Introduction to metabolomics research

Stephen Barnes, PhD
University of Alabama at Birmingham
sbarnes@uab.edu

What is “Metabolomics”?

• Metabolomics is like other types of –omics analysis (microarray, RNA-Seq, proteomics, etc.)
 — Offers a “comprehensive” view of all detectable chemicals (not just metabolites)
 — Can be applied to body fluids
 • Plasma/sera, urine, saliva, tears, fecal water, etc.
 — Also to tissues
 • Liver, lung, heart, kidney, brain, eyes, etc.
 — And to single cells
 • Human, rodent, yeast, bacteria, etc.
What is the metabolome?

- Not just the intermediates in the described metabolic pathways (glycolysis, Krebs cycle, etc.) in biochemistry textbooks
- It’s all the chemicals that are in tissues and biofluids of us, in experimental animals, in cell lines and even in foods we eat.
- Also, the air we breathe/smell

Where does the metabolome come from?

- It starts with what fixes CO₂ and N₂

Trees convert CO₂ to organic compounds

Field of soybeans – they fix N₂ because of nitrogen-fixing bacteria in their root nodules
Plants have more genes than humans

- Why? Plants can’t run away!!
- Apart from a view, they can’t anything
- Instead, they have to practice chemical warfare to prevent attack by aphids and microorganisms
- Many plants are poisonous to us
- Understanding which plants were safe to eat, or were so if cooked, represented the rise of agriculture and civilization

Questionnaire analysis

Extracted serum/plasma with MeOH/ACN
Targeted LC-MS
Untargeted LC-MS
Metacyc or other pathway analysis
Compounds in plants and fruits

- Carotenoids
- Many vitamins
- Polyphenols and anthocyanins
- Not made by human cells

Other sources of body chemicals

- The microbiomes
 - Humans are not single organisms
 - Instead, we are super-organisms
 - The gut microbiome has 10 times the number of cells found in the rest of the (human) body
 - It makes novel compounds that are absorbed, enter the blood stream and tissues
- Chemicals from the environment
 - industrial contaminants, therapeutics, supplements
- Interactions between the xenobiotics and the human enzyme systems
Metabolites are associated with every aspect of cellular events

World without gas!
The metabolome is very complex!

Metabolomics workflow

What is the question and/or hypothesis? → Samples – can I collect enough and of the right type? → Storage, stability and extraction

Validation of the metabolite ID
- MSMS

Database search to ID significant metabolite ions

Pathway analysis and design of the next experiment

Statistical analysis
- Adjusted p-values
- Q-values
- PCA plots

Choice of the analytical method
- NMR
- GC-MS
- LC-MS

Data collection → Pre-processing of the data

Database search to ID significant metabolite ions
Course goals

• To understand
 – The vital roles of metabolites
 – The origins of metabolites
 – That metabolomics is high dimensional
 – The best method for extracting metabolites
 – How to select the analytical approach
 – Qualitative and statistical analysis of the data
 – How to identify the “interesting” metabolites
 – How to map to (or define) pathways
 – The value of stable isotopes
Where did metabolomics came from?

Nuclear physics creates mass spectrometry

- 1897 JJ Thomson discovers the electron (cathode rays)
- 1919 Aston using a mass spectrograph shows that Neon with a non-integer MW (20.2 Da) is composed of two isotopes, ^{20}Ne and ^{22}Ne

Transition to biology

- While the politicians, tyrants, dictators and despots were salivating at the thought of developing nuclear weapons from unstable isotopes in the early part of the 20th Century, two scientists began the pursuit of the peaceful use of stable isotopes, initially deuterium (2H), and later carbon (13C) and nitrogen (15N), to study biochemical pathways.
- Understanding the pathways of metabolism was born.

Metabolomics and NIH Research 1948-2016

- 1950s-60s emphasis on determining metabolic pathways – 20+ Nobel prizes
- 1950s-early 1980s Identification and purification of proteins
- 1980-1988 Sequencing of genes – cDNA libraries – orthogonal research
- 1988-2000 Sequencing of the human genome – period of non-orthogonal research – where did all the genes go? junk DNA?
- 2004 Tiling arrays reveal that most of the genome is expressed
- 2012 Human genome ENCODE project reveals the extent of DNA expression and roles for “junk” DNA, as well as intergenic proteins
- 2014 “deep” proteomics reveals the presence of 400+ proteins that are not encoded by the genome
- 2006 First ENCODE project on 1% of the human genome reveals RNAs coming from more than one gene
Metabolism to metabolomics

• Many metabolites measured with enzymes – changes in NAD(P)H absorbance/fluorescence
 – Studies of glycolytic and the TCA cycle intermediates one at a time

Origins of practical metabolomics

Imperial College 1967-1970

Radio 2D-paper chromatography scanner with digitization of collected data

The room had 10 of these scanners – data analyzed by a central computer (in 1968)

