Investigating the Regulation of Alpha-Synuclein Clearance by Alpha-Galactosidase-A in Parkinson Disease

Emily D. Haley¹-⁴, Tonia E. Tse¹, Hailin Lu⁵ and John J. Shacka, PhD¹

¹Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
²School of Medicine, Nephrology Division, University of Alabama at Birmingham, Birmingham, AL, USA
³Undergraduate Neuroscience Program, University of Alabama at Birmingham, Birmingham, AL, USA
⁴Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL, USA
⁵School of Medicine, Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA

Abstract

Parkinson Disease (PD), the second most common neurodegenerative disease, affects 1% of Americans over the age of 65. PD pathology is characterized by dopaminergic neuron loss and accumulation of insoluble alpha-synuclein (αsyn) aggregates. Pre-clinical studies suggest that the aberrant accumulation αsyn contributes to PD pathogenesis. The autophagy lysosomal pathway (ALP) is a metabolism pathway capable of high capacity clearance of αsyn. Thus targeting the clearance of αsyn, in particular by enhancing ALP function, could be a valuable treatment option for PD. We have shown previously that brains of mice deficient in the lysosomal enzyme alpha-Galactosidase A (αGalA) exhibit the pathological accumulation of αsyn concomitant with ALP dysfunction. These findings led us to hypothesize that increasing αGalA activity would enhance αsyn clearance. To test this hypothesis, we examined if increasing αGalA activity using
recombinant αGalA (Fabrazyme, Genzyme Corp.) accelerates the clearance of conditionally over-expressed αsyn in M17 human neuroblastoma cells. Fabrazyme treatment increased the level and activity of αGalA in M17 cells and promoted the clearance of over-expressed αsyn. These data suggest the utility of αGalA activity as a therapeutic target for promoting the clearance of αsyn in a preclinical model of PD.

Keywords: Alpha-Galactosidase A, Alpha-Synuclein, Parkinson Disease, Autophagy Lysosomal Pathway

Introduction

Parkinson Disease (PD), the second most common neurodegenerative disease, affects 1% of Americans over 65 and this number is expected to rise\(^1\). This disease not only affects patients and their families, but also has a profound economic impact. Expenditures on PD medical care in the U.S. exceed 8 billion dollars annually; additional economic impact comes from lost employment and other non-medical factors associated with the disease\(^1\). PD is characterized by classic motor symptoms such as resting tremor, rigidity, and bradykinesia that result from the progressive degeneration of dopaminergic neurons in the substantia nigra. PD is also characterized by non-motor symptoms such as depression, personality changes, and cognitive impairment\(^2\). Approved therapies for PD treat symptoms but do not prevent or delay disease progression. Faced with these challenges, the discovery of novel therapeutic targets is critical for the future treatment of PD.
PD is a member of the class of disorders called synucleinopathies, characterized by the inclusion of accumulated insoluble αsyn aggregates known as Lewy bodies\(^3\). The function of αsyn is not well known, but it is believed to play a role in regulating vesicular neurotransmitter release\(^4\). Normally, αsyn is a soluble monomer, but in vitro studies show it is able to undergo a process of folding and oligomerization, yielding insoluble fibrils similar to what are seen in PD brain\(^5\). The aberrant accumulation of monomeric αsyn is believed to promote its misfolding into insoluble species, the accumulation of which is evident in synucleinopathies like PD. Studies of mutations in αsyn genes, such as SNCA triplication, in familial PD provide support for the pathogenic role of αsyn in PD\(^6\). Further evidence supporting a role for αsyn in PD pathogenesis is supported by the Unified Lewy Body Staging system, in which the incidence of αsyn-containing Lewy bodies progressing from lower to higher brain regions correlates with the progression of PD symptoms\(^2\). While the mechanisms by which αsyn regulates PD pathogenesis are poorly understood, its neurotoxic potential has been shown in numerous in vitro and in vivo studies\(^7\)–\(^11\). Therefore, therapeutics aimed at promoting the high-capacity clearance of αsyn, could be valuable as a method to reduce αsyn pathology in PD\(^12\).

The ALP is an intracellular degradation pathway that maintains energy balance and organellar quality control and is responsible for the high capacity clearance of αsyn\(^13\). Notably, function of the ALP has been shown to decline with normal brain aging and is disrupted in PD brain\(^14\)–\(^19\). Experimental inhibition of the ALP has been shown to increase αsyn accumulation while its experimental induction has been shown to attenuate αsyn accumulation\(^11\),\(^19\)–\(^26\). Together these studies suggest that ALP dysfunction may contribute to αsyn-associated pathogenesis in PD and that the ALP could be targeted in the development of PD therapeutics.
The glycosphingolipid metabolism pathway involves the action of several lysosomal enzymes and has been shown previously to be disrupted in PD\textsuperscript{17,27}. Alpha Galactosidase A (αGalA) is a soluble lysosomal enzyme in this pathway. Its deficiency, caused by many different mutations in the human GLA gene that encode αGalA, results in Fabry disease, a lipidosis type of lysosomal storage disorder\textsuperscript{28}. Our lab has shown that brains of mice deficient in αGalA exhibit the pathologic accumulation of αsyn concomitant with alterations to ALP markers suggesting that αGalA regulates αsyn metabolism, potentially through disruption of ALP function\textsuperscript{20}. These findings led us to propose αGalA as a candidate therapeutic target for promoting the effective clearance of αsyn.

