Application of mass spectrometry to the analysis and identification of peptides, proteins and other biological molecules

Matthew Renfrow, PhD
6-4681
renfrow@uab.edu

S. Barnes & M. Renfrow-UAB 1/12/11
Overview

• MALDI-TOF MS
 – Peptide mass fingerprinting

• Electrospray MS
 – Analysis of intact proteins
 – Molecular weight calculations
 – Max Entropy for MW estimation

• Peptide analysis
 – Purity - ESI-MS is a revelation

• Integration of MS with LC and CE
 – Multidimensional LC of peptides

• Tandem MS
 – Identifying peptide amino acid sequences

S. Barnes & M. Renfrow-UAB 1/12/11
Peptide = chain of amino acids

N terminus

polypeptide chain

C terminus
N O N P O L A R
Glycine (Gly) Alanine (Ala) Valine (Val) Leucine (Leu) Isoleucine (Ile) Methionine (Met) Tryptophan (Trp) Phenylalanine (Phe) Proline (Pro)

P O L A R
Serine (Ser) Threonine (Thr) Cysteine (Cys) Tyrosine (Tyr) Asparagine (Asn) Glutamine (Gln)

E l e c t r i c a l l y C h a r g e d

A c i d i c
Aspartic Acid (Asp) Glutamic Acid (Glu)

B a s i c
Lysine (Lys) Arginine (Arg) Histidine (His)
Benefit of removing salt from tryptic digest

Salt Contamination

Trypsin autolysis peak

ZipTip (desalting)

S. Barnes & M. Renfrow-UAB 1/12/11
Factors from conventional experiments that impact MALDI-TOF analysis

• Tolerance of buffers/chemicals used in sample preparation
 – NaCl up to 150 mM
 – Urea up to 2-3 M (carbamoylation can occur!)
 – Guanidinium-HCl up to 2 M

• Tolerance of detergents
 – SDS up to 0.05%

• Staining Protocols
 – Whole proteins form adducts with Coomassie
 – Silver staining modifies selected peptides

S. Barnes & M. Renfrow-UAB 1/12/11
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)

• Advantages of MALDI-TOF
 – More tolerant to common buffers than ESI, but…
 – High degree of sensitivity, moderate mass accuracy, and mass resolution
 – High mass compounds, i.e. proteins, PEG…

• Common Applications of MALDI-TOF
 – Masses of large proteins and other compounds
 – Enzymatic digestion profiles of proteins to establish their identity
 – Peptide sequencing (TOF-TOF)
 – In situ protein/peptide imaging

S. Barnes & M. Renfrow-UAB 1/12/11
Schematic of Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry.
Electrospray ionization

• ESI-MS is very sensitive to the presence of electrolyte species -
 – these ionize more easily than solutes and may also form adducts with solutes

• In ESI-MS, multiple charge states are possible
 – These lead to more accurate MWs

• This is a softer ionization than MALDI where the UV laser at 337 nm alters the chemistry of modifications such as Tyr-NO₂ and Cys-SNO
Guarantees of purity based on observation of “a single peak by reverse-phase HPLC” and by “it gave the correct sequence when analyzed by Edman degradation” are hollow. The lower spectrum was of a “pure” HPLC peak. The method of purification was amended and the upper spectrum was obtained.

S. Barnes & M. Renfrow-UAB 1/12/11
Ionizing proteins and peptides

- $^{+\text{H}_3\text{NCHR}_1\text{CO(NHCHR}_n\text{CO))}_n\text{NHCHR}_2\text{COOH}$ is the ion that’s found in dilute acid solution.

- If there are internal basic residues, then the ions will be of the form $[\text{M+nH}]^{n^+}$, where $n = 1, 2, \text{etc.}$

- A tryptic peptide will have a N-terminal amino group and an amino group from Arg or Lys.
 - If the peptide has a mol. wt. of 1000 Da, then the singly charged ion will have a m/z of 1001, whereas the doubly charged ion has a m/z of 501.
Peptide = chain of amino acids

N terminus

polypeptide chain

C terminus

S. Barnes & M. Renfrow-UAB 1/12/11
Nonpolar:
- Glycine (Gly)
- Alanine (Ala)
- Valine (Val)
- Leucine (Leu)
- Isoleucine (Ile)
- Methionine (Met)
- Tryptophan (Trp)
- Phenylalanine (Phe)
- Proline (Pro)

