NMR Data Analysis Exercise

UAB Metabolomics Training Course
July 17-21, 2017

Wimal Pathmasiri and Delisha Stewart
NIH Eastern Regional Comprehensive Metabolomics Resource Core (ERCMRC)
Department of Nutrition – Nutrition Research Institute
University of North Carolina at Chapel Hill
NMR Metabolomics Workflow

Sample Preparation

NMR Data Acquisition

Raw NMR data (FID)

Fourier Transform Phase and Baseline Correction

Processed NMR Spectrum 1r, cnx, esp, jdx

Peak Alignment QC Check

Binned NMR Data

Multivariate Data Analysis

Statistical Analysis

Pathway Analysis

Library Matched Data

Plasma 1
Plasma 2
Plasma 3
Plasma 4
Plasma 5
Plasma 6
QC
Ref Standard

EZinfo 2 - Plasma Std Reverse phase (M4: PLS-DA) - 2013-01-24 10:05:36 (UTC-5)

Pooled Female Males

NIST
NMR Metabolomics

- **Broad Spectrum**
 - High throughput
 - NMR Binning
 - Multivariate analysis and other statistics
 - Identifying bins important for separating study groups
 - Library matching of bins to metabolites

- **Targeted Metabolomics**
 - Identifying a set of metabolites
 - Quantifying metabolites
 - Multivariate analysis and other statistics

- **Pathway analysis**
 - Use identified metabolites
 - Use other omics data for integrated analysis
Some Software available for NMR Based Metabolomics

FREE

- **NMR Data Processing**
 - ACD Software for Academics (ACD Labs, Toronto, Canada)

- **Multivariate data analysis**
 - MetaboAnalyst 3.0 (http://www.metaboanalyst.ca)
 - MetATT (http://metatt.metabolomics.ca/MetATT/)
 - MUMA (http://www.biomolnmr.org/software.html)
 - Other R-packages

- **Library matching and Identification**
 - BATMAN
 - Use of databases
 - Birmingham Metabolite library, HMDB, BMRB

- **Pathway analysis**
 - MetaboAnalyst, MetScape 3 for Cytoscape, metaP-Server, KEGG, IMPALA

Also available through www.metabolomicsworkbench.org
Some Software Available for NMR Based Metabolomics

COMMERCIAL

- **NMR Data-preprocessing**
 - ACD Software (ACD Labs, Toronto, Canada)
 - Chenomx NMR Suite 8.1 Professional

- **Multivariate data analysis**
 - SIMCA 14

- **Other statistical analysis**
 - SAS, SPSS

- **Library matching and quantification**
 - Chenomx NMR Suite 8.1 Professional

- **Pathway analysis**
 - GeneGo (MetaCore Module)
 - Ingenuity Pathway Analysis (IPA)
Drug Induced Liver Injury (DILI) Study using Rat Model

3 Study groups and 2 time points
- Vehicle Control (time matched)
- Low Dose (“no effect” level, Day 01 and Day 14)
- High Dose (Day 01 and Day 14)

24h Urine collected

Samples prepared by mixing an aliquot of urine with Phosphate buffer + Chenomx ISTD (DSS, D₂O, and Imidazole)
- DSS (Chemical shift and line shape reference)
- Imidazole (pH reference)
Three (3) Spreadsheets provided

1. UAB_RFA_Metaboanalyst.csv
2. UAB_RFA_Metaboanalyst_D14_NoPools.csv
3. UAB_RFA_Metaboanalyst_D14_Vehicle_vs_HighDose.csv

Spreadsheets 2-3 were derived from the initial spreadsheet no. 1 (for easy upload into MetaboAnalyst in the subsequent analyses)
Please go to the webpage:
http://www.metaboanalyst.ca/MetaboAnalyst/

Welcome click here to start

News & Updates

- Updated the confidence interval graphics for both chemometrics and ROC curves; (01/09/2015)
- Updated the Heatmaps function for better visualization of large data; (12/22/2014)
- Added a new module for Integrated Pathway Analysis on genes and metabolites that have both changed significantly under the same experimental conditions; (12/17/2014)
- Added a new module for Biomarker Analysis; (12/12/2014)
- Added sorting and filtering support in the feature details table; (11/12/2014)
- Added new functions to support interactive 3D PCA and PLS-DA visualization; (10/31/2014)
- Added a new module on Power Analysis to support sample size and power analysis for pilot metabolic studies; (10/30/2014)

Read more

Please Cite:

Project objective: To provide a user-friendly, web-based analytical pipeline for high-throughput metabolomics studies. In particular, MetaboAnalyst aims to offer a variety of commonly used procedures for metabolomic data processing, normalization, multivariate statistical analysis, as well as data annotation. The current implementation focuses on exploratory statistical analysis, functional interpretation, and advanced statistics for translational metabolomics studies.

