Table of Contents

Graduate Academic and Student Services .. 3
About UAB .. 3
Academic and Student Services .. 10
Admissions .. 10
Enrollment ... 13
Academic Progress .. 14
Completion of a Degree ... 17
Financial Information ... 22
Graduate Assistantships and Fellowships 24
Student Life ... 25
Student Services and Facilities .. 26
UAB Sustainability .. 34
Collat School of Business .. 37
Accounting ... 40
Business Administration .. 43
Management Information Systems ... 50
College of Arts & Sciences ... 53
Interdisciplinary Programs ... 53
Cyber Security ... 53
Social Behavioral Statistics, Certificate 54
Anthropology .. 54
Art History ... 61
Cultural Heritage Studies .. 66
Biology .. 68
Chemistry ... 76
Communication Studies .. 83
Computer Science ... 85
Criminal Justice .. 95
Criminal Justice ... 98
Forensic Science ... 101
English ... 103
History ... 107
Mathematics .. 108
Physics .. 117
Political Science and Public Administration 123
Psychology .. 129
Behavioral Neuroscience .. 133
Developmental Psychology .. 134
Medical/Clinical Psychology ... 135
Social Work .. 136
Sociology ... 142
World Languages and Literature ... 147
Joint Health Sciences .. 151
Anatomical Science ... 162
Graduate Biomedical Science ... 163
Biochemistry & Structural Biology Theme 173
Cancer Biology Theme ... 174
Cell, Molecular & Developmental Biology Theme 175
Genetics, Genomics & Bioinformatics Theme 176
Immunology Theme .. 177
Microbiology Theme ... 178
Neuroscience Theme ... 178
Pathobiology, Pharmacology & Physiology 179
Multidisciplinary Biomedical Science ... 180
Neuroengineering .. 184
School of Dentistry .. 186
Dentistry ... 186
DM/DPhD Program ... 190
School of Education ... 192
Interdisciplinary Programs ... 192
Curriculum and Instruction .. 193
Arts Education .. 209
Music ... 209
Visual Arts ... 212
Early Childhood Education .. 213
Educational Studies .. 219
Elementary Education ... 220
English as a Second Language ... 223
High School Education ... 227
Instructional Design & Development .. 231
Reading ... 232
School Psychometry ... 234
Special Education ... 235
Teaching English to Speakers of Other Languages 238
Human Studies .. 242
Community Health and Human Services 256
Counseling .. 262
Educational Leadership 265
Higher Education Administration 266
Kinesiology .. 268
School of Engineering 272
Interdisciplinary Engineering 299
Engineering Management 300
Master of Engineering 301
Neuroengineering ... 184
Biomedical Engineering 313
Civil, Construction and Environmental Engineering ... 318
Electrical and Computer Engineering 337
 Electrical Engineering 342
 Computer Engineering 347
Materials Science and Engineering 353
 Materials Engineering 356
 Materials Science 359
Mechanical Engineering 364
School of Health Professions 371
 Interdisciplinary Programs 371
 Health Focused Patient/Client Management for Physical and Occupational Therapists ... 372
 Rehabilitation Science 373
Clinical and Diagnostic Sciences 375
 Biomedical and Health Sciences 376
 Biotechnology .. 378
 Biotechnology Regulatory Affairs Certificate 382
 Clinical Laboratory Sciences 383
 Genetic Counseling 386
 Health Physics ... 388
 Nuclear Medicine Technology 390
Physician Assistant Studies 390
Health Services Administration 395
 Administration Health Services 397
 Health Administration 400
 Health Informatics 404
 Healthcare Leadership 409
 Healthcare Quality and Safety 411
 Healthcare Simulation 413
Nuclear Medicine and Molecular Imaging Sciences 415
Nutrition Sciences ... 418
Occupational Therapy 424
 Physical Therapy .. 435
School of Medicine 440
 Interdisciplinary Programs 440
 Heersink Biomedical Innovation 440
 Digital Healthcare 442
 Artificial Intelligence in Medicine 442
 Translation of Biomedical Innovation to Clinical Practice 443
 ARISE MD ... 443
 Gerontology .. 448
 Medical Scientist Training Program 449
School of Nursing ... 454
School of Optometry 505
 Vision Sciences .. 505
School of Public Health 508
 Certificate Programs 532
 Interdisciplinary Programs 534
 Master of Public Health with a Concentration in Population Health 542
 Biostatistics .. 543
 Environmental Health Sciences 549
 Epidemiology ... 555
 Health Behavior 560
 Health Care Policy and Organization 565
The Graduate School 570
 Office of Professional & Experiential Learning 576
 Interdisciplinary Graduate Studies 580
Program Index .. 581
Course Index .. 582
Addenda .. 584
Index .. 586
Welcome to the UAB Graduate School

The UAB Graduate School seeks to nurture skills that transcend disciplinary boundaries, preparing graduate students to participate successfully in professional and academic arenas. With coordinated and interdisciplinary degree programs available, the UAB Graduate School offers students an opportunity to tailor their educational experience to their own career objective. The Graduate School administers doctoral programs, post-masters education specialist programs, and master’s level programs, with additional programs planned for the future.