Polar:
- Serine (Ser)
- Threonine (Thr)
- Cysteine (Cys)
- Tyrosine (Tyr)
- Asparagine (Asn)
- Glutamine (Gln)

Electrically Charged:
- Aspartic Acid (Asp)
- Glutamic Acid (Glu)
- Lysine (Lys)
- Arginine (Arg)
- Histidine (His)

Dept. Biol. Penn State ©2002
Peptide mass fingerprinting

• This method was developed because of the availability of predicted protein sequences from genome sequencing

• Proteins did not have to have been previously sequenced - only that the open reading frame in the gene is known - the rest is a virtual exercise in the hands of statisticians, bioinformaticists and computers

• However, remember the matching is only as good as the database content - this can change
Protein analysis by MALDI 2010

Eppendorf tube → destain → Speed-Vac

Water Bath 37°C → Incubate overnight → trypsin 1:20

Peptide extraction → MALDI plate

Desalting Ziptip

Mass (m/z)

S. Barnes & M. Renfrow-UAB 1/12/11
Proteolytic enzymes used to hydrolyze proteins

The choice of enzyme largely depends on the nature of the amino acid sequence and the specific issue that is being addressed

- Trypsin - *cleaves at arginine and lysine residues*
- Chymotrypsin - *cleaves hydrophobic residues*
- Arg-C - *cleaves at arginine residues*
- Glu-C - *cleaves at aspartate/glutamic acid residues*
- Lys-C - *cleaves at lysine residues*
- V8-protease - *cleaves at glutamic acid residues*
- Pepsin - *cleaves randomly but consistently, at acid pH*

See http://www.abrf.org/JBT/1998/September98/sep98m_r.html

S. Barnes & M. Renfrow-UAB 1/12/11
Searching databases with peptide masses to identify proteins

Best site is at www.matrixscience.com

The program (MASCOT) can search the OWL or NCBI databases using a set of tryptic peptide masses, or the fragment ions (specified or unspecified) of peptides

Presents the expected set of tryptic peptides for each matched protein

S. Barnes & M. Renfrow-UAB 1/12/11
Choice of peptidase

• Analogous to DNA restriction enzymes

• Tryptic peptide fingerprinting may identify, not one, but several highly related protein candidates (e.g., actins)

• Inspection of the sequences may reveal that there is a difference at one residue that distinguishes between two candidates.

• If for instance it is a glutamate, then use of Glu-C or V8-protease may enable the two proteins to be correctly identified

• INSPECT sequences carefully
Sequence of β-lactoglobulin

MKCLLLALAL TCGAQLIVT QTMKGLDIQK
VAGTWWYSLAM AASDISLLDA QSAPLRVYVE
ELKPTPEGDL EILLQKWENG ECAQKKIIAE
KTKIPAVFKI DALNENKVLV LDTDYKKYLL
FCMENSAEPE QSLACQCLVR TPEVDDEALE
KFDKALKALP MHIRLSSFNPT QLEEQCHI

S. Barnes & M. Renfrow-UAB 1/12/11
Peptides from digestion with Glu-C

MKCLLLALALALTCAQALIVTQTMKGLD
IQKVAGTWYSLEMAASD ISLLD AQSAPLRVYVE
E LKPTPE GD LE ILLQKWE NGE CAQKKIIAE
KTKIPAVFKID ALNE NKVLVLD TD YKKYLLFCME
NSAE PE QSLACQCLVVRTPE VD D E ALE KFD
KALKALPMHIRLSFNPTQLE E QCHI

