Human Body Composition and Energy Expenditure

Barbara A. Gower, PhD Professor, Dept. Nutrition Sciences

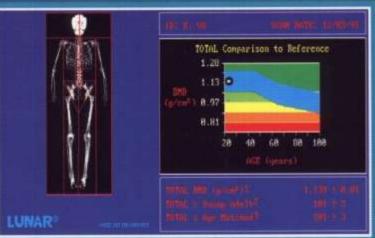
PUH 690 "Energetics: Scientific Foundations of Obesity and Other Health Aspects"

Overview

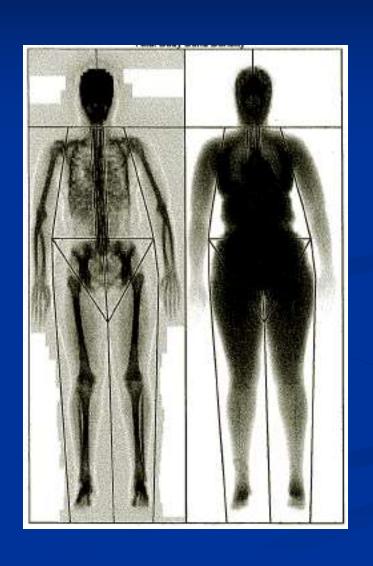
- I. Body composition (fat, lean, bone)
- II. Fat distribution
 - Subcutaneous adipose tissue
 - Visceral adipose tissue
 - Ectopic fat (liver, muscle)
 - Brown adipose tissue
- III. Energy Expenditure

Part I: Body composition

- Dual-energy X-ray absorptiometry (DXA)
- Air-displacement plethysmography
 - BodPod
 - PeaPod
- Stable isotope dilution


Dual-energy X-ray absorptiometry

- Differential attenuation of two X-ray beams of differing strength
- Bone > lean mass > fat mass
- "R" values = X-ray attenuation
- Extrapolated R value when bone obscures soft tissue


DXA

Total & regional fat mass, lean mass, bone mineral content and density

DXA analysis image

Sample output

University Of Alabama At Birmingham

1675 University Blvd. Birmingham, Al 35294

 Patient:
 4385, 4385
 Patient ID:
 4385

 Birth Date:
 1/30/1990
 23.5 years
 Referring Physician:

 Birth Date:
 1/30/1990
 23.5 years
 Referring Physician:

 Height / Weight:
 63.6 in.
 146.0 lbs.
 Measured:
 8/27/2013
 12:30:06 PM (13.60)

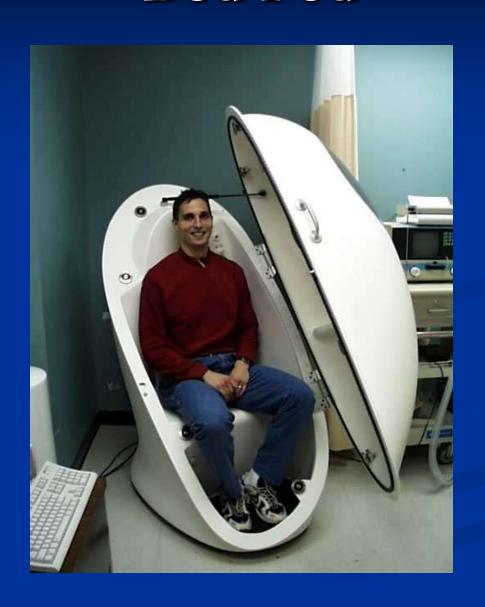
 Sex / Ethnic:
 Female
 White
 Analyzed:
 8/27/2013
 12:31:24 PM (13.60)

