Evidence-Based Medicine
Journal Club

A Primer in Statistics, Study Design, and Epidemiology

August, 2013
Rationale for EBM

- **Conscientious, explicit, and judicious use**
 - Beyond clinical experience and physiologic principles
 - Scientific and mathematical rigor
- **Current best evidence**
 - Hierarchy of evidence
- **Making decisions about patients**
 - Clinical actions and consequences
 - Impact of treatment or usefulness of test
Steps in Practice of EBM

• Ask appropriate question
• Determine what information is required to answer question
• Conduct literature search
• Select best studies
• Critically assess evidence for validity and utility
• Extract message and apply to clinical problem
The real goal

• Assess the relationship between an exposure/treatment and an outcome/disease

• Look at a sample; apply it to the population
Searching for Evidence

- Medical database
 - PubMed
 - www.pubmed.gov
 - Ovid
 - Web of Knowledge
 - Cochrane database
 - NOT GOOGLE

- **Up-to-Date**—nice overview, but not a systematic evaluation
Critical Assessment
3 Essential Questions

1. What are the results?

2. Are the results of the study valid?

3. Will the results help me in caring for my patients?
What does valid mean?

- The extent to which the associations found in the study sample reflect the true associations in the population
 - Internal validity—ineferences drawn about the population that provided the subjects
 - External validity—extent generalizable to different populations and circumstances
Assessing Validity

1. Why was the study done and what was the hypothesis?

2. What type of study was done?

3. Was the design appropriate to answer the question posed?
Study Types

- Observational vs. Experimental
 - Descriptive
 - Case report/series
 - Analytical
 - RCT/N-RCT
 - Cohort
 - Case-Control
 - Cross-Sectional
 - Ecological
Other Types

- Systematic Reviews
 - Meta-analysis
- Expert reviews
 - Practice Guidelines
- Cost-effectiveness analyses
Hierarchy of Evidence

1. Systematic Reviews and Meta-analysis of RCTs*
2. Randomized Controlled Trials
3. N-RCT / Cohort Studies
4. Case-Control Studies
5. Cross-Sectional surveys
6. Case Reports
Levels of Evidence

- **Level I**
 - Randomized controlled trials (RCT)

- **Level II-1**
 - Controlled trials without randomization (N-RCT)

- **Level II-2**
 - Cohort
 - Case-Control

- **Level II-3**
 - Cross-sectional studies
 - Uncontrolled investigational studies

- **Level III**
 - Descriptive studies
 - Expert opinion
Translating Evidence to Recommendations

• Based on quality and quantity of evidence

 - A: Good evidence to support the recommendation
 - B: Fair evidence to support the recommendation
 - C: Insufficient evidence to support the recommendation
 - D: Fair evidence against the recommendation
 - E: Good evidence against the recommendation
Hill’s Criteria for Causation

- Temporal sequence
- Strength of association
- Dose response/biological gradient
- Consistency of association
- Biologic plausibility
- Coherence with existing knowledge
- Experimental evidence
- Analogy
- Specificity of association
Bias

- **Systematic Error** leading to over- or under-estimation of the true relationship or parameter as exists in the population of interest:
 - Design
 - Conduct
 - Analysis
Types of Bias

1. Selection
 - Incomparability in ways groups of subjects are chosen
 - Volunteer bias

2. Information/Misclassification
 - Incomparability in quantity and quality of information gathered or in way managed
 - Look for disease/exposure more thoroughly in one group
 - Recall bias
Types of Bias

3. Confounding

- Distortion in the estimate of relationship between the exposure and outcome due to additional exposure variable(s) associated with both exposure of interest and the outcome
- Confounder not in causal pathway
- e.g. infertility and ovarian cancer with confounding by ovulation induction agents
Controlling Confounding

A. Adjust in analysis phase but have to:
 - Know what they are and measure
 1. Stratification by exposure
 2. Regression: multiple confounders

B. Limit in design phase:
 3. Restriction: exclude potential confounder
 4. Matching: ensure groups similar for potential confounder
 5. Randomization: Known and unknown factors
Descriptive studies

• Case Report/Series
 – Show how people develop a condition over time and describe the characteristics
• No comparison group
• No assessment of association
• E.g. cases of TTP/HUS, unusual histology, etc.
Analytical Studies
Ecological Study