S. Barnes & M. Renfrow-UAB 1/12/11
Amino acid residue masses

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Mass</th>
<th>Amino Acid</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>71.037</td>
<td>Leucine</td>
<td>113.084</td>
</tr>
<tr>
<td>Arginine</td>
<td>156.101</td>
<td>Lysine</td>
<td>128.094</td>
</tr>
<tr>
<td>Asparagine</td>
<td>114.043</td>
<td>Methionine</td>
<td>131.040</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>115.027</td>
<td>Phenylalanine</td>
<td>147.068</td>
</tr>
<tr>
<td>Cysteine</td>
<td>103.009</td>
<td>Proline</td>
<td>97.053</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>129.043</td>
<td>Serine</td>
<td>87.032</td>
</tr>
<tr>
<td>Glutamine</td>
<td>128.058</td>
<td>Threonine</td>
<td>101.048</td>
</tr>
<tr>
<td>Glycine</td>
<td>57.021</td>
<td>Tryptophan</td>
<td>186.079</td>
</tr>
<tr>
<td>Histidine</td>
<td>137.059</td>
<td>Tyrosine</td>
<td>163.063</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>113.084</td>
<td>Valine</td>
<td>99.068</td>
</tr>
</tbody>
</table>

The m/z value of a peptide [M+H]^+ is the sum of the residue masses plus 18.015 for H₂O plus 1.008. So, what is it for ISLLD?

\[
113.084 + 87.032 + 113.084 + 113.084 + 115.027 + 18.015 + 1.008 = 560.334
\]

S. Barnes & M. Renfrow-UAB 1/12/11
Expected peptides from trypsin and Glu-C digestion of bovine β-lactoglobulin

837.4764	800.4876
916.4734	929.5455
1064.4466	1003.5605
1065.5827	1232.6634
1245.5845	1259.7722
1658.7843	1337.6632
2275.2586	1447.7032
2313.2588	1811.8996
2647.2023	2307.3006
2707.3760	2819.5265

Assumes all cuts are complete, there is no oxidation of Met residues, and Cys residues are unmodified

S. Barnes & M. Renfrow-UAB 1/12/11
MASCOT Peptide Mass Fingerprint

<table>
<thead>
<tr>
<th>Your name</th>
<th>Stephen Barnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>sbarnes.uab@gmail.com</td>
</tr>
<tr>
<td>Search title</td>
<td>beta globulin test</td>
</tr>
<tr>
<td>Database</td>
<td>NCBIrr</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>All entries</td>
</tr>
<tr>
<td>Enzyme</td>
<td>Trypsin</td>
</tr>
<tr>
<td>Allow up to</td>
<td>0 missed cleavages</td>
</tr>
</tbody>
</table>
| **Fixed modifications** | Acetyl (K)
Acetyl (N-term)
Acetyl (Protein N-term)
Aminated (Protein N-term)
Aminated (C-term) |
| **Variable modifications** | Acetyl (K)
Acetyl (N-term)
Aminated (Protein N-term)
Aminated (C-term) |
| **Protein mass** | kDa |
| **Peptide tol. ±** | 1.0 Da |
| **Mass values** | MH⁺ / Mᵦ / M-H⁻ |
| **Monoisotopic** | Average |
| **Data file** | Choose File |

Enter the ions here in this box

<table>
<thead>
<tr>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>837.4764</td>
</tr>
<tr>
<td>916.4734</td>
</tr>
<tr>
<td>1064.4466</td>
</tr>
<tr>
<td>1065.5827</td>
</tr>
<tr>
<td>1245.5845</td>
</tr>
<tr>
<td>1658.7843</td>
</tr>
</tbody>
</table>
Mascot Search Results

User: Stephen Barnes
Email: sbarnes.uab@gmail.com
Search title: beta globulin test
Database: NCBInr 20061230 (4378862 sequences; 1508892933 residues)
Timestamp: 1 Jan 2007 at 02:17:51 GMT
Top Score: 210 for gi|87196497, lactoglobulin, beta [Bos taurus]

Probability Based Mowse Score

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 79 are significant (p<0.05).

Protein Summary Report

<table>
<thead>
<tr>
<th>Format As</th>
<th>Protein Summary</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significance threshold p< 0.05</td>
<td>Max. number of hits 20</td>
</tr>
</tbody>
</table>
Protein records provided by MASCOT search

