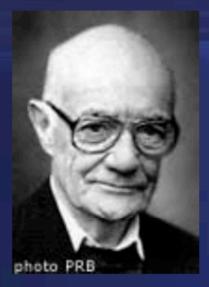


Quantification in Mass Spectrometry: the who, the what and the how much...

Stephen Barnes, PhD


Targeted Metabolomics and Proteomics
Laboratory

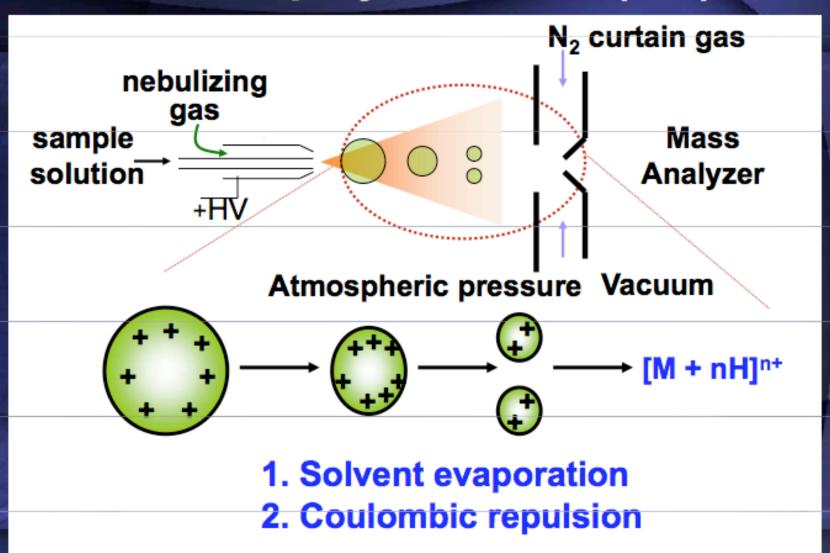
Synopsis

- Quantification during discovery
 - Spectral counting
 - ICAT (isotope-coded affinity tag)
 - iTRAQ
 - SILAC
- Discovery starting points
- Multiple reaction ion monitoring (MRM)
 - Advantages and limitations
 - Importance of bioinformatics and computational support

Nobel Prize in Chemistry- 2002

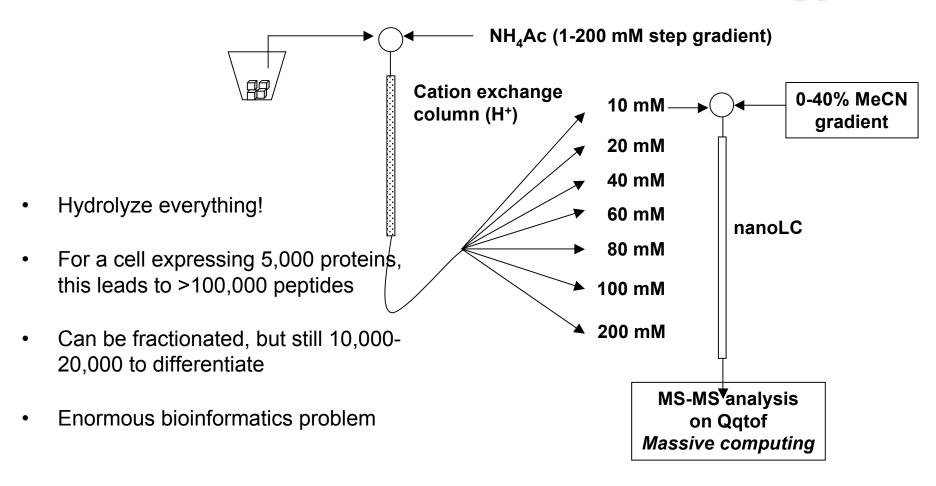
For getting proteins and peptides into the gas phase

John Fenn



Koichi Tanaka

"for the development of methods for identification and structure analyses of biological macromolecules" and


"for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules"

Electrospray Ionization (ESI)