Courtesy of K.R. Mansford, PhD
Radio-GC analysis
metabolomics in its infancy

Radio gas-liquid chromatography with digitization of collected data
Developed this for my PhD work (1967-1970) to study glucose metabolism in acellular slime moulds

How Nuclear Magnetic Resonance (NMR) became a player

• Mid 60s – introduction of Fourier transform analysis
• Late 70s – introduction of superconducting magnets
• Early 80s - pulse sequences

Cholic acid

Barnes & Geckle, 1982
Pulse sequences in NMR (HetCor)

- Depends on natural abundance of 13C

Waterhous et al. (1985)

Gas chromatography

- **Built on critical steps**
 - 1908 Twsett introduces the concept of chromatographic separation (of plant pigments)
 - 1941 Martin and Consden conceptualize the rules of partition chromatography (get the 1953 Nobel Prize in Chemistry)
 - 1950 James and Martin describe gas chromatography of volatile fatty acids
 - A boon to the oil industry
 - 1975 (Finally) open tubular, capillary gas chromatography becomes commercially available

AT (Tony) James
Progress in LC-MS

• Commercial HPLC appeared in the early 1970s to separate thermally stable and unstable molecules
• The challenge remained to find a way to get the unstable compounds into the gas phase
 – Applied to macromolecules (peptides, proteins) as well as metabolites
• Thermospray had some initial success
• Electrospray ionization and chemical ionization radically changed analysis, allowing compounds to go into the gas phase at atmospheric pressure and room temperature

LC-MS

• Suddenly, there were what appeared to be no limits (or very few) to what could be analyzed
• Unheard of, robust mass spectrometers came into play
 – “A reliable mass spectrometer” was considered in 1990 to be an oxymoron
Types of LC-MS analysis

- Single quadrupole LC-MS analysis
- Triple quadrupole LC-MS analysis
- LC-time-of-flight (TOF)-MS
- Multiple reaction monitoring (MRM)
- FT-ICR MS
- Q-TOF
- Orbi-trap
- TripleTOF

Ion Mobility

Data explosion

[Image of the book cover for "Millions of Cats"]
Changing times in Computing

• 1950 The Cambridge colleagues of Watson and Crick calculated the structure of DNA by putting data onto punched cards and taking them by train to London for analysis – and to the fog – the “cloud” in 1950s
• 1964 Seymour Cray develops the CDC 6600 (1 Mflops)
• 1967 I used paper tape to collect data from a radio gas chromatograph and then submitted them via a terminal reader to the CDC 6600 at the University of London

Today in Computing

On my desk in 2016
• The Apple MacBook Air with 2 quad core Intel i7 processors
 - Operates at 2.0 GHz
 - Memory of 8 GB
 - Access 1.333 GHz
 - 512 GB Flash memory storage
 - 10 Gbs Thunderbolt I/O
• Also cost ~$2,000

IBM Blue-Gene
• Parallel processing with 2,048 700 MHz computers operating at 4.733 Tflops
• Replaced by Cheaha, in its current configuration it has 48 compute nodes with two 2.66GHz 6-core Intel CPUs per node (576 cores total)
• It operates at 6.125 Tflops
600 MHz NMR instruments in surgical suite

Mass spectrometers (10 Q-TOFs) each dedicated to one assay format

This is Next-GEN precise medicine

UAB capabilities in metabolomics

TMPL mass spec lab
MCLM 459/427
Stephen Barnes, Director
934-7117/3462

SCIEX 5600 TripleTOF with Eksigent nanoLC

SCIEX 6500 Qtrap with SelexION

Central Alabama NMR facility
Chemistry Bdg
N. Rama Krishna, Director
934-5695
Great challenges in metabolomics

• The extent of the metabolome
 – From gaseous hydrogen to earwax

• Having complete databases
 – METLIN has 60,000+ metabolite records, but your problem always creates a need to have more
 – Improvement in the size of a MSMS database

• Storing and processing TBs of data

• Standards and standard operating procedures

• Being able to do the analyses in real time

NIH Common Fund Metabolomics Program

• Metabolomics Workbench:
 http://www.metabolomicsworkbench.org/

• Regional Comprehensive Metabolomics Research Centers
 – University of Michigan: http://mrc2.umich.edu/index.php
 – UC Davis Metabolomics Center: http://metabolomics.ucdavis.edu/
 – SE Center for Integrated Metabolomics: http://secim.ufl.edu/
 – Resource Center for Stable Isotope Metabolomics:
 http://bioinformatics.cesb.uky.edu/bin/view/RCSIRM/
 – Mayo Clinic Metabolomics Resource: http://www.mayo.edu/research/core-resources/metabolomics-resource-core/overview