Use of mass spectrometry in the study of enzymes

Stephen Barnes, PhD
MCLM 452
sbarnes@uab.edu

Overview of class

• Modification of the enzyme to regulate its activity
• Examining the chemistry of enzyme:substrate intermediates
 – Locating the site of inactivation of suicide inhibitors
• Reaction mechanism
 – Measuring all substrates and products
 – Enzyme kinetics
 – Structural studies
 – Stopped flow
• BAT, my kinda ‘zyme - Erin Shonsey/Tyler Stewart
A good review of this topic

Mass spectrometry and the study of enzymes

• Enzymes often undergo posttranslational modifications in order to be active under the conditions in a cell

 û for example, many enzymes in the signal transduction pathways are activated by phosphorylation on serine, threonine and tyrosine residues
 û EGFR receptor (tyrosine kinase), TGF beta type I receptor (serine kinase)

 û sites of phosphorylation can be determined by mass spectrometry because of the increase in mass of m/z 80 of peptides containing each phosphate group
Enzymes and Mass Spec

Enzymes may undergo changes in structure once activated (see above) or during the reaction they catalyze

- this could be probed by H-D exchange experiments (this is coming up in Peter Prevelige’s lectures)

- simulation of phosphorylation may be necessary by mutating serine and threonine groups to aspartate and glutamate, respectively

MS of enzymes

Enzymes can be inactivated by suicide substrates - these come into the active site and undergo a covalent reaction, thereby blocking the approach of other substrate molecules

- to locate the region of the enzyme to which the suicide substrate is bound, carry out a trypsin digest and look for a peak that has undergone a molecular weight change (consistent with the structure of the suicide inhibitor)
Chymotrypsin has a catalytic triad consisting of Asp102, His57 and Ser195

His57 is the site of reaction of chymotrypsin with TPCK to form a stable covalent bond, thereby acting as a suicide inhibitor
Possible proteases for locating TPCK-peptide

Trypsin

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFPH FCQGSLINEN 50
WVVTAASHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLS AASFSQTVSA VCLPSASDDF AAGTCTVTTG WGLTRTNYAN 150
TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSSGPLV 200
CKWGNWTVL GIVSWGSSTC STSTPGVYAR VTALWNVQQ TLAAN

Glu-C

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFPH FCQGSLINEN 50
WVVTAASHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLS AASFSQTVSA VCLPSASDDF AAGTCTVTTG WGLTRTNYAN 150
TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSSGPLV 200
CKWGNWTVL GIVSWGSSTC STSTPGVYAR VTALWNVQQ TLAAN

Chymotrypsin

CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFPH FCQGSLINEN 50
WVVTAASHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLS AASFSQTVSA VCLPSASDDF AAGTCTVTTG WGLTRTNYAN 150
TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSSGPLV 200
CKWGNWTVL GIVSWGSSTC STSTPGVYAR VTALWNVQQ TLAAN

Advantage of growing recombinant bacteria on 12C/14N labeled substrates - protein is close to monoisotopic mass

![Diagram showing mass spectrometry peaks](image)

Stephen Barnes BMG 744 02-13-13
Kelleher & Hicks, 2005
Mass spectrometry and enzyme-catalyzed reactions

In the simplest case, an enzyme (E) reacts with a substrate (S) - an intermediate complex is formed (ES) and it is converted to an enzyme: product complex (E:P) before the product dissociates.

\[
E + S \rightarrow ES \rightarrow EP \rightarrow E + P
\]

First order reaction - some second order reactions behave like a first order reaction when there is an excess of one substrate and the conversion of the other is <10%.