BODY COMPOSITION

Region	Tissue 1 (%Fat)	Region (%Fat)	Tissue 1 (g)	Fat (9)	Lean 1 (9)	BMC (g)	Total Mass
Left Arm	42.9	41.3	3,221	1,382	1,838	127	3.3
Left Leg	41.7	40.4	12,523	5,220	7,304	409	12.9
Left Trunk	33.2	32.4	14,318	4,753	9,565	333	14.7
Left Total	36.8	35.5	31,959	11,753	20,206	1,120	33.1
Right Arm	41.3	39.8	3,412	1,410	2,001	136	3.5
Right Leg	42.9	41.5	11,950	5,127	6,823	403	12.4
Right Trunk	33.2	32.5	15,104	5,016	10,087	350	15.5
Right Total	37.0	35.8	32,244	11,933	20,312	1,128	33.4
Arms	42.1	40.5	6,632	2,793	3,840	263	6.9
Legs	42.3	40.9	24,474	10,347	14,127	812	25.3
Trunk	33.2	32.5	29,422	9,769	19,653	683	30.1
Android	32.9	32.5	4,164	1,369	2,796	46	4.2
Gynoid	41.3	40.6	11,743	4,849	6,893	208	12.0
Total	36.9	35.6	64,203	23,686	40,517	2,248	66.5

FAT MASS RATIOS

Trunk/	Legs/	(Arms+Legs)/
Total	Total	Trunk
0.41	0.44	1.35


Body density with Bod Pod

- Body volume by air displacement
- Body density by volume and mass
- Body volume corrected for tidal volume

Air-displacement plethysmography Body density via "Bod Pod"

Bod Pod

Bod Pod

Body density with Bod Pod

- > mass/volume = > density
- > density = > lean:fat
- $^{\circ}$ % fat = $(4.95/D_b-4.5) \times 100$ (Siri, 1956)

Pea Pod for infant body composition

Stable Isotope Dilution

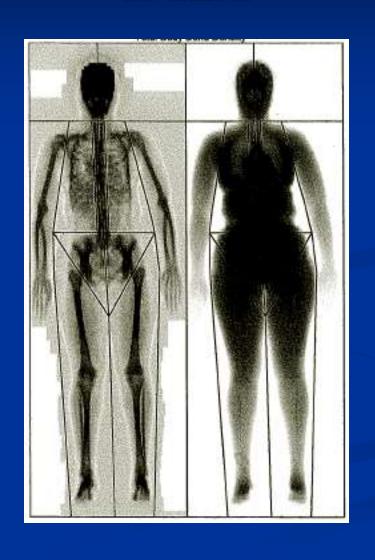
Total body water via deuterium ingestion

TBW with deuterium dilution

- Baseline urine sample
- Oral dose of D₂O
- Deuterium: 1 P + 1 N (H has 1 P)
- 3-4 hour equilibration period
- Second urine sample
- Deuterium enrichment (delta) by IRMS
- TBW=(dose*C1*C2)/deltaT180-deltaT0/1000
- 36.13kg=9.998g*5651619*0.945/1482-3.9/1000

Multi-compartment modeling

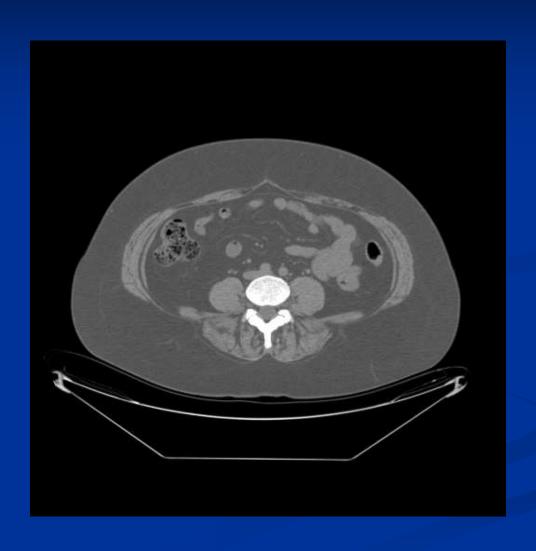
- \blacksquare % Fat = (equation)
 - Total body water (isotope dilution)
 - Total body bone mineral content (DXA)
 - Body density (Bod Pod)
- Multiple direct measures
- Fewest assumptions


4-compartment model Baumgartner et al.

