Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans

Graphical Abstract

Highlights
- Finnish and Estonian infants have a distinct early gut microbiome compared to Russians
- B. dorei and other Bacteroides species are highly abundant in Finland and Estonia
- B. dorei LPS inhibits the immunostimulatory activity of E. coli LPS
- LPS from B. dorei does not protect NOD mice from type 1 diabetes

Authors
Tommi Vatanen, Aleksandar D. Kostic, Eva d’Hennezel, ..., Thomas W. Cullen, Mikael Knip, Ramnik J. Xavier

Correspondence
xavier@molbio.mgh.harvard.edu

In Brief
Bacteroides species in the microbiota of children from countries with high susceptibility to autoimmunity produce a type of lipopolysaccharide (LPS) with immunoinhibitory properties. These properties may preclude early immune education and contribute to the development of type 1 diabetes.
Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans

Tommi Vatanen,1,2,22 Aleksandar D. Kostic,1,3,4,22 Eva d’Hennezel,6,7,8 Eric A. Franzosa,1,4 Moran Yassour,1 Raivo Kolde,3 Heli Siljander,6,7,8 Eva d’Hennezel,5,22 Heli Siljander,6,7,8 Eric A. Franzosa,1,4 Vallo Tillmann,10 Raivo Uibo,11 Sergei Mokurov,12 Natalya Dorshakova,13 Jorma Ilonen,14,15 Suvi M. Virtanen,16,17,18 Susanne J. Szabo,8 Jeffrey A. Porter,6 Harri Lähdesmäki,2 Curtis Huttenhower,1,4 Dirk Gevers,1,23 Thomas W. Cullen,3,23 Mikael Knip,6,7,8,19,23 on behalf of the DIABIMMUNE Study Group, and Ramnik J. Xavier1,3,20,21,23,23

1Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
2Department of Computer Science, Aalto University School of Science, 02150 Espoo, Finland
3Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
4Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
5Novartis Institutes for Biomedical Research Inc., Cambridge, MA 02139, USA
6Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
7Research Programs Unit, Diabetes and Obesity Research Program, University of Helsinki, 00290 Helsinki, Finland
8Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland
9Department of Pediatrics, Jorvi Hospital, Helsinki University Hospital, 02740 Espoo, Finland
10Department of Pediatrics, University of Tartu and Tartu University Hospital, 51014 Tartu, Estonia
11Department of Immunology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, 50411 Tartu, Estonia
12Ministry of Health and Social Development, Karelian Republic of the Russian Federation, Lenin Street 6, 185035 Petrozavodsk, Russia
13Petrozavodsk State University, Department of Family Medicine, Lenin Street 33, 185910 Petrozavodsk, Russia
14Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland
15Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland
16Department of Health, National Institute for Health and Welfare, 00271 Helsinki, Finland
17School of Health Sciences, University of Tampere, 33014 Tampere, Finland
18Science Centre, Pirkannela Hospital District and Research Center for Child Health, University Hospital, 33521 Tampere, Finland
19Folkhälsan Research Center, 00290 Helsinki, Finland
20Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
21Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
22Co-first author
23Co-senior author
*Correspondence: xavier@molbio.mgh.harvard.edu
http://dx.doi.org/10.1016/j.cell.2016.04.007

SUMMARY

According to the hygiene hypothesis, the increasing incidence of autoimmune diseases in western countries may be explained by changes in early microbial exposure, leading to altered immune maturation. We followed gut microbiome development from birth until age three in 222 infants in Northern Europe, where early-onset autoimmune diseases are common in Finland and Estonia but are less prevalent in Russia. We found that Bacteroides species are lowly abundant in Russians but dominate in Finnish and Estonian infants. Therefore, their lipopolysaccharide (LPS) exposures arose primarily from Bacteroides rather than from Escherichia coli, which is a potent innate immune activator. We show that Bacteroides LPS is structurally distinct from E. coli LPS and inhibits innate immune signaling and endotoxin tolerance; furthermore, unlike LPS from E. coli, B. dorei LPS does not decrease incidence of autoimmune diabetes in non-obese diabetic mice. Early colonization by immunologically silencing microbiota may thus preclude aspects of immune education.

INTRODUCTION

According to the hygiene hypothesis, early exposure to specific microorganisms and parasites in infancy benefits immune system development and confers protection against allergic and autoimmune diseases. Indeed, several studies have demonstrated a global gradient in the incidence of type 1 diabetes (T1D), multiple sclerosis, and other autoimmune diseases in association with improved sanitation and decreased incidence of early childhood infections (reviewed in Bach, 2002; Bach and Chatenoud, 2012). Similarly, rates of asthma and allergy are reduced in children exposed to a farm environment (von Mutius and Vercelli, 2010). One explanation for this effect posits that hygienic measures meant to prevent infectious disease by removing microbes from individuals’ living environments may, in turn, alter the indigenous intestinal microbiota, eliminating microbes important for educating the immune system (Bach, 2002; von Mutius and
Vercelli, 2010). Accordingly, studies in mouse models have shown that early colonization with a protective microbiota can diminish the risk of autoimmune diabetes development in genetically susceptible animals (Markle et al., 2013). Likewise, the composition of the microbiota can protect mice from allergies (Stefka et al., 2014). However, the distinction between beneficial and harmful microbial communities and the functional mechanisms underlying their effects are still poorly understood.