By measuring the molecular weights of the forms of the enzyme:substrate (product) complexes, mass spectrometry can throw enormous light on the mechanism.
More typical reactions involve two substrates (S1 and S2) and two products (P1 and P2). The problem in this case is the order of addition:
- is it a random mechanism? If so, both E.S1 and E.S2 exist
- is it an ordered mechanism? In this case, S1 has to bind first. So, there will be E.S1 and E.S1.S2, but no E.S2
- is it a Ping-Pong mechanism? In this case, E.S1→E.P1 before S2 binds to form E.P1.S2

Mass spectrometry and substrates and products of enzyme reactions

- Most enzyme reactions are studied by measuring the appearance of a product or (more rarely) the disappearance of a substrate
- If the substrate or product has a unique absorbance or fluorescence, the reaction can be followed in real time
- Some substrates have no usable absorbance or fluorescence - these can be measured using a radiolabeled substrate - the product is isolated by a solvent extraction procedure, or by HPLC or TLC. These reactions cannot be observed in real time
- Mass spectrometry has the advantage that it is capable of measuring all substrates and products, as well as the enzyme itself

Stephen Barnes BMG 744 02-13-13
Sulfotransferase - a reaction with no absorbance or fluorescence to follow

Scheme 1: NodST Catalyzes the Sulfation of a Lipochoitooligosaccharide (1)

Sulfation of chitobiose

PAPS

PAP

m/z 503
Set up for the ST assay

Pi et al., Biochemistry 41:13283

- NodST purified by Ni-affinity chromatography
 - dialyzed against 100 mM Tris-HCl, pH 8.0 - 20 mM β-ME
 - Diluted into 10 mM NH₄Ac buffer, pH 8.0

- Incubate (25 μl) - quenched with 100 μl of MeOH containing internal standard

- Diluted incubate (40 μl) introduced into ESI source at 20 μl/min

- MS on a ThermoFinnigan LCQ monitoring m/z 503 and m/z 468 (internal standard)

Kinetics of chitobiose ST by ESI-MS

Pi et al., Biochemistry 41:13283

Figure 3: Saturation plot of V_0 vs $[\text{PAPS}]$. The inset is a double-reciprocal plot of $1/V_0$ vs $1/[\text{PAPS}]$ ([PAPS] = 1.25, 2.5, 3.5, 5, 12.5, 25, 40, and 50 μM, [chitobiose] = 1 mM, [NodST] = 90 nM, and pH 8.0).
Inhibition of ST by PAP using ESI-MS

Pi et al., Biochemistry 41:13283

![Graph showing double-reciprocal plot of 1/V₀ vs 1/[PAPS] at different PAP concentrations: 0 μM PAP (▲), 0.75 μM PAP (■), 1.5 μM PAP (●), and 3.0 μM PAP (◇). ([PAPS] = 1.25, 2.5, 5, 10, 25, and 50 μM, [chitobiose] = 1 mM, [NodST] = 90 nM, and pH 8.0).]

Non-covalent enzyme:substrate complexes

- Shifting the enzyme from neutral pH conditions to the acidity of the spraying solution may break down the complex
- Spraying at neutral pH will increase the observed m/z values (the protein is less charged with protons)
- The larger m/z ions can be observed with an electrospray-TOF or a Qq TOF
Schematic diagram of a stop-flow system

Stopped flow set up

From Kolakowski and Konermann (Anal Biochem 292:107)

Note the additional flow introduced by pump S3
Effect of the delay between V1 and V2 in a stopped flow experiment

In this reaction, hydrolysis of acetylcholine in an alkaline buffer is monitored by the ion at m/z 146.

Following a reaction using substrate and products ions in stopped flow ESI-MS

These data are from the conversion of chlorophyll A to pheophytin A (loss of Mg and gain of two protons).

The upper traces (A) are from the ESI-MS analysis. The lower traces (B) are from absorbance changes.
Unfolding kinetics of myoglobin by stopped-flow ESI-MS

The upper trace (A) is the 14th charge state of holo-myoglobin [M+14]^{14+} (m/z = 1255.9)

The reaction is created by a pH jump from 6.0 to 3.0. The lower trace (B) is the absorbance at 441 nm.

