Chapter 6: Outline

Outline

Properties of Enzymes
Classification of Enzymes
Enzyme Kinetics
 Michaelis-Menten Kinetics
 Lineweaver-Burke Plots
 Enzyme Inhibition
Catalysis
 Cofactors
 Temperature and pH
Enzyme Regulation
Enzymes are catalysts which increase the rate of reactions by up to 10^{12}. Enzyme lower the activation energy of the reaction by changing the reaction pathway. Enzymes do not change the standard free energy change (ΔG°) for the reaction nor the Keq. Enzymes are temperature and pH sensitive and will not work outside their normal range.

Classification of Enzymes

The International Union of Biochemistry (IUB) classifies and names enzymes according to the type of chemical reaction it catalyzes. Enzymes are assigned an E.C. number and a systematic name to characterize the reaction they catalyze (also a shorten common name).

Ethanol + NAD+ \rightarrow Acetaldehyde + NADH

alcohol dehydrogenase (common name)
alcohol:NAD$^+$ oxidoreductase (systematic name)
E.C. 1.1.1.1 number
Enzyme Classes

Six Major Classes of Enzymes

1. **Oxidoreductases** catalyze redox reactions. (dehydrogenases, reductases or peroxidases)
2. **Transferases** transfer a group from one molecule to another (transaminases or transcarboxylases)
3. **Hydrolases** cleave bonds by adding water. (phosphatases or peptidases)
4. **Lyases** catalyze removal of groups to form double bonds or the reverse (decarboxylases or synthases)
5. **Isomerases** catalyze intramolecular rearrangements (epimerases or mutases)
6. **Ligases** bond two molecules together. Many are called synthetases (carboxylases).

Examples of Reactions Mediated by Each Enzyme Class

<table>
<thead>
<tr>
<th>Enzyme Class</th>
<th>Example</th>
<th>Reaction Catalyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidoreductase</td>
<td>Alcohol dehydrogenase</td>
<td>$\text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ \rightarrow \text{CH}_3\text{CH}_2\text{OH} + \text{NADH} + \text{H}^+$</td>
</tr>
<tr>
<td>Transferase</td>
<td>Hexokinase</td>
<td>$\text{Glucose} + \text{ATP} \rightarrow \text{Glucose-6-phosphate} + \text{ADP}$</td>
</tr>
<tr>
<td>Hydrolase</td>
<td>Chymotrypsin</td>
<td>$\text{Polypeptide} + \text{H}_2\text{O} \rightarrow \text{Peptides}$</td>
</tr>
<tr>
<td>Lyase</td>
<td>Pyruvate decarboxylase</td>
<td>$\text{Pyruvate} \rightarrow \text{HCO}_3^- + \text{H}_2\text{O} + \text{CO}_2$</td>
</tr>
<tr>
<td>Isomerase</td>
<td>Alanine racemase</td>
<td>$\text{D-Alanine} \leftrightarrow \text{L-Alanine}$</td>
</tr>
<tr>
<td>Ligase</td>
<td>Pyruvate carboxylase</td>
<td>$\text{Pyruvate} + \text{ATP} \rightarrow \text{Oxaloacetate}$</td>
</tr>
</tbody>
</table>
General Reaction Rates

A → P

Initial velocity = \(v_0 = -\frac{\Delta[A]}{\Delta t} \) or \(\frac{\Delta[P]}{\Delta t} \)

First order: \(v_0 = -\frac{\Delta[A]}{\Delta t} = k[A]^1 \)

General order: \(v_0 = k[A]^x \); where \(k \) is the rate constant and \(x \) is the order of the reaction (both experimentally determined).

When \(x = 0 \) then \(v_0 \) is not dependent on \([A]\).

When \(x = 2 \) then \(v_0 \) increases by four when the \([A]\) is doubled.

Bisubstrate Reactions

A + B → P (E + S → P)

\(v_0 = -\frac{\Delta[A]}{\Delta t} \) or \(-\frac{\Delta[B]}{\Delta t} \) or \(\frac{\Delta[P]}{\Delta t} \)

\(v_0 = -k[A]^1[B]^1 \)

(overall second order)

If B (or S) is not in excess, then the increase in \(v_0 \) is linear.

If B (or S) is in large excess then there is no increase in \(v_0 \) (pseudo first order).

Velocity = \(k[A]^1[B]^0 = k'[A]^1 \)
Example of Hydrolysis of Gly-Gly

Gly-Gly + H₂O → 2 Gly

\[v_0 = k[Gly-Gly]^x[H₂O]^y \]

<table>
<thead>
<tr>
<th>[Gly-Gly]</th>
<th>[H₂O]</th>
<th>Velocity, Ms⁻¹ x 10⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 0.1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>b) 0.2</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>c) 0.1</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>d) 0.2</td>
<td>0.2</td>
<td>?</td>
</tr>
</tbody>
</table>

When the [Gly-Gly] is doubled, velocity doubles (x=1)
When the [H₂O] is doubled, velocity doubles (y = 1)

Michaelis-Menten Enzyme Kinetics

\[v_0 = \frac{V_{max}[S]}{K_m + [S]} \]

At low substrate concentrations the reaction is first order in substrate (\(v_0 \rightarrow V_{max}[S]/K_m \)).
At high substrate concentrations the reaction approaches zero order (\(v_0 \rightarrow V_{max} \)).
Lineweaver-Burke Plot

\[E + S = ES = E + P \]

\[v_o = \frac{V_{\text{max}}[S]}{K_m + [S]} \]

\[\frac{1}{v_o} = \frac{K_m}{V_{\text{max}}} \frac{1}{[S]} \]

Y-intercept = \(\frac{1}{V_{\text{max}}} \)

