

Computational methods for data integration

July 21, 2017

Karan Uppal, PhD

Assistant Professor of Medicine

Director of Computational Metabolomics & Integrative Omics,

Clinical Biomarkers Laboratory

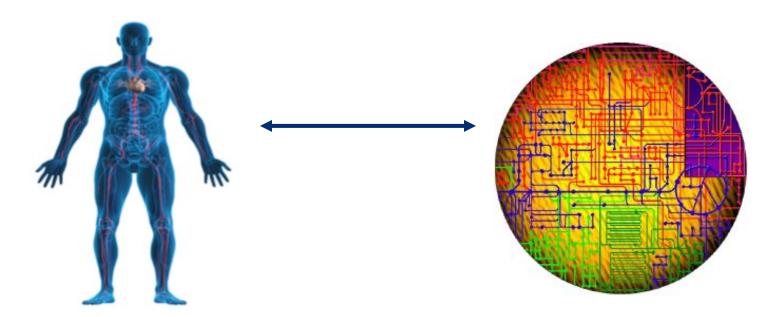
Emory University

Learning Objectives

- Understanding of different data integration approaches
- Familiarity with tools for data integration and network visualization

Introduction: A Systems Biology Framework

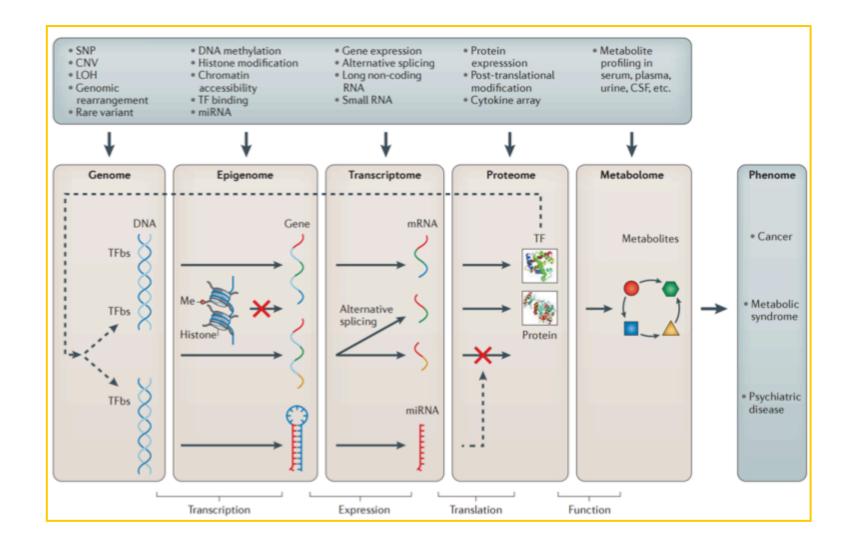
- The goal of Systems Biology:
 - Systems-level understanding of biological systems
 - Analyze not only individual components, but their interactions as well and emergent behavior



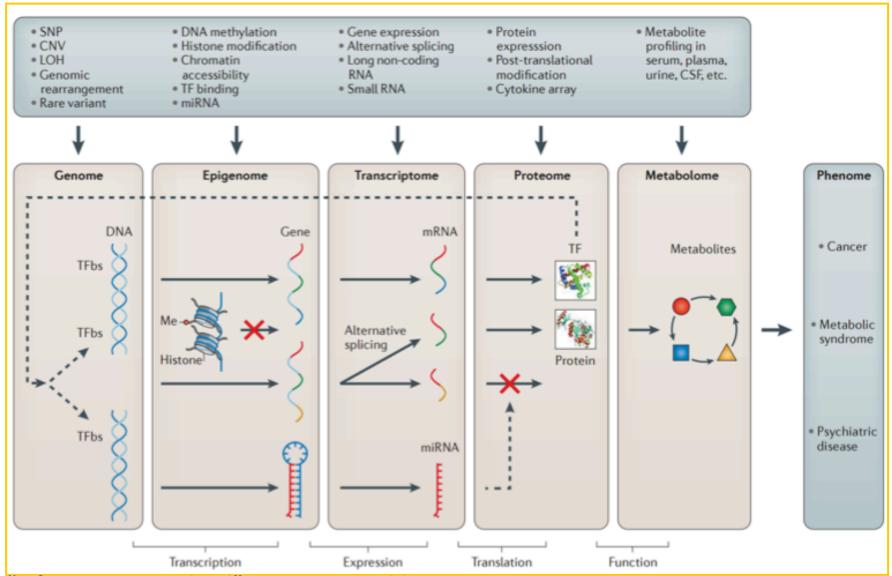
Exposures
Internal measurements
Disease states

Systems Biology "Integrative approach in which scientists study pathways and networks will touch all areas of biology, including drug discovery"

Dissecting the Biological system via -omics



Dissecting the Biological system via -omics



"Information Overload": >10,000 variables per –omics experiment

Why data integration?

