QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Biology: the basis for smart proteomic approaches to protein analysis

Helen Kim, PhD

Department of Pharmacology & Toxicology University of Alabama at Birmingham

UAB Comprehensive Cancer Center Proteomic/Mass Spectrometry Shared Facility

Helenkim@uab.edu

What is proteomics?

- Genomics: study of genomes of a cell or organism
- Proteomics:
 - Original definition: study of the proteins encoded by the genome of a biological sample
 - Current definition: study of *the whole protein complement* of a biological sample (cell, tissue, animal, biological fluid [urine, serum])
 - More and more, going to analysis of <u>sub-proteomes</u>
 - Usually involves high resolution separation of polypeptides at front-end, followed by mass spectrometry identification and analysis

Genomics and gene microarrays: the good, the bad, and the be-careful-what-you-ask-for.

If microarrays can identify hundreds, thousands of gene differences between health and disease, why do we need to bother with proteins and proteomics?

- When you don't have a clue;
- When you have only a very small clue;
 i.e. you've done a microarray experiment, and you have a list of 3,284 genes that are differentially regulated in your system;
- When you knock out a gene (and hence a protein) that you're convinced is essential for life and health, and the animal pees as usual.

Sept 12, 2006

HKIM/UAB/Proteomics

Hypothesis generation or "discovery":

Global comparison of kidney proteins from healthy mice vs from a transgenic model of kidney disease;

identification of protein differences can be a first step in hypothesis generation of the molecular events that lead to the disease

Hypothesis confirmation:

2D gel comparison of a membrane subfraction from kidneys from healthy mice vs from a transgenic model of kidney disease;

---confirm that differences in protein abundance or protein-protein interactions in the kidney membrane are correlated with disease.

•Homogenize/lyse in buffer that unfolds the proteins w/o adding or disturbing the charges:

•High urea usually 5-8 M---unfolds the protein

•1-4% detergent--keeps hydrophobic components in solution

•Beta-mercaptoethanol or other reductant to reduce disulfide bonds •Inhibitors: of proteases, kinases, & phosphatases

• Clarify by centrifugation to get rid of insoluble/particulate matter;

Protein assay to know how much and how concentrated

2-D electrophoresis: more than the sum of its parts

1st dimension: Isoelectric focusing

(separation according to charge)

2nd dimension: (SDS)-PAGE

A real 2-D gel

Find this and other 2-D gels at http:www.expasy.org Lewis et al., [2000] Molec. Cell, <u>6</u>)

(from Natalie Ahn's lab)

The pattern itself is information; ---a protein migrates to the same position under given electrophoretic conditions; ---therefore, a change in position has biological meaning.

Essential part of 2-D gel proteomics: Image analysis, because your eyes are only so good.

Types of information:

Upregulation of gene
Posttranslational modificatiion
Downregulation of gene
Aberrant processing

Sept 12, 2006

HKIM/UAB/Proteomics

In practice, how do we deal with all those spots?

The smart answer: as little as possible

Translation: the key to successful proteomics is working with as little complexity as possible

Various ways to reduce proteome complexity: Subcellular fractionation by differential centrifugation

The good news: subcellular proteomes are readily "catalogued."

Compartment	# polypeptides in SWISSPROT as of 2000
Mitochondria (1000/cell)	2695% of total
Lysosome (400/cell)	501% of total
Peroxisome	350.6%
ER and Golgi apparatus	1573%
Nuclei (5% cell volume)	96417%
Others (cytosol, membrane)	422875%
	total: 5703

(Jung et al. [2000] Electrophoresis) Note date of article: this is already old data

Preliminary 2D gel analysis of PKDrelevant protein differences

WT kidney proteins increased in WT

PKD kidney
proteins increased in PKD

Smart proteomic approach to study of primary sensory cilia: isolate the cilia!!

A whole cellular proteome: 20,000 proteins minimum

The ciliary proteome: 2,000 proteins or 10% of total cellular proteome

(Liu, Speicher, Pierce, 2006)

A mammalian cell with a nonmotile cilium

Reduce proteome complexity by depletion of the most abundant proteins

Colantiono et al., Proteomics 2004

Deal with proteome complexity by increasing biological specificity, and therefore information

A cell lysate.....6,973 proteins

Which would you rather try and analyze on a 2D gel?

2D-Blue-Native gels: for protein-protein interactions in membrane environments

Aside from membrane complexes, BN gels can also address:

Which proteins are interacting with which?

2D BN gels thus allow identification of qualitative and quantitative aspects of protein interactions that might be difficult to assess by any other method

Difference gel electrophoresis (DIGE); where a protein migrates with itself---- can really be valuable.

Single biggest bottleneck, even with DIGE: even commercially made gels (1st dimension, 2nd dimension) are not perfect. 2D displays of proteins across multiple gels stil landmark spots matched across gels.

Sept 12, 2006

HKIM/UAB/Proteomics

Dealing with proteome complexity

Differential protein labeling with Cy3 and Cy5 Superimposed images from the same gel of normal and cancer cell lines from the breast

Visually: 100% green spots are specific to normal cells, 100% red spots are specific to cancer cells, degrees of yellow-orange indicate differential expression

Image analysis software uses pixel intensities, does not need colors.

Sept 12, 2006

Make use of databases and the internet:

I. Check existing databases and web-links: www.expasy.org many are annotated helpful links: proteomics tools II. Keep up with the literature/ competition: Electrophoresis **Proteomics** Molecular & Cellular Proteomics J. Proteome Research

III. Use genomics information when available: The polypeptide sequence (from the cDNA) can predict electrophoretic parameters-- m.w. & pl; helpful in setting up 2D gel conditions Sept 12, 2006 HKIM/UAB/Proteomics 24

Future directions in intact protein analysis approaches

- I. DIGE and Cy-dye labelling will enhance 2D gel analysis of complex proteomes;
- II. Subcellular fractionation will be "re-invented" and applied to reduce proteome complexity;
- III. While automated 2D LC/LC-MS/MS can be used for "discovery" and "profiling", every spot resolved from another on a 2D gel is a discovery;
- IV. 2D gel positional information, without protein identity, is information itself.
- V. 2D gels will become more valuable also for validation of results obtained by profiling approaches;
- VI. Once the nature of a protein difference is defined, a gel approach, either IEF or SDS-PAGE, could be used in a high-throughput manner for diagnostic or screening purposes.

Final thoughts

- What proteomics technology gives back is like any other analytical approach: it's as good as what you put in;
- Be mindful of distinguishing between low abundance proteins vs low level contaminants;
- Keep in mind "conventional" approaches like Western blotting to validate proteomic results;
- Purify, purify, purify before running any proteomic experiment.
- Formulating a hypothesis forces you to incorporate biological information that can enhance proteomic analysis.