• Examines population level association of disease frequency and exposure
• Uses group as unit of analysis
 – e.g. % skilled birth attendance and maternal mortality
• No individual level risk
• Generate hypotheses
Cross Sectional Study/Survey

- Assess exposure and disease status at a single point in time for each patient
 - e.g. Alcohol use and infertility
- No temporal relationship evaluated
Cross-Sectional Study

- **Strengths**
 - Efficient
 - No waiting for outcome

- **Weaknesses**
 - No causal relationship
 - Impractical for rare disease
Case Control Study

- Identifies subjects based on presence or absence of disease/outcome
- Go backwards in time to assess exposures

Do cases have a stronger history of exposure than controls?
Case Control Study

• Benefits
 - Good for rare disease
 - Cheaper
 - Efficient

• Limitations
 - Bias
 • Selection
 • Recall
 - Incidence cannot be determined
 • Size of the source population is unknown
 - Temporal relationship may be unclear
Case Control Study

Risk estimation

Odds Ratio

- Odds of exposure history in cases/odds of exposure history in controls

 \[\frac{A}{C} \div \frac{B}{D} = \frac{AD}{BC} \]

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Unexposed</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>
What does an odds ratio of 3 mean?

• Literally
 – A history of exposure is 3 times more likely to be found in cases compared to controls

• Clinical Application
 – The disease is 3 times more common among the exposed than unexposed
Cohort Study

- Identify patients by presence or absence of an exposure and follow-up over a period of time
 - Prospective
 - Retrospective
 - Ambidirectional

Does outcome develop more commonly in the exposed than unexposed?
Cohort/Follow-up Study

• At time=0
 - Exposure status: known
 - Disease status: negative

• Follow to some point in future

• During course of study:
 - Get disease
 - Die
 - Lost to f/u
 - Leave at risk pool
Cohort/Follow-up Study

• Benefits
 - Define Incidence
 - Good for rare exposure and common disease
 - Temporal relationship
 - Dose response

• Limitations
 - Not as good for rare disease
 - Long follow-up
 - Cost
 - Selection bias in selection of unexposed
 - Observer bias
 - Retrospective cohort only possible if detailed records available
Relative Risk

- Proportion of exposed group who develop outcome/proportion of unexposed group who develops outcome

\[RR = \frac{A}{A+B} \div \frac{C}{C+D} \]

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Unexposed</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>
Measures of Disease Frequency

• Incidence
 - Occurrence of NEW cases of disease in an at risk population of interest over a stated period of time:
 - Incidence rate: new cases per # at risk for given time—cases/person years
 - RATE must include TIME

• Cumulative Incidence
 - What proportion of at risk patients developed the outcome in the given period of time
 - Used to predict probability or RISK
Measures of Disease Frequency

• Prevalence
 – Proportion of individuals with disease in a population at risk at a single time point

• ** In general: risk, ratio or rate
<table>
<thead>
<tr>
<th>Design</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort</td>
<td>• Establish sequence of events</td>
<td>• Large sample size</td>
</tr>
<tr>
<td></td>
<td>• Can study several outcomes</td>
<td>• Long duration</td>
</tr>
<tr>
<td></td>
<td>• Number of events increases with time</td>
<td>• Problematic for rare disease</td>
</tr>
<tr>
<td></td>
<td>• Yields Incidence, Relative Risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• With prospective, control subject selection and measurements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Good for rare exposure</td>
<td></td>
</tr>
<tr>
<td>Cross-Sectional</td>
<td>• Study several outcomes</td>
<td>• Sequence of events not determined</td>
</tr>
<tr>
<td></td>
<td>• Short duration</td>
<td>• Problematic for rare predictors or outcomes</td>
</tr>
<tr>
<td></td>
<td>• Yields Prevalence</td>
<td>• Does not yield incidence or true relative risk</td>
</tr>
<tr>
<td>Case-Control</td>
<td>• Useful for rare conditions</td>
<td>• Potential bias, confounding</td>
</tr>
<tr>
<td></td>
<td>• Efficient</td>
<td>• Sequence of events not determined</td>
</tr>
<tr>
<td></td>
<td>• Yields Odds ratio</td>
<td>• Limited to one outcome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential survivor bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not yield incidence or true risk</td>
</tr>
</tbody>
</table>
Clinical Trials

• Assigned exposure prior to occurrence of outcome
• Randomization is only way to minimize bias and confounding
• Blinding minimizes subject and observer bias
Randomization

• Each subject has same independent chance of being allocated to any of the treatment groups

• Goal is to balance known and unknown confounders between groups
Basic Concepts in Clinical Statistics
What does statistical analysis allow us to do?