- Systems level analysis provides:
 - more detailed overview of underlying mechanisms;
 - exploration of interactions between different biomedical entities (genes, proteins, metabolites, etc.)
- Combining multiple types of data compensates for noise or unreliable information in a single data type
- More confidence in results if multiple sources of evidence pointing to the same gene or pathway

Paired integrative –omics analysis

- Discover networks of associations or correlated variables (genes, proteins, metabolites, microbiome, epigenetic alterations, clinical variables, etc.) from paired –omics data measured across same samples
 - Univariate or multivariate regression
 - Example: explaining protein abundance with respect to gene expression
- Determine if different –omics data point to same disease mechanism
- Generate novel hypotheses for further investigation

Main approaches for data integration

- Pathway or knowledge-based integration
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Examples: 30mics, mixOmics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: CoPub, ArrowSmith, SEACOIN2.0

Main approaches for data integration

- Pathway or knowledge-based integration
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape, MetaCore
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Examples: 30mics, mixOmics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: CoPub, ArrowSmith, SEACOIN2.0

Pathway or knowledge-based integration

Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Мр
Subject1	199	19	-	100
Subject2	10	40		90
-	-	-		-
SubjectN	50	30	-	20

Differentially expressed metabolites

Pathway analysis for metabolites

Transcriptomics data (n subjects X q genes)

(n subjects x q genes)						
	G1	G2	-	Gq		
Subject1	19	19	-	100		
Subject2	10	40	-	90		
-	-	-	-	-		
SubjectN	10	40	-	50		
Differentially expressed genes						

Pathway analysis for genes

Common pathways or pathway rank aggregation

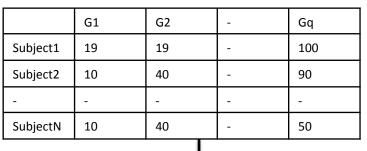
Pathway or knowledge-based integration

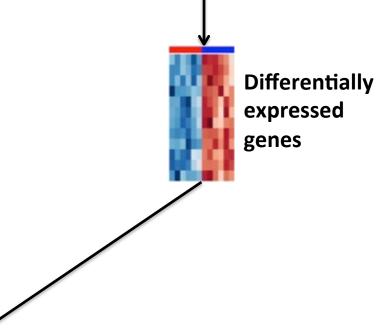
Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Мр
Subject1	199	19	-	100
Subject2	10	40		90
-	-	-		-
SubjectN	50	30	-	20

Differentially expressed metabolites

Transcriptomics data (n subjects X q genes)

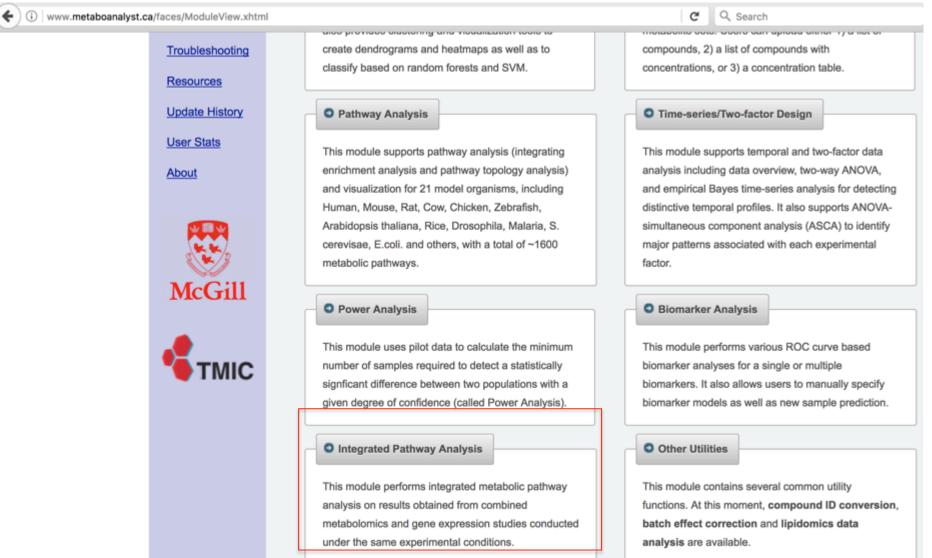




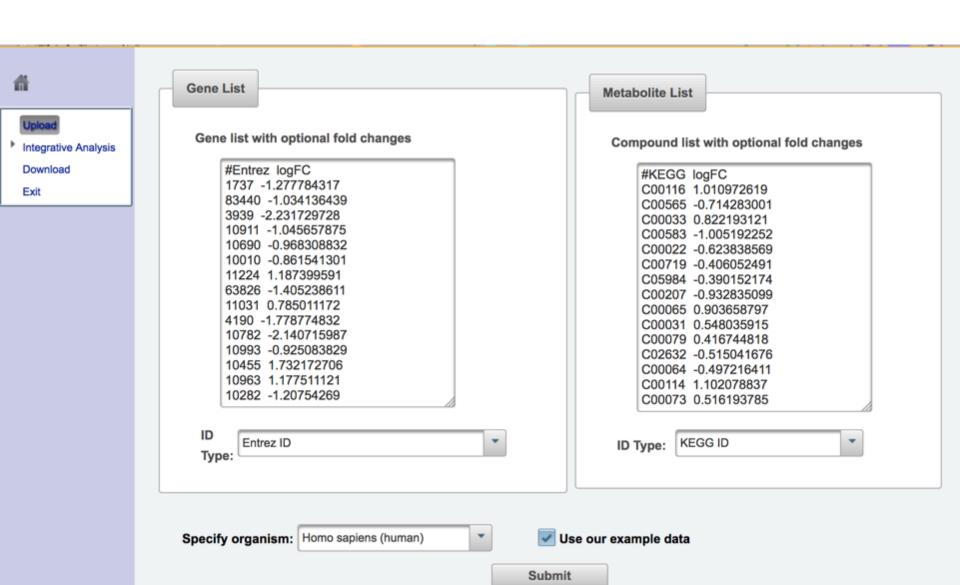
Pathway analysis using genes and metabolites (joint)