Data formats: Diverse data types from current metabolomic studies are supported (details) including compound concentrations, NMR/S spectral bins, NMR/S peak intensity table, NMR/S peak lists, and LC/MS-MS spectra.

Data processing: Depending on the type of the uploaded data, different data processing options are available (details). This is followed by data normalization steps including normalization by constant sum, normalization by a reference sample/feature, sample specific normalization, auto/Paretoregular scaling, etc.

Statistical analysis: A wide array of commonly used statistical and machine learning methods are available (details) including univariate - fold change analysis, t-tests, volcano plot, and one-way ANOVA, correlation analysis; multivariate - principal component analysis (PCA) and partial least squares - discriminant analysis (PLS-DA); high-dimensional feature selection - significance analysis of microarrays (SAM) and empirical Bayesian models of microarrays (EBM) - clustering, classification, heatmap, K-
Please choose a functional module to proceed:

- **Statistical Analysis**
 This module offers various commonly used statistical and machine learning methods from t-tests, ANOVA to PCA and PLS-DA. It also provides clustering and visualization such as dendrogram, heatmap, K-means, as well as classification based on random forests and SVM.

- **Enrichment Analysis**
 This module performs metabolite set enrichment analysis (MSEA) for human and mammalian species based on several libraries containing ~600 groups of biologically meaningful metabolite sets. Users can upload a list of compounds, a list of compounds with concentrations, or a concentration table.

- **Pathway Analysis**
 This module supports pathway analysis (integrating enrichment analysis and pathway topology analysis) and visualization for 21 model organisms, including Human, Mouse, Rat, Cow, Chicken, Zebrafish, Arabidopsis thaliana, Rice, Drosophila, Malana, Budding yeast, E.coli., etc., with a total of ~1600 metabolic pathways.

- **Time Series Analysis**
 This module supports data overview (PCA and heatmaps), two-way ANOVA, multivariate empirical Bayes time-series analysis for detecting distinctive temporal profiles across different experimental conditions, and ANOVA-simultaneous component analysis (ASCA) for identification of major patterns associated with each experimental factor.

- **Power Analysis**
 This module allows you to upload a pilot data set to calculate the minimum number of samples required to detect the existence of a difference between two populations with a given degree of confidence.

- **Biomarker Analysis**
 To perform various ROC curve based biomarker analysis. It supports classical single biomarker analysis, multivariate biomarker analysis, and manual biomarker selection and evaluation.

- **Integrated Pathway Analysis**
 To perform joint metabolic pathway analysis on results obtained from metabolomics and gene expression studies under the same experimental or biological conditions.

- **Other Utilities**
 This module contains some utility functions commonly used for metabolomics data manipulation and analysis. At this moment, compound ID conversion is supported.
Data Integrity Check:

1. Checking the class labels - at least three replicates are required in each class.
2. If the samples are paired, the pair labels must conform to the specified format.
3. The data (except class labels) must not contain non-numeric values.
4. The presence of missing values or features with constant values (i.e., all zeros)

Data processing information:

Checking data content...passed
Samples are in rows and features in columns
The uploaded file is in comma separated values (.csv) format.
The uploaded data file contains 38 (samples) by 231 (spectra bins) data matrix.
7 groups were detected in samples.
Samples are not paired.
All data values are numeric.
A total of 0 (0%) missing values were detected.
By default, these values will be replaced by a small value.
Click Skip button if you accept the default practice
Or click Missing value imputation to use other methods
Data Filtering:

The purpose of the data filtering is to identify and remove variables that are unlikely to be of use when modelling the data. No phenotype information are used in the filtering process, so the result can be used with any downstream analysis. This step is strongly recommended for untargeted metabolomics datasets (i.e. spectral binning data, peak lists) with large number of variables, many of them are from baseline noises. Filtering can usually improve the results. For details, please refer to the paper by Hackstadt et al.

