#### Introduction

Welcome to the course *Nanotechnology Awareness OHS\_HS239*. This course is designed as an introduction to nanomaterials – terms, history, types, property changes, uses, and concerns.

### **Objectives**

At the end of this course, you should be able to:

- Identify basic nanomaterial (NM) terminology by matching the terms to their definitions,
- Classify the different types of nanomaterials (natural, incidental, and engineered),
- · Name five out of ten products that currently use nanomaterials, and
- Choose three out of five issues that cause UAB Occupational Health & Safety (OH&S) and other
  entities concern when working with or using nanomaterials.

#### **Terms and Definitions**

| Term           | Definition                                                                                                                                                                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nano           | Greek for dwarf; very small; minute; super tiny; 1 nanometer (nm) = $0.00000001$ meter (m); 1 nm = $10^{-9}$ m; 1nm = one billionth meter                                  |
| Nano Measures  |                                                                                                                                                                            |
| Nanometer      | One billionth of a meter                                                                                                                                                   |
| Nanosecond     | One billionth of a second                                                                                                                                                  |
| Nanoliter      | One billionth of a liter                                                                                                                                                   |
| Nano-object    | Material with one, two, or three external dimensions in the size range from approximately 1-100 nm.                                                                        |
| Nanomaterial   | Nano-objects incorporated in a larger matrix or substrate                                                                                                                  |
| Nanotechnology | "Nanotechnology is the understanding, manipulation, and control of matter at dimensions of roughly 1 to 100 nanometers to produce new materials, devices, and structures." |
|                | OSHA definition                                                                                                                                                            |
| Nanorobot      | Now called a nanobot; an exceptional small autonomous, self-propelled machine that may reproduce                                                                           |



This nanobot example could be useful for military and police reconnaissance in the future. Smaller than a mosquito, they could penetrate places where humans, dogs, and current bots might not be able to go.

### **History of Nanomaterials**

#### **Pre-historic Man and Nanomaterials**

When we think back to the beginning of time, we think about dinosaurs, dry land or oceans, extreme temperatures, cave people, and fire. But what does that have to do with nanomaterials?

Actually, nanoparticles existed in the smoke from man's first fires. These carbon-based nanoparticles allowed early mankind to draw on cave walls – prehistoric art that still exists today in caves located in southwestern France. The artwork is still as vivid as it was during the Paleolithic stage.



Naturally occurring nanomaterials existed in the ashes and smoke from the active volcanoes as well as the sea spray from the oceans.

#### The Middle Ages



During the Middle Ages, mankind began to tinker with nanomaterials quite by accident. Mixing sand and wood ash created stained glass colors. Then the powdered materials were added to the hot molten glass.

Somehow these artisans knew when superfine gold dust was added, a green or ruby red color would appear in the glass. Superfine chromium and iron oxide dust created green variations.

In the image shown here, modern artisans have learned how to mix silver nanoparticles with red clay to imitate the color red that matches some of the medieval stained glass pieces that still exists in some of the cathedrals today.





Steel makers during these times created a material strong enough to cut through rocks and then slice meat so thin you could see through it without wear and tear to the steel.

Damascus steel has yet to be recreated in its exact molecular form.

# **Types of Nanomaterials**

#### **Naturally Occurring Nanomaterials**

The historical type of nanomaterials are called *naturally occurring nanomaterials* – those that come from the earth – smoke, minerals, sea spray, etc.

#### **Incidental Nanomaterials**

Unfortunately, mankind created other nanoparticles along the way – *incidental nanoparticles*. These are the byproducts of processes such as combustion and generated in an uncontrolled manner. Here are a few of them along with the diseases that come from continuing exposure:

| Incidental Nanoparticles               | Diseases                                                                                                                                                   |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Diesel exhaust                         | Respiratory disease, cancer                                                                                                                                |  |  |
| Cooking smoke                          | Pneumonia, chronic respiratory disease, lung cancer                                                                                                        |  |  |
| Welding fumes                          | Metal fume fever, infertility, benign pneumoconiosis (a disease of the lungs, characterized by fibrosis and caused by chronic inhalation of mineral dusts) |  |  |
| Sandblasting                           | Silicosis (lung fibrosis caused by inhalation of dust containing silica)                                                                                   |  |  |
| Industrial Emissions/Effluents (Waste) | Asthma, atherosclerosis, chronic obstructive pulmonary disease                                                                                             |  |  |

## **Engineered Nanomaterials**

Engineered nanomaterials are intentionally produced and designed with very specific properties related to shape, size and chemistry. Engineered nanomaterials are more well-defined than incidental nanomaterials. Incidental nanoparticles are far more variable having different shapes and sizes and composed of different elements.