Graduate students should expect many challenges as they build upon previous educational experiences in new and exciting ways. Graduate education has a distinctly different character from that of undergraduate education. Students explore their chosen area of study in greater depth and are also challenged to reach across boundaries and address larger intellectual issues. There will be greater emphasis on originality and the creation of new knowledge.

The Graduate Catalog outlines all of the policies and procedures pertaining to academic performance, degree progress, academic and non-academic conduct, and student responsibilities. UAB graduate students are expected to be familiar with these policies and to abide by them. Failure to do so may impede a student’s progress or may result in disciplinary action and, in some cases, dismissal. In addition to Graduate School policies, students are responsible for knowing and abiding by all UAB Policies and Procedures which can be located in the UAB Policies and Procedures Library here.

The Graduate Council

The Graduate Council is comprised of all graduate program directors. The Graduate Council Advisory Committee is a subset of these program directors who have been designated by their school deans to serve in an advisory capacity to the Graduate School Dean. The Advisory Committee reviews academic requirements, policies, procedures, and Graduate School activities. The committee recommends and approves appropriate changes. Changes in academic requirements and related policies require a majority vote of the Advisory Committee.

The Graduate Council Advisory Committee, through consultation with the Dean, is responsible for developing academic requirements and describing these requirements through appropriate policies. The Dean, through consultation with the Graduate Council, is responsible for developing procedures that effectively enforce academic requirements and implement policies. The Graduate Council Advisory Committee has developed policies and procedures to ensure that high standards for graduate study are maintained at UAB. These policies and procedures are available at the Graduate School’s Web site (https://www.uab.edu/graduate/academic-p-and-p).

The Graduate Faculty

Graduate faculty membership may be granted by the Dean of the Graduate School to faculty members who demonstrate a high level of competence in teaching and scholarship. Graduate faculty are nominated by the faculty member’s department chair and/or graduate program director, and membership is required of all individuals teaching courses for graduate credit and of members of graduate study committees. A complete listing of the graduate faculty can be found on the Graduate School Web site (https://www.uab.edu/graduate/faculty-staff/graduate-faculty/graduate-faculty-listing).

Graduate School Professional Development Program

Through its Professional Development Program, the Graduate School offers courses, workshops, and seminars designed to help graduate students, postdoctoral fellows, and other academic professionals develop communication and other career-enhancing skills. Current offerings include credit-bearing courses and workshops, as well as free seminars, in writing, funding, presentations, and teaching at the college level. More information and schedules are available at the Professional Development Program’s Web site (www.uab.edu/pdtp).

Graduate School Deadlines

All Graduate School deadlines, as indicated on the calendar or in explanation of policies and procedures, unless otherwise stated, are final by 5:00 p.m. on the date specified, by which time all transactions must be completed and documents received in the Graduate School. Transactions and documents requiring the action or approval of graduate advisors, committee members, instructors, department chairs, academic deans, or others prior to receipt by the Graduate School should be initiated by the appropriate person (student, instructor, graduate advisor, or other) sufficiently in advance of the Graduate School deadline for the required actions to be taken and approvals made or declined before the deadline.

About UAB

Over five decades, UAB has evolved from an academic extension center into an autonomous, comprehensive urban university and academic health center within the University of Alabama System. UAB has established wide-ranging programs in the College of Arts and Sciences, the Collat School of Business, the Heersink School of Medicine and the schools of Dentistry, Education, Engineering, Health Professions, Nursing, Optometry and Public Health, with graduate programs serving all major units. UAB has 18 graduate programs ranked in the top 25 of the U.S. News Best Graduate Schools 2023 rankings.

Fall 2022 enrollment surpassed 21,500 students for the fifth consecutive year. The freshman class was the most diverse ever. Sixty-six percent of the 2,217 students in the freshman class were female, 55 percent were underrepresented and 35 percent were the first in their families to attend college. The freshman class had an average ACT of 26.5, and a high school GPA of 3.79.

UAB is situated near downtown Birmingham and the historic Five Points South district. The campus stretches across 100 square blocks and occupies more than 100 primary buildings. UAB is Alabama's largest single-site employer, with nearly 28,000 employees and an annual economic impact on the state exceeding $12.1 billion. In 2021, UAB was named America’s No. 1 Best Large Employer by Forbes, topping a list of more than 500 public and private corporations, hospitals, university, Fortune 500 companies and more. UAB also was named the Best Employer for Diversity among colleges and universities by Forbes in 2021. In 2022, Insight into Diversity magazine named UAB a “Diversity Champion” (among 16 universities nationally) for the fifth straight year.
Accreditation

The University of Alabama at Birmingham is accredited by the Southern Association of Colleges and Schools Commission on Colleges (SACSCOC) to award baccalaureate, masters, educational specialist, and doctorate degrees. The University of Alabama at Birmingham also may offer credentials such as certificates and diplomas at approved degree levels. Questions about the accreditation of the University of Alabama at Birmingham may be directed in writing to the Southern Association of Colleges and Schools Commission on Colleges at 1866 Southern Lane, Decatur, GA30033-4097, by calling (404) 679-4500, or by using information available on SACSCOC’s website (www.sacscoc.org).

