ProfessDr. Lucas Pozzo-Milleror
Co-Director, Neuroscience Graduate Theme, Graduate Biomedical Science

Research Areas
Neurotransmitter and neurotrophin receptors and cell signaling;
learning, memory and synaptic plasticity; ion channels, synaptic
function, neurodevelopment and developmental disabilities


Google Scholar

Pozzo-Miller Lab Twitter Page


Dr. Lucas Pozzo-Miller completed his undergraduate studies in Biology (MS, 1986) and earned his graduate degree in Neurobiology from the Universidad Nacional de Córdoba, Argentina (PhD, 1989). He trained as postdoctoral fellow at Case Western Reserve University, Cleveland OH, with Dr. Dennis Landis (1990-1992), and at the Roche Institute of Molecular Biology, Nutley NJ, with Dr. John Connor (1992-1995). Dr. Pozzo-Miller performed research at the Marine Biological Laboratory, Woods Hole MA, with Dr. Rodolfo Llinás (1994 Grass Foundation Fellow and 1995 Lakian Foundation Fellow), and was a Senior Staff Fellow at the National Institutes of Health, Bethesda MD, in the laboratory of Dr. Tom Reese (1995-1998). Dr. Pozzo-Miller joined the Department of Neurobiology at the University of Alabama at Birmingham in 1998, and currently is Professor of Neurobiology, and Co-Director of the Neuroscience theme in the Graduate Biomedical Sciences program.

Research Interest

The long-term interest of the Pozzo-Miller lab is to characterize the functional role of structurally defined neuronal compartments such as dendritic spines and presynaptic terminals, and how they participate in synaptic development, function and plasticity as they relate to learning and memory. We focus on the hippocampus due to its well-known role in learning and memory.

Neurotrophins such as brain-derived neurotrophic factor (BDNF) are secretory proteins that regulate neuronal survival and differentiation, as well as synapse development, function and plasticity. Neurotrophic factors are strong candidates to provide the molecular signaling pathways mediating complex interactions leading to appropriate dendritic maturation and synapse development. We focus on the actions of neurotrophins in the hippocampus to characterize the regulation of synaptic transmission and plasticity by slow-acting non-classical neuromodulators. Currently, we are investigating the “BDNF hypothesis” of Rett syndrome, a neurodevelopmental disorder associated with autistic features and intellectual disabilities that is caused by mutations in MECP2, a transcriptional regulator of many genes, including Bdnf. In our studies, we apply several functional and structural approaches to cultured neurons and acute and cultured slices of hippocampus, including intracellular recordings, Ca2+ and voltage-dye imaging, confocal microscopy, multiphoton excitation microscopy, as well as conventional and rapid-freezing electron microscopy.

Graduate School
Ph.D., Universidad Nacional de Córdoba, Argentina