Electrospray Ionization (ESI) Taylor cone Plume Jet Needle tip **1** 5 μm

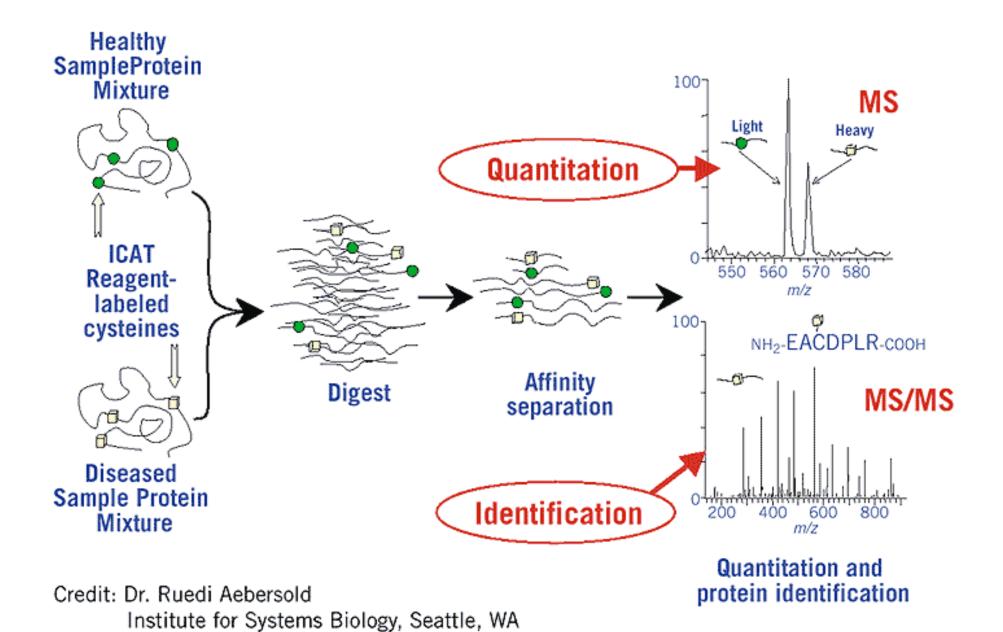
MUDPIT - MUlti-Dimensional Protein Identification Technology

John Yates

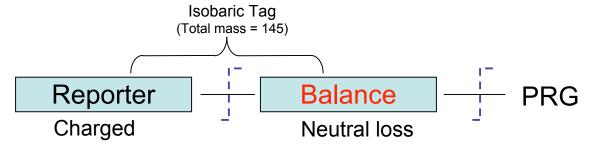
Spectral counting

- Spectral counting depends on how many peptides from a protein are detected in a tandem MS experiment
- A completely digested protein (1 pmol) should produce 1 pmol of each of its constituent peptides
- However, the molar ionization intensity for these peptides varies at least 100-fold
- A low abundance protein will have only a few recognizable peptides
- It's a robust method that doesn't require special reagents and is part of a discovery experiment

Isotope-coded affinity technology

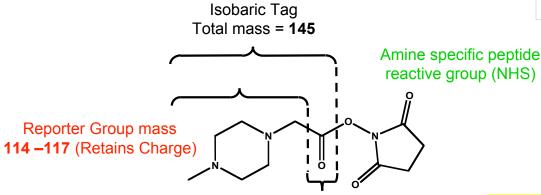

Isotope-Coded Affinity Tags

heavy reagent: D8-ICAT Reagent (X=deuterium)


light reagent: DO-ICAT Reagent (X=hydrogen)

This reagent reacts with cysteine-containing proteins (80-85% of proteome)

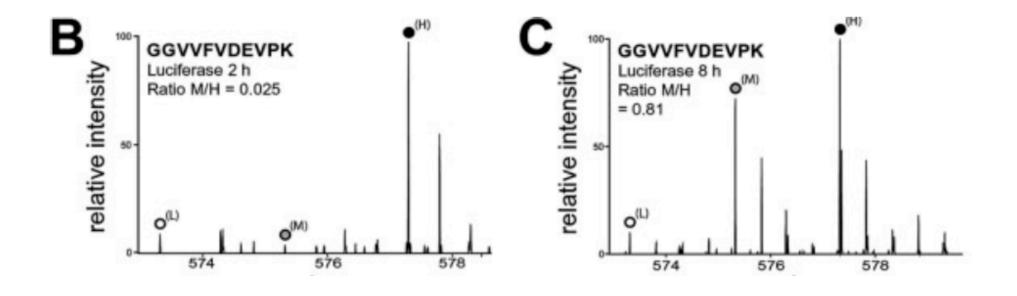
Labeling can be replacement of hydrogens (X) with deuterium, or better to exchange ¹²C with ¹³C in the linker region (this avoids chromatography issues)


iTRAQ™ Reagent Design

- Gives strong signature ion in MS/MS
- Gives good b- and y-ion series
- Maintains charge state
- Maintains ionization efficiency of peptide
- Signature ion masses lie in quiet region
- Balance changes in concert with reporter mass to maintain total mass of 145
- Neutral loss in MS/MS

Amine specific

= MS/MS Fragmentation Site


Balance Group Mass **31-28** (Neutral loss)

