Class meets: Tuesday & Thursday 11:00–12:15, UH 4002
Instructor: Dr. Nándor Simányi
Office: UH 4014, phone: 934-2154, E-mail: simanyi@uab.edu
Office hours: Mondays and Wednesdays, 1:00–2:00, or by appointment.

Course Description. Well ordering and the most important algebraic structures: Rings, Groups, Fields.

Text: My weekly handouts and I. N. Herstein: Abstract Algebra. John Wiley & Sons. (A copy of this book can be found on the website dedicated to this class.)

Homework will be assigned on a weekly basis.

Assessment Procedures. Student achievement will be assessed by any or all of several measures: Regularly assigned homework problems, two midterm tests, and a comprehensive final exam. A numerical score is given on each of them.

Class Attendance: Class attendance is mandatory. One can get a passing grade only if the number of their unexcused absences is not more than 20% of the number of classes!

Grading Policy. Student achievement on the items assessed will be used to determine the final grade. The percentage of the final numerical grade assigned to each item is as follows: final exam: 40%; two midterm tests: 20% each; homework 20%. At the end I will “reasonably” curve the overall numerical scores.

Final exam. Tuesday, April 25, 10:45–1:15

Draft Syllabus

Rings: The Clock Arithmetic
Definitions and examples
Subring, center
Ideals, homomorphisms, quotient rings
Polynomial rings and their structure
Divisibility, irreducible vs. prime elements.
Unique Factorization Domains
Groups: Definition and examples
Subgroups, isomorphisms
Transformation groups
Cyclic groups, order of an element
Coset decomposition, Lagrange’s theorem
Homomorphisms. Normal subgroups and factor groups
The homomorphism theorems
Cauchy’s theorem

Fields: Definition, examples.
Prime fields, characteristics
Field extensions
Elements of Galois Theory