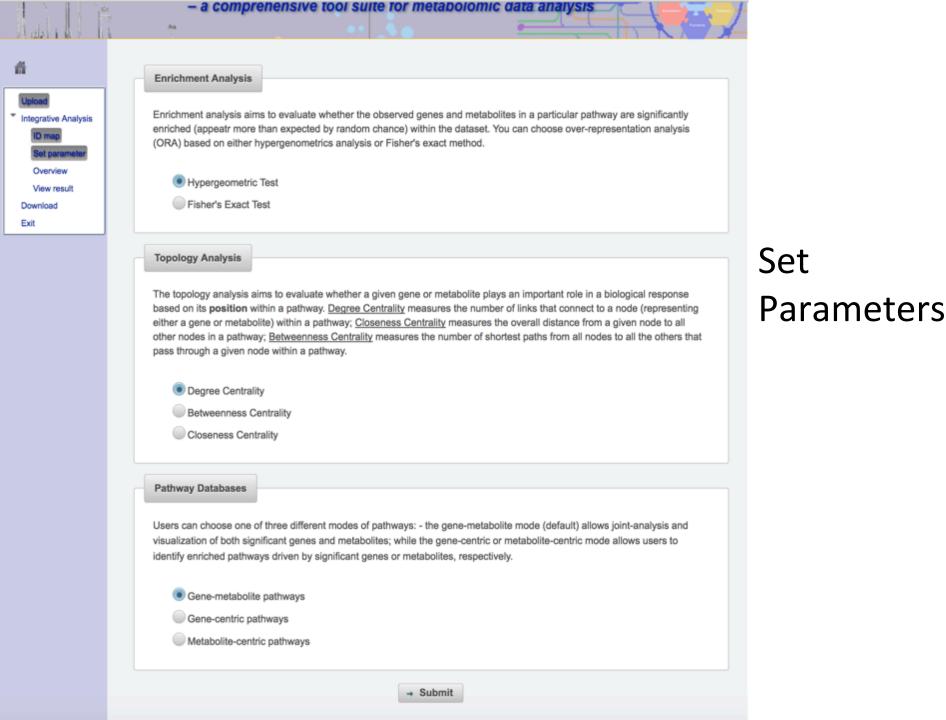
MetaboAnalyst

(http://www.metaboanalyst.ca)

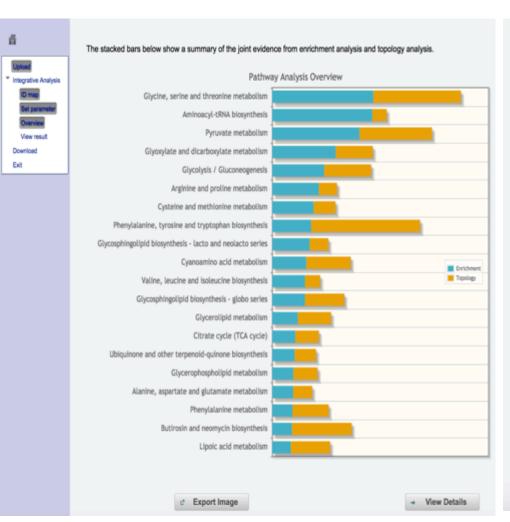


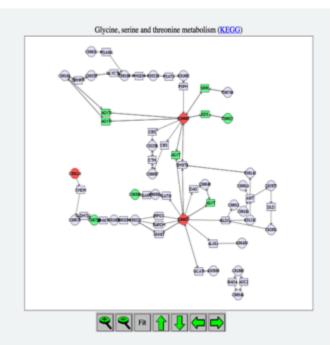
Data upload





Results





The matched nodes are highlighted in different colors - red (upregulated), yellow (unknown), green (downregulated) based on fold change (PC) values. Clok on a rode to show more details.

Pathway	Total 0	Expected 0	Hits 0	P.Value 0	Topology 0	View
Glycine, serine and threonine metabolism	68	1.51	9	1.2496E-5	0.96825	View
Aminoacyl-tRNA biosynthesis	87	1.9319	10	1.4183E-5	0.17391	View
Pyruvate metabolism	64	1.4212	8	6.1067E-5	0.80435	View
Glyoxylate and dicarboxylate metabolism	53	1.1769	6	9.4579E-4	0.42	View
Glycolysis / Gluconeogenesis	91	2.0207	7	0.0034979	0.52542	View
Arginine and proline metabolism	102	2.265	7	0.0065963	0.21505	View
Cysteine and methionine metabolism	63	1.3989	5	0.011936	0.25455	View
Phenylalanine, tyrosine and tryptophan biosynthesis	9	0.19985	2	0.015789	1.2	View
Glycosphingolipid biosynthesis - lacto and neolacto series	26	0.57734	3	0.018816	0.22034	View

Main approaches for data integration

- Pathway or knowledge-based integration
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Examples: 30mics, mix0mics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: CoPub, ArrowSmith, SEACOIN2.0

Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Mn
Subject1	199	19	-	100
Subject2	10	40		90
-	-	-		-
SubjectN	50	30	-	20

Transcriptomics data (n subjects X q genes)

	G1	G2	-	Gn
Subject1	19	19	-	100
Subject2	10	40	-	90
-	-	-	-	-
SubjectN	10	40	-	50

Association matrix

	G1	G2	1	Gn
M1	0.4	0.9	-	0.3
M2	0.7	0.1	-	0.5
M3	0.1	0.6		0.8

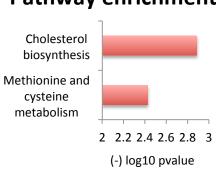
Univariate

- Pearson, Spearman, Partial Correlation
- Tools: 30mics, MetabNet, etc.