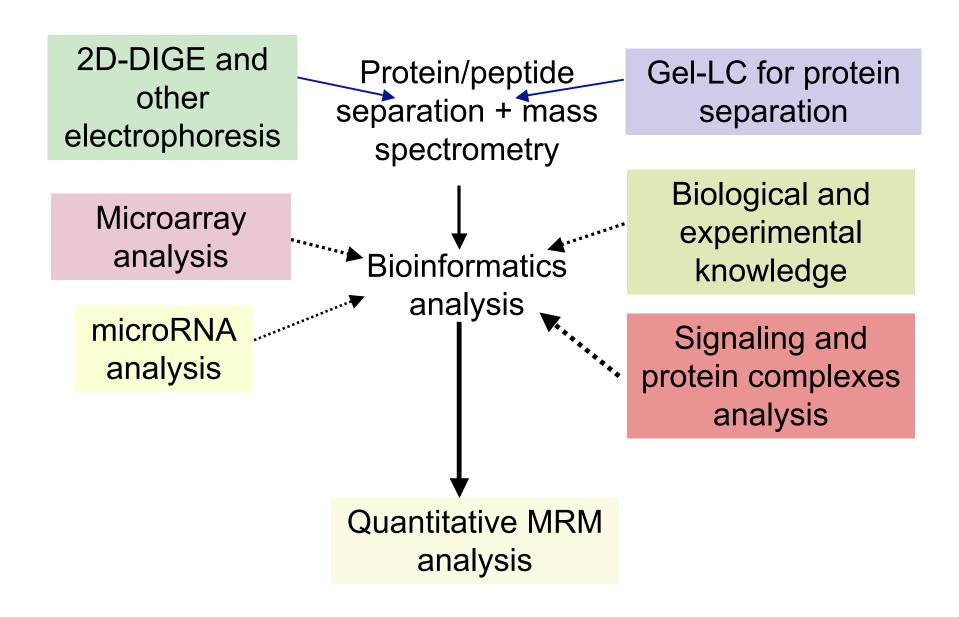
Slide provided by Applied Biosystems

SILAC and protein quantification

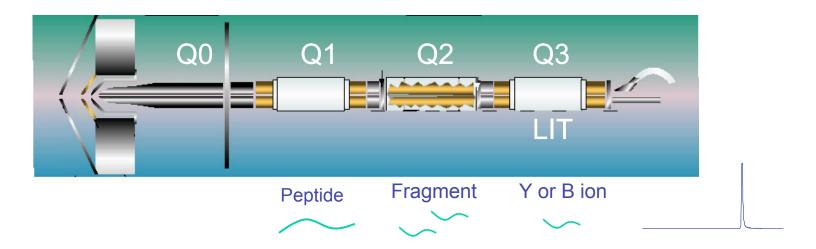
- Stable isotope labeling with amino acids in cell culture (SILAC)
- See http://www.silac.org
- Amino acids such as leucine, lysine or tyrosine are added as light (all ¹²C) or heavy forms (all ¹³C)
 - e.g., ¹³C₆-lysine, ¹³C₉-tyrosine
- These amino acids are incorporated into proteins and increase masses of peptides
- Samples are mixed and digested with proteases
- The intensities of the peptide pairs (M, M+6) compared

Pulsed SILAC

Proteomics 2009, 9, 205-209


Limitations of quantitative methods

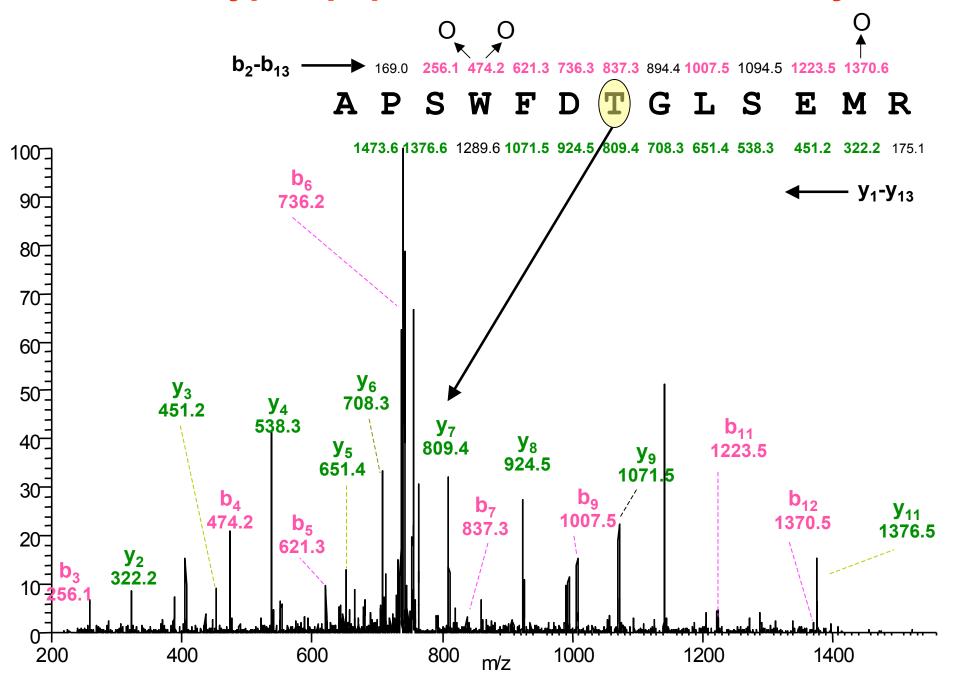
- Spectral counting: depends on the number of peptides produced from a protein which are recognizable -
 - however, tandem MS is a stochastic process
 - can measure 2-fold differences
- ICAT: the proteins that have cysteines and ones that are free and not oxidized are limited
 - the reagent is reacted with the intact proteins
- iTRAQ: reacts with lysines (more abundant than cysteines)
 - the large number of steps that are involved leads to variable losses
 - Also, the label is added after the hydrolysis
- SILAC: requires good chromatography
 - best for cells too expensive for animal studies