X-intercept = \(-\frac{1}{K_m}\)

Meaning of \(V_{\text{max}} \) and \(K_m \)

\[V_{\text{max}} = k_3E_t \]

\[k_{\text{cat}} = \frac{V_{\text{max}}}{E_t} \text{ (s}^{-1}\text{)} \]

Turnover

number = \(\frac{1}{k_{\text{cat}}} \text{ (s)} \)

\[K_m = \frac{k_2 + k_3}{k_1} = \frac{k_2}{k_1} \text{ (M)} \]

\[K_m = \text{dissociation constant of ES} \]
Enzyme Inhibition

Competitive Inhibitors
- I binds to only E
- K_m^{app} increases
- $V_{\text{max}}^{\text{app}}$ does not change

Uncompetitive Inhibitors
- I binds to only ES
- K_m^{app} decreases
- $V_{\text{max}}^{\text{app}}$ decreases

Noncompetitive Inhibitors
- I binds to both E and ES
- K_m^{app} does not change
- $V_{\text{max}}^{\text{app}}$ decreases

Allosteric Proteins

Exhibits sigmoidal velocity curve rather than hyperbolic curve.

Are often regulatory enzymes since they switch between **efficient** and **less efficient** forms with increasing $[S]$.

T-state \rightarrow R-state

Analogous to Hemoglobin binding O_2.
Enzymes are pH and Temperature Sensitive

pH: Different amino acid R-groups contribute to the catalytic mechanism of the enzyme. Titration of the weak acid residues often lead to lowering of the catalytic efficiency.

\[\text{R-CO}_2\text{H} \rightarrow \text{R-CO}_2^- \]

Proton donor Proton acceptor

Temperature: Higher temperatures increase velocity until the protein unfolds.

Catalytic Mechanisms to Lower the Activation Energy of a Biochemical Rx

Proximity Effects
- Substrates are oriented in the catalytic site of the enzyme with the proper orientation (decrease in entropy).

Strain Effects
- Enzyme-substrate adopts a conformation that stabilizes the transition state of the reaction

Electrostatic Effects
- Charged (or hydrogen bonding) groups on the protein stabilizes ionic species formed in the reaction.

Acid-Base Catalysis
- Proton donors and acceptors provide high acid or base strength in the catalytic site of the reaction.

Covalent Catalysis
- Covalent bonds between E and S stabilize intermediates
Cofactors are Essential in for the Mechanism of many Biological Enzyme Reactions

Metal Cofactors
Fe, Zn, Cu, Co are permanently bound to metalloenzymes
Ca, Mg, K, and to a lesser extent Na are needed in metal-activated enzymes

Coenzyme Cofactors
coenzymes like ATP or NAD⁺ bind to enzymes like substrates and are released like products
prosthetic groups like many vitamin-derived coenzymes are permanently bound to the enzyme

NAD⁺ is a cosubstrate in oxidation-reduction reactions

\[
\text{Nicotinamide} \quad \text{NAD}^+ \quad \text{NADH}
\]

\[
\text{(a)} \quad \text{NAD}^+ + \text{H}^+ + 2e^- \rightleftharpoons \text{NADH} + \text{H}^+
\]

\[
\text{(b)} \quad \text{NAD}^+ \quad \text{NADH}
\]
FAD is a prosthetic group of other oxidation-reduction reactions.

Metal Activated Enzyme

Zn²⁺ is Permanently Bound to Alcohol Dehydrogenase
Many Water Soluble Vitamins are Precursors to Coenzymes

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Coenzyme Form</th>
<th>Reaction or Process Promoted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-Soluble Vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamine (B₁)</td>
<td>Thiamine pyrophosphate</td>
<td>Decarboxylation, aldehyde group transfer</td>
</tr>
<tr>
<td>Riboflavin (B₂)</td>
<td>FAD and FMN</td>
<td>Redox</td>
</tr>
<tr>
<td>Pyridoxine (B₆)</td>
<td>Pyridoxal phosphate</td>
<td>Amino group transfer</td>
</tr>
<tr>
<td>Nicotinic acid (niacin)</td>
<td>NAD and NADP</td>
<td>Redox</td>
</tr>
<tr>
<td>Pantothetic acid</td>
<td>Coenzyme A</td>
<td>Acyl transfer</td>
</tr>
<tr>
<td>Biotin</td>
<td>Biocytin</td>
<td>Carboxylation</td>
</tr>
<tr>
<td>Folic acid</td>
<td>Tetrahydrofolic acid</td>
<td>One-carbon group transfer</td>
</tr>
<tr>
<td>Vitamin B₁₂</td>
<td>Deoxyadenosylcobalamin, methylcobalamin</td>
<td>Intramolecular rearrangements</td>
</tr>
<tr>
<td>Ascorbic acid (vitamin C)</td>
<td>Unknown</td>
<td>Hydroxylation</td>
</tr>
<tr>
<td>Lipid-Soluble Vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Retinal</td>
<td>Vision, growth, and reproduction</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>1,25-Dihydroxycholecalciferol</td>
<td>Calcium and phosphate metabolism</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Unknown</td>
<td>Lipid antioxidant</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Unknown</td>
<td>Blood clotting</td>
</tr>
</tbody>
</table>
Enzyme Regulation

Regulation is need to control different metabolic fluxes through anabolic and catabolic pathways

Genetic Control – biosynthesis of enzymes

Covalent Modification – phosphorylation-dephosphorylation switch activity of enzymes on an off. Hydrolysis of *zymogens* used to turn enzymes on.

Compartmentation – separate catabolic and anabolic metabolism

Allosteric Regulation – allosteric activators and inhibitors switch shift sigmoidal velocities