Right Heart Failure in Left Ventricular Assist Device Recipients

Michael Kiernan, MD, MS
Assistant Professor of Medicine, Tufts University School of Medicine
Medical Director, Ventricular Assist Device Program, Tufts Medical Center
The problem with right heart failure following LVAD implantation

Total RVF 20%
- 6% RVAD
- 7% early extended inotropes
- 7% late inotropes

Survival

(N=484)

Identifying risk for RVF

<table>
<thead>
<tr>
<th></th>
<th>Fukamachi(^1)</th>
<th>Michigan RVFRS(^2)</th>
<th>Kormos(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>Pulsatile</td>
<td>Pulsatile (84%) & cf-LVAD (16%)</td>
<td>cf-LVAD</td>
</tr>
<tr>
<td># of LVAD patients</td>
<td>100</td>
<td>197</td>
<td>484</td>
</tr>
<tr>
<td>RVF Definition</td>
<td>RVAD</td>
<td>RVAD, inotropes, iNO</td>
<td>RVAD, inotropes</td>
</tr>
<tr>
<td>Incidence of RVF</td>
<td>11%</td>
<td>35%</td>
<td>20%</td>
</tr>
<tr>
<td>Incidence RVAD</td>
<td>11%</td>
<td>15%</td>
<td>6%</td>
</tr>
<tr>
<td>Institution</td>
<td>Single center</td>
<td>Single center</td>
<td>Multicenter</td>
</tr>
</tbody>
</table>

Predictors

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Univariate</th>
<th>Multivariable</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RVSWI < 300</td>
<td>Vasopressor support</td>
<td>Ventilator support</td>
</tr>
<tr>
<td></td>
<td>Mean PAP < 40</td>
<td>Bilirubin > 2.0 mg/dL</td>
<td>BUN > 39 mg/dL</td>
</tr>
<tr>
<td></td>
<td>AST</td>
<td>AST > 80 IU/L</td>
<td>RA/PCWP > 0.63</td>
</tr>
<tr>
<td></td>
<td>Creatinine > 2.3 mg/dL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complex etiology of post-LVAD RV failure

- Chronic
- Intra-op ischemia

RVD

• PRBCs
• TR
• Hepatic/renal congestion

RAP

LVAD & IVS

• High flow

PVR

- CPB
- PRBCs
- Hypoxia
- Acidosis

LV

RV

[Graph showing Stroke Volume vs. Pressure vessel (mmHg)]

McDonald. Curr Opin Card. 2009;24
Severe RV Failure in INTERMACS

Continuous Flow LVAD
N = 2900

- RVAD at time of LVAD Implant
 N = 84 (3%)
 - RVAD: Durable
 N = 5 (6%)
 - RVAD: Temporary
 N = 79 (94%)

- Return to OR for RVAD
 N = 26 (1%)
 - RVAD: Durable
 N = 5 (20%)
 - RVAD: Temporary
 N = 21 (80%)

Kiernan. ISHLT 2012
Implant Dates: June 2006 – September 2009: Bi-VAD Study

Adult Primary BLVAD Implants: n=206
By Continuous Flow Device vs. Pulsatile Flow Device

- Durable/Durable n=160, deaths=56

56%

Event: Death (censored at transplant or explant recovery)

p = .8

Months after Device Implant

Cleveland. J Heart Lung Transplant 2011;30(8):862
Early management:
Outcomes with planned versus delayed BiVAD

Survival until Discharge

- LVAD (N=167) 71%
- Planned BiVAD (N=71) 51%
- Delayed BiVAD (N=28) 29%

P = 0.001
P = 0.054
P = 0.046

Median time to delayed RVAD 2 days

Risk Factors for Early RVAD Following LVAD Surgery

Adult Primary Continuous Flow Implants (N=2900)
Multivariable Logistic Regression (Event=RVAD)

<table>
<thead>
<tr>
<th>Risk Factors (pre-implant)</th>
<th>Odds Ratio</th>
<th>p – value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERMACS Patient Profile Level 1</td>
<td>3.11</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>PaPi (per 1 unit larger)</td>
<td>0.71</td>
<td>0.0003</td>
</tr>
<tr>
<td>LVEDD (per 1 mm increase)</td>
<td>0.78</td>
<td>0.01</td>
</tr>
<tr>
<td>RV dysfunction by echo (any)</td>
<td>3.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Primary Diagnosis CAD</td>
<td>1.78</td>
<td>0.03</td>
</tr>
<tr>
<td>Hemoglobin (per 1 gm/dl increase)</td>
<td>0.89</td>
<td>0.03</td>
</tr>
<tr>
<td>Concomitant surgery</td>
<td>1.55</td>
<td>0.03</td>
</tr>
<tr>
<td>INTERMACS Patient Profile Level 2</td>
<td>1.81</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Kiernan. ISHLT 2012
Pulmonary Artery Pulsatility Index

\[\text{PaPi} = \frac{\text{PA Systolic Pressure} - \text{PA Diastolic Pressure}}{\text{Right Atrial Pressure}} \]
Therapy (Preload, Afterload, Inotropy):
- Diuresis
- Renal Replacement
- Vasodilators
- Inotropes
- IABP/short term MCS
- Vitamin K
- Surgical technique
- ? RCA/LAD revascularization