On the way to absolute quantification

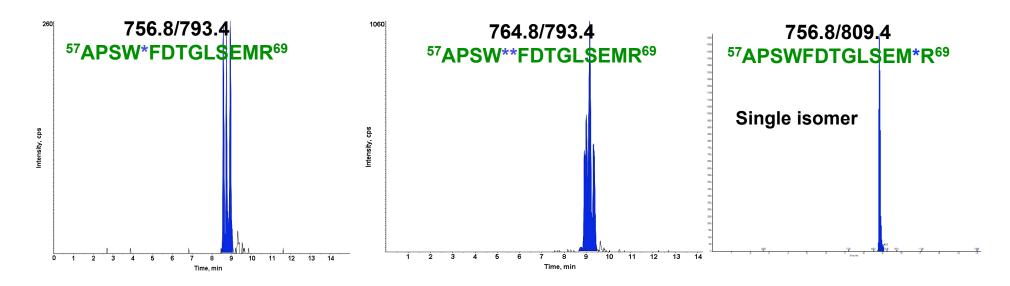
- All forms of proteomics and mass spectrometry are a compromise
- At best only a small part of the proteome can be observed due to sample solubility, complexity and concentration (dynamic range of 9-10 orders of magnitude), as well as instrument detection bias
- If we "know" what we want to measure, then we can focus our attention on a limited, but if carefully selected, important group of proteins and determine them at much higher sensitivity

Workflow for generation of proteomics data

Multiple Reaction Monitoring



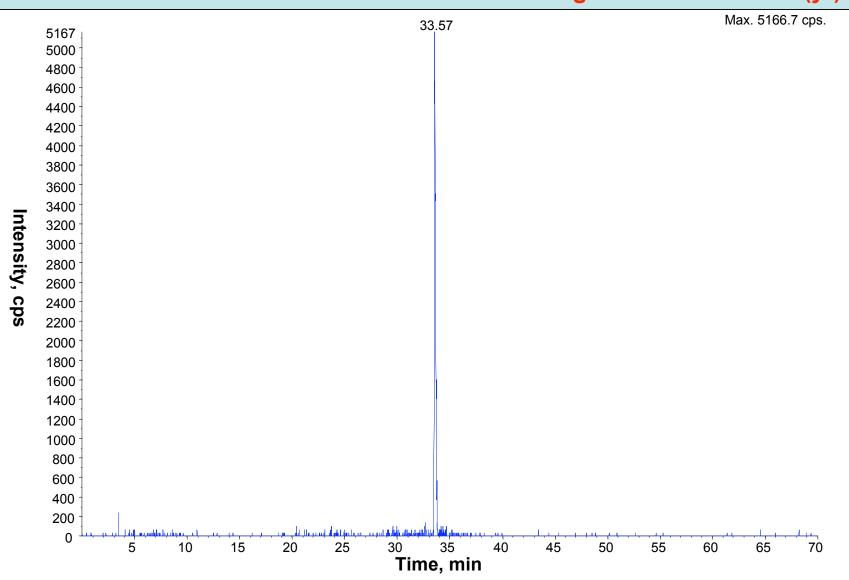
- Highest specificity and sensitivity for detecting components in a complex mixture
- Largest linear dynamic range for quantitation
- Well accepted as the MS technique for quantification (small molecule world)
- Triple quadrupole or Q TRAP® system mass spectrometers


Quantification of peptides

- MRM-MS collects data points to describe a peak
- Enough ions can be collected in 10-20 msec, enabling a switch to a different parent ion/fragment ion combination ("channel") for the next 10-20 msec, etc.
- When the list of peptide measurements has been completed, then we go back to the top of the list for the next cycle (multiple reaction ion monitoring - MRM)
- The data points (10 per peak) are used to recreate the peak and hence measure the area underneath it.