• Take findings from the sample and infer the truth in the population
• Provides a point estimate of the unknowable population parameter
Possible explanations for a significant difference or association

• Chance
 - Leads to imprecision in point estimate
• Bias
• Confounding

Only after excluding above:
• Causal Inference
What is α?

- How much you are willing to let go to chance
- Probability of rejecting the null hypothesis in favor of the alternative hypothesis when there is no true difference
- Type I error
- Arbitrary 0.05
What is β?

- Probability of failing to reject the null hypothesis, when in fact it is false and a true difference actually exists
- Type II error
- Often set at 0.2 or 0.1
Power

• Probability of detecting as statistically significant a hypothesized point estimate of difference given a study size

• $\text{Power} = 1 - \beta$
What affects Power?

- Sample Size of the study
- Magnitude of difference/effect size
- α level of significance
- Rate of outcome in the unexposed
- Type of measurement
 - Continuous vs. dichotomous outcome
Study Size Determination

• Based on:
 - Magnitude of effect you want to be able to detect
 - Baseline outcome incidence in controls (or exposure incidence)
 - Power
 - α
 - Selection ratio of cases and controls
What does p mean?

- Probability, if the null hypothesis is true, if you repeated the experiment you would find results as or more extreme than those obtained.
- A non-significant p does not mean there is no association.
- Says nothing about bias and confounding.
Measurement Scales &
Types of Data

Categorical

• Nominal — e.g. male, female
• Ordinal
 – Names with order implied—low, medium, high
 – Cancer Stages – I, II, III, IV
Measurement Scales & Types of Data

Numeric

• Discrete/Interval
 – Finite number of intervals--# of pregnancies

• Continuous—e.g. BP, weight
Distribution of data and types of statistical tests

- Normal distribution
 - Affects types of statistical tests that can be used

- Parametric tests
 - Certain assumptions made about the data based on normal distribution

- Non-parametric
 - Looks at rank order and ignores absolute differences
 - No assumptions about distribution
 - Useful for small studies
Comparison of “average” measurement between 2 groups

• \(t \)-test
 - Comparison of Means
 - Normal distribution

• Mann-Whitney U/Wilcoxon Rank Sum
 - Comparison of Medians
 - Used for non-normal data or ordinal scale data
Comparison of “average” measurement in same group twice

- Allows for before and after
- Paired t-test
 - Parametric test
- Wilcoxon matched-pairs
 - Non-parametric
Compare means or medians between 3 or more groups

• One Way ANOVA (F-test)
 – Means

• Kruskal-Wallis ANOVA
 – Medians
Test for proportions to compare distribution of variables or outcomes

- Compare gender between exposed and unexposed; outcome (Y/N) by exposure
- Chi-square analysis
 - If small sample size, need to use Fisher’s exact test
Correlation

- Strength and direction of straight line association between two continuous variables
 - Height/weight; age/cholesterol
- Pearson’s correlation coefficient (r)
 - Parametric
- Spearman’s rank correlation coefficient (ρ)
 - Non-parametric
- Each correlation coefficient has a p value to show likelihood of arising by chance
Regression

• Numerical relation between 2 or more quantitative variables allowing one (the dependent variable) to be *predicted* from the others
 - Predict weight from age, race, gender, and height
 - Predict likelihood of PTB from race, parity, weight