<table>
<thead>
<tr>
<th>Accession</th>
<th>Mass</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi</td>
<td>87196497</td>
<td>19870</td>
<td>210 lactoglobulin, beta [Bos taurus]</td>
</tr>
<tr>
<td>gi</td>
<td>4388846</td>
<td>18269</td>
<td>179 Chain, Bovine Beta-Lactoglobulin Complexed With Palmitate, Lattice Z</td>
</tr>
<tr>
<td>gi</td>
<td>223780</td>
<td>18165</td>
<td>152 lactoglobulin beta</td>
</tr>
<tr>
<td>gi</td>
<td>72079</td>
<td>18255</td>
<td>152 beta-lactoglobulin - water buffalo</td>
</tr>
<tr>
<td>gi</td>
<td>520</td>
<td>19908</td>
<td>150 beta-lactoglobulin [Bos taurus]</td>
</tr>
<tr>
<td>gi</td>
<td>20178290</td>
<td>20010</td>
<td>148 Beta-lactoglobulin precursor (Beta-LG)</td>
</tr>
<tr>
<td>gi</td>
<td>165839</td>
<td>19934</td>
<td>148 beta-lactoglobulin</td>
</tr>
<tr>
<td>gi</td>
<td>2194088</td>
<td>18297</td>
<td>147 Chain A, Bovine Beta-Lactoglobulin, Lattice X</td>
</tr>
<tr>
<td>gi</td>
<td>110612608</td>
<td>19891</td>
<td>144 beta-lactoglobulin [Bubalus bubalis]</td>
</tr>
<tr>
<td>gi</td>
<td>162748</td>
<td>17156</td>
<td>126 beta-lactoglobulin</td>
</tr>
<tr>
<td>gi</td>
<td>125912</td>
<td>19962</td>
<td>125 Beta-lactoglobulin precursor (Beta-LG)</td>
</tr>
<tr>
<td>gi</td>
<td>7245834</td>
<td>18363</td>
<td>124 Chain A, Structural Changes Accompanying Ph-Induced Dissociation Of The</td>
</tr>
<tr>
<td>gi</td>
<td>229460</td>
<td>18355</td>
<td>124 lactoglobulin beta</td>
</tr>
<tr>
<td>gi</td>
<td>4388939</td>
<td>18355</td>
<td>124 Chain, Structural Basis Of The Tanford Transition Of Bovine Beta-Lacto</td>
</tr>
<tr>
<td>gi</td>
<td>49259423</td>
<td>18339</td>
<td>124 Chain X, The Cys121ser Mutant Of Beta-Lactoglobulin</td>
</tr>
<tr>
<td>gi</td>
<td>54037712</td>
<td>18139</td>
<td>120 Beta-lactoglobulin (Beta-LG)</td>
</tr>
<tr>
<td>gi</td>
<td>57164367</td>
<td>19908</td>
<td>117 beta-lactoglobulin [Ovis aries]</td>
</tr>
<tr>
<td>gi</td>
<td>90108547</td>
<td>18264</td>
<td>82 Chain A, Reindeer Beta-Lactoglobulin</td>
</tr>
<tr>
<td>gi</td>
<td>71980384</td>
<td>20035</td>
<td>80 beta-lactoglobulin [Rangifer tarandus tarandus]</td>
</tr>
<tr>
<td>gi</td>
<td>26352113</td>
<td>13020</td>
<td>60 unnamed protein product [Mus musculus]</td>
</tr>
</tbody>
</table>