Oxidized tryptic peptide aa57-69 from hab-crystallin

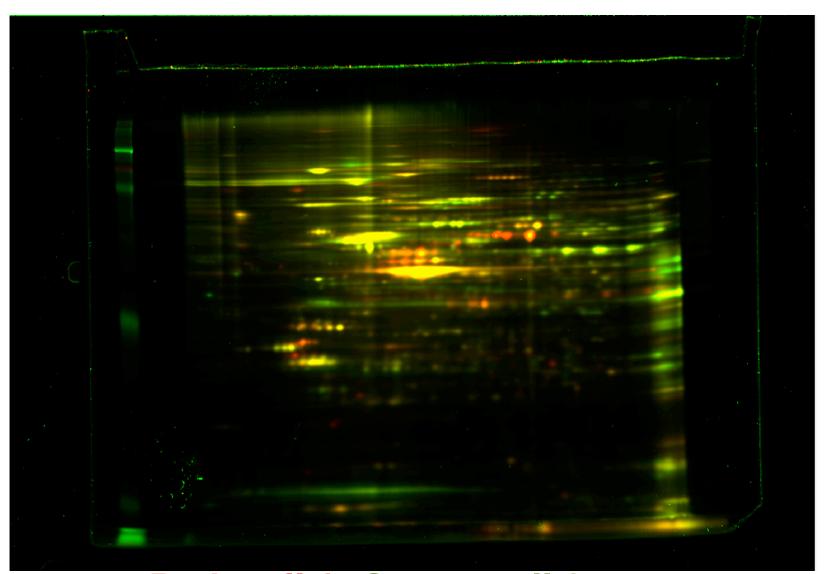
nanoLC-MRM-MS analysis reveals that UVA light oxidation of tryptophan occurs at several sites



Addition of one O leads to five possible isomers

Addition of two O leads to ten possible isomers

Cystin peptide detected in whole kidney digest by MRM-MS

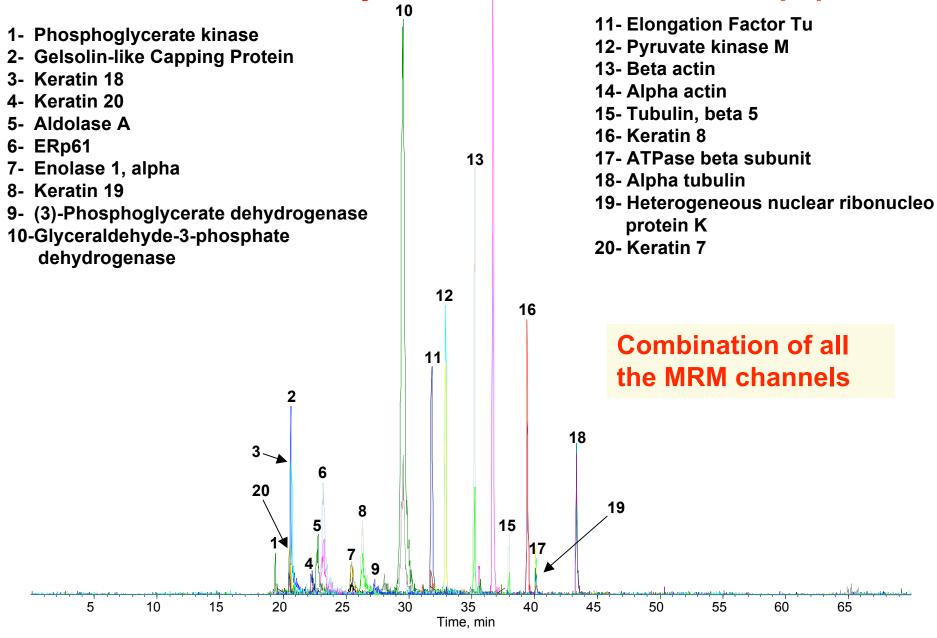

LAPAVSPEK MRM Parent ion: 456.26++ m/z Daughter Ion: 559.3 m/z (y⁵)

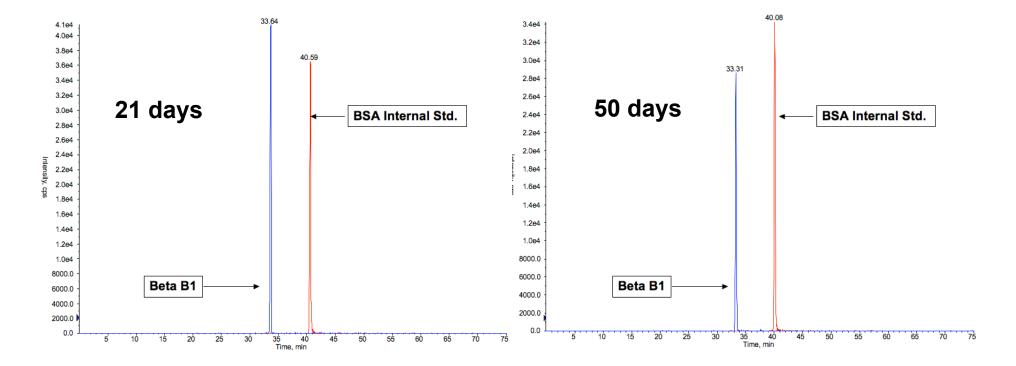
Choosing the precursor and fragment ions for MRM

- Without preliminary data
 - Use the Sciex software program MIDAS it interrogates a library of known peptides and selects the predicted most intense ions
 - Our experience is that it is a poor predictor
- With preliminary data
 - Inspect the peptide MSMS spectra that we have previously obtained to identify proteins
 - These spectra are "guaranteed" to work since they are obtained on the same instrument; however, the Qtrap and the triple quad collision parameters are not the same