• Statistically it is also a way to adjust for confounders that can have an effect on the outcome of interest
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Parametric Test</th>
<th>Non-parametric Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means</td>
<td>t-test</td>
<td>Mann-Whitney U (medians)</td>
</tr>
<tr>
<td>Repeated observations in same individual/group</td>
<td>Paired t-test</td>
<td>Wilcoxon matched pairs</td>
</tr>
<tr>
<td>Means in 3 or more groups</td>
<td>ANOVA</td>
<td>Kruskall-Wallis ANOVA</td>
</tr>
<tr>
<td>Difference in proportions</td>
<td>--</td>
<td>Chi-square; Fisher’s exact</td>
</tr>
<tr>
<td>Strength of Association between continuous variables</td>
<td>Pearson’s correlation coefficient (r)</td>
<td>Spearman’s Correlation coefficient (ρ)</td>
</tr>
<tr>
<td>Relationship between variables</td>
<td>Linear regression; multiple regression</td>
<td>--</td>
</tr>
</tbody>
</table>
Measures of Association/Effect

• How do groups differ with respect to an outcome/disease
 - Relative—think division
 - Absolute—think subtraction
What’s the difference between A and B?

How are the effects of the intervention or exposure expressed?

• How much better or worse does the exposure make the patient
 - Relative risk/Odds ratio
 - Absolute risk
 - Number needed to treat
Association and impact

• Relative risk
 – The amount by which risk is reduced/increased by exposure compared to control

• Absolute risk reduction
 – Absolute amount by which risk is changed by exposure

• Number needed to treat
 – How many patients need to be exposed to prevent one adverse outcome
Example

Endometriosis patients 12 months after intervention

<table>
<thead>
<tr>
<th></th>
<th>Sx Return</th>
<th>Sx Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lupron</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>Surgery</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Relative Risk reduction = \(\frac{10}{100} \div \frac{30}{100} = 0.33 \)

Absolute Risk reduction = \(.3 - .1 = .2 \)

Number needed to treat = \(\frac{1}{0.2} = 5 \)
Odds ratio vs. Relative Risk?

- **Odds ratio**
 - Odds in favor of exposure among cases to odds in favor of exposure among non-cases

- **Relative risk**
 - Proportion of exposed with disease to proportion of unexposed with disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>Exposed</th>
<th>Unexposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>No disease</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

\[OR = \frac{A}{B} ÷ \frac{C}{D} = \frac{AD}{BC} \]

\[RR = \frac{A}{A+C} ÷ \frac{B}{B+D} = \frac{A(B+D)}{B(A+C)} \]

- With rare disease, OR and RR are similar because A and B are small.

- If disease prevalence > 10-15%, OR overestimate magnitude of effect.
Accuracy

• Measurement of the variable is what you intend to assess
• What percent of all tests have given the correct result
• Bias
 – Observer
 – Subject
 – Instrument
Precision

- Repeated measurement with minimal variation
 - Observer
 - Instrument
 - Subject
- Reproducibility
Accuracy and Precision
Confidence Intervals

- Estimates strength of the evidence
- Provides measure of **precision** of findings
- Range in which expect values to fall 95% of the time if trial repeated an infinite number of times
- Real meaning: 95% chance that the *real result* lies within the range of these values
Confidence Intervals

What do they mean?

- **Narrow CI**
 - More precise
 - More definitive study
 - Because only 1 in 40 chance that true result > and 1 in 40 that true result < limits
 - Larger studies---narrower CI

- If CI does not cross null value, then findings significant
Parameters related to clinical and diagnostic tests
Test properties

• **Sensitivity**
 - Proportion of people with target disorder in whom test is positive
 - Ability of test to detect disease when present

• **Specificity**
 - Proportion of people without disorder in whom result is negative
 - Ability of test to detect absence of disease when not present

• Tell you about test in general
 - NOT INFLUENCED BY DISEASE PREVALENCE
Population Properties

• Positive Predictive Value
 – Probability of disease when test result positive

• Negative predictive Value
 – Probability of no disease when test result negative

• Tell what the result means for the patient in front of you

• Highly dependent on disease prevalence
Sensitivity
\[\text{Sensitivity} = \frac{a}{a + c} \]

Specificity
\[\text{Specificity} = \frac{d}{b + d} \]

Positive Predictive Value (PPV)
\[\text{PPV} = \frac{a}{a + b} \]

Negative Predictive Value (NPV)
\[\text{NPV} = \frac{d}{c + d} \]

Accuracy
\[\text{Accuracy} = \frac{a + d}{a + b + c + d} \]

Table

<table>
<thead>
<tr>
<th></th>
<th>Disease present</th>
<th>Disease absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test +</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Test -</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

- **A & D** = Concordant cells
- **B & C** = Discordant cells