Multivariate

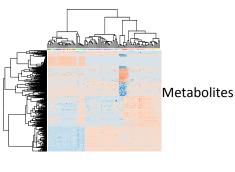
- PLS, CCA, sparse PLS
 - Tools: mixOmics (Cao 2009), etc.

Pathway enrichment



Workflow

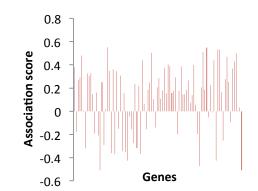
Relevance networks Clustering



Genes

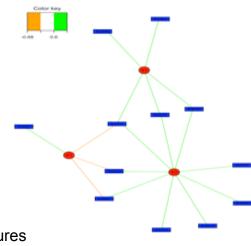
Targeted investigation

(e.g.: Arginine x Transcriptome)



Relevance networks

- What is a network (or graph)?
 - A set of nodes (vertices) and edges (links)
 - Edges describe a relationship (e.g. correlation) between the nodes
- What is a relevance network?
 - Networks of highly-correlated biomedical/clinical entities (Butte 2000; PNAS)
 - Metabolomics x Proteomics, Transcriptomics x Proteomics,
 Metabolomics x Microbiome, Metabolomics x Clinical variables/ phenotypes, etc.
 - Generate a bipartite graph network using a association threshold (e.g. 0.5) to visualize positive or negative associations



<u>Circles</u>: microbial species <u>Rectangles</u>: metabolome features

Methods for generating relevance networks

Univariate

- Pairwise Pearson or Spearman correlation between data from different biomedical/clinical technologies (Butte et al. 2000, Uppal et al. 2015)
- 30mics (Kuo 2013; a web-based tool for analysis, integration and visualization of human transcriptome, proteome and metabolome data)
- MetabNet (Uppal 2015; R package for performing pairwise correlation analysis and generating relevance networks)

Multivariate

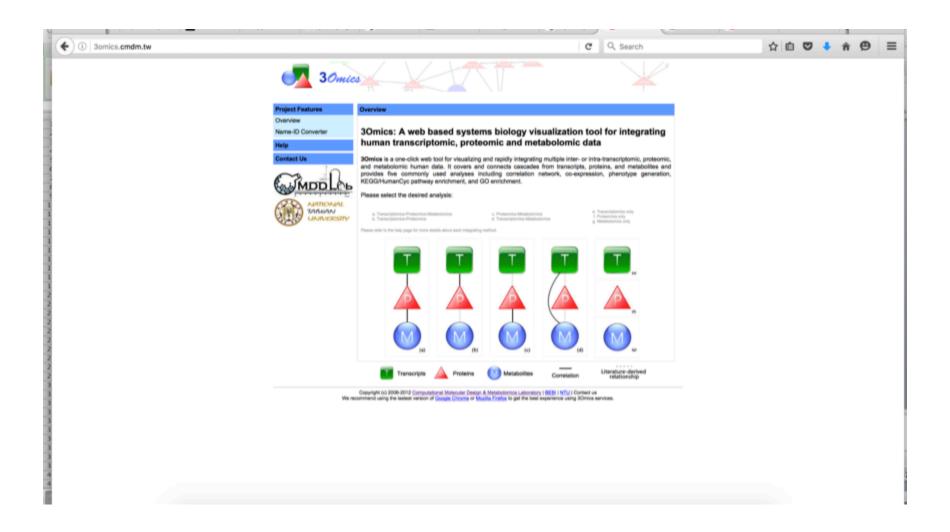
- Multivariate regression techniques such as partial least squares (PLS), sparse partial least squares regression (sPLS), multilevel sparse partial least squares (msPLS) regression, etc.
- mixOmics (Cao et al. 2009, Liquet et al. 2012; R package for integration and variable selection using multivariate regression)
- xMWAS (Uppal et al. Submitted): R package for data-driven integration and differential network analysis

Univariate methods

30mics (Kuo et al. BMC Systems Biology 2013)

- A web-based tool for analyzing, integrating and visualizing transcriptomic, proteomic and metabolomic data
- http://3omics.cmdm.tw/

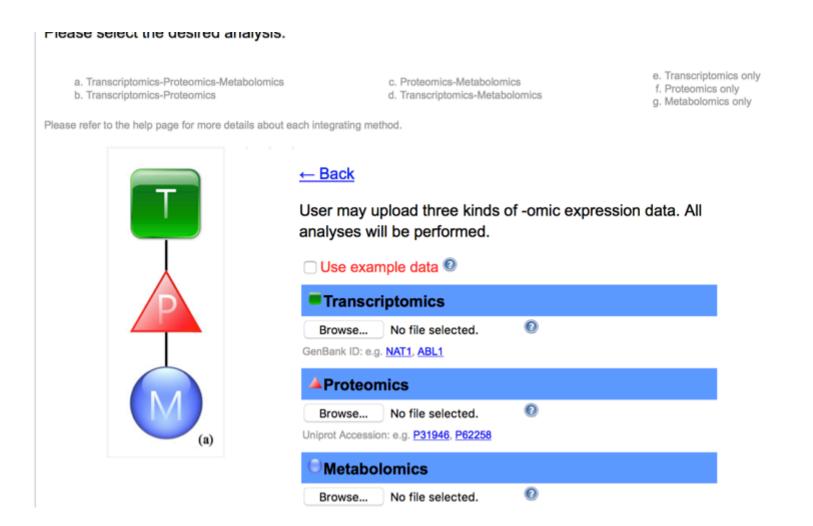
30mics - homepage



Features

- Correlation analysis and network visualization
 - Pairwise Pearson correlation analysis
- Database-derived relationships in correlation analysis
 - Uses an internal database based on NCBI Entrez gene, Uniprot proteins, and KEGG metabolites to determine gene-protein-metabolite relationship
- Coexpression analysis
 - Two-way hierarchical clustering analysis
 - Rows: variables (Genes + proteins + metabolites, genes+metabolites, etc.)
 - Columns: samples
- Phenotype analysis
 - Uses OMIM databases to link genes with phenotypes
- Pathway and Gene Ontology Enrichment analysis
 - Using KEGG, HumanCyc, and DAVID