Many academic programs have additional accreditation from organizations appropriate to the academic discipline.

If you have questions related to issues such as admission requirements, educational programs, and financial aid that are not answered in this publication, please contact UAB at:

University of Alabama at Birmingham
Office of the Registrar
1300 University Boulevard, Campbell Hall 117A
Birmingham, AL 35294

Mailing address:
1720 2nd Ave S, CH 117A
Birmingham, Alabama 35294-4300
(205) 934-8228
(205) 975-3700 fax
Email: catalog@uab.edu

General Information

Role Statement

UAB’s graduate offerings are shaped by its location in the state’s largest metropolitan area, by its mandate to serve a large and heterogeneous constituency, by its responsibility to contribute to the economic and professional development of Birmingham and the state, and by its role of providing support to a nationally recognized academic health sciences center.

At the graduate level, programs serve the career needs of educators and business leaders, as well as those involved in advancing the frontiers of the health sciences. Training for health professionals is available through programs at the baccalaureate, master’s, doctoral, and professional degree levels.

UAB also has the primary responsibility for meeting the state’s health professional needs. It offers a comprehensive range of programs which encompass both basic preparation and sophisticated graduate and specialty training in medicine, dentistry, optometry, nursing, health professions, and public health.

As one of the nation’s leading research institutions, UAB emphasizes both basic and applied research. Although the majority of the university’s research effort is in the biomedical sciences and related areas, all instructional programs are expected to participate in research activities. UAB’s urban setting necessitates the development of research programs that are responsive to the city’s economic, social, and cultural needs. Much of the research conducted at UAB is interdisciplinary in nature and is organized through centers that bring together experts in a number of related fields to concentrate on a particular problem or issue. UAB attracts more than $400 million annually in research funding and currently ranks 10th among public universities in funding from the National Institutes of Health. the Carnegie Foundation for the Advancement of Teaching has named the University of Alabama at Birmingham to its list of colleges and universities to receive its 2015 Community Engagement Classification. UAB is one of 51 universities nationally and the only college in Alabama to be classified for high research activity and community engagement.

As the senior public doctoral-level institution in the state’s major urban area, UAB is committed to providing comprehensive programs in continuing education consistent with the quality and diversity of its other offerings. The university’s faculty, staff, and students also serve as resources to the area through activities related to professional, economic, and cultural growth and development.

Cultural Opportunities

UAB’s urban location offers students unique cultural opportunities. Located within walking distance of the campus is the Five Points South district, where local and unique restaurants, shops, art galleries, and music clubs are located. Not far from campus are the Birmingham Museum of Art, the Civil Rights Institute, the historic Alabama Theater, and the Birmingham-Jefferson Convention Complex. Other nearby sites include Sloss Furnace, a post-Civil War iron foundry which has been converted into a museum and informal music hall, and Oak Mountain Amphitheater, an outdoor facility that features music-industry headliners during the spring and summer concert season.

UAB has a flourishing arts program. As many as 30 major music events are produced each season at UAB, in addition to numerous theater productions and student and professional art exhibitions. The Alys Robinson Stephens Performing Arts Center is a state-of-the-art facility featuring 4 formal performance spaces: the 1,300-seat Jemison Concert Hall, the 350-seat Morris K. Sirote proscenium theater, the 170-seat Reynolds-Kirschbaum Recital Hall, and the Odess Black Box Theater, which can seat up to 120.

Student Life

Graduate students at UAB have many opportunities to become involved in the life of the university. Information about additional groups, both on and off campus, can be found in the UAB Student Handbook, Direction. Such organizations include: Graduate Student Government (GSG), Black Graduate Student Association (BGSA), Society for Advancement of Hispanics/Chicanos and Native Americans in Science (SACNAS), and Graduate Career Awareness and Trends (GCAT).

Schools and Degrees

This catalog contains information about graduate programs in the College of Arts and Sciences, School of Business, School of Dentistry, School of Education, School of Engineering, School of Health Professions, School of Nursing, School of Optometry, School of Public Health and the Joint Health Sciences.

Most UAB graduate students are working toward a degree; however, some have other educational goals. Graduate level degrees are usually characterized by the level of master’s, specialist or doctoral.
College of Arts & Sciences

Master of Arts
Anthropology
Art History
Communication Management
English
History
Sociology
Psychology

Master of Public Administration

Master of Science
Biology
Chemistry
Computer and Information Sciences
Computer Forensics and Security Management
Criminal Justice
Forensic Science
Mathematics
Physics

Doctor of Philosophy
Applied Mathematics
Biology
Chemistry
Computer and Information Sciences
Medical Sociology
Physics
Psychology

Biomedical Sciences/Joint Health Sciences

Interdisciplinary Themes*
Biochemistry, Structural and Stem Cell Biology
Cancer Biology
Cell, Molecular and Developmental Biology
Genetics, Genomics and Bioinformatics
Immunology
Microbiology
Neuroscience
Pathobiology and Molecular Medicine

*Completion of the training requirements in one of the above interdisciplinary themes provides eligibility for conferral of one of the following PhD degrees:

- Biochemistry and Molecular Genetics
- Cell Biology
- Cellular and Molecular Physiology
- Genetics
- Microbiology
- Neurobiology
- Pathology
- Pharmacology and Toxicology