- \blacksquare Fat mass (kg) =
- 2.05 * weight (kg) * ((1.34/D_b) (0.35 * (TBW/weight) + (0.71624 * (bone/weight)) 1)

Part II: Fat Distribution

- Subcutaneous adipose tissue:
 - DXA (dual-energy X-ray absorptiometry)
 - CT (computed tomography)
 - MRI (magnetic resonance imaging)
- Visceral adipose tissue: CT, MRI
- BAT: PET (Positron Emission Tomography)
- Ectopic fat
 - Intramuscular fat: CT, MRI, MRS (spectroscopy)
 - Liver fat: CT, MRS, MRI


Regional body composition with DXA

Fat Distribution by CT scan

CT Scan Image

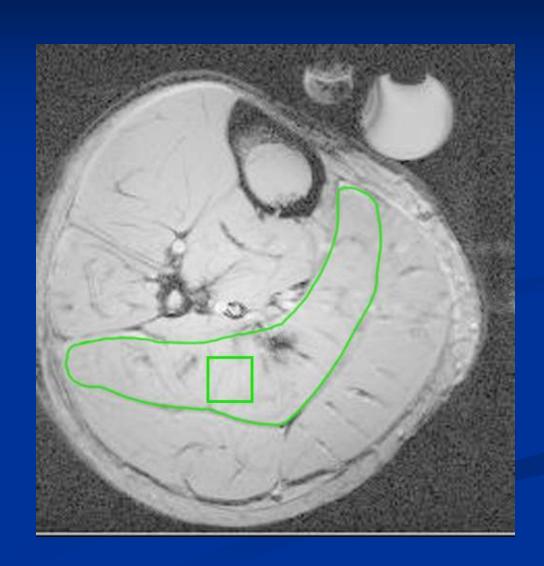
Computed tomography scanning

- Single slice X-ray; 5 mm, 2 sec
- Attenuation of beam in Houndsfield units
- Denser tissue = greater attenuation
- Bone > Lean mass > fat mass

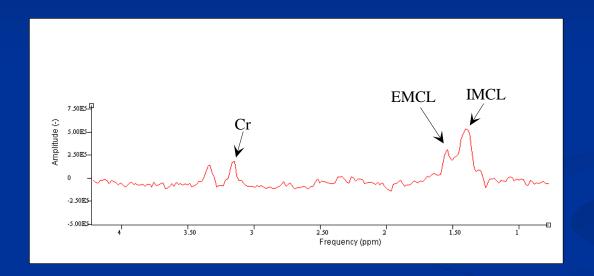
Computed tomography scanning

- Adipose tissue = -190 to -30 HU
- Low-density muscle = 0 20 HU
 - Indicates lipid infiltration
- High-density muscle = 21-80 HU

Skeletal Muscle Fat

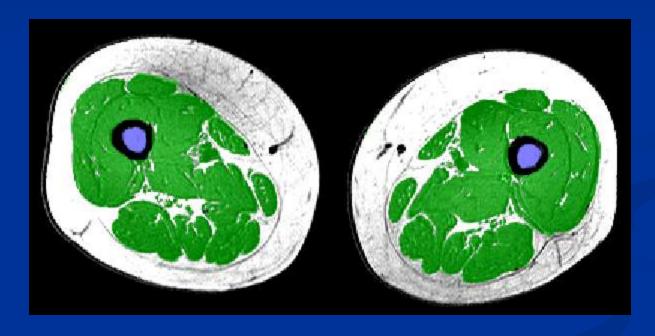

- Magnetic resonance spectroscopy (MRS)
 - ¹H methylene proton resonance
 - Intramyocellular (IMCL)
 - Extramyocellular (EMCL)
- Magnetic resonance imaging (MRI)
 - Visualize fat depots
- Computed tomography (CT)
 - Attenuation value; lower density = more fat
- Biopsy
 - Oil red O staining; microscopy