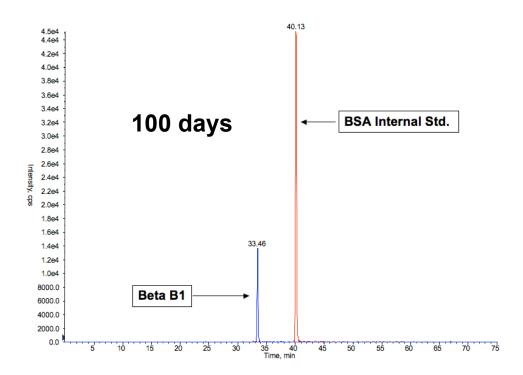
DIGE of two cell protein extracts

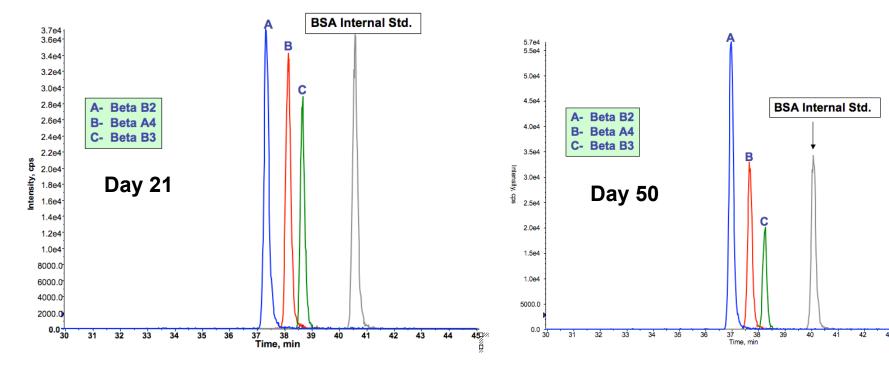
Red: cell 1; Green: cell 2

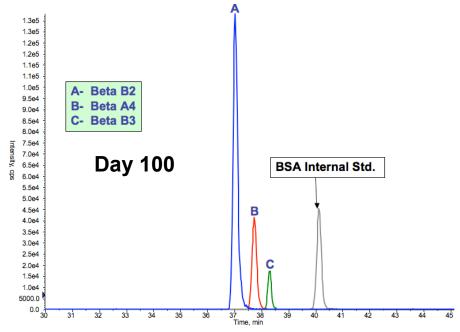

Partial list of protein identities of spots indicated to be significantly different between cell 1 and cell 2 (rescued with *Polaris*)


Spot #	Protein Identification	MOWSE score	Accession number	mw (obs) kDa	mw (pred) kDa	pl (obs)	pl (pred)	T-test	ratio R/C
83	No identificaiton	N/A	N/A	250.00	N/A	5.75	N/A	1.60E-03	-2.03
211	gelsolin, cytosolic	49	gi 90508	101.00	81.00	5.85	5.53	2.16E-05	-2.02
212	gelsolin, cytosolic	203	gi 90508	100.00	81.00	6.01	5.53	7.98E-05	-2.05
404	Keratin 8	502	gi 76779293	54.00	55.00	5.75	5.71	7.30E-07	-2.52
406	Keratin 8	995	gi 76779293	50.00	55.00	5.75	5.71	4.17E-06	-5.5
412	Keratin 8	988	gi 76779293	52.00	55.00	5.83	5.71	6.02E-07	-3.77
468	Keratin 18	320	gi 6754482	43.00	47.00	5.31	5.31	1.10E-04	-2.47
	Keratin 20	269	gi 21592285		49.00		5.31		
476	hypothetical protein LOC100037084 (Keratin 18)	678	gi 147899980	45.00	47.00	5.32	5.22	4.69E-06	-3.24
	(Kerauli 10)								
477	hypothetical protein LOC100037084	1251	gi 147899980	47.00	48.00	5.40	5.22	1.65E-08	-4.44
	(Keratin 18)								
490	eukaryotic translation initiation factor 4A isoform 1	471	gi 4503529	43.00	46.00	5.60	5.00	3.40E-02	-3.47
	hypothetical protein LOC100037084 (Keratin 18) Keratin 20	384 344	gi 147899980 gi 21592285		48.00 49.00		5.22 5.31		