A microcosm of the global gradient in immune disease incidence occurs at the border between Finland and Russian Karelia, where there is a 2- to 6-fold higher incidence of allergies (Seiskari et al., 2007) and a 5- to 6-fold higher incidence of T1D and other autoimmune disorders (Kondrashova et al., 2008a, 2008b) in Finland relative to Russian Karelia. In nearby Estonia, coinciding with economic development and improvement in living standards, the incidence of T1D and atopy has been transitioning in recent decades from rates similar to those of Russian Karelia toward those of Finland (Teeëärä et al., 2010; Voor et al., 2005). Using these three populations as a “living laboratory,” the DIABIMMUNE study (http://www.diabimmune.org/) recruited a total of ∼1,000 infants from Espoo (Finland), Petrozavodsk (Russia), and Tartu (Estonia). The infants were followed from birth to 3 years of age by monthly stool sampling along with collection of extensive clinical metadata. The cohort thus provides, to date, the largest longitudinal functional profile of the infant gut microbiome in relation to immune-mediated diseases, supplying an unprecedented opportunity to understand the microbial ecology and molecular mechanisms potentially underlying the hygiene hypothesis (Peet et al., 2012).

To characterize host-microbe immune interactions contributing to autoimmunity and allergy, we performed a longitudinal metagenomic characterization in 785 gut microbial communities from infants in the DIABIMMUNE cohort selected for this study (Figures 1A and 1B). Using strain-level microbial identification, we uncovered substantial differences in the composition, diversity, and stability of the early gut microbiome in Russian, Finnish, and Estonian children. We further quantified the functional potential of these microbial communities, stratifying gene families and pathways across their contributing organisms. This extensive dataset constitutes a valuable resource for infant gut microbiome investigations and is accessible through the DIABIMMUNE Microbiome Web site at http://pubs.broadinstitute.org/diabimmune.

In this work, we bridge deep human longitudinal metagenomic analysis with the identification of novel molecular immune mechanisms (Figure 1C). After extensive analysis of this dataset, we discovered that Finnish and Estonian infants harbored both a greater proportion of Bacteroides species and enrichment in lipopolysaccharide (LPS) biosynthesis-encoding genes, when compared to Russian infants. Our investigations revealed that these Bacteroides species produced a structurally and functionally distinct form of LPS; this LPS differed from the dominating form of LPS in the early Russian microbiome that was almost exclusively derived from E. coli. We further experimentally demonstrated that LPS from Bacteroides dorei, previously associated with T1D pathogenesis (Davis-Richardson et al., 2014), harbored tetra- and penta-acylated lipid A structures, as opposed to the hexa-acylated lipid A seen in E. coli. Furthermore, B. dorei LPS inhibited immune stimulation and inflammatory cytokine responses to E. coli LPS in human cells. These findings suggest that differences in microbiota-derived LPS may preclude aspects of immune education in Finnish and Estonian children, uncovering one potential mechanism linking the human gut microbiome to susceptibility to immune diseases.

RESULTS

Study Cohort
A subcohort of 74 infants from each country was selected on the basis of similar histocompatibility leukocyte antigen (HLA) risk class distribution and matching gender (Figures 1A and 1B; Table S1). For each infant, 3 years of monthly stool samples and questionnaires regarding breastfeeding, diet, allergies, infections, family history, use of drugs, clinical examinations, and laboratory assays were collected. In accordance with the recruitment criteria for the DIABIMMUNE cohort, all subjects had increased HLA-conferred susceptibility to autoimmunity (Figure 1B) (Larizza et al., 2012; Solid and Thorsby, 1993). Although these children were only followed until 3 years of age and it was therefore unlikely to see indications of allergic disease or autoimmunity, laboratory examinations revealed a high prevalence of allergen-specific sensitization and seropositivity for T1D-associated antibodies in Finnish and Estonian infants (Figure 1B, bottom).

We also observed a gradient in T1D autoantibody seropositivity within the cohort with higher prevalence of T1D autoantibodies in Finland. The number of infants that tested seropositive for one or more T1D-associated autoantibodies was 16 for Finland, 14 for Estonia, and 4 for Russia. Other studies in an older population (7–15 years of age) have shown that children in Russian Karelia display a substantially higher microbial exposure than their Finnish peers, as denoted by higher prevalence of antibodies against Helicobacter pylori (15-fold), Toxoplasma gondii (5-fold), and hepatitis A virus (12-fold) (Seiskari et al., 2007). This increased pathogen exposure in older children suggests an overall higher exposure rate to diverse microorganisms, possibly due to higher hygiene levels in urban Finland.