Magnetic Resonance Spectroscopy for IMCL

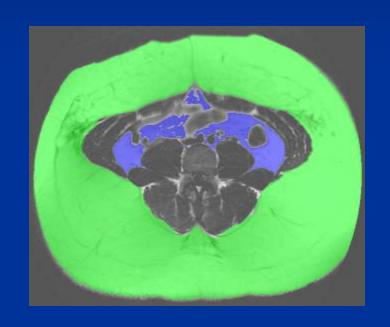


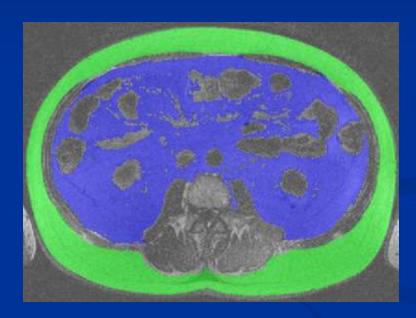
MRS Measurement

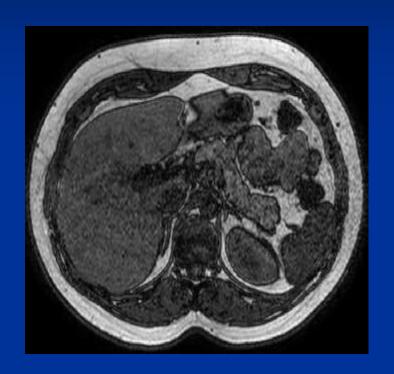
- ¹H-MRS of right soleus on a 4.1T magnet
- IMCL 6x6 voxel average
- Extramocellular lipid(EMCL) total soleusvoxel average
- Normalized to an oil phantom

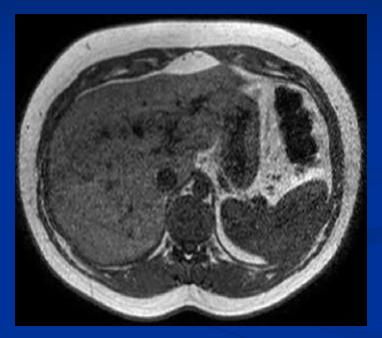


MRS

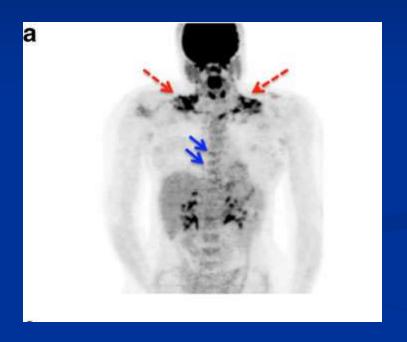

Water-suppressed 1H spectra collected with a 9.5 cm surface coil EMCL=extramyocellular lipid; IMCL=intramyocellular lipid; Cr=creatine.


Magnetic Resonance Imaging: Intra-muscular adipose tissue "IMAT"


Mid-Thigh


MRI for abdominal fat

MRI for liver fat



Attenuation of 5 ROI is used as an index of liver fat

PET

PET scanning for BAT

Cold-induced BAT activity using ¹⁸F-fluorodeoxyglucose Lee, P et al. 2012 Osteoporosis Int.