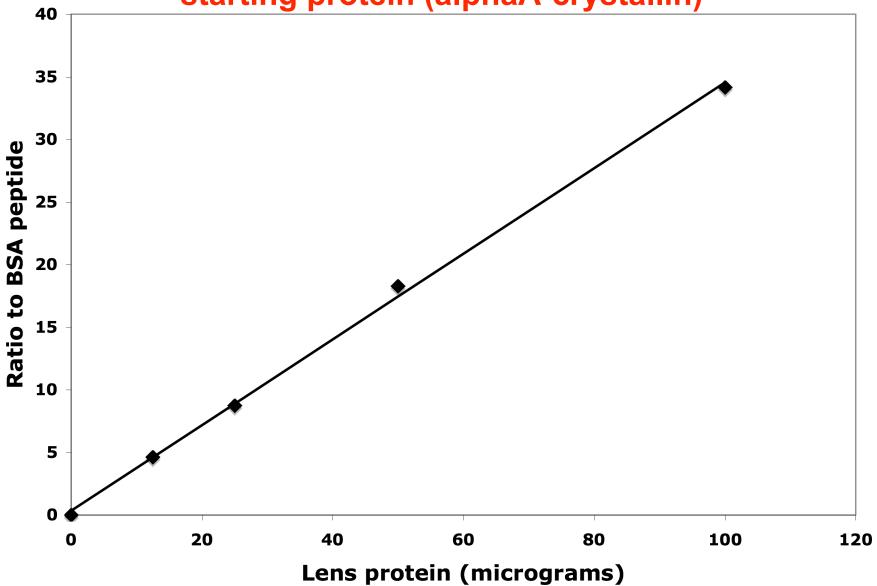
Being selective - pragmatically choosing the MRM ions from existing tandem spectra


Protein	Parent m/z	Daughter Ion		Sequence
rioteiii	ratent m/2	Daugitteri	on	sequence
3-phosphoglycerate dehydrogenase (9)	566.04	645.4	y6	VTADVINAAEK
		744.43	у7	VTADVINAAEK
Aldolase A (5)	566.9	563.3	y5	ALANSLACQGK
		763.4	у7	ALANSLACQGK
Alpha actin (14)	896.04	901.5	y8	SYELPDGQVITIGNER
		1086.6	y10	SYELPDGQVITIGNER
Alpha tubulin (18)	744.6	834.5	y8	LISQIVSSITASLR
		933.5	у9	LISQIVSSITASLR
ATPase beta subunit (17)	720.3	885.5	у7	VALTGLTVAEYFR
		1055.6	у9	VALTGLTVAEYFR
Beta actin (13)	473.3	531.3	y5	AVFPSIVGR
		628.4	у6	AVFPSIVGR
Elongation factor Tu (11)	513.3	685.4	у7	IGGIGTVPVGR
		912.5	y10	IGGIGTVPVGR
Enolase 1, alpha non-neuron (7)	572.3	511.3	y4	IGAEVYHNLK
, ,		674.4	-	IGAEVYHNLK


Proteins indicated to be of interest by 2D DIGE detected in one MRM run, with forty channels set, two for each peptide

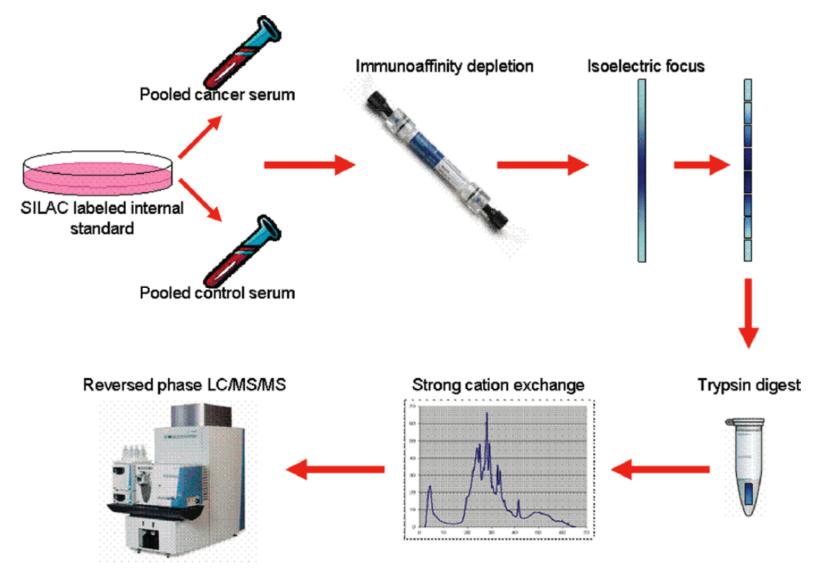


Decreasing amount of beta B1 crystallin in the lens with the age of the rat - note the BSA peptide as the internal standard



Increasing amount of beta B2 crystallin in the lens with the age of the rat - note the BSA peptide as the internal standard

Linearity of the area response for the peptide from a starting protein (alphaA-crystallin)


Selecting an internal standard

- A protein that is not present in the sample of interest can be
 - e.g., in rat lens, add BSA and measure a unique peptide
- A synthetic ¹³C-labeled peptide for each protein of interest
 - Very elegant, but expensive (\$1,000 per peptide)
 - Does not assess hydrolysis efficacy
- Concatenation (joining the peptides as their oligonucleotide analogs, creating a macro cDNA and expressing the hybrid protein)
 - Very elegant, sophisticated use of molecular biology
- SILAP labeling creates proteome-wide, stable isotope labeled proteins