Goals:
- RA < 15 mmHg
- Euvolemia
- Correction metabolic derangements and end-organ function

Prevention?: Pre-op optimization
Class I (LOE C)

Implants June 2006 – March 2011: RHF Analysis

Adult Primary Continuous Flow Implants N=2900
By Right Heart Failure Level

Event: Right Heart Failure

% Freedom RHF

Mild or Worse Right Heart Failure, n=1284
Moderate or Worse Right Heart Failure, n=398
Severe Right Heart Failure, n=110

Overall p < 0.0001
Readmission rate by cause following LVAD implantation

Hasin (Mayo). JACC 2013;61(2):153
Impact of Tricuspid Valve Repair at time of LVAD

<table>
<thead>
<tr>
<th></th>
<th>LVAD Only N=81</th>
<th>LVAD + TVR N=34</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCr</td>
<td>1.78 ± 0.8</td>
<td>1.98 ± 0.9</td>
<td>0.32</td>
</tr>
<tr>
<td>BUN</td>
<td>36 ± 21</td>
<td>48 ± 30</td>
<td>0.06</td>
</tr>
<tr>
<td>CVP/PCWP</td>
<td>.57 ± 0.2</td>
<td>0.75 ± 0.3*</td>
<td><0.01</td>
</tr>
<tr>
<td>CVP</td>
<td>16 ± 8</td>
<td>19 ± 7</td>
<td>0.09</td>
</tr>
<tr>
<td>Severe TR</td>
<td>33%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>OUTCOMES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVAD</td>
<td>10%</td>
<td>3%</td>
<td>0.27</td>
</tr>
<tr>
<td>Inotrope</td>
<td>10d (8,17)</td>
<td>8d (7,12)</td>
<td>0.04</td>
</tr>
<tr>
<td>Post-op renal insuff</td>
<td>39%</td>
<td>21%</td>
<td>0.05</td>
</tr>
<tr>
<td>Hosp LOS</td>
<td>23d (16,46)</td>
<td>19d (14,25)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: A Society of Thoracic Surgeons database analysis

2196 patients with mod-severe TR--27% TVR

TVR associated with:
• No difference in death or RVAD
• Increased renal failure
• Greater transfusion requirement
• Increased LOS

JHLT 2014
Effect of digoxin on RV function in primary pulmonary hypertension with symptomatic heart failure

Table 1—Effects of Digoxin on Hemodynamics

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>After Digoxin</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac output, L/min</td>
<td>3.49±1.2</td>
<td>3.81±1.2</td>
<td>0.028</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>86±14</td>
<td>89±14</td>
<td>NS</td>
</tr>
<tr>
<td>Mean systemic BP, mm Hg</td>
<td>102±10</td>
<td>102±12</td>
<td>NS</td>
</tr>
<tr>
<td>Mean pulmonary artery</td>
<td>60±20</td>
<td>65±23</td>
<td>0.004</td>
</tr>
<tr>
<td>pressure, mm Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean right atrial pressure, mm Hg</td>
<td>14±7</td>
<td>13±7</td>
<td>NS</td>
</tr>
<tr>
<td>Mean pulmonary capillary wedge pressure, mm Hg</td>
<td>12±4</td>
<td>13±5</td>
<td>NS</td>
</tr>
<tr>
<td>Pulmonary vascular resistance, U</td>
<td>15.6±9</td>
<td>15.6±9</td>
<td>NS</td>
</tr>
</tbody>
</table>

*NS = not significant.

Class IIb (LOE C)
Effect of PDE-5A inhibition on PVR and RV hemodynamics post LVAD

Tedford (Hopkins). Circ Heart Fail 2008;1:213

Class IIb (LOE C)
Effect of RV pacing on RV function in model of pulmonary hypertension induced RVD

Control

PHTN

RV dP/dt max

+8.5 ± 1.3 %

p < 0.001

RV dP/dt max (mmHg/ms)

baseline
paced

Class IIb (LOE C)

RVSP

+2.7 ± 0.6%

p < 0.01

RV SP (mmHg)

baseline
paced

Conclusions & Future Directions

- RVF post LVAD remains common
- Need multi-disciplinary pre-op evaluation
- Need data/trials investigate operative techniques
- Need trials investigate strategies for management of chronic RVF
- Trials of temporary RV MCS support ongoing pre- and post-LVAD
- Emerging biventricular mechanical support devices