S. Barnes & M. Renfrow-UAB 1/12/11
Comparison of observed and predicted tryptic peptides

<table>
<thead>
<tr>
<th>Observed</th>
<th>Mr(expt)</th>
<th>Mr(calc)</th>
<th>Delta</th>
<th>Start</th>
<th>End</th>
<th>Miss</th>
<th>Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>837.4764</td>
<td>836.4691</td>
<td>836.4691</td>
<td>0.0001</td>
<td>158</td>
<td>164</td>
<td>0</td>
<td>K.ALPMHIL.R</td>
</tr>
<tr>
<td>916.4734</td>
<td>915.4661</td>
<td>915.4661</td>
<td>-0.0000</td>
<td>100</td>
<td>107</td>
<td>0</td>
<td>K.IDALNENK.V</td>
</tr>
<tr>
<td>1064.4466</td>
<td>1063.4393</td>
<td>1063.4393</td>
<td>0.0001</td>
<td>77</td>
<td>85</td>
<td>0</td>
<td>K.WENGECAQK.K</td>
</tr>
<tr>
<td>1065.5827</td>
<td>1064.5754</td>
<td>1064.5753</td>
<td>0.0001</td>
<td>108</td>
<td>116</td>
<td>0</td>
<td>K.VLVALTDYK.K</td>
</tr>
<tr>
<td>1245.5845</td>
<td>1244.5772</td>
<td>1244.5772</td>
<td>0.0000</td>
<td>141</td>
<td>151</td>
<td>0</td>
<td>R.TPEVDDEALEK.F</td>
</tr>
<tr>
<td>1658.7843</td>
<td>1657.7770</td>
<td>1657.7770</td>
<td>0.0000</td>
<td>165</td>
<td>178</td>
<td>0</td>
<td>R.LSFNPQDEEQCHI.-</td>
</tr>
<tr>
<td>2275.2586</td>
<td>2274.2513</td>
<td>2274.2513</td>
<td>0.0000</td>
<td>3</td>
<td>24</td>
<td>0</td>
<td>K.CLLLALALTCAQALIVTQTMK.G</td>
</tr>
<tr>
<td>2313.2588</td>
<td>2312.2515</td>
<td>2312.2515</td>
<td>0.0001</td>
<td>57</td>
<td>76</td>
<td>0</td>
<td>R.VYVEELKPTPEGDEILLQK.W</td>
</tr>
<tr>
<td>2647.2023</td>
<td>2646.1950</td>
<td>2646.1950</td>
<td>0.0001</td>
<td>118</td>
<td>140</td>
<td>0</td>
<td>K.YLLFCMENSAEPEQSLACQCLVR.T</td>
</tr>
<tr>
<td>2707.3760</td>
<td>2706.3687</td>
<td>2706.3686</td>
<td>0.0001</td>
<td>31</td>
<td>56</td>
<td>0</td>
<td>K.VAGTWYSLAMAASDISLLDAQSAPLR.V</td>
</tr>
</tbody>
</table>
Search against SwissProt database

<table>
<thead>
<tr>
<th>Accession</th>
<th>Mass</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACB_BOVIN</td>
<td>19870</td>
<td>271</td>
<td>Beta-lactoglobulin precursor (Beta-LG) (Allergen Bos d 5) - Bos taurus (Bovine)</td>
</tr>
<tr>
<td>LACB_BUBBU</td>
<td>20010</td>
<td>197</td>
<td>Beta-lactoglobulin precursor (Beta-LG) - Bubalus bubalis (Domestic water buffalo)</td>
</tr>
<tr>
<td>LACB_CAPHI</td>
<td>19962</td>
<td>135</td>
<td>Beta-lactoglobulin precursor (Beta-LG) - Capra hircus (Goat)</td>
</tr>
<tr>
<td>LACB_OVIMU</td>
<td>18139</td>
<td>104</td>
<td>Beta-lactoglobulin (Beta-LG) - Ovis orientalis musimon (Mouflon)</td>
</tr>
<tr>
<td>LACB_SHEEP</td>
<td>19908</td>
<td>102</td>
<td>Beta-lactoglobulin-1/3 precursor (Beta-LG) - Ovis aries (Sheep)</td>
</tr>
<tr>
<td>YKH5_YEAST</td>
<td>52055</td>
<td>41</td>
<td>Hypothetical 52.1 kDa protein in SMY1-MUD2 intergenic region - Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>TCPE_VIBCH</td>
<td>16247</td>
<td>40</td>
<td>Toxin coregulated pilus biosynthesis protein H (TCP pilus biosynthesis protein tcpH)</td>
</tr>
<tr>
<td>POLG_DEN22</td>
<td>54291</td>
<td>39</td>
<td>Genome polyprotein [Contains: Envelope protein E] (Fragment) - Dengue virus type 2</td>
</tr>
<tr>
<td>PFP1_PYRKO</td>
<td>18404</td>
<td>38</td>
<td>Intracellular protease 1 (EC 3.2.---) (Intracellular protease 1) - Pyrococcus koda</td>
</tr>
<tr>
<td>VIRB9_AGRT5</td>
<td>32181</td>
<td>38</td>
<td>Protein virB9 precursor - Agrobacterium tumefaciens (strain C58 / ATCC 33970)</td>
</tr>
<tr>
<td>VPS11_YEAST</td>
<td>32001</td>
<td>36</td>
<td>Vacuolar protein sorting-associated protein 71 (SWR complex protein 6) - Saccharomyces</td>
</tr>
<tr>
<td>YHR7_YEAST</td>
<td>71812</td>
<td>34</td>
<td>TPR repeat-containing protein YHR117W - Saccharomyces cerevisiae (Baker's yeast)</td>
</tr>
<tr>
<td>LGB_LOTJA</td>
<td>15745</td>
<td>34</td>
<td>Leghemoglobin - Lotus japonicus</td>
</tr>
<tr>
<td>YH13_VACCV</td>
<td>13615</td>
<td>34</td>
<td>Hypothetical 13.6 kDa HindIII-C protein - Vaccinia virus (strain Western Reserve /</td>
</tr>
<tr>
<td>MKT1_YEAST</td>
<td>94415</td>
<td>34</td>
<td>Protein MKT1 - Saccharomyces cerevisiae (Baker's yeast)</td>
</tr>
<tr>
<td>H2A1_LILLO</td>
<td>12165</td>
<td>34</td>
<td>Histone H2A.1 (GcH2A) - Lilium longiflorum (Trumpet lily)</td>
</tr>
<tr>
<td>RS12_BRUA2</td>
<td>13863</td>
<td>33</td>
<td>30S ribosomal protein S12 - Brucella abortus (strain 2308)</td>
</tr>
<tr>
<td>RS12_BRUAB</td>
<td>13863</td>
<td>33</td>
<td>30S ribosomal protein S12 - Brucella abortus</td>
</tr>
<tr>
<td>RS12_BRUME</td>
<td>13863</td>
<td>33</td>
<td>30S ribosomal protein S12 - Brucella melitensis</td>
</tr>
<tr>
<td>RS12_BRUSU</td>
<td>13863</td>
<td>33</td>
<td>30S ribosomal protein S12 - Brucella suis</td>
</tr>
</tbody>
</table>
Things to consider when doing peptide mass fingerprinting