Regional Trends in the Gut Microbiota
To generate an overview of the composition of the gut microbiota throughout the first three years of life, we sequenced the V4 region of the 16S rRNA gene from 1,584 samples (Figure S1) and observed several strong high-level trends within this cohort. Principal coordinate plots (Figure 2A) showed that, besides age, country was the major source of variation, particularly during the first year of life. To further confirm separability between countries, we trained a set of random forest classifiers using genus-level data from samples collected between 170 and 260 days of age. The classifier was able to predict country with high-classification accuracy (area under the curve (AUC) = 0.944 for Finns versus Russians) (Figure 2B). Classification was least accurate between Finns and Estonians (AUC = 0.546), suggesting that early microbial profiles were fairly homogenous in these two countries. Differences between the Russian samples compared to Finnish and Estonian samples were already evident at phylum-level composition (Figure 2C), represented by two distinct hallmarks. First, Finnish and Estonian children had higher
levels of Bacteroidetes throughout the 3-year period (false discovery rate [FDR] corrected $p = 5.4 \times 10^{-15}$; see the Supplemental Experimental Procedures). Second, Russians had higher levels of the phylum Actinobacteria during the first year of life (FDR corrected $p = 0.014$). The latter difference dissipated over time and was no longer significant after two years of age. The abundance of the phylum Bacteroidetes correlated with serum insulin autoantibody (IAA) levels, both within Finland ($p = 0.017$) and cohort-wide ($p = 0.0020$; Figure S2; Supplemental Experimental Procedures). We conducted extensive testing of associations between the metadata and taxonomic groups using MaAsLin, a linear modeling tool adapted for microbial community data (Morgan et al., 2012). Hence, all reported country-level differences were corrected for all major confounding effects, such as birth mode, breastfeeding and other dietary factors, antibiotics use, and age (see the Supplemental Experimental Procedures). Table 1 highlights selected associations between the metadata and microbiota. A comprehensive list of results, including taxonomic differences between countries, taxonomic alterations associated with allergen-specific immunoglobulin E (IgE), and microbial changes associated with other collected metadata, can be accessed at http://pubs.broadinstitute.org/diabimmune.

The diversity of the microbiota within individual samples (alpha diversity) increased with age (Figure S3A) as the microbiota developed toward an adult composition (Koenig et al., 2011). However, Russians displayed a significantly less diverse microbiota compared to Finns and Estonians during the first

Figure 1. DIABIMMUNE Cohort

(A) Locations of cities and countries in which DIABIMMUNE infants were screened and samples were collected.

(B) Selected within-cohort statistics and stool sample collection schedule (monthly stool sampling until three years of age). Numbers next to stool samples reflect the number of samples collected in 6-month time windows. Within-cohort distribution of HLA conferred risk for autoimmunity is shown (see Table S1 for corresponding HLA allele identities), as well as prevalence of T1D-associated autoantibody seropositivity, egg allergy, and milk allergy at year 2. For T1D autoantibody seropositivity, $n = 291$ serum samples from 73 infants for Finns, $n = 235$ serum samples from 72 infants for Estonians, and $n = 118$ serum samples from 54 infants for Russians. For egg allergy, $n = 72$ for Finns, $n = 51$ for Estonians, and $n = 24$ for Russians. For milk allergy, $n = 72$ for Finns, $n = 46$ for Estonians, and $n = 24$ for Russians.

(C) Analysis workflow highlighting important steps in metagenomic data analysis and mechanistic experiments. See also Figure S1 and Table S1.
This difference could be explained by the 2-fold overrepresentation of the phylum Actinobacteria and the genus *Bifidobacterium* in the Russians for that time period (Figures 2C and 2D). Lastly, we also uncovered differences in stability within taxa between the countries. These differences were particularly evident when comparing samples collected during early and late time windows (Figures S3C and S3D). Russians had an overall more plastic microbiota during the first 3 years of life, with the exception of the most dominant genus *Bifidobacterium* in the early time window. In contrast, the phylum Bacteroidetes and the genus *Bacteroides* were more stable in Finns and Estonians throughout the entire observation period. Taken together, we uncovered strong global differences between the Russian versus Finnish and Estonian microbiota, with the largest differences occurring in the first year and dissipating during the second and third years.

Species- and Strain-Level Microbial Dynamics

To obtain a more complete and higher resolution taxonomic view of the infants’ microbiome, we performed deep whole-genome shotgun metagenomic sequencing on a representative subset of 785 samples (Figure S1). We first investigated the metagenomic reads for their detailed taxonomic composition down to the species level using MetaPhlAn (v.2.2) (Truong et al., 2015) and observed multiple differentially abundant species in the *Bacteroides* and *Bifidobacterium* genera between Finland and Russia (Figure 2D). Notably, *B. dorei*, which has been previously associated with T1D pathogenesis (Davis-Richardson et al., 2014), was the *Bacteroides* species with the largest fold change between Finns and Russians. We confirmed the validity of the metagenomics data by running qPCR on DNA from 85 stool samples. Interpolated absolute abundances of *B. dorei* and *E. coli* species were in good agreement with absolute abundances predicted by the
Table 1. Associations between Metadata and Microbiota

