Detection, Resolution, and Imaging Beyond Abbe's Diffraction Limit

Ric Villani Senior Biosystems Application Manager Nikon Instruments Inc. February 22nd, 2016

Imaging at various lengths

Light Microscopy EM, SPM

X-ray crystallography, NMR

Imaging at various lengths

200 nm $\frac{1}{2}$ wavelength of light $\frac{\lambda}{2}$

Light Microscopy

d= Insina

high NA objective **Excitation light**

200 - 300nm

Verdet (1869) Abbe (1873) Helmholtz (1874) Rayleigh (1874)

Detection Versus Resolution

With the diffraction limit, we can detect, but not resolve beyond a certain point

Detect:

 To determine if a structure or substance is present in a sample or not

Resolve:

 To determine the number or size of an object of interest in a sample or relative position of two objects.

Detection Versus Resolution

$$r_{xy} = \frac{1.22\lambda}{(2NA)}$$

$$r_{z} = \frac{2\lambda \cdot \eta}{\left(NA_{obj}\right)^{2}}$$

Sub-resolution light sources are "convolved" by the microscope appearing as "diffraction limited" Airy Disks.

Detection is a function of total brightness of the diffraction volume.

Resolution is a function of Airy Disks separation.

Why are we limited?

Abbe's equation has no lower limit

$$r_{xy} = \frac{1.22\lambda}{(2NA)}$$

Better Resolution from:

- Shorter Wavelength
 - Crown glass transmits only to ~400nm
- Higher NA's
 - NA of objective typically limited to 1.49NA

Why are we limited in NA?

The Other Side

Approaching the Limit

- The diffraction limit is for a single point in space
- Samples have signal above and below
- Imaging the diffraction volume is obscured.

Confocal: Emission Restriction

MP: Excitation Restriction

TIRF: Sub-Diffraction Excitation

Breaking the Limit

I. Structural Super Resolution "PSF Engineering"

4Pi

I⁵M Image Interference Microscopy

STED Stimulated Emission Depletion

SIM Structured Illumination Microscopy

II. Single Molecule Localization "PSF Mapping"

FIONA Fluorescence imaging with one-nanometer accuracy

STORM Stochastic optical reconstruction microscopy

PALM Photoactivated light microscopy

GSDIM Ground state depletion & individual molecule return

Opposing Objective Microscopy

- A single lens collects HALF of the potential emitted light & thus HALF of the potential axial information
- Limited collection causes axial stretch seen in PSF
- Destructive interference between light from two objectives produces a less elongated PSF.
- 4Pi and I⁵M

4Pi Confocal Microscopy

Fig.3. Two dimensional Point Spread Functions (PSF)

(a) Experimental one objective, (b) experimental 4Pi and (c) calculated 4Pi PSF in x-z plane.

- XY Resolution ~ 250nm
- Z Resolution ~ 85nm 150nm

Image Interference Microscopy

- Image Interference Microscopy is a widefield version of 4Pi.
- This method utilizes full field illumination as opposed to confocal scanning to produce an image.

Opposing Objective Methods

- Systems can yield a 5-9 fold increase in Z resolution
- No resolution benefit in XY
- Require extremely accurate microscope alignment
- Require mathematical image processing to remove axial "lobes" from the PSF
- Commercially challenging

Sub-Diffraction Fluorescence Excitation

- Traditional confocals use the objective to form a diffraction-limited excitation spot
- Excitation with a sub-diffraction spot would produce sub-diffraction emission
- Emission produced could be localized to a smaller volume, increasing resolution

Emission Depletion

- Normal fluorescence excitation
- Emission depletion doughnut
 - 200 pico-second pulses of light
 - Close to probe's emission
- Emission light donut causes probe to return to ground state without photon emission
- The only emitted photons come from probes illuminated in the donut hole

STED Results

 λ_{STED} = 750 nm

Confocal **STED** 200 nm

Harke et al Opt Expr (2008)

Klar et al Phys Rev E (2001) Klar & Hell Opt. Lett. (1999)

fluorescent beads

STED Results

- Z Resolution ~ 100nm
- XY Resolution ~100nm
- High photobleaching
 - High phototoxicity