Data upload



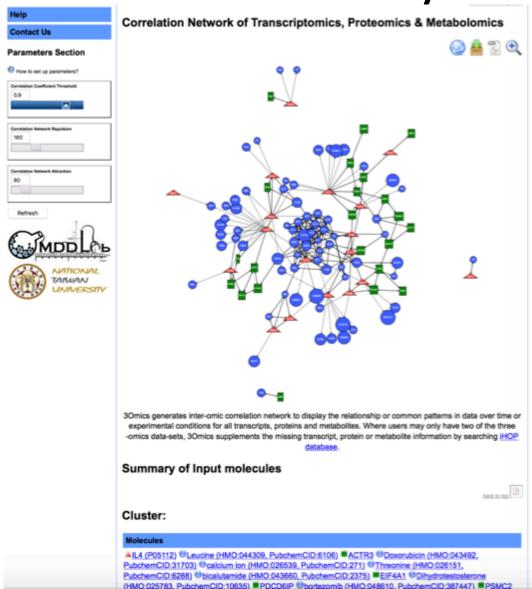
Data format

(http://3omics.cmdm.tw/help.php#examples)

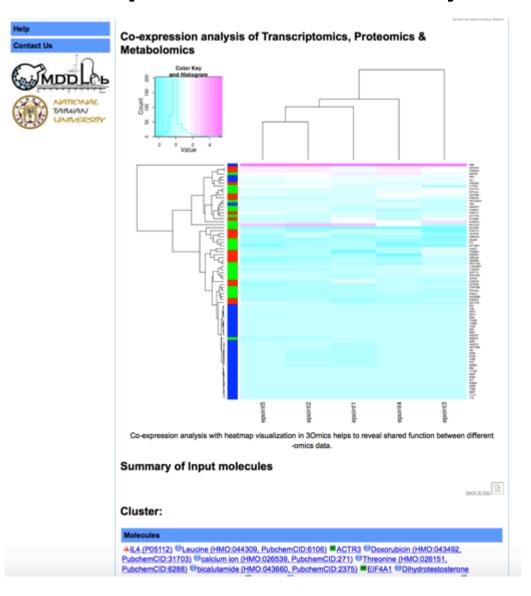
Samples

		timepoint1	timepoint2	timepoint3	timepoint4	timepoint5
	akap9	-0.24	-0.6	-0.47	-0.38	-0.31
	macf1	-0.3	-0.3	0.48	0.07	-0.36
	RNPEP	0.24	0.85	0.15	0.79	0.69
	SDHA	0.1	0.37	0.18	0.23	0.33
	EEF1B2	-0.04	-0.31	0.06	-0.39	-0.46
	EEF1D	0.07	0.29	0.22	0.75	0.47
	EIF4A1	0.42	0.65	0.66	0.97	0.78
	WARS	1.47	1.72	0.58	1.79	1.69
	G3BP2	0.15	0.09	0.1	0.2	-0.22
	PAK2	-0.21	-0.14	-0.15	-0.31	-0.4
Variables	PPP4C	-0.13	0.05	-0.09	0.21	-0.12
	ZNF224	-0.06	0.31	0.17	0.27	0.61
	ZNF268	-0.23	0.08	0.01	0.1	-0.1
	TRRAP	0.07	-0.12	0.41	0.45	-0.09
	RAD23B	-0.07	-0.32	-0.02	-0.02	-0.44
	TARDBP	0.23	0.18	0.39	0.63	0.23
	CSTF2	0.51	0.65	0.71	1.18	0.89
	PSMC2	0.82	0.57	1.15	1.75	0.58
	F8	-0.19	-0.02	-0.35	-0.82	-0.81
	MYOM1	-0.28	-0.29	-0.54	-1.06	-1.03
	ACTR3	0.57	0.48	0.39	0.32	0.72
	ITPR2	0.62574	1.771	-0.057392	1.2612	1.7769
	NUCB2	-1.1943	-0.96016	-0.71549	-1.1877	-0.70604
	CAMK1	0.33342	0.87499	0.059355	0.062122	0.53605
	BCL2A1	2.2913	3.8479	-0.12343	1.6604	3.3933
	PDCD6IP	0.46362	0.88049	0.20539	0.36177	0.62012

Correlation analysis



Co-expression analysis



Rows: Variables

Columns: Samples

Phenotype analysis

Correlation Coexpression Pheno

Profile

Phenotype Analysis Pathway Analysis GO Enrichment Analysis

Click to Summary table

Phenotype Analysis

Network

A phenotype is defined as any observable characteristic or trait of an organism arising from gene expression, the influence of environmental factors, and the interactions between them. With phenotype-gene association from OMIM, genes and genetic disorders containing information to relate genes in the human genome with specific phenotypes can be identified.

The Transcriptomics data you've input have been used to search through the OMIM database, and the related phenotype and genes can be listed as below:

Please click the link for description and molecular genetic information on OMIM website.