Concatenation - making ¹³Clabeled peptide internal standards

SILAC use as an internal standard

Journal of Proteome Research 2009, 8, 1565-1576

Stable isotope amino acids

http://www.isotope.com

	Amino acid	Amount (g)	<u> Price (\$)</u>
•	L-Arg ¹³ C ₆	0.1, 0.5	650, 1880
•	L-Arg ¹³ C ₆ ¹⁵ N ₄	0.1, 0.5	855, 2445
•	L-Lys ¹³ C ₆	0.1, 0.25	443, 1129
•	L-Lys 13 C $_6$ 15 N $_2$	0.1, 0.25	345, 580
•	L-Tyr ¹³ C ₉	0.1, 0.25	635, 1240
•	L-Tyr ¹³ C ₉ ¹⁵ N	0.1, 0.25	275, 410

These are all 97-99% pure. Prices for 99% or better are not listed, but will be higher.

Summary

- Quantitative proteomics has arrived
- Specific hypotheses can now be tested with high precision
- Limitations lie in having enough bioinformatics resources to "boil" approaches down
- Other limitations are in the basic biochemistry of proteolysis

Many thanks to

- Landon Wilson
- Ray Moore
- Sai Sai Dong
- Richie Herring
- David Stella
- Michael Heaven
- Kyle Floyd
- Elizabeth Gulsby
- Chiquito Crasto, PhD
- Helen Kim, PhD
- Matt Renfrow, PhD
- Om Srivastava, PhD

UAB Centers support

- Acute Kidney Injury Center
- Botanicals
- CNGI
- Polycystic Kidney Disease
- Skin Disease Research
- (Cancer Center)

Federal support

- R21 AT004621
- S10 RR17261
- S10 RR19231

Protein Name:	Molecular	Assay	MRM Scans		Accession:	
	Weight	Peptides	Needed	Swiss Pro		
Eukaryotic translation initiation factor 4E	25053	5	1	P63073		
eukaryotic translation initiation factor 4E binding protein 2	12898	1	1	P70445		
vascular endothelial growth factor A	15963	1	1	Q00731	AAM55477	
hypoxia-inducible factor 1 alpha	91873	16	5	Q61221	AAC52730	
Akt1 protein	23290	7	2	P31750	AAI15584	
eukaryotic translation initiation factor 4, gamma 1	176078	39	8 <u>Q6NZJ6</u>		NP 666053	
Eukaryotic translation initiation factor 4A	46154	12	3	Q5F2A7	BAA25075	
rhodopsin	39070	3	1	P15409	NP 663358	
Rac GTPase-activating protein 1	70159	19	4	Q9WVM1	NP 036155	
protein kinase C, alpha	76825	8	2	P20444	NP 035231	
eukaryotic translation initiation factor 4B	68840	16	4	Q8BGD9	NP 663600	
G protein beta subunit-like	35851	4	1	Q9DCJ1	NP 064372	
Mammalian target of rapamycin	288739	59	10	Q9JLN9	Q9JLN9	
raptor	149499	31	7	Q8K4Q0	NP 083174	
protein phosphatase 2a	35609	7	2	P63330	NP 062284	
FK506 binding protein 1a	11923	0	0	P26883	AAH04671	
RAS-homolog enriched in brain	20452	7	2	Q921J2	NP 444305	
Rapamycin-insensitive companion of mTOR	191571	51	11	Q6Q106	Q6Q106	
ribosomal protein S6	28681	4	1	P62754	NP 033122	
eukaryotic translation initiation factor 3, subunit 10 (theta)	161938	44	9	P23116	NP 034253	
ribosomal protein S6 kinase, polypeptide 1 isoform 1	59146	12	3	Q505N6	NP 00110780	
Tuberous sclerosis 2	194100	50	10	Q7TT21	AAH52449	
tuberous sclerosis 1	128250	34	7	Q9EP53	CAM22296	
DNA-damage-inducible transcript 4	24871	4	1	Q9D3F7	NP 083359	
ribosomal protein S6 kinase polypeptide 1	82847	23	5	A3KGL7	NP 033123	
3-phosphoinositide dependent protein kinase-1 isoform A	63759	17	4	Q9Z2A0	NP 035192	
LKB1	49627	10	2	Q9WTK7	BAA76749	
insulin receptor substrate 1	130585	23	5	P35569	NP 034700	
Harvey rat sarcoma virus oncogene 1 isoform 1	21298	6	2	Q76LV5	NP 032310	
mitogen-activated protein kinase (p42)	41276	7	2	P63085	CAA41548	
diacylglycerol kinase, gamma	88524	12	3	Q91WG7		
Dystroglycan	70564	19	4	Q62165	CAA60031	
pallidin	19683	3	1	Q9R0C0	NP 062762	
pyruv ate carboxylase	129686	31	7	Q05920	NP 032823	
phospholipase D1	119589	31	7	Q9Z280	AAC84041	