Localization of 4HNE modifications

Shannon Eliuk Sept.12, 2006 Proteomics Workshop

Proteomic Identification of Oxidatively Modified Proteins

 By use of protein carbonyl derivatization with 2,4-dinitrophenyl hydrazine coupled with 2D Western Blot and mass spectrometry

Investigation of Protein Oxidation: 2D gel electrophoresis and immunoblot

Kim. Eliuk et al., 2005

2D Oxyblot showing oxidized proteins in mouse brain

Oxyblot

Pros

- Relatively quick and easy
- Quantitative
- Sensitive
- Gives global picture of proteins that may be oxidatively modified in a biological sample

Cons

- Identification of modified protein requires subsequent MS analysis
- Identification of modified protein is not conclusive
- Does not elucidate site or chemistry of modification

Method for localizing sites of post-translational modification

- Use an *in vitro* approach to develop and optimize method for modification localization
- Use *in vitro* 4-hydroxy-2-nonenal modification of creatine kinase as a model; this protein has been shown qualitatively to be oxidatively modified in vivo.
- Develop a direct infusion LTQ-FT-ICR MS and MS/MS method for PTM identification
 - Goal: to decrease analysis time from more commonly used liquid chromatography methods

4-hydroxy-2-nonenal (4HNE)

A reactive aldehyde formed as a result of lipid peroxidation

Schiff Base Adduct

4HNE-Modified Cysteine Michael Adduct

4HNE-Modified Histidine

Michael Adduct

Creatine Kinase

Creatine kinase isoforms CK-BB, CK-MM, CK-MB, Mi-CK

CK: Important Amino Acids

MPFSNSHNAL KLRFPAEDEF PDLSAHNNHM AKVLTPELYA ELRAKSTPSG FTLDDVIQT**G VDNPGHPYIM** TVGCVAGDEE SYEVFKDLFD PTTEDRHGGY KPSDEHKTDL NPDNLOGGDD LDPNYVLSSR VRTGRSIRGF CLPPHCSRGE RRAIEKLAVE ALSSLDGDLA GRYYALKSMT EAEOOOLIDD **H**FLFDKPVSP TITIASGMARD WPDARGIWHN DNKTFLVWVN EEDHLRVISM **OKGGNMKEVF** TRFCTGLTOI ETLFKSKDYE FMWNPHLGYI LTCPSNLGTG LRAGVHIKLP NLGKHEKFSE VLKRLRLOKR GT**GGVDTAAV GG**VF**D**VSNAD RLGFSEVELV OMVVDGVKLL IEMEORLEOG OAIDDLMPAO K

Nucleotide binding site

H296, H191, D335, R292, I188, 323-332 (flexible loop for binding ADP)

Creatine Binding Site

E232, G65, I69, C283, 60-70 (Creatine binding pocket), H66 (required for catalytic reaction)

Nucleotide phosphate binding site

A concentration of +ve charges chiefly 5 highly conserved R residues (130, 132, 236, 292, 320) (Lahiri et al., 2002)

4HNE Modification of CK

Direct Infusion by use of the TriVersa NanoMate (Advion)

- Fully automated sample handling
- Chip-Based ionization and direct infusion
- Stable, reproducible spray
- No carryover between samples

Chip-based direct infusion

(Zhang et al., 2003)

What are we looking for?

Masses of known peptides

 Each amino acid has a known and unique mass and thus each peptide (string of amino acids) also has a known and unique mass

Masses of known peptides + 4HNE

4HNE modification mass shift

Michael Adduct	156.1150
Schiff Base Adduct	138.1045
2-Pentylpyrrole Adduct	120.0939