- Proteins can be oxidized both biologically (real data) and during the workup.
- Treat the protein or the peptide digest with a reagent that reacts with Cys sulphydryl groups - e.g., iodoacetamide, iodoacetic acid, N-ethylmaleimide or 4-vinylpyrididine. Cysteines may also have reacted with acrylamide in the gel.
- Set the options in the fixed or variable modification boxes before searching.
- Allow for at least one missed cleavage - trypsin does not cut when Lys or Arg are followed by a Pro residue.

S. Barnes & M. Renfrow-UAB 1/12/11
Other web sites for peptide analysis

- http://prowl.rockefeller.edu/
 - Choose ProFound

- http://prospector.ucsf.edu/
 - Choose MS-fit
Further information on identified protein

• Take the protein identifier number:
 – For bovine β-lactoglobulin it is gi|520
 – Under protein, paste in the gi number
 – A link to the protein will appear
 – Click on Blink - this is similar to BLAST, but better
 – Scroll down the list and select 1CJ5
 – Click on image of protein structure
 – To view a 3D-image of the protein, first download Cn3D from the NCBI site or RasMol
 • Bring a picture of beta-lactoglobulin to the next class
Blurring of protein space

- Identification using MALDI-TOF with MASCOT depends on:
 - Number of peptides recognized as being part of the protein
 - The mass accuracy of the peptides that are recognized
 - Pre-2000, an accuracy of better than 0.05 Da in a 1000 Da peptide (i.e., 50 ppm) was sufficient to distinguish the unknown protein from the other proteins in the databases at that time
 - Now, the protein information space has become more dense and MALDI-TOF is no longer adequate
 - Previously identified proteins may not be correct
ESI mass spectrum of ribonuclease