<table>
<thead>
<tr>
<th>Metadata</th>
<th>Increased</th>
<th>Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1D AAB seropositivity</td>
<td>Rothia (g)</td>
<td>Bilophila (g)*</td>
</tr>
<tr>
<td></td>
<td>Gemellaceae (f)*</td>
<td>Sutterella (g)*</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>Firmicutes (p)**</td>
<td>Bacteroidetes (p)**</td>
</tr>
<tr>
<td></td>
<td>Eubacterium (g)**</td>
<td>Bacteroides (g)**</td>
</tr>
<tr>
<td></td>
<td>Ruminococcus (g)*</td>
<td>Faecalibacterium prausnitzii</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Deltaproteobacteria (c)*</td>
<td>Gammmaproteobacteria (c)*</td>
</tr>
<tr>
<td></td>
<td>Bilophila (g)*</td>
<td>Clostridium (g)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haemophilus (g)**</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>Actinobacteria (p)**</td>
<td>Blautia (g)**</td>
</tr>
<tr>
<td></td>
<td>Bifidobacterium (g)**</td>
<td>Oscilllospira (g)**</td>
</tr>
<tr>
<td></td>
<td>Lactobacillus (g)**</td>
<td></td>
</tr>
<tr>
<td>Baby formula</td>
<td>Citrobacter (g)**</td>
<td>Streptococcus (g)</td>
</tr>
<tr>
<td></td>
<td>Veillonella (g)</td>
<td></td>
</tr>
<tr>
<td>Cow’s milk</td>
<td>Lactococcus (g)**</td>
<td>Staphylococcus (g)</td>
</tr>
<tr>
<td></td>
<td>Collinsella (g)**</td>
<td>Lactobacillus (g)**</td>
</tr>
<tr>
<td></td>
<td>Lactococcus lactis</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td>Bifidobacterium pseudocatenulatum</td>
<td>Staphylococcus (g)**</td>
</tr>
<tr>
<td>Barley</td>
<td>Betaproteobacteria (c)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sutterella (g)**</td>
<td></td>
</tr>
<tr>
<td>Oat</td>
<td>Lachnospiraceae (f)**</td>
<td>Enterobacteriales (g)**</td>
</tr>
<tr>
<td></td>
<td>Clostridium bartletti</td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td>Blautia (g)**</td>
<td>Ruminococaceae (f)</td>
</tr>
<tr>
<td>Rice</td>
<td>Epsilonproteobacteria (c)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevotella (g)</td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>Cyanobacteria (p)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruminococcus (g)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactococcus (g)</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>Clostridia (c)</td>
<td>Holdemania (g)**</td>
</tr>
<tr>
<td></td>
<td>Lachnospiraceae (f)**</td>
<td></td>
</tr>
<tr>
<td>Root vegetables</td>
<td>Ruminococcus (g)**</td>
<td>Betaproteobacteria (c)</td>
</tr>
<tr>
<td></td>
<td>Coprococcus (g)**</td>
<td>Bacteroides (g)</td>
</tr>
<tr>
<td>Meat</td>
<td>Proteobacteria (p)</td>
<td>Firmicutes (p)**</td>
</tr>
<tr>
<td></td>
<td>Erysipelotrichaceae (f)**</td>
<td>Coprococcus (g)**</td>
</tr>
<tr>
<td></td>
<td>Bacteroides (g)*</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>Parabacteroides (g)</td>
<td></td>
</tr>
<tr>
<td>Soy</td>
<td>Alphaproteobacteria (c)**</td>
<td>Holdemania (g)**</td>
</tr>
<tr>
<td></td>
<td>Lachnospira (g)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clostridium clostridiforme</td>
<td></td>
</tr>
</tbody>
</table>

The table shows microbial taxa that are associated with T1D autoantibody seropositivity, caesarean section, intake of antibiotics, breastfeeding, and other dietary compounds. The left column shows taxa that are increased, and the right column shows taxa that are decreased in each association. All findings are FDR-corrected; *p < 0.1, *p < 0.01, **p < 0.001. p, phylum; c, class; o, order; f, family; g, genus.

See also the Supplemental Experimental Procedures and https://pubs.broadinstitute.org/diabimmune/three-country-cohort/resources/metadata-association-analysis.

Next, we analyzed the metagenomics data at the strain level using ConStrains, a recently developed strain haplotyping tool, and evaluated the diversity and stability of the infant microbiota (Luo et al., 2015). In 60% of all strain profiles, communities were composed of species with a single dominant strain (>90% within-species abundance), as reflected in low within-species, within-sample haplotype diversity scores (Figure S4A). However, species in some genera, such as *Faecalibacterium* and *Veillonella*, had bimodal haplotype diversity distributions, indicative of more complex strain compositions. Moreover, strain diversity had a tendency to increase with age (Figure S4B). Analysis of the strain stability over time revealed that species tended to either (1) remain stable, maintaining their single dominant strain, or (2) experience a strain “sweep,” in which the original dominant strain was replaced by a new dominant strain (Figure S4C). When comparing strain stability with average diversity of the compared samples, we saw an inverse correlation, indicating that less diverse strain profiles (i.e., single dominant strain behavior) tended to be more stable compared to more diverse strain profiles (Figure S4D). Within the genera of interest, we observed that *Bifidobacterium* species failed to establish stable single-strain communities in Finnish children, as shown by a more evenly distributed strain diversity and stability compared to Russians (Figures 2E and 2F). In contrast, *Bacteroides* species (when present) tended to establish stable, single-strain compositions in both Finns and Russians (Figures 2E and 2F).

Differential Microbial Functions between Populations

To survey the functional and metabolic consequences of the taxonomic differences between countries, we next analyzed the metagenomic sequences for their genomic functional potential using HUMAnN2 (Abubucker et al., 2012) and linked quantified gene abundances (reads per kilobase per million reads [RPKMs]) to gene ontology (GO) terms. As observed for microbial diversity, functional diversity of the microbiome also started with a less complex composition in Russians but developed to reach greater diversity by the end of the 3-year period (Figure S5A). Within the genera of interest, we observed that *Bifidobacterium* species failed to establish stable single-strain communities in Finnish children, as shown by a more evenly distributed strain diversity and stability compared to Russians (Figures 2E and 2F). In contrast, *Bacteroides* species (when present) tended to establish stable, single-strain compositions in both Finns and Russians (Figures 2E and 2F).

