Exploring Lung Cancer Metabolome: In vivo and Ex vivo for Individualized Medicine

Teresa Fan
Center for Environ. and Systems Biochemistry (CESB)
Resource Center for Stable Isotope-Resolved Metabolomics (RCSIRM)
Dept. Toxicol. & Cancer Biol/Markey Cancer Center
Univ. of Kentucky

UAB CF Workshop, Webex
July 19, 2017

Abstract # 2502: Liquid diet introduction of tracers into mice for stable isotope-resolved metabolomics (SIRM) investigations

Adapted from Fan et al., Pharmacology & Therapeutics 133, 366-391, 2012
SIRM Study of Human NSCLC patients \textit{in vivo}

\textbf{Tumor from Patient \#6}

\textbf{Patient \#6 large tumor 5/1/06}

\textbf{Patient \#6 cut tumor 5/1/06}

\textbf{13C6-glucose infusion}

\textbf{benign ——— tumor}

Fan et al. (2009) Altered Regulation of Metabolic Pathways in Human Lung Cancer Discerned by \textit{13}C Stable Isotope-Resolved Metabolomics (SIRM). Molecular Cancer. 8:41
Pyruvate carboxylase is activated in NSCLC

PC KO inhibits A549 cell xenograft growth

size=14+0.076t²
SIRM Study of Human NSCLC patients *ex vivo*

Advantages of *ex vivo* human tissue slice studies

- Maintain 3D human tumor architecture and microenvironment.
- Acquire target tissue metabolism w/o systemic influence.
- Paired cancerous and non-cancerous tissue design for the same patient eliminates genetic, physiological, and nutritional variables.
- Flexibility in treatments and ability to observe individualized response.
NSCLC tissue slices maintain distinct metabolism

Selenite effect ex vivo
SeO$_3$ effects on lung cancer cells are recapitulated in ex vivo cancer tissues

Ex vivo CA slices

A549 cells

M1 macrophage modulator β-glucan (WGP) effect ex vivo
βGlucan (WGP) induces M1 macrophage metabolic reprogramming in NSCLC tissues

Fan et al., Cold Spring Harb Mol Case Stud, 2(4):a000893

UK021

UK049

PCNA
RIP-1
PCNA
RIP-1
CA-Ct1
CA-WGP

Mitotic Index
Necrosis
Mitotic Index
Necrosis
NSCLC patients have opposite Gln oxidation in response to WGP

UL049 pt non-responder

UL058 pt responder

CA-Control
CA-β-Glucan

UL049 pt non-responder

CA-Control
CA-β-Glucan

Cytokine release

IL-10
IL-12p40
IL-1B
TNFα

NSCLC patients have opposite Gln oxidation in response to WGP.

Fan et al., Cold Spring Harb Mol Case Stud, 2(4):a000893
WGP-sensitive NSCLC pt tissues exhibit enhanced Gln oxidation via the Krebs cycle

Conclusion

• SIRM application to lung cancer patient in situ uncovers activation of pyruvate carboxylase, but not glutaminase.

• SIRM application to shPC-KD lung cancer cells and xenograft shows that PC enhances anabolic pathways to promote cell and tumor growth.

• Metabolic network mapping by SIRM in human lung cancer tissues ex vivo uncovers distinct individualized patient response to immune modulator β-glucan and anti-cancer agents

• Understanding therapeutics-induced metabolic reprogramming in ex vivo tissue studies may help predict the efficacy of given therapeutics in individual patients
Acknowledgements

• Julie Tan, Alex Belshof, Katherine Sellers, Michael Bousamra, Mattew Fox, Jun Yan, Yali Wang, Stephen Slone (UofL), Marc Warmoes, Qiushi Sun, Huan Song, Jadwiga Turchan, Maria Scavo, Angela Mahan, Luis Samayoa, Richard Higashi, and Andrew N. Lane (UKy)

• Brown Cancer Center NMR Facility

• NSF/EPSCoR (EPS-0447479)

• J.G. Brown Foundation, Markey Foundation, & Kentucky Lung Cancer Foundation

• National Institute of Health (1R01CA118434-01A2, 3R01CA118434-02S1, 1R01ES022191-01 1P01CA163223-01A1, 1U24DK097215-01A1)