The estimated time constants for the bi-exponential process are 0.29/2.8 sec for A and 0.33/3.1 sec for B

Kolakowski and Konermann (Anal Biochem 292:107)

Summary of the use of (real time) ESI-MS to follow enzyme reactions

- **The pros:**
 - All the substrates and products (as well as the enzyme itself) can be studied simultaneously
 - It’s applicable to compounds with no absorbance or fluorescence

- **The cons:**
 - The buffer for the reaction has to be chosen very carefully
 - Ammonium salts are the best candidates, but they may have an effect on the reaction rates

Stephen Barnes BMG 744 02-13-13
Studying multiple enzymes simultaneously

- Old style of research
 - Measure one purified enzyme at a time

- New style of research
 - Measure all the enzymes at the same time
 - Equivalent to study of a signaling pathway (many are phosphorylation steps)

Drug analysis in industry

- The reality is that drug targeting and drug development eventually encounter the realities of metabolism

- A major activity in the post discovery phase is to determine the metabolic reactivity of the drug, particularly the cytochrome P450 system
Multiplexed analysis of the drug metabolizing enzymes

<table>
<thead>
<tr>
<th>Approach</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocktail strategy</td>
<td>Several activities in a single experiment</td>
<td>Probe-probe interaction</td>
</tr>
<tr>
<td></td>
<td>Reduced number of samples</td>
<td>Ion suppression</td>
</tr>
<tr>
<td></td>
<td>Less time and expense</td>
<td>Metabolism overlapping</td>
</tr>
<tr>
<td></td>
<td>Enhanced throughput</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rapid microsomal characterization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rapid phenotype of tissues</td>
<td></td>
</tr>
<tr>
<td>Individual strategy</td>
<td>Selective CYP activity</td>
<td>Large number of strategies</td>
</tr>
<tr>
<td></td>
<td>Avoids overlapping metabolism</td>
<td>Time consuming analysis</td>
</tr>
<tr>
<td></td>
<td>Avoids probe-probe interaction</td>
<td></td>
</tr>
</tbody>
</table>

Stephen Barnes BMG 744 02-13-13 Lahoz et al., 2008

tRNA-guanine transglycosylase

- This enzyme (Tgt) modifies tRNAs and may be a target for antibiotics
- The enzyme forms a dimer with tRNA
 - Can we observe the dimer using mass spectrometry?
 - Can we explore the dimer interface by carrying out mutations of the Tgt part of the interface?

Stephen Barnes BMG 744 02-13-13
Tgt enzyme reaction

Structures of Tgt complex
Non-covalent ESI-MS of Tgt

(a) Tgt dimer

(b) Tgt dimer and Tgt-tRNA complex

Adding more tRNA does not lead to higher order complexes

(c) No higher order complex
Evidence for Tgt dimer dissociation in Lys52Met mutant

Effect of an inhibitor on formation of Tgt dimer-tRNA complex
Conclusions about non-covalent complexes by ESI-MS

• The physical state of the enzyme with its substrates and inhibitors can be readily observed and quantified by ESI-MS
• Requires sufficient protein (in the Ritschel study they used 1-10 μM – for a 25 kDa protein, this would be 25-250 mg/L or 25-250 μg/ml)
• The spraying medium is important – in this case 500 mM ammonium acetate, pH 8

Stephen Barnes BMG 744 02-13-13

Evolution of bile acid conjugation

Taurine C_{27} BA

\[\text{CONHCH}_2\text{CH}_2\text{SO}_3^- \]

\[\text{OH} \]

\[\text{OH} \]

\[\text{OH} \]

\[\text{CONHCH}_2\text{CO}_2^- \]

\[\text{OH} \]

\[\text{OH} \]

\[\text{OH} \]

C_{27} BA sulfate

Taurine C_{24} BA

Glycine C_{24} BA

Stephen Barnes BMG 744 02-13-13
Bile acid N-acylamidate formation (in hepatocytes)

Bile acid + CoASH $\xrightarrow{\text{ATP, Mg}^{2+}}$ Bile acid-SCoA

Bile acid-SCoA + amino acids $\xrightarrow{\text{BAT}}$ Bile acid amidate

CoASH

Bile acid CoA

Hydrophilic portion (CoA)

Hydrophobic portion (Bile acid)