Extending Fourier Space

Resolution is limited by NA

More back aperture = more NA

SIM Principle

Unknown Sample Structure

SIM Principle

Unknown Sample Structure+ **Known Illumination Pattern**

SIM Principle

Unknown Sample Structure
+ Known Illumination Pattern
Moiré Fringes (Known Structure)

NA of Moire = **NA** of Sample – **NA** of Pattern

Phase Shifts

Moire Fringes generated at diffraction limit

High spatial frequency (smallest) objects affected most by shift

Low spatial frequency (largest) objects affected least by shift

Orientations of pattern and objects matters!

Reconstruction in reciprocal space

Fourier Space Size Comparisons

TIRF SIM

2D SIM

3 D SIM

Wide-Field

2D SIM

- Suitable for thin samples.
- Can be combined with TIRF to limit Z optical section

2D SIM Results

- 200nm beads 488nm
- 2D SIM vs Wide-field

3D SIM

- Similarly, light can be patterned in three dimensions for 3D SIM
- Yields maximum axial information.
- Single Z Plane of 3 grid angles x 5 grid phases (15 images)

3D SIM Results

NuclearPore Complex Protein (AF 488)

3D SIM Results

Opossum Kidney Cells AF 488 phalloidin and mitotracker red.

- Yeast Cells
- Mitocondria (Red)
- ER (green)

3D SIM vs Widefield Deconvolved

Images courtesy of Bassell Lab – Emory University

- Alexa 488 labeled microtubules and Alexa 561 labeled synapsin
- 3D SIM Left, Deconvolution Center, Widefield Right

Applications of N-SIM: Live Cell Imaging

Live Cell - NIH3T3 Mitochondria - MitoTracker Red-Timelapse

Exposure: 64ms,15 images. Total acq. time: 1.8s. 5-cycle timelapse, 1s interval

Conventional
Sample thickness up to 20µm

N-SIM

Mitochondrial cristae are now visible

Sim Results

- XY Resolution: 85-110 nm
- Z Resolution: ~300nm

Breaking the Limit

I. Structural Super Resolution "PSF Engineering"

4Pi

I⁵M Image Interference Microscopy

STED Stimulated Emission Depletion

SIM Structured Illumination Microscopy

II. Single Molecule Localization "PSF Mapping"

FIONA Fluorescence imaging with one-nanometer accuracy

STORM Stochastic optical reconstruction microscopy

PALM Photoactivated light microscopy

GSDIM Ground state depletion & individual molecule return

FIONA: Breaking the Limit

FIONA

S/N (Center) = width/ \sqrt{N}

N= number of Photons

Accuracy of Localization

Resolution Versus Photon Count

The Gaussian fit is a probability as to where the single molecule is located.

The greater the number of photons the more accurate the localization

Localization Microscopy Principle

Conventional Fluorescence

Super-Resolution by Localization

Photo-switchable probes are capable of moving from a "dark state" to an emitting state through the use of high energy light sources.

Conventional fluorescence

Raw images

STORM Image

2x real time

<u>St</u>ochastic <u>Optical Reconstruction Microscopy = STORM</u>

Emission Isolation Localization

Spontaneous Activation (d-STORM/GSDIM/PALM*)

- Reporter(s) kept in the "Dark State"
- Spontaneous activations

Triggered Activation (n-STORM)

- Reporter kept in the "Dark State"
- Triggered activations

Multi-Color

Multiple Reporters (no activators)

Multiple Activators / Same Reporter

Localization Microscopy

Multiple Color n-STORM

Multiple Reporters

In a 2D world...

Satellite image of ???