In the present study, we tested whether increasing αGalA activity in a neuronal cell line increases the clearance of overexpressed αsyn, to determine if αGalA is a useful therapeutic target for PD. Using this model system, we evaluated an in vitro cell model of the PD synuclein pathology disease state. We also investigated whether increasing αGalA activity promotes the clearance of over-expressed αsyn.

\textbf{Materials and Methods}

\textit{Cell culture maintenance and lysate collection}

We obtained an M17 cell line with conditional tetracycline inducible (tet-on) expression of the gene encoding human wild type αsyn as a generous gift from Dr. Talene Yacoubian (UAB Dept. of Neurology) and as previously reported\textsuperscript{29}. M17 human neuroblastoma cells were maintained in MEM media with 10% fetal bovine serum and 500 µg ml\textsuperscript{-1} G418 (for selection pressure) and allowed to grow between passages to 70–80% confluency. Cells were treated with
the tetracycline derivative, Doxycycline (Dox; 10 µg ml\(^{-1}\)) for up to 7 days to drive the
conditional over-expression of \(\alpha\)syn. To assess clearance of over-expressed \(\alpha\)syn, Dox was
removed from the media and the cells were allowed to continue to grow for up to 7 days in its
absence.

\(\alpha\)GalA increase by Fabrazyme

Our lab has recently obtained the pharmaceutical Fabrazyme (Fz; Genzyme Corp.), a type
of recombinant enzyme replacement therapy (ERT) that is approved for human use in the
treatment of Fabry disease\(^{30}\). Fz was administered in culture media at concentrations ranging
from 1–100 µg ml\(^{-1}\) for 24–72 hours. Following Fz treatment, culture media was removed and
cells were washed with 1X PBS to remove extracellular Fz. Whole cell lysates were then
prepared in a 25 mM HEPES lysis buffer containing 1% SDS, 1% Tritox X-100, 1% protease
inhibitor cocktail (Sigma P8340), and 1% each of two different phosphatase inhibitors (Sigma
P5726 and P0044).

Detection of \(\alpha\)GalA activity

Whole cell lysates were assessed for \(\alpha\)GalA activity using a fluorometric activity assay as
previously described\(^{31}\). Active \(\alpha\)GalA enzyme cleaves the assay substrate, 4-
Methylumbelliferone \(\alpha\)-D-galactopyranoside (Sigma M7633) to 4-Methylumbelliferone (Sigma
M1381). N-acetyl-D-galactosamine (Sigma A2795) was used to inhibit the non-specific activity
of \(\alpha\)Galactosidase B (N-acetyl-\(\alpha\)-D-Galactosaminidase), which also cleaves the 4-
Methylumbelliferone \(\alpha\)-D-galactopyranoside substrate\(^{32}\). Fluorescence of the cleavage product 4-
Methylumbelliferone was measured at 460 nm. Activity is reported as units of nmol converted
substrate/mg protein in sample/hour. Proteins were quantified using the bicinchoninic acid (BCA) protein assay as previously reported\textsuperscript{25,26}.

**Detection of αGalA and αsyn protein levels**

Western blot of whole cell lysates was used to detect the levels of proteins of interest using methods as previously described\textsuperscript{23,25-26}. Antibodies used include Santa Cruz sc7011C-20 clone and BD Biosciences 610787 to detect total αsyn monomer (17 kDa), Abcam ab168381 to detect αsyn phosphorylated at serine 129 (P129S- αsyn) (17 kDa)\textsuperscript{33}, and Genetex GTX101178 N1C2 to detect αGalA active species (46 kDa)\textsuperscript{34}. Side by side comparisons of Santa Cruz and BD Biosciences antibodies for total αsyn indicated no difference in detection of 17 kDa monomer (data not shown). Gels were run with 20–25 μg protein per lane with equal loading across each gel using an N of 3–4 per data point. Blots were probed for antibodies of interest then stripped using Restore™ Western Blot Stripping Buffer (Thermo Scientific 21059) and re-probed for either actin (Sigma 1978; 42 kDa) or GAPDH (Cell Signaling 2118; 37 kDa) loading controls. Films were scanned and quantified using UN-SCAN-IT™ software (Orem, UT).