School of Business

Master of Accounting
Master of Business Administration
Master of Science in Management Information Systems

School of Dentistry

Master of Science

School of Education

Master of Arts in Education
Arts Education
Community Health
Early Childhood Education
Educational Leadership
Elementary Education
English as a Second Language
Health Education
High School Education
Kinesiology
Music Education
Reading
School Counseling
Special Education

Master of Science
Instructional Design and Development

Educational Specialist
Educational Leadership
Early Childhood Education
Elementary Education
English as a Second Language
Secondary Education
Special Education: Autism Spectrum Disorder
Teacher Leadership

Doctor of Education
Educational Leadership

Doctor of Philosophy
Early Childhood Education
Health Education Promotion

School of Engineering

Master of Science
Biomedical Engineering
Civil Engineering
Electrical Engineering
Materials Engineering
Mechanical Engineering

Master of Engineering
Advanced Safety Engineering and Management
Construction Engineering Management
Design and Commercialization
Information Engineering and Management
Non-Academic Policies

Doctor of Philosophy
Biomedical Engineering
Civil Engineering
Computer Engineering
Interdisciplinary Engineering
Materials Engineering

School of Health Professions
Master of Science
Biotechnology
Clinical Laboratory Science
Genetic Counseling
Healthcare Quality and Safety
Nutrition Sciences
Occupational Therapy

Master of Science in Health Administration
Master of Science in Health Informatics
Master of Science in Physician Assistant Studies
Doctorate of Physical Therapy
Doctorate of Science in Administration Health Services

Doctor of Philosophy
Administration Health Services
Nutrition Sciences
Rehabilitation Sciences

School of Nursing
Master of Science in Nursing
Doctor of Nursing Practice
Doctor of Philosophy

School of Optometry
Master of Science
Vision Sciences

Doctor of Philosophy
Vision Sciences

School of Public Health
Master of Public Health
Doctor of Public Health
Master of Science in Public Health
Doctor of Public Health
Doctor of Philosophy

Non-Academic Policies

Student Conduct Code
The purpose of the University of Alabama at Birmingham (“University”) student conduct process is to support the vision, mission, and values of the University and the Division of Student Affairs, and the tenets of the University’s creed, The Blazer Way. Through a student-focused and learning-centered lens, the Office of Community Standards & Student Accountability and the student conduct process uphold individual and community standards; encourage an environment of personal accountability for decisions; promote personal growth and development of life skills; and care for the wellbeing, health, safety, and property of all members of the University community.

The Student Conduct Code (“Code”) describes the standards of behavior for all students and student organizations and outlines rights and the process for adjudicating alleged violations. It is set forth in writing in order to give general notice of non-academic prohibited conduct. The Code should be read broadly and is not designed to define non-academic conduct in exhaustive terms. All students and student organizations are expected to conduct themselves in accordance with the Code. The current version of the Code, which may be revised periodically, is available from Community Standards & Student Accountability or online.

Equal Opportunity and Discriminatory Harassment Policy
UAB is committed to equal opportunity in education and employment, and the maintenance and promotion of nondiscrimination and prevention of discriminatory harassment in all aspects of education, recruitment and employment of individuals throughout the university.

Immunization Policy
UAB requires that first-time entering students, international students and scholars, and students in health-related schools provide proof of immunization against certain diseases.

Non-Resident Tuition Policy
This policy addresses non-resident tuition, certification of residency status by campus officials, and establishment of campus policies to administer an appeals process.

Drug-Free Campus Policy for Students
Unlawful possession, use, manufacture, distribution, or dispensing of illicit drugs, controlled substances, or alcoholic beverages by any UAB student is prohibited.

https://www.uab.edu/students/wellness/policies-resources/drug-free-schools-communities-act

UAB Annual Security & Fire Safety Report
The UAB Annual Security and Fire Safety Report is published online. For a printed copy of the report, call (205) 934-4649. The report follows the guidelines mandated by the Federal Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act and contains the following information: reporting incidents; federal campus sex crimes prevention act; missing person procedures; distribution of timely warnings; emergency preparedness, response and evacuation procedures; criminal statistics; fire safety report, etc.

Copyright Policy
The University of Alabama at Birmingham (the “University”) is dedicated to instruction, research and service to benefit society and encourages its faculty, staff and students to carry out scholarly endeavors in an open and free atmosphere, and to publish the results of such work without restraint, consistent with applicable law and policy.
Patent Policy

UAB encourages the development of procurement and licensing of patents for inventions in the interest of the public, the inventor, and the university.

Data Protection and Security Policy

Data (electronic) created at UAB must be protected and maintained in accordance with all applicable federal and state laws and university policies.

Student E-Mail Address Policy

November 10, 2003

See also:
Electronic Data Processing Security Policy
Acceptable Use Policy
Network Usage Guidelines

Purpose

UAB provides electronic mail resources in support of its instruction, research, and service activities. The purpose of this policy is to establish the use of electronic mail (e-mail) as one of the official methods for communicating with UAB students.