Glycolytic functions were differentially abundant between the two populations (Figure 3A), leading us to computationally investigate differences in milk oligosaccharide metabolism. The gut microbiome composition within the first year is largely shaped by milk, the sole nutrient source available to infants, whether from breast- or bottle-feeding (reviewed in Sela and Mills, 2010). The *Bifidobacterium* and *Bacteroides* genera are
the two main groups of human milk oligosaccharide (HMO)-metabolizing bacteria (Marcobal et al., 2011). Within Bifidobacterium, B. bifidum and B. longum (predominant in Russians) are capable of metabolizing HMOs, whereas B. breve (present in Finns) is incapable of metabolizing intact HMOs, though it readily utilizes monosaccharides liberated from HMOs (Locascio et al., 2009). This observation led us to hypothesize that HMO metabolism in Finnish and Estonian children is performed by Bacteroides species, whereas it is performed by B. bifidum and B. longum in Russians. Indeed, by analyzing the taxonomic origin of genes belonging to a bona fide HMO gene cluster (Sela et al., 2008), we showed that although the average abundance of HMO utilization genes is approximately equal across the three countries (mean ± SD in RPKM: Finland 460 ± 372, Estonia 462 ± 331, Russia 504 ± 469), most of the genes are conferred by Bifidobacterium in Russians and Bacteroides in Finns and Estonians (Figures 3B and 5C). We note that the higher abundance of B. bifidum in Russians is not a result of increased breastfeeding; Finnish infants were breastfed for a longer period than Russians, on average (mean ± SD breastfeeding/days: Finland 268 ± 149, Estonia 307 ± 217, Russia 199 ± 165).

Most significantly, we found that GO terms related to LPS functions, LPS biosynthetic process (GO: 0009103), and lipid A biosynthetic process (GO: 0009245) showed a striking difference in abundance between countries (Figures 3A and 3C), indicating that microbial communities in Finnish and Estonian subjects produced more LPS. This molecule is of particular interest because it elicits a strong immune response in mammalian cells (Cullen et al., 2015). When deconvoluting the species contributing to biosynthesis of lipid A, the subunit responsible for the immunostimulatory properties of LPS, we made two key observations. In all three countries, E. coli was a major contributor to lipid A biosynthesis, but in Finland and Estonia a number of other bacterial species contributed to lipid A biosynthesis potential, many of which belong to the genus Bacteroides (Figures 3D and 3E). LPS subtypes derived from Bacteroides species have been shown to exhibit lower endotoxicity relative to LPS isolated from other enteric bacteria (Hofstad et al., 1977). This finding

Figure 3. Functional Differences, HMO Utilization, and Lipid A Biosynthesis
(A) Bootstrapped mean log, fold changes and their SD in the functional categories with the largest differences between Finnish and Russian children. (B) Mean human milk oligosaccharide utilization gene abundance across the three countries within the first year of life, stratified by taxonomic origin of each gene (“conserved” genes were too highly conserved to confidently assign to a unique genus). (C) Lipid A biosynthesis pathway normalized read counts (RPKM) per sample (n = 785) and a linear fit per country. (D and E) Mean relative abundances of 15 species with the largest contributions to the lipid A biosynthesis signal (D) and their relative contributions (E) to the signal in all samples within each country. See also Figure S5 and Table S2.
prompted us to examine whether there was a difference in immunogenicity of the LPS subtypes derived from the predominant species of the three populations.

Contrasting Immunogenicity of LPS Subtypes

Inter-species differences in LPS structure are associated with alterations in their capacity to elicit an innate immune response (Whitfield and Trent, 2014). Specifically, the lipid A domain of LPS is responsible for immune signaling through recognition and activation of the Toll-like receptor 4 (TLR4) complex (Kim et al., 2007); as such, structural changes in lipid A impact recognition by TLR4 and influence multiple facets of microbial ecology (Cullen et al., 2015; Whitfield and Trent, 2014). We purified LPS (see below) and used matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MS) to examine the structure of the lipid A domain of two bacterial species (type strains): *E. coli* as a representative of the most common immunostimulatory lipid A structure and *B. dorei*, which was the most differentially abundant *Bacteroides* species between the countries (Figures 2D and 3D). Lipid A extracted from *E. coli* produced a predominant peak at a mass-to-charge ratio (m/z) of 1798.3, consistent with the published [M-H]− ion structure of *E. coli* lipid A (Needham et al., 2013) carrying two phosphate groups and six acyl chains (predicted exact mass: 1,797.2 m/z) (Figure 4A). Lipid A extracted from *B. dorei* produced two predominant peaks at m/z 1,690.9 and 1,436.2, consistent with the [M-H]− ion structures with one phosphate group and four and five acyl chains, respectively (predicted exact mass: 1,689.2 and 1,435.0 m/z) (Figure 4B).