Part III: Energy Expenditure

- Indirect calorimetry
 - Resting: Vmax ENCORE 29N Systems metabolic monitor (SensorMedics)
 - 24-h whole room
- Doubly-labelled water
 - Deuterium
 - Oxygen-18

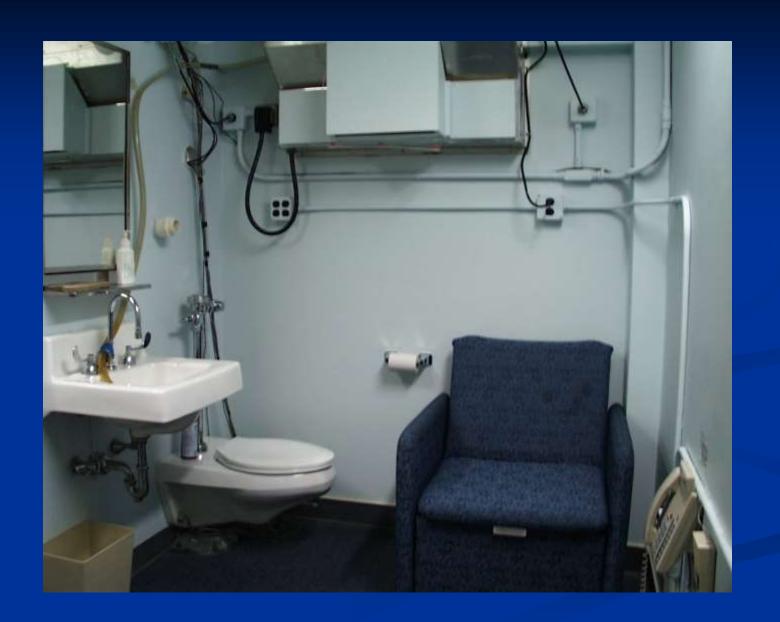
Indirect calorimetry

- Oxygen consumption
- Carbon dioxide production
- 30-min canopy method
 - Resting energy expenditure
- 24-hour room method
 - Total (24-h), resting, and sleeping EE
 - Total includes PA and TEF