Official Communications Using E-Mail Addresses

In a similar manner as mail distribution of paper communiqués to a student's "permanent" address is considered an official method for distributions to students, so also are official e-mail messages sent by UAB to a student's "@UAB.EDU" e-mail address considered an official distribution method. For purposes of this policy, "official" communiqués or e-mails as used here are those established as "official" through other approval mechanisms in place at UAB.

Student Requirements and Responsibilities

Every student enrolled at UAB must have an e-mail address that ends with "@UAB.EDU". Such an e-mail address is required for a student to register for UAB credit courses. It is the student's responsibility to obtain an official UAB e-mail address in a timely manner from the UAB e-mail registering system (BlazerID World Wide Web site). This will require the student also to have a valid, current, and reliable electronic mailbox through an Internet Service Provider (ISP) or portal or on a server administered by the student's academic department, or on the central mail service provided by the Office of the Vice President for Information Technology. It is the student's responsibility to check his or her e-mail regularly for distribution of official UAB communiqués. UAB recommends that e-mail be checked at least once a day, when practicable. UAB is not responsible for lost, rejected, or delayed e-mail forwarded by UAB from a student's "@UAB.EDU" address to off campus or unsupported e-mail services or providers. Such lost, rejected, or delayed e-mail does not absolve the student from responsibilities associated with an official UAB communiqué sent to the student's official UAB e-mail address ("@UAB.EDU"). If there is a change in a student's e-mail address to which the "@UAB.EDU" alias address is re-directed, it is the student's responsibility to make the changes in the UAB e-mail registering system.

UAB Responsibilities

UAB will ensure that all students have access to an e-mail account and will provide means for students who do not otherwise have access to e-mail-capable computers to be able to check their e-mail through such mechanisms as computer labs, the UAB libraries, and public terminals. UAB will provide mechanisms to allow students to request that their e-mail addresses not be published in a similar way that other student directory information is not published. However, unpublished e-mail addresses will be used for sending official UAB communiqués to students including communications to a group of students such as a course e-mail list. Students also will be provided mechanisms for requesting that their e-mail addresses not be used for general UAB mailings that are not official communications with students. UAB is not responsible for the handling or mishandling of students' e-mail by non-UAB providers or by unofficial (non-@UAB.EDU) e-mail servers.

Student Records Policy

The University of Alabama at Birmingham student records policy complies with the Family Educational Rights and Privacy Act of 1974, as amended. All students enrolled or previously enrolled at UAB have certain rights with regard to information included in their education records. These rights are the subject of this policy.

Classroom Scheduling Policy

1. Departments will schedule all multiple lecture and laboratory sections so that student course enrollments will be distributed approximately equally between mornings and afternoons and between the different meeting patterns (TR vs. MWF). Departments will also limit classes taught during peak hours to 50%. Once departments reach the maximum of courses to be taught during peak hours, the remaining courses should be redistributed across non-peak hours.
2. Departments will have the ability to schedule in rooms they manage first. After this, the Registrar's Office will utilize all available classrooms to assist other departments in need of space.
3. Departments must strictly adhere to the approved standard set of time patterns when scheduling course offerings.
4. Because of the regular standard meeting lengths for three hour courses are in 50 and 75 minute time blocks, courses offered during non-standard times should be offered in multiples of these times to avoid end times that preclude the students from registering for courses that may follow the standard section. For example, one non-standard time on Tuesday and another at the same time on Thursday.
5. Classroom enrollment and capacities should be based on the actual enrollment trends over the past few years to ensure a realistic estimate of room needs and proper seat and room assignments. Room capacities will be reviewed each semester by the Office of the Provost in collaboration with the colleges and departments to ensure the actual instructional capacities for each room are assessed.
6. Departments should strive for 80% occupancy. For example, the number of students enrolled in a class divided by the instructional seating capacity of the room that class is in should be greater than or equal to 80%.
7. Peak hours are between 9:00 am - 1:25 pm Monday through Friday. Departments should strive to provide students a variety of options of course offerings throughout the scheduling week by utilizing non-peak hours. The importance of maintaining the existing course schedule M-F is to allow for courses to be spread more evenly throughout the week. Not only will this be necessary to accommodate significant course demand in response to projected enrollment increases but it will also provide students with greater flexibility when building schedules and further optimize classroom utilization.

New Course Review Process

- Unit(s)/School(s) should complete their internal review and approval process for their new courses in September and again optionally in April. The courses need to be submitted as new courses to the registrar by October 1st or May 1st.
- The new course catalog submission deadlines are October 1st and May 1st.
- New course submissions for UCC/GCC review shall include: 1) course number, 2) course title, 3) course catalog description, 4) credit hours, 5) contact person(s), 6) a list of potential course conflicts, if any, and 7) a discussion of why the new course would not create a conflict. Syllabi may be requested by the UCC/GCC for more information and should be provided by the above listed contact person(s) within 7 days.
- Proposals for new Programs, Certificates, and/or Tracks that include new courses will include a ‘new course form’ for each new course, provided as addendums in the Proposal. These new course forms will facilitate review of new courses and prevent an unnecessary secondary review once the new course is listed. The new course forms will be removed by the Provost’s office prior to sending a proposal to the Board of Trustees and Alabama Commission on Higher Education.
- New courses will be reviewed by GCC Liaisons (members), Alternates and by Units/Schools/Departments/Program Leadership during the month of October and June.
- If a conflict is noted for a new course, it will the responsibility of the Unit/School noting the conflict to send an email with a detailed explanation about the course conflict to the submitting Unit/School’s contact person(s) and copy (Cc) the Chair of the UCC/GCC.
- The leadership of those Units/Schools involved in a potential conflict, will discuss (and meet, if necessary) the conflicting course(s) during the month of November and July, independent of the UCC/GCC Chair and Senate committees.
- If the parties have come to a resolution before the end of November/July, both units involved shall notify the UCC/GCC Chair of the resolution and its substance, copying the units and leadership that flagged the concern.
- If there is no resolution or a disputed resolution, or the Units/Schools were unable to meet during November, the leadership of both Units/Schools will present at the next UAB Faculty Senate Curriculum Committee meeting (either December or January or August) for a vote that will determine the final outcome of the new course proposal.