In order to ensure that LPS from our *B. dorei* type strain was representative of clinical samples, we isolated *B. dorei* strains from stool samples of six healthy donors for comparative LPS structural analysis. These data revealed identical LPS structural features across all *B. dorei* isolates (Figures S6A and S6B). Thus, our findings regarding *B. dorei* LPS structure and function are likely to be recapitulated in patients.

Extensive lipid A structure-function studies have shown that the number of acyl chains is a strong determinant of immune activation by LPS (Hajjar et al., 2002; Needham et al., 2013) and that penta- and tetra-acylated lipid A structures elicit reduced TLR4 responses (Herath et al., 2011). In order to understand the consequences of the structural differences between the LPS subtypes, we assessed the immunogenicity of LPS derived from the bacterial species contributing to the LPS load in our samples (see Figure 3E). Of the 15 strongest contributors, we were able to purify LPS from 11 type strains listed in Table S3. We first used the LPS purified from these strains to stimulate primary human peripheral blood mononuclear cells (PBMCs), which contain LPS-responsive cell types similar to those present in the gut and are thus a common proxy for mucosal leukocytes (Ardeshir et al., 2014; Sokol et al., 2008). LPS derived from *E. coli* produced a strong response as measured by the production of the necrosis factor α (NF-κB)-dependent cytokines interleukin-10 (IL-10), tumor necrosis factor alpha (TNFα), and IL-6 in primary PBMCs (Figures 5A and S7A), whereas LPS derived from *B. dorei* failed to elicit any response regardless of the dose. Notably, LPS derived from all analyzed members of the phylum Bacteroidetes (*Bacteroides* species and *Prevotella copri*) also showed a severely impaired capacity to elicit the production of these inflammatory cytokines. We then measured cytokine production in human monocyte-derived dendritic cells after stimulation with LPS from these same strains and obtained similar results (Figures 5B and S7B). Consistent with assays in primary cells, *E. coli*-derived LPS elicited high levels of luciferase activity in TLR4-NF-κB reporter cells, whereas *Bacteroides* species failed to induce an inflammatory signal in these cells (Figures 5C and S7C).

Our metagenomics analyses revealed that *E. coli* and *B. dorei* LPS often co-occur in the gut of Finnish and Estonian infants. In order to study possible interactions between these LPS subtypes, we used a base dose of *E. coli* LPS, while co-treating human primary immune cells with *B. dorei* LPS at increasing ratios. We then measured changes in the production of inflammatory cytokines with respect to baseline *E. coli* LPS stimulation. Cytokine production was inhibited by *B. dorei* LPS in primary human
PBMCs (Figure 5D) and in monocyte-derived dendritic cells (Figure 5E). Notably, we observed maximal inhibition in PBMCs at a ratio of 10:1 B. dorei:E. coli LPS, corresponding to the computational prediction of the ratio between inhibitory and stimulatory LPS typical for IAA-seropositive infants (Figure S2). Similar to cytokine production in PBMCs, NF-κB-luciferase activity was inhibited by B. dorei LPS in a dose-dependent manner (Figure S7D). We also obtained similar results when examining cord blood mononuclear cells (Figures S7E and S7F), suggesting that our observations reflect the reaction of the naive immune system of infants. Our results show that B. dorei LPS acts as an inhibitor of immune stimulation by E. coli-derived LPS, with a potency that is concordant with ratios of the LPS subtypes observed in vivo.
production in these cells even at the highest concentrations, corresponding to a potency at least four orders of magnitude lower than *E. coli* LPS. Hence, the LPS produced by *B. dorei* failed to induce protective endotoxin tolerance. Finally, the addition of *B. dorei* LPS to *E. coli* LPS during the endotoxin tolerance induction phase prevented the establishment of endotoxin tolerance by *E. coli* LPS in a dose-dependent manner (Figure 5G), suggesting that the presence of *B. dorei* in the infant gut could prevent the establishment of protective immune tolerance by *E. coli* LPS.

To demonstrate the relevance of LPS-driven immune suppression in the development of autoimmunity in vivo, we assessed the impact of different LPS subtypes on diabetes development in the non-obese diabetic (NOD) mouse model of T1D. Intraperitoneal (i.p.) injection of *E. coli* LPS resulted in a delayed onset and reduced overall incidence of disease, as measured by blood glucose levels (Figure 5H). In contrast, *B. dorei* LPS did not delay the onset of diabetes and did not decrease incidence compared to the mock-injected group (PBS). Interestingly, as shown in Figure 5I, we also found that splenocytes isolated from NOD mice 24 hr after i.p. *E. coli* LPS injection were hyporesponsive to further in vitro innate immune stimulation, whereas *B. dorei* LPS did not alter the response. This shows that *E. coli* LPS, but not *B. dorei* LPS, can induce endotoxin tolerance in vivo in NOD mice. These results suggest that exposure to immunostimulatory LPS can contribute to protection from immune-mediated diseases by modulating the immune system responsiveness.