Well-known engineered nanomaterials are quantum dots (e.g., atoms, multi-molecular combinations), nanotubes, and buckyballs (i.e., a sphere that resembles a soccer ball).

### **Changes at the Nanoscale**

When materials are nanosized, both physical and chemical properties change. The following changes can occur:

 Color (some will fluoresce as shown here in regular light and then no light)





- Melting temperature,
- Crystal structure,
- Chemical reactivity,
- Electrical conductivity,
- Magnetism, and
- Mechanical strength.

Solid pure gold is shiny, non-magnetic, melts at 1336 K, and is an impressive metal. However, when it is nanosized, it can be red or green in color, become magnetic at  $\sim 3$  nm, lose conductivity at  $\sim 1-3$  nm, and is explosive and catalytic.





Even though the famous Lycurgus Cup was made over 1,600 years ago, it still glows green when light is shined from the front, and red when lit from the back. (On display at The British Museum in London, England). Researchers use this technology even today.

#### **Current Uses of Nanomaterials**

Nanomaterials are everywhere these days. More than 1,300 commercial products have manufactured nanoparticles in them. Which ones affect your life every day?

| Foods                                  | Personal Care                            | Electronics                             | Environment and<br>Sustainability                                                | Biomedical and<br>Health                        |
|----------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|
| M&Ms                                   | Makeup<br>(especially aging<br>products) | Quantum computers                       | Pollutant scavengers                                                             | Antibacterial                                   |
| Dentyne<br>Gum                         | UV protection (sunscreen)                | High density data storage               | Waste water treatment                                                            | Antioxidants                                    |
| Dunkin'<br>Donuts                      | Toothpaste (white pigment)               | Chemical and gas sensors                | Pollution monitoring sensors                                                     | Wound dressings                                 |
| Kraft American Singles Cheese          | Dental fillings                          | High power<br>magnets                   | Environmental catalysts                                                          | Drug controlled<br>release                      |
| Pop-Tarts                              | Dental ceramics                          | Superplastic ceramics                   | Removal of environmental contaminants                                            | Blood purification<br>and tissue<br>engineering |
| Oreos                                  | Anti-stain clothing                      | Quantum lasers                          | New, more efficient spark plug (railplug beta)                                   | Hypothermic treatment                           |
| Betty<br>Crocker<br>Mashed<br>Potatoes | Self-cleaning clothes                    | Thinner, lower cost flat panel displays | Lighter, stronger airplane exoskeleton for saving gas and money due to longevity | Cancer therapy                                  |

#### **Concerns**

As you can see, nanoparticles are everywhere – in our food, personal and health care products, technology, etc. But what are the consequences of these nanomaterials on animals, humans, and the environment? *Unknown at this time*.

Another factor to consider will be what happens to the nanomaterial inside the body? We know that materials that are nanosized can change physical and chemical properties. Studies have shown that these nanoparticles can translocate to other organs once inside the body. So what is the outcome? *Unknown at this time.* 

What will be the impact of chronic exposure to scientists in labs? Will the potential damage be significant? How much nanomaterial would be needed to cause appreciable harm? How well will the human body and the environment be able to deal with the nanomaterials and recover? *Unknown at this time.* 

#### **Next Steps**

With so many questions with undetermined answers, how can we protect ourselves, our co-workers, and the environment from harm?

If you are working with nanomaterials at UAB, you are required to complete the next course, *Working Safely with Nanotechnology OHS\_HS240*. It is by *assignment only*, and it is a two-part course. There is an online component followed by an on-site visit from OH&S. The course covers how to work safely with nanomaterials and the policies and procedures you will need to know and apply on a daily basis. If you are using nanomaterials in research at UAB, you are required to take other courses as well:

- Biosafety Cabinets and Fume Hoods OHS\_BIO304, and
- Chemical Safety OHS\_CS101.

Both BIO304 and CS101 must have been *completed within the last three (3) years*.

#### **Conclusion**

This concludes the *Nanotechnology Awareness Course OHS\_HS239*. If you have not taken the assessment, please do so now. A score of 90% or higher is required to pass. You will have two opportunities to pass the assessment. If you fail both times, it is considered a failed course and will appear on your transcript as such.



If you have any questions or concerns or need to be assigned the next course, please contact Occupation Health & Safety (OH&S) at 934-2487.

#### Want to Learn More?

OH&S has many training courses available to all UAB active employees and students. This includes topics such as in depth radiation training, biosafety, bloodborne pathogens, chemical safety, controlled substances, building life safety, hazardous and medical waste, universal waste, PPE, hazard communication, etc.

We have a <u>decision tree</u> to assist you in choosing the right course to match the knowledge/skills you may need at work every day as well.

If you have any questions or comments, please feel free to contact OH&S.