Use of UAB Facilities and Freedom of Expression Policy

The University has a significant interest in protecting the educational experience of its students, in ensuring health, safety, and order on its campus, in regulating competing uses of its facilities and grounds, and in protecting the safety and well-being of those with the right to use its facilities and grounds to engage in protected speech, among other significant interests. This policy applies to all individuals and groups that use UAB facilities. All students and registered student organizations are expected to comply with the Use of UAB Freedom of Expression and Use of UAB Facilities Policy. Any student or registered student organization who is found to have substantially interfered with the protected free expression rights of others shall be subject to a full range of disciplinary sanctions according to the appropriate disciplinary procedures for misconduct up to and including dismissal from the University.
The University of Alabama System Administration
Chancellor
Finis E. St. John IV
Secretary of the Board
Mark Foley

The University of Alabama at Birmingham Administration
Ray L. Watts, M.D., President
Anupam Agarwal, M.D., Senior Vice President for Medicine & Dean Heersink School of Medicine
Pam Benoit, Ph.D., Senior Vice President for Academic Affairs and Provost
Brian D. Burnett, Ph.D., Vice President for Finance and Administration
Jim Bakken, Associate Vice President for Strategic Communications and Interim Chief Communications Officer
Shannon Blanton, Ph.D., Dean, Honors College
Tom Brannan, Vice President for Advancement
Christopher S. Brown, Ph.D., Vice President for Research
Dawn Bulgarella, M.S.H.A, C.P.A., CEO of the UAB Health System and CEO of the UAB/Ascension St. Vincent’s Alliance
Andrew J. Butler M.P.T., M.B.A., Ph.D., Dean, School of Health Professions
Curtis A. Carver, Jr., Ph.D., Vice President for Information Technology and Chief Information Officer
Paulette Patterson Dilworth, Ph.D., Vice President for Diversity, Equity and Inclusion
Paul Erwin, M.D, Dr.P.H., Dean, School of Public Health
Kasia Gonnerman, Dean, UAB Libraries
Jeffrey W. Holmes, M.D., Ph.D., Dean, School of Engineering
Mark Ingram, Associate Vice President and Director of Athletics
Eric P. Jack, Ph.D., Dean, Collat School of Business
John Jones III, Ph.D., Vice President for Student Affairs
Reid F. Jones, Chief Executive Officer, UAB Medicine
Shadi S. Martin, Ph.D., Vice Provost for Graduate and International Education; Dean of Graduate School; Chief International Officer
Janet L. May, Chief Human Resources Officer
Kelly K. Nichols, O.D., M.P.H., Ph.D., F.A.A.O, Dean, School of Optometry
Kathy Nugent, Ph.D., Executive Director, Harbert Institute for Innovation and Entrepreneurship
Rosie O’Beirne, Associate Vice President for Digital Strategy and Marketing
Maria R. Shirey, Ph.D., Dean, School of Nursing
Scott W. Snyder Ph.D., Interim Dean, School of Education
Russell Taichman, D.M.D., D.M.Sc.; Dean, School of Dentistry
Kecia M. Thomas, Ph.D., Dean, College of Arts and Sciences
Bradley Barnes, Ph.D., Vice Provost, Enrollment Management
Eva Lewis, Vice Provost, Institutional Effectiveness and Academic Planning
Shadi S. Martin, Ph.D., Vice Provost for Graduate and International Education; Dean of Graduate School; Chief International Officer
Michelle Robinson, D.M.D, M.A, Senior Vice Provost for Faculty Affairs
Pam Paustian, Ph.D., Associate Provost for Academic and Learning Technologies
Scott Phillips, Vice Provost for Innovative Teaching and Academic Engagement
Academic Calendar

Academic and Student Resources

This section of the catalog describes some of the services, policies, and programs that support and enhance the experience of our students through their stay at UAB.