**Statistics**

Statistical analyses were completed using either Student’s t-test for comparisons between two treatment groups, or one-way analysis of variance (ANOVA) for comparisons between multiple treatment groups. Post hoc analysis was performed using Bonferroni’s test with significance set \textit{a priori} at p < 0.05.
Results

First, we established a working *in vitro* model of regulated, conditional over-expression of αsyn in which we could monitor its clearance over time. We chose the M17 human neuroblastoma cell line, an immortalized cell line with neuronal processes, commonly accepted as an *in vitro* model for neurons. Treatment with Dox significantly increased levels of total αsyn 17 kDa monomer after 3–7 days (Day 3; Day 7) (Fig. 1). We also probed for P129S-αsyn (17 kDa), a pathologic species of αsyn known to accumulate in PD brain and localize to Lewy bodies, and found that it was significantly increased after 7 days of Dox treatment (Fig. 1). The increases in both species were still present at 1 day (Day -1) after Dox removal (Fig. 1). Between 1 and 3 days after Dox removal (Day -1; Day -3) the levels of both total and phosphorylated αsyn began to decline, and by 7 days after Dox removal (Day -7) they returned to approximately basal levels (Fig. 1).
Fig 1 | Relationship of αGalA activity and αsyn protein quantity. (a, b) Western blot indicates conditional overexpression and clearance of human WT αsyn in M17 cell lysates following treatment with 10 µg ml-1 doxycycline (DOX) for 7 days, followed by DOX removal for 7 days, measured by 17 kDa species for total αsyn (BD “syn-1”) and p129S-αsyn. Asterisks indicate days of peak levels for each αsyn species. GAPDH (37 kDa) served as loading control. All data are expressed as mean ± SD, n = 3 replicates for each data point. *p < 0.05, 1-way ANOVA and Bonferroni’s post hoc test.

After establishing the M17 cell model of transient, overexpression of αsyn, we treated cells with Fz to confirm the pharmacological increase of αGalA in vitro. We first performed a Fz dose-response for αGalA levels and activity following its addition to M17 cell culture media for 24 hr. Treatment of M17 cells with Fz significantly increased αGalA levels and activity (Fig. 2). Concentrations of Fz ranging from 1–100 µg ml⁻¹ significantly increased levels of protein, as measured by western blot analysis (Fig. 2B) and activity as measured by fluorimetric activity assay (Fig. 2C) compared to cells treated with vehicle control. The increase in activity was concentration dependent with significant increases observed with concentrations ranging from 3–100 µg ml⁻¹, and the greatest increase in activity observed at 100 µg ml⁻¹ (Fig. 2C).
Fig 2 | Fabrazyme increases αGalA. (a) Western blot analysis of whole cell lysates shows an increase of αGalA 46 kDa active species in M17 cells following administration of Fabrazyme (Fz) at 1, 3, 10, 30, or 100 µg ml⁻¹ compared to vehicle control. (b) The 46 kDa active species was quantified relative to actin loading control. The assay for αGalA enzymatic activity (nm/mg/hr, expressed as % CTL was increased in αGalA (c) following Fz administration. All data are expressed as mean ± SD, n = 4 replicates for each data point. * p < 0.05, 1-way ANOVA and Bonferroni’s post hoc test (difference from control, 0). # maximal increase in activity.

Our next goal was to determine if increasing αGalA activity regulated the clearance of over-expressed αsyn. Overexpression of αsyn was induced by four days of Dox treatment and αsyn levels were evaluated for 72 hours after removal of Dox in the presence or absence of Fz.
Treatment with Fz in culture media significantly decreased levels of total αsyn monomer in M17 cells compared to vehicle controls at 48, but not 72 hours after Dox removal (Fig. 3).

**Fig 3 |** Increasing αGalA activity increases clearance of overexpressed αsyn. (a) Western blot analysis of αsyn in M17 whole cell lysates shows increased clearance of αsyn 17 kDa monomer after 4 days of Dox induced over-expressed with administration of Fz (10 µg ml⁻¹) for 48 and 72 hours at the removal of Dox compared to vehicle control. (b) Monomer was quantified relative to actin loading control. All data are expressed as mean ± SD, n = 4 replicates for each data point. *p < 0.05, t-test and Bonferroni’s post hoc test (difference from control, VEH).
Discussion

PD has a drastic impact on the health of millions of Americans and creates a major financial burden on the healthcare system. Reports of ALP dysfunction in PD along with the discovery of the pathogenic accumulation of αsyn in αGalA deficient mouse brains led us to investigate the therapeutic potential of increasing αGalA in a preclinical model of αsyn accumulation in PD. We established an in vitro model of transient αsyn over-expression and pharmacological enhancement of αGalA to provide proof-of-principle validation of αGalA as a therapeutic target for αsyn pathology in PD. We found that increasing αGalA activity by Fz accelerates the clearance of over-expressed αsyn in our M17 model of transient αsyn over-expression.