Human-related Phenotype	Related-Gene
[OMIM: 611820] LONG QT SYNDROME 11	akap9
[OMIM: 256000] LEIGH SYNDROME	■ SDHA
IOMIN: 612069, AMYOTROPHIC LATERAL SCLEROSIS 10, WITH OR WITHOUT FRONTOTEMPORAL DEMENTIA WITH TDP43 INCLUSIONS	■ TARDBP
[OMIM: 306700] HEMOPHILIA A COAGULATION FACTOR VIII, INCLUDED	■F8

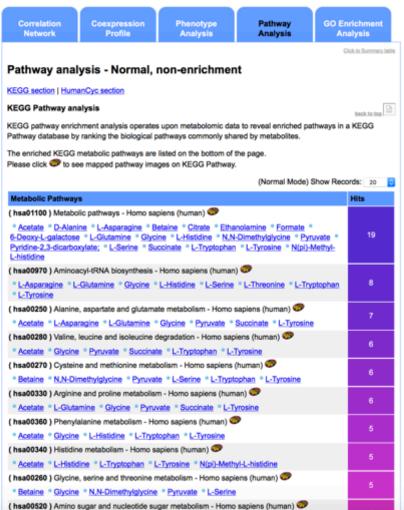
Summary of Input molecules

back to too

Cluster:

Molecules

Pathway analysis

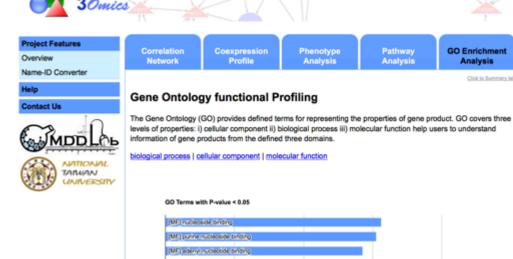


GO Enrichment Analysis

GO Enrichment

Analysis

Click to Summary table



[MF] translation factor activity, nucleic acid binding

Biological Process

[CC] cytosol [BP] translation

[MF] nucleotide binding

A biological process is a process of a living organism. Biological processes are made up of any number of chemical reactions or other events that results in a transformation. Regulation of biological processes occurs where any process is modulated in its frequency, rate or extent. Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule.

0.045

0.030

GO Term	No. of Gene-mapped	Coverage	P-value	FDR	Mapped Gene ID
translation	4	17%	0.0156	EEF1D,EEF1B2,EIF4A1,WARS	1936, 1933, 1973, 7453
cell death	4	17%	0.1082	PDCD6IP,BCL2A1,TARD8P,PAK2	10015, 597, 23435, 5062
death	4	17%	0.1104	PDCD6IP,BCL2A1,TARD8P,PAK2	10015, 597, 23435, 5062
apoptosis	3	13%	0.2565	PDCD6IP,BCL2A1,PAK2	10015, 597, 5062

Multivariate methods

Generating relevance network using sPLS or msPLS techniques (Cao 2009, Liquet 2012)

- sparse partial least squares (sPLS) regression or multilevel partial least squares (msPLS) method
- One-step procedure for variable selection as well as integration
- Comparison of different multivariate integration techniques showed that sPLS generates (Cao 2009)
- msPLS for repeated measures
- Implemented in the R package mixOmics
- Generates association matrix and allows visualization of associations using bipartite relevance networks (Liquet 2012)

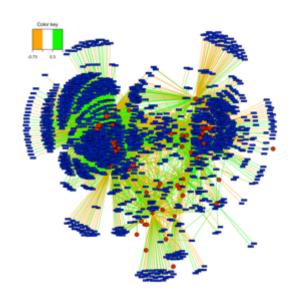
sPLS method

- sPLS is a variable selection and dimensionality reduction method that allows integration of heterogeneous omics data from same set of samples
- Robust approximation of Pearson correlation using regression and latent (principal) variates
- Eg: transcriptome (matrix X) and metabolome (matrix Y) data where,
 matrix X is an n × p matrix that includes n samples and p metabolites matrix Y is an n × q matrix that includes n samples and q genes

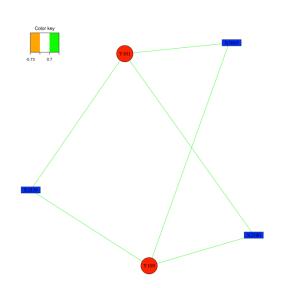
```
Objective function \max \text{cov}(X_{u_i}Y_v) where u_1, u_2...u_H \text{ and } v_1, v_2...v_H \text{ are the loading vectors} H is the number of PLS-DA dimensions
```

A Lasso based optimization is used to select most relevant variables

Case Study 2: Application of sPLS technique for integrative –omics. Microbiome-Metabolome Wide Association Study of Lung BAL: Global integration of 5930 m/z features with 153 microbial species using sparse Partial Least Squares regression (Cribbs et al. Microbiome 2016)



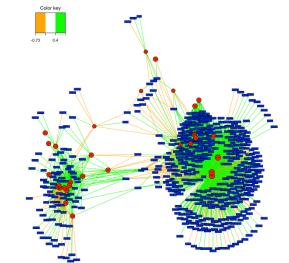
A. Association threshold: 0.3



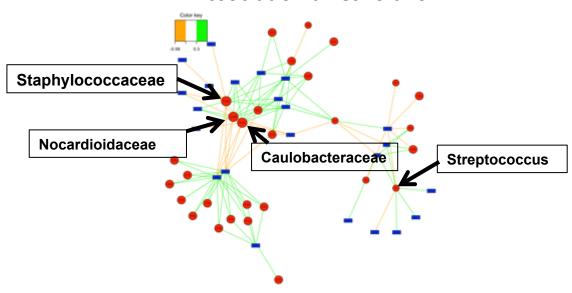
C. Association threshold: 0.7

Legend

<u>Circles</u>: microbial species <u>Rectangles</u>: metabolome features



B. Association threshold: 0.4



 Using only subset of metabolic features also associated with HIV status (+ve or -ve)