Cumulative MW estimate = 13,680.29

SD = 2.94

<table>
<thead>
<tr>
<th>Peak (m/z)</th>
<th>Intensity</th>
<th>Charge (est.)</th>
<th>Mol. Wt. (Est.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>978.00</td>
<td>7,778</td>
<td>14.00000</td>
<td>13,677.89</td>
</tr>
<tr>
<td>1,053.00</td>
<td>18,532</td>
<td>13.02656</td>
<td>13,675.90</td>
</tr>
<tr>
<td>1,141.00</td>
<td>59,087</td>
<td>11.95446</td>
<td>13,679.91</td>
</tr>
<tr>
<td>1,245.00</td>
<td>33,275</td>
<td>10.96146</td>
<td>13,683.91</td>
</tr>
<tr>
<td>1,369.00</td>
<td>32,390</td>
<td>10.03219</td>
<td>13,679.92</td>
</tr>
<tr>
<td>1,521.00</td>
<td>35,668</td>
<td>8.99995</td>
<td>13,679.93</td>
</tr>
<tr>
<td>1,711.00</td>
<td>16,624</td>
<td>7.99996</td>
<td>13,679.94</td>
</tr>
<tr>
<td>1,956.00</td>
<td>3,333</td>
<td>6.97955</td>
<td>13,684.94</td>
</tr>
</tbody>
</table>

S. Barnes & M. Renfrow-UAB 1/12/11
Calculation of molecular weights and ion states

- For two ions in a series for a peptide of molecular weight M, the lower \(m/z \) value (x) will be for the n+1 ion state and the larger \(m/z \) value (y) will be for the n+ ion state.
 - (1) \(\frac{(M+n)}{n} = y \)
 - (2) \(\frac{(M+n+1)}{(n+1)} = x \)

- Hence
 - (3) \(M+n = ny \) and \(M = ny-n \)
 - (4) \(M+n+1 = (n+1)x \) and \(M = (n+1)x-(n+1) \)

- Hence
 - \(ny-n = (n+1)x - (n+1) \)
 - \(ny-n-xn+n = x-1 \)
 - \(n(y-x) = x-1 \)
 - \(n = \frac{(x-1)}{(y-x)} \)

- The value of n can then be substituted in equation (1) to obtain the molecular weight of the peptide.

S. Barnes & M. Renfrow-UAB 1/12/11
Aprotinin
Lysozyme
Myoglobin

S. Barnes & M. Renfrow-UAB 1/12/11
Myoglobin
Probing of Mammalian Cells

A

B

H2B

H2B.A

H2B.K/Q

H2B.F

H2B.B

H2B.B+1Ac

H4

H4K20

Me2

H2A-1

H2A.Q

H2A.O

H2A.O+1Ac

H2A-2

H2A,C,D,I,N,P

H2A.L

H2A.C*+1Ac

H2A.A

H3.1

H3.2

H3.3

Time (minutes)

m/z

Kelleher, Northwestern Univ.
http://groups.molbiosci.northwestern.edu/kelleher/index.html
Deconvolution of MS data

• When several proteins are present, then their multiply charged ion clusters overlap

• Can this be overcome? - yes, use the MaxEntropy program provided by Micromass
Deconvolution of oxidized forms of β-lactoglobulin

S. Barnes & M. Renfrow-UAB 1/12/11

Junlong Shao
Each ion is $[\text{M}+n\text{H}]^{n+}$

For 50+ charge state of a 50 kDa protein,

$$m/z = \frac{[50,000 + 50]}{50} = 1,001$$
MaxEnt deconvolution of MWs

- 57,195.2 ± 12.9 Da
 E. coli GRoEL
- 50,011.3 ± 18.3 Da
 6xHis-tag BAT
- 15,157.6 ± 0.9 Da

S. Barnes & M. Renfrow-UAB 1/12/11

Courtesy of Mindan Sfakianos
ESI-MS of 4HNE-Modified Cytochrome C

Native Cytochrome C

Cytochrome C + One 4HNE Michael Addition (+156)

Cytochrome C + One 4HNE Schiff Base (+138)

Cytochrome C + Two 4HNE Michael Addition (+312)

Cytochrome C + Three 4HNE Michael Addition (+467)

S. Barnes & M. Renfrow-UAB 1/12/11 Courtesy of Amanda Isom (d. 2005)
Summary of determining MW by ESI

• The multiple charge states of a protein allow:
 – Mol Wt of large proteins to be estimated
 – It’s a super SDS-PAGE gel
• Important to remember that the protein sample must be free of salt
 – Typically, a sample is cleaned up on a short reverse-phase column prior to electrospray
 – Alternative, use ammonium acetate as buffer
Studying high molecular weight complexes by ESI

- Most instrument ESI interfaces have a limited m/z range - up to 3,000
- In protein complexes water, and hence H+ ions, is “squeezed” out, thereby substantially increasing observed m/z values
- Interfaces that pass ions with m/z values above 10,000 have been designed
nanoESI-MS of HMW complexes of small heat shock proteins

Note the large \(m/z \) values (6,000-7,000) for the observed ions.