- Admissions (p. 10)
- Enrollment (p. 13)
- Academic Progress (p. 14)
- Completion of a Degree (p. 17)
- Financial Information (p. 22)
- Graduate Assistantships and Fellowships (p. 24)
- Student Life (p. 25)
- Student Services & Facilities (p. 26)
- UAB Sustainability (p. 34)

Admissions

Admission as a Degree-Seeking Student

UAB welcomes applications from all individuals whose preparation and abilities give them a reasonable chance of success in its programs. All applicants must offer acceptable evidence of ability and intent to meet the academic standards of the university. Degree-seeking graduate students are those accepted into a specified graduate program to work toward a specific advanced degree. In addition to the completed online application, the Graduate School requires an application fee and official transcripts. To be considered official, academic transcripts must be mailed to UAB directly from the college/university attended, sent electronically to the UAB Graduate School by the school’s Registrar’s Office, or submitted in a sealed envelope bearing a university signature or stamp across the seal.

Admission to the UAB Graduate School requires a recognized baccalaureate, graduate, or professional degree from a regionally accredited (e.g. SACSCOC) college or university, or an international equivalent of a four-year degree. By the start of your first semester, your bachelor’s degree must be awarded and appear on your transcript.

Unofficial transcripts may be utilized for the application review process and must be submitted for all post-secondary institutions, including community colleges, high school dual-enrollment, and military credit. During the application process, applicants will have the option to upload an unofficial PDF copy of their transcript(s).

If admitted, the Graduate School must receive an official transcript:

- a) from each post-secondary institution where the student earned a degree.
- and
- b) for any coursework taken after the awarding of a student’s bachelor’s degree (e.g. as a post-bacc or graduate student)

Standardized academic test scores are not required by the Graduate School; however, they may be required by the academic program so applicants should check with the program to which they are applying. The Graduate School requires English proficiency for international applicants. This requirement is automatically waived for international applicants who earned a bachelor’s, graduate, or professional degree in the US with a minimum GPA of 3.00. All other international applicants are required to submit TOEFL/IELTS/IELA/PTEA/Duolingo/TOEFL Essentials test scores that meet these requirements: 80 on the TOEFL, 6.5 on the IELTS, 176 on the IELA, 120 on Duolingo, 53 on the PTEA, 8.5 on TOEFL Essentials. Official test scores must be sent directly to UAB from the testing agencies. Academic programs may choose to waive academic test scores at their discretion based on the qualifications of the applicant. However, the English proficiency requirement may not be waived.

Individual graduate programs often require additional items such as letters of recommendation, a personal essay, or a resume so it is important that applicants are aware of program-specific admissions requirements. Complete graduate applications are reviewed by graduate program faculty who make an admissions recommendation to the Graduate School. All credentials submitted as part of the application for admission become and remain property of the university and will not be returned to the student, duplicated, or transferred to another institution.

Any change in a student’s record prior to enrollment will necessitate a new review of the application. Any omissions or misrepresentations on a student’s application for admission will automatically invalidate consideration by and acceptance to UAB. If, after a student is admitted to the university, information comes to light that indicates an applicant did not meet all admission requirements, the applicant’s offer of admission will be rescinded.

The application for admission, application instructions, and application deadlines can be accessed at http://www.uab.edu/graduate/admissions.

Admission as a Non-Degree Student

Students who do not wish to pursue a graduate degree at UAB but would like to enroll in graduate courses or those who wish to begin graduate study before being admitted to a degree program can apply as a graduate non-degree seeking student. Registration in non-degree courses requires departmental approval as not all graduate courses are open to non-degree seeking graduate students. There is no limit to the number of graduate non-degree (GN) credit hours a non-degree seeking student may accumulate. However, should a student later wish to enroll as a degree-seeking student at UAB, no more than 12 semester hours earned as a non-degree graduate student may be applied toward an advanced degree at UAB. Students wishing to apply more than 12 semester hours are required to appeal to the Graduate School Dean for permission. Should a student be admitted to a degree program, the credit earned while in non-degree seeking status is not automatically acceptable toward the degree.

Because of U.S. immigration requirements, international applicants (i.e., those who are neither U.S. citizens nor permanent residents) typically cannot be considered for the non-degree category unless already residing in the United States. International students should consult immigration laws to determine eligibility.

International Admissions

The University of Alabama at Birmingham welcomes international applicants. An international applicant is neither a citizen nor a permanent resident of the United States. International applicants should consult the Graduate School website at http://www.uab.edu/graduate/international for information regarding additional admissions requirements.
Change from Non-Degree to Degree-Seeking Status

A student with a non-degree classification who wishes to change to a degree-seeking classification must apply via the degree-seeking application and submit the required documents (transcripts, applicable test scores, and program-specific supporting documents). Degree-seeking admission of non-degree students is neither automatic nor guaranteed.

Readmission as a Degree-Seeking Student

Students who have not registered for three (3) consecutive semesters will be changed to inactive student status and must apply for readmission before they will be able to register for courses at UAB. Degree-seeking students who meet the following criteria are able to apply for readmission by submitting an application for readmission by visiting the Graduate School homepage (uab.edu/graduate) and clicking the “Apply Now” button.

1. Were admitted to a UAB Graduate Degree-Seeking Program within the last five years, and
2. Have registered for and successfully passed at least one graduate course at UAB after being admitted to a UAB Graduate Degree-Seeking Program but have not registered for courses for one academic year (3 semesters) or more, and
3. Have not attended any other university or college in the interim, and
4. Wish to return to the graduate program to which they were previously admitted

Readmitted students must meet the degree requirements operative at the time of readmission.