DISCUSSION

A growing body of evidence suggests that the gut microbiome may be a key factor in influencing predisposition to autoimmunity and allergic diseases. Here, we characterized infant gut microbiome development between three environmentally disparate populations and identified marked differences between these populations in the prevalence of important intestinal microbes, such as *Bifidobacterium* and LPS-producing *Bacteroides* species (Figure 6). Subsequently, we identified lipid A biosynthesis as one of the most differentially abundant functional pathways between the populations, suggesting that early microbial communities in Finnish and Estonian subjects produce more LPS compared to their Russian counterparts. Additionally, we uncovered functional and structural differences in the dominant microbial LPS subtypes. Notably, we showed that LPS produced by different constituents of the human gut microbiome could either stimulate or actively inhibit TLR4, NF-κB activation, and endotoxin tolerance. Hence, rather than the mere amount of LPS, the nature and composition of different LPS subtypes seem to determine the level of immune activation triggered by the microbe-derived LPS cocktail. Importantly, we show that injection of an immunogenic subtype of LPS from *E. coli* can both elicit endotoxin tolerance in vivo in NOD mice and decrease the incidence of diabetes in these mice. These effects were not observed with LPS from *B. dorei*. Our observations suggest that microbiome-derived LPS could impact long-term immunosuppressive mechanisms in more complex ways than has been previously appreciated.

In the absence of specific biomarkers, we cannot determine what impact the differences in early LPS exposure has had in
Russian and Finnish infants in our cohort. However, the proposition of a direct impact of LPS on the pathophysiology of T1D is further supported by previous studies in mice. For example, Wen et al. (2008) have demonstrated that components of the microbiome modulate immune system activity, resulting in altered disease development in NOD mice. In addition, LPS has a direct impact on T1D onset in NOD mice by i.p. injection (Aumeu-
rier et al., 2010) and oral gavage (Sai and Rivereau, 1996). The impact of the microbiome on T1D onset and development in NOD mice is dependent on TLR4 and MyD88, critical components of the LPS/TLR4 signal transduction pathway (Gülden et al., 2013; Wen et al., 2008). Taken together, these studies support a model whereby exposure to different LPS subtypes produced by the gut microbiome can contribute to immune modulation and alter the course of autoimmune.

One limitation of mouse studies is that LPS subtypes that are antagonistic or silent in humans are instead recognized as stimululatory in mice due to differences between the mouse and human LPS co-receptor MD2 (Hajjar et al., 2002). However, our observation that mice react to E. coli LPS, but not to B. dorei LPS, suggests that the non-immunogenicity of B. dorei LPS is possibly independent of MD2 in both species. The specific mechanism of the antagonism mediated by B. dorei LPS in humans remains to be explored.

This study achieved a deep-level understanding of microbial community establishment in three different infant populations. Our analyses revealed a lengthy list of associations between microbial taxa and the rich metadata collected in the DIABIMMUNE study, such as dietary information, mode of delivery, and the use of antibiotics (see Table 1). A comprehensive list of our findings, including microbial alterations relative to allergen-specific IgE and T1D autoantibody seropositivity, containing numerous potentially interesting features of microbiota, can be found at http://pubs.broadinstitute.org/diabimmune.

Our analysis more broadly exercises a generalizable discovery and validation process for identifying and characterizing bioactive microbial products from the microbiome (Figure 1C). We began by identifying differentially abundant microbial processes between phenotypically distinct populations, assigned them to specific microbes, and, ultimately, identified structural differences within these pathways (e.g., LPS) that induced distinct immune responses in vitro. We targeted LPS biosynthesis for initial mechanistic follow-up because it was among the strongest signals and has a well-established connection to immune activation. This can be expanded in the future, since our study population included many additional functional differences in the gut, ranging from microbial metabolism (e.g., glycolysis) to iron uptake.

We found that HMO metabolism was a potential factor in establishing and/or maintaining a Bifidobacterium-dominant versus Bacteroides-dominant gut microbiota in the first year of life, likely because the two genera compete for HMOs as a common energy source (Marcobal et al., 2011). A significant role for HMO metabolism in determining microbial community composition is consistent with the hygiene hypothesis, given that mothers are also under environmental stress and can transfer these effects to their infants. In vaginal births, most of the early infant gut colonizers are derived from the mother’s gut (Bäckhed et al., 2015) and possibly consolidated by the microbiome in breast milk (Hunt et al., 2011). Transcriptomic analysis of cord blood from the infants in this cohort revealed a signal resembling the response to LPS exposure, suggesting that these infants are exposed to environmental stresses even before birth (Kallionpää et al., 2014).

The effects of the hygiene hypothesis are most likely mediated through not just one mechanism but rather a complex interplay of environmental factors. These likely include immune responses to multiple different parasites, helminths, microbes, and viruses. Here, we have identified one potential contributing factor, namely, immunogenicity of early colonizing symbiotic bacteria. Understanding how the different members of our microbiota contribute to the development of our immune system alone and in combination will be a key step in the development of probiotic interventions that may alter the increasing trends of autoimmune diseases in countries such as Finland.

EXPERIMENTAL PROCEDURES

Study Cohort

The international DIABIMMUNE study recruited 832 families in Finland (Espoo), Estonia (Tartu), and Russia (Petrozavodsk) with infants carrying HLA alleles that conferred risk for autoimmunity (Larza et al., 2012; Solid and Thorsby, 1993). The newborns were borned by monthly stool sampling, periodic laboratory assays, and questionnaires regarding breastfeeding, diet, allergies, infections, family history, use of drugs, and clinical examinations. For this study, data from 74 infants per country were selected to be analyzed based on similar HLA risk class distribution and matching gender between the countries. The DIABIMMUNE study was conducted according to the guidelines laid down in the Declaration of Helsinki, and all procedures involving human subjects were approved by the local ethical committees of the participating hospitals. The parents and/or study subjects gave their written informed voluntary consent prior to sample collection.