Non-informative variables can be characterized in two groups: variables of very small values - these variables can be detected using mean or median; variables that are near-constant throughout the experiment conditions - these variables can be detected using standard deviation (SD); or the robust estimate such as interquantile range (IQR). The relative standard deviation (RSD = SD/mean) is another useful variance measure independent of the mean. The following empirical rules are applied during data filtering:

- Less than 250 variables: 5% will be filtered;
- Between 250 - 500 variables: 10% will be filtered;
- Between 500 - 1000 variables: 25% will be filtered;
- Over 1000 variables: 40% will be filtered;

Please note, in order to reduce the computational burden to the server, the None option is only for less than 2000 features. Over that, if you choose None, the IQR filter will still be applied. In addition, the maximum allowed number of variables is 5000. If over 5000 variables were left after filtering, only the top 5000 will be used in the subsequent analysis.

- Interquantile range (IQR)
- Standard deviation (SD)
- Median absolute deviation (MAD)
- Relative standard deviation (RSD = SD/mean)
- Non-parametric relative standard deviation (MAD/median)
- Mean intensity value
- Median intensity value
- None (less than 2000 features)
Data Normalization:

The normalization procedures are grouped into three categories. The sample normalization allows general-purpose adjustment for differences among samples; data transformation and scaling are two different approaches to make features more comparable. You can use one or combine them to achieve better results.

Sample normalization

- None
- Sample specific normalization (i.e. dry weight, volume) [Click here to specify]
- Normalization by sum
- Normalization by median
- Normalization by reference sample
 - Specify a reference sample: P_V__D01_01001
 - Create a pooled average sample from group: HD_D01
- Normalization by reference feature: [0.50, 0.52]

Data transformation

- None
- Log transformation (generalized logarithm transformation or glog)
- Cube root transformation (take cube root of data values)

Data scaling

- None
- Auto scaling (mean-centered and divided by the standard deviation of each variable)
- Pareto scaling (mean-centered and divided by the square root of standard deviation of each variable)
- Range scaling (mean-centered and divided by the range of each variable)

Submit
Summary: Normalization
Select an analysis path to explore:

Univariate Analysis
- Fold Change Analysis
- T-tests
- Volcano plot
- One-way Analysis of Variance (ANOVA)
- Correlation Analysis
- Pattern Searching

Multivariate Analysis
- Principal Component Analysis (PCA)
- Partial Least Squares - Discriminant Analysis (PLS-DA)

Significant Feature Identification
- Significance Analysis of Microarray (and Metabolites) (SAM)
- Empirical Bayesian Analysis of Microarray (and Metabolites) (EBAM)

Cluster Analysis
- Hierarchical Clustering: Dendrogram, Heatmaps
- Partitional Clustering: K-means, Self Organizing Map (SOM)

Classification & Feature Selection
- Random Forest
- Support Vector Machine (SVM)
Pooled QC Samples

MetaboAnalyst 3.0
– a comprehensive tool suite for metabolomic data analysis

Dragging to rotate the view around the axis; clicking on any data point to view a summary of the corresponding sample; scrolling to zoom in and out; use the Export Image button below to export the current view as a PNG image.

Pooled Samples
PCA Day 01 and Day 14
We will compare high dose vs vehicle
- 2. UAB_RFA_Metaboanalyst_D14_NoPools.csv

- Perform PCA

- Perform PLS-DA

- Heat map
Day 14 PCA Scores Plot

Vehicle, Low Dose, and High Dose groups
PCA Loadings Plot

Vehicle, Low Dose, and High Dose groups
Vehicle, Low Dose, and High Dose groups
PLS-DA Loadings Plot

Vehicle, Low Dose, and High Dose groups
Day 14 Heat Map

High Dose | Low Dose | Vehicle

Samples

NMR Bins
We will compare high dose vs vehicle
- 3. UAB_RFA_Metaboanalyst_D14_Vehicle_vs_HighDose.csv

- Perform PCA
- Perform PLS-DA
- VIP Plot
- Heat map
Day 14 PCA Scores Plot: High Dose vs Vehicle
Day 14 PLS-DA Scores Plot: High Dose vs Vehicle
Day 14 PLS-DA VIP Plot: High Dose vs Vehicle
Day 14 Heat Map: High Dose vs Vehicle

Top 50 bins in the VIP Plot
If you have any questions, please e-mail me wimal_pathmasiri@unc.edu

Useful link:
Metabolomics Workbench
http://www.metabolomicsworkbench.org/