Update: Development of Novel Angiotensin (1-7) Derivatives: For Treatment of Brain Inflammation Related Memory Impairment

Meredith Hay, Ph.D.
Evelyn F. McKnight Brain Institute
Sarver Heart Center
Department of Physiology
Department of Psychology
University of Arizona College of Medicine
Speaker Disclosure Statement

Dr. Meredith Hay has the following financial conflicts of interests:

• Founder and major stockholder of ProNeurogen, Inc

• Scientific Consultant for ProNeurogen, Inc

• ProNeurogen, Inc holds exclusive licensing rights from UA to technology discussed herein.
The Problem:

Cognitive impairment is a common neurological complication in patients with systemic inflammatory disease such as heart failure, hypertension, and diabetes.

Affects approximately 50-70% of HF patients.

Due to growing aging population, the number of people with HF could increase 46 percent from 5 million in 2012 to 8 million in 2030.
The Impact:

• Patients with vascular and heart disease with cognitive impairment are known to have hospital readmission rates ranging from 40 to 50% within 6 months.

• Increased duration of hospitalization.

• Impaired long-term quality of life.
Clinical Therapy:

Currently there are no FDA approved therapies to treat or prevent memory loss due to inflammation or vascular dementia.
Approach: What is the Possible Mechanism of Action?

Disease
(ie Heart Failure, Hypertension, Dementia, Alzheimer's')

Trauma
(ie Stroke, Injury, Embolism, Blunt trauma, Surgery)

Blood Flow

↑ Brain Inflammatory Pathways – Oxygen Radicals

↑ Progress of Cognitive Impairment

Increase in inflammatory cytokines and reactive oxygen species in the brain leads to cognitive dysfunction.
The Ideal Drug Candidate

✓ Would interrupt this inflammatory cascade.

✓ Work at both sides of the blood-brain barrier

inhibiting inflammation at both:

- Brain vascular endothelium
- Neurons and microglia.

✓ *Improve cerebral blood flow.*
Our Drugs: Angiotensin 1-7 Agonists: Mas Receptor Target

Ang-(1-7) → MasR → PI3K/Akt

- e-NOS (brain vasculature)
- NADPH NOX-4
- Ib1a,ERK1/2,NF-κβ

Increased Brain Blood Flow
Decreased ROS
Anti-inflammatory
Neuroprotection

Increased Brain Blood Flow
Decreased ROS
Anti-inflammatory
Neuroprotection

NEUROPROTECTION & DECREASED DEMENTIA RISK
OUR APPROACH: Develop Angiotensin-(1-7) derivatives as a novel platform for neuroprotection.

Long-Range Drug Development Plan: Administration of Ang-(1-7) receptor agonist will attenuate cognitive dysfunction in patients whose cognitive impairment is clinically associated with an increase in inflammation in the central nervous system.
Angiotensin 1-7: Mas Receptor Target

Ang-(1-7) Mas Receptor:

- Highly expressed in brain and hippocampus
- Increases endothelial nitric oxide (NO) release = vasodilation and improved blood flow
- Decreases reactive oxygen (ROS) formation and NOX2 in brain
- Improves circulating inflammatory profile and pro-neuroregeneration profile
- Rescues cognitive impairment in cardiac disease model
- Decreases amyloid load in mouse Alzheimers model
- Ang-(1-7) Therapy Safe in humans
Leveraging Cross-Disciplinary Teams

Heart

Brain

Pharmacology
We have **developed and patented** novel glycopeptide-based **Angiotensin-(1-7) derivatives** that show:

- Increased blood-brain barrier penetration,
- Improved serum ½ life
- Cognitive protective.

PNA5 and PNA6 are our lead compounds.
Glycosylated Ang-(1-7) = Improved Half-life and Brain Penetration

![Graph showing serum concentration and CSF dialysate over time for various glycosylated Ang-(1-7) derivatives.](image-url)
Step 1 Preclinical Phase

- Develop a preclinical mouse model of HF induced cognitive impairment.
- Document spatial memory and object recognition impairment in CHF.
- Treat animals with Ang-(1-7) peptides and retest memory function.
- Design a 2nd generation peptide with improved BBB penetration and half-life.
Change in Ejection Fraction Post MI

Baseline 4 weeks 8 weeks 12 weeks
Sham (n=4) MI (n=4)

Give drug 3 weeks
Novel Object Recognition Test

This task takes advantage of the well-known tendency of rodents to explore novel objects more than familiar ones.

Memory impaired animals will not distinguish familiar objects from novel ones.

Familiar Test, 2 hour delay, Novel vs Familiar Test

\[
\text{DRatio} = \frac{(t \text{ novel} - t \text{ familiar})}{(t \text{ novel} + t \text{ familiar})}
\]

A **positive score** indicates more time spent with the novel object,
A **negative score** indicates more time spent with the familiar object,
A **zero score** indicates a null preference

* = p< 0.05, \# = p< 0.05. ANOVA + posthoc Tukey test
PNA5 – Rescues HF-Induce Cognitive Impairment- Object Memory Test

*P = .009

**P = .0005

#P = .0008

D ratio +/- SE

HF + Saline (n= 11)
HF + PNA5 (n= 11)
Control + PNA5 (n= 5)
Control + Saline (n= 6)
Heart Failure Impairment of Spatial Memory

Week 4 post CHF Induction, Sham (n=4) vs MI (n=10)

Significant Spatial Memory Impairment

- MI
- Sham

Confidential: not for distribution
PNA5 Attenuates HF-Induced Spatial Memory Impairment

Mice are 12 weeks post MI or Sham Surgery.
11 mice were MI + Ang(1-7)
10 mice were MI + saline
6 mice were Sham + Ang (1-7)
Alzet pumps with either Ang(1-7) or saline were implanted sq.
Morris WM test performed 4 weeks post pump implant.
Step 2: Clinic Phase

- Patents: U.S. PATENT 9,670,251, PATENT 9,796,759, JAPAN 6254692
- Startup ProNeurogen, Inc
- FDA IND Approved for native 2015
- Develop Nasal Formulation/Autoinjector

Phase Ila Clinical Trials:
- Cardiac Bypass Patients: Funded U01 $3M, NHLBI, 2017: enrolling
- Phase II Clinical Trial for HF patients: enrolling
Product Development Timeline

1st Gen Peptide – PNA1-Proof-of-Concept
Cardiac Bypass /Heart Failure
Clinical Trial Phase 2a

2nd Gen peptide – PNA5
IND Enabling Studies - Phase I safety

2nd Gen Peptide – PNA5
Vascular Dementia/Heart Failure
Clinical Trial Phase 2a, 2b

Identify Pharma Partner for Phase 3 Trials, Marketing and Sales

- **2018**
- **2020**
- **2022**

Confidential: not for distribution
Thank you.

Dr. Carol Barnes
Dr. John Konhilas
Dr. Robin Polt
Dr. Heidi Mansour
Dr. Lee Ryan
Dr. Nancy Sweitzer
Dr. Todd Vanderah

Studies supported by:
NHBLI
Gooter Foundation
AZ Alzheimer's Consortium
McKnight Brain Research Foundation
ProNeurogen, Inc