FT-ICR MS Full Scan Spectra

Accuracy of FT-ICR MS

X		
	X	

		Modified	Adduct	Observed	Theoretical	Error
Peptide	Sequence	amino acid	Form	Mass	Mass	(ppm)
PFSNSHNAL	2-10	\mathbf{H}^7	Schiff base	1124.5726	1124.5735	0.83
PFSNSHNAL	2-10	H^{7}	Michael	1142.5837	1142.5841	0.33
PFSNSHNALK	2-11	H^7	Michael	1270.6791	1270.6790	-0.03
PFSNSHNALK	2-11	\mathbf{H}^{7}	Schiff base	1252.6672	1252.6685	1.03
LRFPAEDEFPDLSAHNNHMAK	12-32	H^{26}	Michael	2595.2647	2595.2660	0.50
LRFPAEDEFPDLSAHNNHMAK	12-32	H^{26} and H^{29}	Michael	2751.3777	2751.3811	1.22
RFPAEDEFPDLSAHNNHMAKVL	13-34	H^{26} and H^{29}	Michael	2850.4474	2850.4495	0.73
TLDDVIQTGVDNPGHPY	52-68	H^{66}	Michael	1996.9845	1996.9862	0.87
KDLFDPIIEDRHGGY	86-100	K^{86} and H^{97}	Michael	2087.1067	2087.1059	-0.37
KDLFDPIIEDRHGGY	86-100	H^{97}	Michael	1930.9894	1930.9909	0.77
HGGYKPSDEHK	97-107	H^{97}	Michael	1410.6996	1410.7012	1.13
HGGYKPSDEHK	97-107	H^{97} and K^{101}	Michael	1566.8153	1566.8162	0.63
CLPPHCSRGERRAI	141-154	C^{141} and C^{145}	Michael	1907.0282	1907.0248	-1.79
ALKSMTEAEQQQLIDDHFLF	175-194	H^{191}	Michael	2520.2640	2520.2691	2.00
GIWHNDNK	212-222	H^{219}	Schiff base	1121.5713	1121.5738	2.21
GIWHNDNK	213-223	H^{219}	Michael	1139.5837	1139.5844	0.62
HNDNKTF	219-225	H^{219}	Michael	1031.5149	1031.5156	0.68
TFLVWVNEEDHLR	224-236	H^{234}	Michael	1813.9453	1813.9483	1.66
VNEEDHLRVISM	229-240	H^{234}	Michael	1597.8248	1597.8254	0.39
VNEEDHLRVI	230-239	H^{234}	Schiff base	1361.7414	1361.7424	0.71
VNEEDHLRVI	230-239	H^{234}	Michael	1379.7525	1379.7529	0.29
FCTGLTQIETLFK	253-265	C^{254}	Michael	1656.8922	1656.8917	-0.31
WNPHLGY	273-279	H^{276}	Michael	1042.5355	1042.5356	0.18
ILTCPSNL	280-287	C^{283}	Michael	1016.5682	1016.5697	1.41
RAGVHIKLPNLGKHEKF	292-308	${ m H}^{296}$	Michael	2100.2460	2100.2440	-0.91
AGVHIK	293-298	H^{296}	Schiff base	762.4873	762.4872	-0.07
LPNLGKHEK	299-307	H^{305}	Michael	1191.7091	1191.7096	0.37

Fragmentation by CID (Collision Induced Dissociation)

http://www.ionsource.com/tutorial/DeNovo/nomenclature.htm

The most common fragments observed with ion trap, triple quadrupole, and QTOF mass spectrometers

CID Peptide **Fragmentation**

			₩		
	102	T FLVWVN	EEDHLR	1556	(He)
249 362 N-terminal b ions 647 m/z 746	249	TF LVWVN	EEDHLR	1409	
	362	TFL VWVN	EEDHLR	1296	
	461	TFLV WVN	EEDHLR	1197	C to main a
	647 TI	TFLVW VN	EEDHLR	1911	v ions
	746	TFLVWV N	EEDHLR	912	m/z
	860	TFLVWVN	EEDHLR	798	
s mass buld be d by a ed H?	989	TFLVWVNE	EDHLR	669	
	118	TFLVWVNEE	DHLR	540	
	1233	TFLVWVNEED	HLR	425	
	1370	TFLVWVNEEDH	LR	288	
	1/92		П	175	

The ion's which wo affected modifie

Modifications mapped at different 4HNE concentrations

Modified Amino	Concentration of 4HNE (µM)					
Acid	5000*	300*	100*^	30^	10^	5^
H^{7}	M*,S*	M*,S*	M*^,S*^	S^		
H^{26}	M*	М	M^	Μ		
H^{29}	M*	M*				
K^{45}	М					
H^{66}	M*	М				
K^{86}	М	М				
${ m H}^{97}$	M*	M*	M^			
K^{101}	M*	М				
K^{177}	M*					
C^{141}	M*	М	M*^	M^		
C^{145}	M*	М	M^	M^		
H^{191}	M*	М	M^			
H^{219}	M*,S	M*,S	M^			
H^{234}	M*,S*	M*,S*	S			
K^{247}	M,S					
C^{254}	M,S*	M,S	M^,S^	M^,S^	<u>M^</u>	<u>M^</u>
H^{276}	M*	M*				
C ²⁸³	M*	М	M*^	M^	M^	
H^{296}	M,S	M,S	S^			
H^{305}	М	М				
K ³¹³	М					
K ³⁵⁸	М					
K ³⁸¹	М					

CK-BB activity reduced by HNE

Key Points to Remember

- Oxyblots are useful but have limitations to be aware of
- 4HNE adducted amino acids
 - C, H, K, and R
- 4HNE adducts
 - Michael (156.1150)
 - Schiff Base (138.1045)
 - 2-pentylpyrrole (120.0939)
- Direct infusion with the NanoMate can be used for analysis of low volume samples

Acknowledgements

Kim Lab:

- Dr. Helen Kim
- Laura Chamlee
- Sai Sai Dong
- Patti Hall

UAB Biomedical FT-ICR Lab:

- Dr. Matthew Renfrow
- Monica Stinnett

Barnes Lab:

- Dr. Stephen Barnes
- Tracy D'Alessandro
- Erin Shonsey

UAB CCC Mass Spectrometry/ Proteomics Shared Facility:

• Marion Kirk

Questions/Comments?