined by $T(A) = (A + A^T)/2$.

(a) Prove that T is linear.

(b) Find a basis of the null space of T and determine its dimension