Syllabus: MA 632–2B — Abstract Algebra Spring 2023

Class meets: Tuesday & Thursday 9:30–10:45, UH 4002 Instructor: Dr. Nándor Simányi Office: UH 4014, phone: 934-2154, E-mail: simanyi@uab.edu Web site: http://people.cas.uab.edu/~simanyi/teaching/MA-632/ Office hours: Mondays and Wednesdays, 1:00–2:00, or by appointment.

Course Description. The Most Important Algebraic Structures: Groups, Rings, Fields, Order

Textbook. I. N. Herstein: Abstract Algebra. John Wiley & Sons.

Homework will be assigned on a weekly basis.

Prerequisite. Admission to the graduate program, or by my permission.

Assessment Procedures. Student achievement will be assessed by any or all of several measures: Regularly assigned homework problems, two midterm tests, and a comprehensive final exam. A numerical score is given on each of them.

Class Attendance: Class attendance is mandatory. One can get a passing grade only if the number of their unexcused absences is not more than 20% of the number of classes!

Grading Policy. Student achievement on the items assessed will be used to determine the final grade. The percentage of the final numerical grade assigned to each item is as follows: final exam: 40%; two midterm tests: 20% each; homework 20%. At the end I will "reasonably" curve the overall numerical scores.

Final exam. Thursday, April 27, 8:00–10:30

DRAFT SYLLABUS

Groups.

Semigroups and groups: Definitions and examples Subgroups, isomorphisms Transformation groups Cyclic groups, order of an element Coset decomposition, Lagrange's theorem Homomorphisms. Normal subgroups and factor groups $\mathbf{2}$

The homomorphism theorems Cauchy's theorem The center of a group. Conjugate classes Direct products Finite Abelian groups The symmetric group: Cycle decomposition, even & odd permutations

Ring Theory.

Definitions and examples Subring, center Ideals, homomorphisms, quotient rings Maximal ideals Polynomial rings and their structure Number of roots of a polynomial Polynomials over the rationals The quotient field of an integral domain

Elements of Theory of Fields.

Fields, prime fields, characteristics Field extensions Elements of Galois Theory