Proteomics data (n subjects X s proteins)

	E1	E2	-	Es
Subject1	199	19	-	100
Subject2	10	40		90
-	-	-		-
SubjectN	50	30	-	20

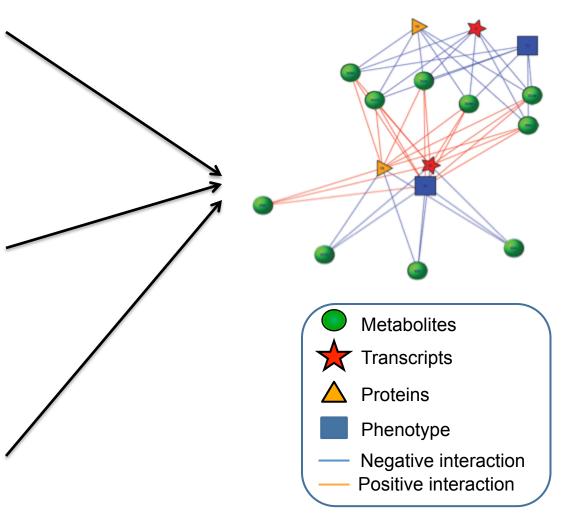
Metabolomics data (n subjects X p metabolites)

	M1	M2	-	Мр
Subject1	199	19	-	100
Subject2	10	40		90
-	-	-		-
SubjectN	50	30	-	20

Transcriptomics data (n subjects X q genes)

	G1	G2	-	Gq
Subject1	19	19	-	100
Subject2	10	40	-	90
-	-	-	-	-
SubjectN	10	40	-	50

Integrating more than two datasets



Α.

Data matrices from multiple assays

Integrative and association analysis

Pairwise integrative and network analysis (e.g. X<->Y; X<->Z, Y<->Z) using (sparse) Partial Least Squares regression

Generate an edge list matrix, L_e, with the list of edges that meet the significance criteria and association score threshold

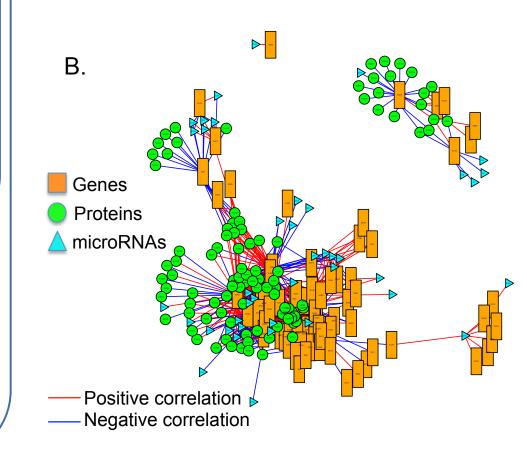
Generate a k-partite graph, G, using the union of edge list matrices

Community detection, differential centrality and rewiring analysis, and network visualization

xMWAS: R package for data integration and differential network analysis

(Uppal et al. Submitted to Bioinformatics)

URL: https://sourceforge.net/projects/xmwas/



Case Study 3: Application of xMWAS for integrative –and differential network analysis of more than 2 dataests. Integrative network analysis of cytokine, metabolome and transcriptome datasets from a study of H1N1 virus infection of mice (Chandler et al. 2016)

All samples (Control + H1N1) Control Communities of heavily connected nodes **H1N1** Metabolite Cytokine Gene

Pathway Name	IL-1beta	IL-6	IL-10	TNFalpha	IP-1	IFNgamma	•
Immune response_Alternative						-	•
complement pathway	X	X	X	X	X	X	
GTP metabolism	X	X	X	X	X		
Cytoskeleton							
remodeling_TGF, WNT and							
cytoskeletal remodeling	X	X		X	X	X	
Cytoskeleton							
remodeling_Cytoskeleton							
remodeling	X	X		X	X	X	
Alternative complement							Pathway analysis of
cascade disruption in age-							genes that were
related macular degeneration	X	X		X	X	X	_
ATP metabolism	X	X		X	X		found to be
Immune response_Lectin							significantly
induced complement pathway		X	X		X	X	-
Regulation of lipid							associated with the
metabolism_Regulation of							siv sytokinos at
lipid metabolism by niacin and							six cytokines at
isoprenaline	X	X		X			<i>p</i> <0.05 using
Development_Oligodendrocyte							MetaCore
differentiation from adult stem							Metacore
cells		X			X	X	
Cell adhesion_Chemokines							
and adhesion	X			X			
Expression targets of Tissue							
factor signaling in cancer	X			X			
Cell adhesion_ECM							
remodeling		X				X	
Immune response_Classical							
complement pathway			X			X	-