We confirmed that the addition of Dox to culture media for 7 days induced a significant, but transient increase in αsyn, making it an effective model for studying the relationship between increasing αGalA activity and the clearance of αsyn. Using an in vitro system with an immortalized cell line limits the extent to which these experimental results can be generalized to the brain, but future studies in our laboratory will investigate the same “clearance” effect of αGalA on αsyn in our in vitro primary neuron culture model and an in vivo mouse model of αsyn over-expression.

The concentration-dependent increase in αGalA activity resulting from Fz treatment are believed to be internalized, not just found in the culture media, as cells were washed with PBS prior to lysis. Preliminary immunocytochemistry data from our lab indicates the localization of increased αGalA by Fz to lysosomes (data not shown), suggesting that Fz is indeed internalized
and reaching the lysosome. Although we found significant effects of Fz treatment at concentrations \( \geq 1 \, \mu g \, ml^{-1} \), Fz is known to be internalized in cells via the mannose 6-phosphate receptor pathway at concentrations up to \( 1 \, \mu g \, ml^{-1} \) [35]. This suggests that higher concentrations may be internalized via different mechanism(s). As such, ongoing studies in our laboratory are focused on the therapeutic potential of Fz concentrations \( \leq 1 \, \mu g \, ml^{-1} \), in addition to confirming the mechanisms by which low and high concentrations of Fz are internalized in M17 cells and its lysosomal localization subsequent to internalization.

Our \textit{in vitro} model system was used to evaluate the effect of increasing \( \alpha \text{GalA} \) on the clearance of over-expressed \( \alpha \text{syn} \). Fz significantly decreased total levels of over-expressed total \( \alpha \text{syn} \) when it was added for 48 hr after Dox removal, supporting our hypothesis that increasing \( \alpha \text{GalA} \) activity accelerates the clearance of over-expressed \( \alpha \text{syn} \). Further studies are necessary to elucidate the mechanism(s) by which \( \alpha \text{GalA} \) regulates \( \alpha \text{syn} \), including the functional examination of ALP-specific markers. One possible mechanism by which \( \alpha \text{GalA} \) may promote the clearance of \( \alpha \text{syn} \) is by regulating levels/activity of cathepsin D, a lysosomal aspartic acid protease that has been shown to proteolytically degrade \( \alpha \text{syn} \)\textsuperscript{36}. This and other mechanisms of ALP function will be explored in future studies. The current study focused on clearance of soluble \( \alpha \text{syn} \) monomers. Future studies will also determine if increasing \( \alpha \text{GalA} \) activity promotes the clearance of existing insoluble \( \alpha \text{syn} \) aggregates, and/or prevents them from accumulating in the first place.

Induction of autophagy as a therapy for PD has had few successes in clinical trials and has known side effects\textsuperscript{37-39}. In addition, the induction of autophagy concurrent with the inhibition of lysosomal function has been used as a therapy for killing cancer cells, suggesting it may further increase the stress to neurons in PD if autophagy is induced without proper lysosome
function. This suggests that inducing autophagy in PD under conditions of lysosomal dysfunction would not only be ineffective, but could in fact exacerbate neurodegeneration. Evidence for the involvement of the ALP in PD pathology is ample. Cathepsin D (CD) deficiency decreases both lysosome and proteasome function and leads to αsyn accumulation. ATP13A2 gene mutations in autosomal dominant PD cause multiple impairments of lysosome function including substrate degradation and autophagosome processing. Inhibition of lysosomal acidification by bafilomycin A1 increases toxicity of αsyn aggregates, knock-down of ATP6V0C H+ pump increases accumulation of αsyn, and pathogenic lysosome depletion has been shown in PD. Lastly, glucocerebrosidase (GBA) activity and αsyn accumulation interact bidirectionally in synucleinopathies including Gaucher Disease and PD. Our data suggest that αGalA, another lysosomal enzyme in the glycosphingolipid metabolism pathway with GBA, is also capable of affecting αsyn levels through a yet unknown mechanism. Our lab is focused on the continued investigation of αGalA and lysosome function as therapeutic targets for attenuating αsyn-associated pathogenesis in PD.

Conclusion

We established an in vitro model of inducible αsyn overexpression to determine if pharmacologically increasing the activity of αGalA affects its clearance. Fabrazyme increases levels and activity of αGalA in M17 human neuroblastoma cells and promotes the clearance of over-expressed αsyn in these cells. These data provide support for the continued investigation of αGalA as a therapeutic target for PD.
Acknowledgments

This research was partially supported by the SIBS-UPS Undergraduate Research Program funded by the UAB Department of Pathology and by Grant: P30 DK079626/DK/ NIDDK NIH (Diabetes Research Center) Bio-Analytical Redox Biology (BARB) Core.

References