Google maps

3D Imaging of the Microtubule Network

2 Color 3D STORM

- Clathrin (Green)
- FBP17 Formin (Red)
- Showing
 Clathrin's
 function in
 endocytosis

Images Courtesy of Dr. Bo Huang - UCSF

Best Dyes for STORM

Dye	Excitation maximum (nm) ^a	Emission maximum (nm) ^a	Extinction (M ⁻¹ cm ⁻¹) ^b	Quantum yleld ^c	Detected photons per switching event		Equilibrium on-off duty cycle (400–600 s)		after illumination		Number of switching cycles (mean)	
					MEA	βМЕ	NEA	βМЕ	MEA	βМЕ	MEA	βМЕ
lue-absorbing												
Atto 488	501	523	90,000	0.8	1,341	1,110	0.00065	0.0022	0.98	0.99	11	49
Alexa Fluor 488	495	519	71,000	0.92	1,193	427	0.00055	0.0017	0.94	1	16	139
Atto 520	516	538	110,000	0.9	1,231	808	0.0015	0.00061	0.92	0.86	9	17
Fluorescein	494	518	70,000	0.79	1,493	776	0.00032	0.00034	0.51	0.83	4	15
FITC	494	518	70,000	0.8	639	1,086	0.00041	0.00031	0.75	0.9	17	15
Cy2	489	506	150,000	0.12	6,241	4,583	0.00012	0.00045	0.12	0.19	0.4	0.7
ellow-absorbing												
СузВ	559	570	130,000	0.67	1,365	2,057	0.0003	0.0004	1	0.89	8	5
Alexa Fluor 568	578	603	91,300	0.69	2,826	1,686	0.00058	0.0027	0.58	0.99	- 7	52
IAMKA	546	575	90,430	0.2	4,884	2,025	0.0017	0.0049	0.85	0.99	10	59
Cy3	550	570	150,000	0.15	11,022	8,158	0.0001	0.0003	0.17	0.55	0.5	1.6
Cy3.5	581	596	150,000	0.15	4,968	8,028	0.0017	0.0005	0.89	0.61	5.7	3.3
Atto 565	563	592	120,000	0.9	19,714	13,294	0.00058	0.00037	0.17	0.26	4	5
ed-absorbing												
Alexa Fluor 547	550	665	239,000	0.33	3,823	5,202	0.0005	0.0012	0.83	0.73	14	25
Cy5	549	670	250,000	0.28	4,254	5,873	0.0004	0.0007	0.75	0.83	10	17
Atto 647	545	6b9	120,000	0.2	1,52b	944	0.0021	0.0016	0.46	0.84	10	24
Atto 647N	544	669	150,000	0.65	3,254	4,433	0.0012	0.0035	0.24	0.65	9	39
Dyomics 654	554	675	220,000	-	3,653	3,014	0.0011	0.0018	0.79	0.64	20	19
Atto 655	563	684	125,000	0.3	1,105	657	0.0006	0.0011	0.65	0.78	17	22
Atto 680	580	700	125,000	0.3	1,656	987	0.0019	0.0024	0.65	0.91	8	27
Cy5.5	575	694	250,000	0.28	5,831	6,337	0.0069	0.0073	0.87	0.85	16	25
IR-absorbing												
DyLight 750	752	778	220,000	-	712	749	0.0006	0.0002	0.55	0.58	5	6
Cy7	747	776	200,000	0.28	852	997	0.0003	0.0004	0.48	0.49	5	2.5
Alexa Fluor 750	749	775	240,000	0.12	437	703	0.00006	0.0001	0.36	0.68	1.5	6
Atto 740	740	764	120,000	0.1	779	463	0.00047	0.0014	0.31	0.96	3	14
Alexa Fluor 790	785	810	260,000	_	591	740	0.00049	0.0014	0.54	0.62	5	2.7
	778											127

Dempsey et al., 2011

STORM Results

- XY Resolution: 20-30 nm
- Z Resolution: ~50-60 nm

Do Dyes Matter?!

STORM/GSDIM vs PALM

- Uses photo-switchable synthetic, non-genetically encoded dyes to temporally separate individual fluorophores
- More photons per switch = better localization accuracy

iPALM

- Interferomety Photo-activation Localization Microscopy
 - Uses 2 opposing objective and 3 cameras simultaneously with interferomety principles to achieve high accuracy Z localization

Resolution Achieved: XY ~10-20nm Z ~10-20nm

Dr. Harold Hess

HHMI – Janelia Farm

http://www.hhmi.org/news/hess20090202.html

Volumetric comparison

One Last Thought?

Thank You