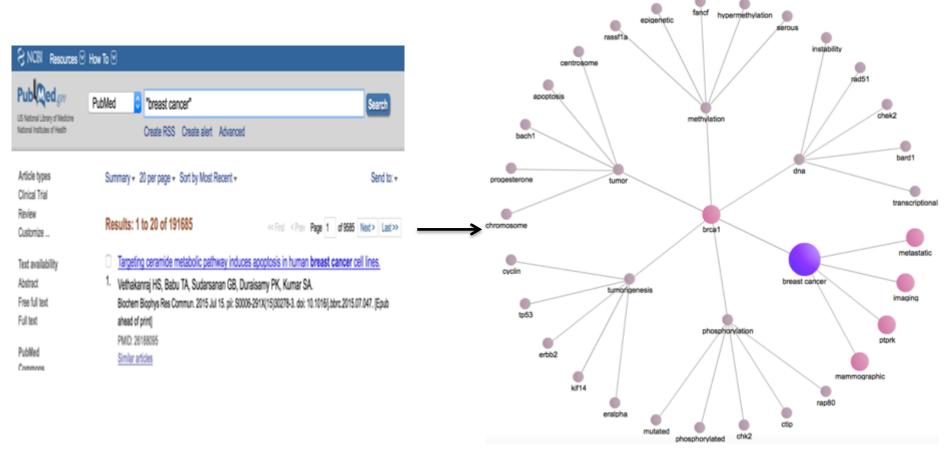
Pathway Name	IL-1beta	IL-6	IL-10	TNFalpha	IP-1	IFNgamma	
Carnitine shuttle	X	X	X	X	X		
Glycosphingolipid							
metabolism	X	X	X	X	X		
Vitamin D ₃							
(cholecalciferol)							
metabolism	X	X	X	X	X		
Vitamin B ₆							
(pyridoxine)							
metabolism		X		X	X	X	D -
Biopterin metabolism	X	X		X	X		Pa
Saturated fatty acids							m
beta-oxidation		X		X	X		th
Vitamin E metabolism	X		X	X			
Nitrogen metabolism		X			X		be
Urea cycle/amino							as
group metabolism					X	X	
Drug metabolism -							Six
cytochrome P450					X	X	p<
Tryptophan							, M
metabolism					X	X	IVI
Arginine and proline							
metabolism						X	
Bile acid biosynthesis				X			
Fatty acid metabolism			X				
Limonene and pinene							
degradation			X				
Linoleate metabolism			X				
Tyrosine metabolism		X					

athway analysis of netabolic features nat were found to e significantly ssociated with the ix cytokines at <0.05 using /lummichog

Main approaches for data integration

- Pathway or knowledge-based integration
 - Datasets are analyzed individually (differentially expressed genes, metabolites, proteins) and integration is performed at the pathway level
 - Examples: MetaboAnalyst, iPEAP, MetScape
- Data-driven integration using meta-dimensional analysis
 - Integration is performed globally such that data from multiple omics layers are combined simultaneously
 - Examples: 30mics, mixOmics, xMWAS
- Using literature-derived associations for integration
 - Using co-occurrence criteria for establishing relationship
 - Examples: HiPub, CoPub, ArrowSmith

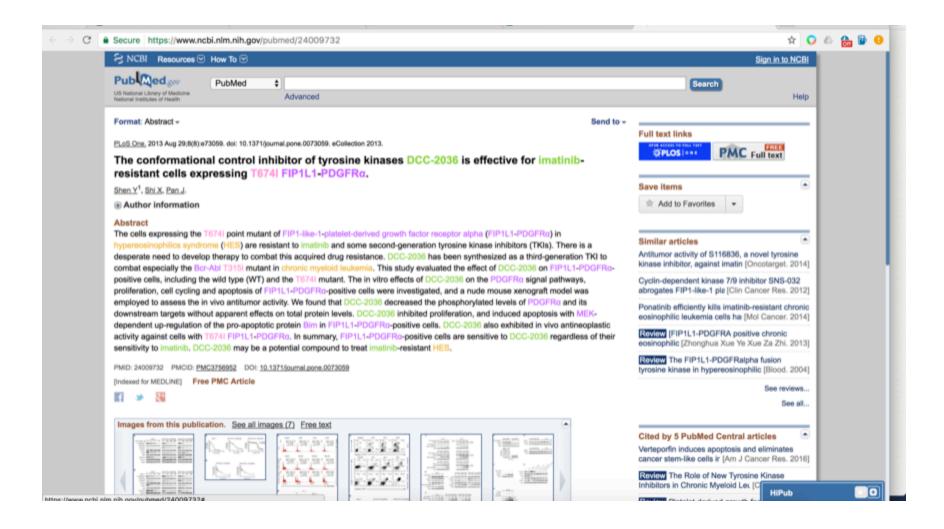
Text mining tools for literature-based relation discovery biomedical text



Zhiyong Lu, "PubMed and beyond: a survey of web tools for searching biomedical literature", Database Vol. 2011

Association mining based on co-occurrence

HiPub (Lee 2016): http://hipub.korea.ac.kr/



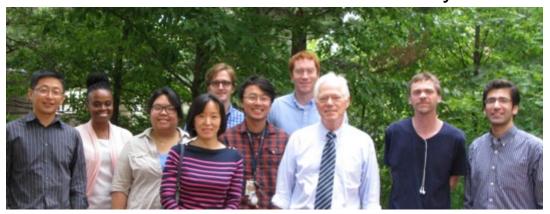
HiPub (Lee 2016):



Summary

- Various tools and techniques are available for integrating and visualization multi –omics data
- Integrative –omics drives systems biology and could play a critical role in personalized medicine

Clinical Biomarkers Laboratory



Dean Jones, Young-Mi Go, Shuzaho Li, Karan Uppal, Douglas Walker, Josh Chandler, Sophia Banton, Ken Liu, Vilinh Tran, Michael Orr, Bill Liang (not shown)

Lab website: http://clinicalmetabolomics.org/

Funding: ES025632, ES023485, ES019776, OD018006, HL095479, EY022618, HHSN272201200031C

Questions?