Resting Energy Expenditure Indirect Calorimetry

Sample report

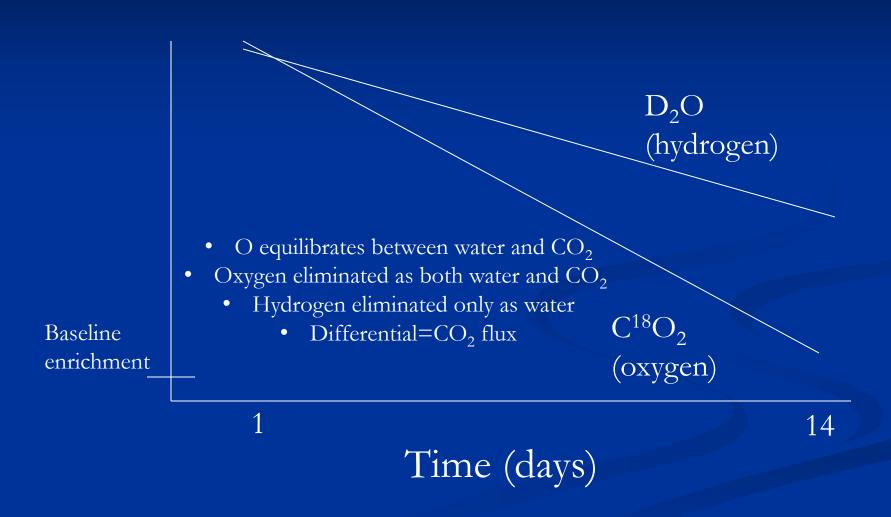
									=
FECO2	FICO2	FEO2	FIO2	VE(BTPS)	RQ	VCO2	VO2	REE/Day	Time Sec
%	%	%	%	L/min		L/min	L/min	Kcal/day	HH:MM
0.66	0.07	20.22	20.87	31.2	0.88	0.148	0.168	1187	00:01:00
0.68	0.08	20.22	20.91	30.5	0.86	0.150	0.174	1223	00:02:00
0.60	0.08	20.33	20.94	31.6	0.84	0.134	0.160	1119	00:03:00
0.61	0.08	20.33	20.94	25.6	0.84	0.110	0.131	917	00:04:00
0.70	0.07	20.16	20.86	25.6	0.88	0.129	0.146	1037	00:05:00
0.66	0.07	20.19	20.87	25.4	0.84	0.121	0.143	1005	00:06:00
0.66	0.07	20.17	20.78	22.6	0.96	0.107	0.111	802	00:07:00
0.71	0.07	20.09	20.85	23.9	0.81	0.124	0.153	1068	00:08:00
0.66	0.07	20.15	20.84	24.2	0.82	0.115	0.142	988	00:09:00
0.81	0.07	19.97	20.84	24.2	0.82	0.145	0.176	1230	00:10:00
0.76	0.07	20.08	20.83	24.1	0.90	0.134	0.149	1061	00:11:00
0.73	0.07	20.09	20.80	24.2	0.92	0.128	0.140	996	00:12:00
0.63	0.07	20.19	20.80	24.4	0.92	0.110	0.121	859	00:13:00
0.74	0.07	20.06	20.79	24.4	0.88	0.131	0.149	1052	00:14:00
0.67	0.07	20.12	20.78	24.4	0.90	0.119	0.132	936	00:15:00
0.66	0.07	20.11	20.77	24.3	0.88	0.117	0.133	940	00:16:00
0.70	0.07	20.09	20.77	24.4	0.91	0.123	0.136	966	00:17:00
0.64	0.07	20.16	20.78	23.1	0.89	0.105	0.117	833	00:18:00
0.74	0.07	20.05	20.77	23.1	0.89	0.124	0.138	983	00:19:00
0.70	0.07	20.08	20.78	23.1	0.88	0.118	0.134	946	00:20:00
0.68	0.07	20.09	20.76	23.4	0.89	0.115	0.129	918	00:21:00
0.70	0.07	20.06	20.76	23.1	0.88	0.118	0.134	948	00:22:00
0.72	0.07	20.05	20.77	23.2	0.88	0.122	0.138	979	00:23:00
0.74	0.07	20.06	20.78	23.1	0.91	0.124	0.136	972	00:24:00
0.70	0.07	20.09	20.78	22.9	0.90	0.116	0.129	919	00:25:00
0.77	0.07	19.99	20.78	23.2	0.87	0.131	0.151	1063	00:26:00
0.80	0.07	20.01	20.77	23.0	0.94	0.135	0.144	1030	00:27:00
0.68	0.07	20.12	20.77	23.0	0.91	0.114	0.124	885	00:28:00
0.68	0.07	20.08	20.78	23.3	0.83	0.115	0.138	965	00:29:00
0.69	0.07	20.04	20.77	23.1	0.82	0.116	0.141	984	00:30:00
0.69	0.07	20.04	20.77	23.4	0.82	0.118	0.144	1006	00:31:00


Measured REE: 990 kcal/day Respiratory Quotient: 0.87 Mean VO2: 0.140 L/min Mean VCO2: 0.123 L/min

Calculation of energy expenditure

- $\overline{REE} = [VO2 (3.94) + VCO2 (1.11)] 1440$ min/day
- De Weir 1949. New methods for calculating metabolic rate with special reference to protein metabolism. *J. Physiol. Lond.* 109:1-9.

24-h Energy Expenditure Room Calorimetry


Free-living Total & Activity-related Energy Expenditure Deuterium, ¹⁸O labeled water

Doubly-Labeled Water

- Baseline urine collection
- Oral dose of D₂O¹⁸
- Day 1 urine collection
- Day 14 urine collecton
- Deuterium and ¹⁸O enrichment by IRMS

Isotopic enrichment in urine

Calculation of energy expenditure

- TEE from standard indirect calorimetry equations
 - $rCO_2 = 0.4554 (k_0 \times V_0 k_h \times V_h)$
 - TEE (kcal/d) = $3.9 \text{ rCO}_2/\text{RQ} + 1.11 \text{ rCO}_2$
- \blacksquare AEE = (0.9 * TEE) REE (from indirect cal.)

k and V reflect turnover rate and pool size; RQ = 0.85 or FQ Wolfe text ch. 12

Questions?