The ESI data were deconvoluted to reveal the distribution of the masses of the complexes.

Sobbott et al., J Biol Chem 277:38921

S. Barnes & M. Renfrow-UAB 1/12/11
Studying intact membrane protein complexes by gas-phase mass spectrometry (top-down analysis)

- Electrosprayed in neutral detergent
 - Dodecyl maltoside (DDM)
- Carried out on Waters Qtof II with modification of the ESI interface
- Requires high voltage (Δ200 V) to be applied across the interface and collision cell

S. Barnes & M. Renfrow-UAB 1/12/11
Effect of increasing voltage on BtuC₂D₂ membrane complexes observed in nanoMS

2 µl of 5 µM solution of the complex subjected to nanoelectrospray
Use of FT-MS in ESI of proteins

• The very high resolving power of FT-MS enables a direct measure of charge state of an individual ion since each peptide or polypeptide will have several/many isotope peaks.

• The distance in Da between successive isotope peaks of a multiply charged ion is the reciprocal of the number of charges.
Bovine Serum Albumin (66 kDa)
4.7 T Actively Shielded Magnet

ESI: BSA

S. Barnes & M. Renfrow-UAB 1/12/11

Bruker Daltonics
LC-MS of peptide mixtures

Pre-column for desalting

Load sample

Analytical reverse phase column
75 μm i.d. x 15 cm

Flow rate 200 nl/min

Acetonitrile gradient

Collision gas

Q1

Q2

Electrostatic reflector

TOF detector

S. Barnes & M. Renfrow-UAB 1/12/11
The MUDPIT approach

MUlti-Dimensional Protein Identification Technology

Digest with trypsin without any protein separation

20-50 tryptic peptides per protein (100-250 peptides in this example)

Can they be resolved?

S. Barnes & M. Renfrow-UAB 1/12/11
MUDPIT - MUlti-Dimensional Protein Identification Technology

- Hydrolyze everything!
- For a cell expressing 5,000 proteins, this leads to >100,000 peptides
- Can be fractionated, but still 10,000-20,000 to differentiate
- Enormous bioinformatics problem

S. Barnes & M. Renfrow-UAB 1/12/11

John Yates
Cation exchange of peptides

Electrostatic capture onto resin bead in H⁺ form

Stepwise elution with NH₄⁺

S. Barnes & M. Renfrow-UAB 1/12/11
Connecting CE and LC to MALDI analysis

- CE analysis
- nanoLC analysis

Creates 20 mm wide tracks that can be scanned by MALDI laser for MS analysis

Parallel capture of effluents of 8 nanoLC separations on Mylar - can be scanned simultaneously by fast laser

S. Barnes & M. Renfrow-UAB 1/12/11
Pros/Cons of laying down LC or EC separations on matrix plate

- Allows off-line analysis both in real time and then in a retrospective mode
- MALDI-TOF analysis is very fast
- Can also do TOF-TOF MS-MS analysis
- BUT what happens chemically on the acidic environment on the surface of the plate during storage?
- Also, can the laser beam cause chemical changes?

S. Barnes & M. Renfrow-UAB 1/12/11
Sequencing of peptides

• Using tandem mass spectrometry in a triple quadrupole, Q-tof, or ion trap instrument, the parent ion is first selected in the first quadrupole.

• The parent ion is collided with argon gas and it breaks into fragments (daughter ions).

• By identifying the daughter ions, the peptide amino acid sequence is inferred.
Tandem mass spectrometry on a triple quadrupole instrument

- Daughter ion spectra
- Parent ion spectra
- Multiple reaction ion scanning

S. Barnes & M. Renfrow-UAB 1/12/11
The quadrupole analyzer (Q3) is slow and insensitive - it’s a filter - thus throws away large amounts of data.

TOF detector collects all ions generated and yields fmol rather than pmol sensitivity.

Also gives far greater mass accuracy - from 1000 ppm on the triple quad to <20 ppm on the Q-tof.

Crucially important for automated interpretation of MS-MS spectra to yield amino acid sequence.

S. Barnes & M. Renfrow-UAB 1/12/11