Stool Sample Collection and DNA Extraction

Stool samples were collected by the participants’ parents and stored in the household freezer (−20°C) until the next visit to the local study center; samples were then shipped on dry ice to the DIABIMMUNE Core Laboratory in Helsinki. The samples were then stored at −80°C until shipping to the Broad Institute for DNA extraction. DNA extractions from stool were carried out using the QIAamp DNA Stool Mini Kit (QIAGEN).

Library Construction, Sequencing, and Analysis of the 16S rRNA Gene and Shotgun Metagenomics

16S rRNA gene libraries were constructed as previously described by Kostic et al. (2015). Metagenomic libraries were prepared using Nextera XT DNA Library Preparation Kit (Illumina). 16S and metagenomic libraries were sequenced on the Illumina HiSeq 2500 platform. 16S data were processed using QIIME, and taxonomy was assigned according to Greengenes taxonomy map. Metagenomic data were analyzed using MetaPhlAn (v.2.2) (Truong et al., 2015) for taxonomic profiling and HUMAnN2 (http://hutterhower.sph. harvard.edu/humann2) for functional profiling. Associations with metadata were analyzed using MaAsLin, a linear modeling system adapted for microbial community data (http://hutterhower.sph.harvard.edu/maaslin). Metagenomic samples were additionally analyzed using ConStrains (Luo et al., 2015), which conducts within-species strain haplotyping by deconvoluting SNP patterns detected from mapping reads to species core genes across samples. See the Supplemental Experimental Procedures for detailed methodology.

Bacterial Strains and LPS Purification

The bacterial strains used in the study are summarized in Table S3. LPS purification was performed by hot phenol-water method (Hirschfeld et al., 2003).
Human Immune Stimulation Assays

Primary human PBMCs, in-vitro-differentiated monocyte-derived dendritic cells, or HEK293-NF-κB reporter cells expressing hTLR4 were stimulated with the indicated doses of LPS purified from various strains (Table S3). In primary cells, cytokine concentrations in the supernatant after 24 hr were measured by cytokine bead array analysis (BD Biosciences). In HEK293 cells, stimulation was measured by luciferase (BrightGlo, Promega).

Endotoxin Tolerance Assays

Primary monocytes were isolated from human PBMCs and incubated in the presence of LPS purified from B. dorei or E. coli at the indicated doses for 18–20 hr. Cells were then washed and cultured in crPMI for 3 days. Monocytes were challenged with a standard dose of 5 μg/ml of zymosan. Supernatants were collected after 20 hr and analyzed using the cytokine bead array human inflammation kit (BD Biosciences) in accordance with the manufacturer’s instructions.

Diabetes Incidence in NOD Mice

All animal studies were conducted under protocols approved by the Institutional Animal Care and Use Committee (IACUC) at NIBR. NOD/ShiLT mice were purchased from Jackson Laboratory. Groups of 9 to 12 8-week-old mice were injected intraperitoneally with 10 μg LPS purified from either E. coli or B. dorei once a week for 4 consecutive weeks. Non-fasting blood glucose was monitored weekly. The experimenter was blinded to the nature of the treatment for each group. Animals with either one reading above 300 mg/dl or two consecutive readings above 250 mg/dl were deemed diabetic.

Endotoxin Tolerance in NOD Mice

Groups of five mice were injected i.p. with 10 μg LPS purified from either E. coli or B. dorei. After 24 hr, the splenocytes were isolated and restimulated in vitro with zymosan (2.5 μg/ml). TNFα concentration was assessed by cytokine bead array after 24 hr.

ACCESSION NUMBERS

The accession number for the data reported in this paper has been uploaded to NCBI BioProject: PRJNA290380.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2016.04.007.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank Tiffany Poon and Scott Steelman (Broad Institute) for help in sequence production and sample management, Leon Murphy (Novartis) for help with experimental design, Katrinna Koski and Matti Koski (University of Helsinki) for the coordination and database work in the DIABIMMUNE study, Chengwei Luo (Broad Institute) for help in the strain analysis, and Natalia Neldskov (Massachusetts General Hospital) for editorial help in writing and figure generation. T.V. was supported by funding from JDRF and Hecse (Helsinki Doctoral Programme in Computer Science). H.L. and T.V. were supported by funding from the Academy of Finland Center of Excellence in Systems Immunology and Physiolog Research. A.D.K received support as the Merck Fellow of the Helen Hay Whitney Foundation and as the Lawrence H. Summers Fellow of the Broad Institute. M.K. was supported by the European Union Seventeenth Framework Programme FP7/2007–2013 (202060) and the Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research (250114). R.J.X. was supported by funding from JDRF, grants from the NIH (US4 DK102557, R01 DK092405, and P30 DK043351), funding from the Leona M. and Harry B. Helmsley Charitable Trust, and funding from the Center for Microbiome Informatics and Therapeutics at MIT.

Received: November 5, 2015
Revised: January 19, 2016
Accepted: March 31, 2016
Published: April 28, 2016

REFERENCES