(CA CoA)
Background

- Bile acid CoA:amino acid N-acyltransferase (hBAT) catalyzes the conjugation of bile acid thioesters with glycine and taurine
- It has a Ping-Pong reaction mechanism
 - This involves the formation of a covalent intermediate between the bile acid and hBAT
 - The covalent intermediate is sufficiently stable that it can be observed by electrospray ionization mass spectrometry
 - It has a Cys-Asp-His catalytic triad
- hBAT is inactivated by 4-hydroxynonenal in a dose-dependent manner (Shonsey et al. 2007)
 - Both the active site Cys and His residues form Michael adducts
 - Several other His and Lys residues are altered by 4HNE

BAAT homologies

Stephen Barnes BMG 744 02-13-13
hBAT is a member of a class of proteins with an α/β hydrolase fold

The regions of hBAT that were part of α-helices, β-sheets and unstructured regions were determined by the use of the JUFO (www.Meilerlab.org)

Modeled structure of hBAT

In the absence of hBAT crystals, structural homology experiments using FUGUE were performed. These identified two previously crystallized proteins, ACOT2 and ACOT4 as structural homologs of hBAT. These two structures were used to create a threaded structure for hBAT which was refined using Modeller 9v10

Tyler Stewart

http://tardis.nibio.go.jp/fugue/prfsearch.html

Stephen Barnes BMG 744 02-13-13
Alignment of several models of hBAAT

Notice that the α-helices and the β-strands are superimposable whereas the unstructured (purple) regions are not.

BAAT cleft to 235Cys

Cys235
Where do glycine and taurine bind to hBAAT?

Seem to have binding sites in common

Tyler Stewart
Hypothesis

• The ability of 4HNE to react with Cys, His and Lys residues is dependent on their accessibility to solvent containing 4HNE.

• Therefore, in the presence of cholyl CoA, and hence covalently linked cholate to Cys235, the accessibility of 4HNE to the active site will be blocked, thereby revealing the residues that are involved.
Purification of wt-hBAT

Untagged wt-hBAT was recombinantly expressed in *E. coli* using a pKK233.2 vector and purified using chromatofocusing and anion exchange chromatography.

Experimental plan

- **hBAT** -NH₂ -SH -imidazole
- Digestion with trypsin and chymotrypsin
- hBAT adducts

Erin Shonsey

Stephen Barnes BMG 744 02-13-13
Cholyl CoA blocks 4HNE adduct formation on hBAT

- P-values for the effect of cholyl CoA on blocking 4HNE modifications (equimolar)
 - His62 0.0341
 - His194 0.0240
 - His336 0.2113
 - His362/Cys372 0.0384
 - His383 0.0063
 - His407 0.0010
Concentration-dependent sites of 4HNE modification on hBAT

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Modified Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHAEQAGQLKR</td>
<td>H336, H336, H336</td>
</tr>
<tr>
<td>RLHGWGEVPHAAQEHAWK</td>
<td>H397, H397, H397</td>
</tr>
<tr>
<td>AQGQFLFIVGEQLDTSK</td>
<td>K329, K334, K329, K334</td>
</tr>
<tr>
<td>MIQLTAPSVLDEPVHHR</td>
<td>H18, H18, H18</td>
</tr>
<tr>
<td>RANEFGEVDLNHASLGGDVQ</td>
<td>H62, H74, H62, H74</td>
</tr>
<tr>
<td>HPMGLFWSLKEK</td>
<td>H271, H274, H271, H274</td>
</tr>
<tr>
<td>HQQIQPLPHSAQL</td>
<td>H362, C372, H362, C373, C378</td>
</tr>
</tbody>
</table>

Cholyl CoA blocks 4HNE adducts on the His383 residue of hBAT

Concentration used for comparative analyses

Stephen Barnes BMG 744 02-13-13

Shonsey et al., 2007
Identifying protease activity

- Many proteins are proproteins. They can:
 - Modify a C-terminal glycine to produce a C-terminal amide (many brain peptides)
 - Cleave a head group (e.g., transmembrane region) to make an active form of the protein
 - Cleave “centrally” to release a polypeptide that enters the nucleus to bind to a nuclear transcription factor