Admission with Contingencies

Students lacking one or more admission requirements may be admitted to a graduate program contingent upon submission or completion of those requirements. Graduate students admitted with contingencies have until the end of their first semester of enrollment to resolve all contingencies. Examples of contingencies that must be resolved are the submission of official transcripts, official test scores, official degree statements, required course completion, etc. Students are informed of specific requirements for continued enrollment and the time allowed for completion at the time of admission. Failure to meet the requirements during the stipulated time will result in a registration hold until the contingency is resolved and may result in dismissal from the Graduate School.

Admission of Students Previously Dismissed

When an individual applies to a graduate program, a significant part of the admissions decision involves an estimate, based on the applicant’s academic history, of whether the applicant can perform satisfactorily at the graduate level. Applicants who have previously been academically dismissed from the Graduate School must present convincing evidence to program faculty and the Graduate School Dean that substantial improvement has occurred so that it is probable that the applicant can now perform at the required level in graduate work. In general, students are not admitted to a graduate program from which they have been previously dismissed.

Dual Degree Programs

UAB offers many opportunities for students to pursue two advanced degrees concurrently.

Students wishing to be enrolled in an approved dual degree program must submit a degree-seeking application and be admitted to each program individually. The minimum number of credit hours required for each degree must be met. Courses may not be double-counted and are only allowed to fulfill requirements for one degree.

Accelerated Learning Opportunities

UAB offers several options for high-achieving undergraduates to accelerate the time and cost necessary to complete both their undergraduate and graduate degrees. These include Accelerated Bachelors/Masters Programs (ABM), Fast-Track programs, and Early Acceptance. For more information visit: https://www.uab.edu/graduate/programs/accelerated-learning-opportunities

Accelerated Bachelors/Masters Program

The accelerated bachelors/masters (ABM) program allows undergraduate students to share credits toward both an undergraduate and graduate degree. Through ABM, an undergraduate student can take courses that count simultaneously toward their undergraduate and graduate programs. Once admitted, an ABM student can take up to 12 hours of approved 500/600-level graduate courses that will count towards both the undergraduate and graduate degree. This can significantly shorten the time it takes to earn a master’s degree.

Requirements

UAB undergraduate, degree seeking students may start the ABM program once they have earned 60 or more undergraduate hours, at least 36 of which must be earned at UAB. ABM differs from traditional Fast-Track programs in that, at the time of application, eligible students must have a UAB undergraduate grade point average of at least 3.5 (or higher if required by their program). Programs may require a higher GPA for admission and/or not permit the full 12 hours to be shared between programs. Post-baccalaureate students are not eligible to apply to an ABM or Fast-Track program.

Permission to take graduate courses will be granted by the Graduate School if the student has met the criteria above as well as other minimum requirements for graduate admission. Upon admission to the Graduate School, an ABM student will begin a program of study leading to the master’s degree, as approved by his or her department and by the Graduate School. Students must maintain a cumulative GPA of 3.0 or higher in all graduate and undergraduate coursework. Programs may set higher requirements or require specific grades in individual courses.

In addition to any graduate-level coursework taken in a given term, undergraduate students enrolled in an Accelerated Bachelor’s/Master’s program must enroll in a minimum of 6 undergraduate hours. ABM hours approved as shared credit count toward this minimum. Students enrolled in a summer term OR in the final semester of their undergraduate program who have less than 6 hours remaining are exempted from this requirement. ABM students must submit an application for degree and graduate in the term in which undergraduate degree requirements are
met, at which point they will transition to graduate student status. Other exceptions to this policy must be approved by the Graduate School.

How to Apply

Students who meet the above requirements are eligible to apply to an ABM program after completing the following steps:

1. Meet with Accelerated Learning Opportunities Advisor to confirm eligibility and review application requirements.
2. Meet with Undergraduate Advisor and the relevant Graduate Program Director(s) to discuss program requirements.
3. Complete the ABM program Application Form (including all approvals) and return it to the Graduate School.
4. Submit departmental application materials (as required by program).

Program Completion

Upon completing an undergraduate degree, students will be recertified as graduate-level degree-seeking students and charged the graduate tuition rate.

Fast Track Programs

Fast Track programs allow students to apply to their master’s degree program before finishing their undergraduate degree. Beginning graduate coursework while enrolled as an undergraduate allows students to pay undergraduate tuition rates and accelerate the time needed to complete their master’s degree. While hours cannot be shared between the two programs, certain masters programs allow students to waive equivalent course content covered while enrolled in their undergraduate degree.

Requirements

Requirements vary by program, but typically require at least 60 undergraduate hours, at least 36 of which must be earned at UAB, and a 3.0 GPA to enroll in master’s courses.

Additionally, individual programs may specify required prerequisite courses, only be available to certain undergraduate majors, or require the completion of the bachelor’s degree prior to admission.

In addition to any graduate-level coursework taken in a given term, undergraduate students enrolled in a Fast-Track program must enroll in a minimum of 6 undergraduate hours. Students enrolled in a summer term OR in the final semester of their undergraduate program who have less than 6 hours remaining are exempted from this requirement. Fast Track students must submit an application for degree and graduate in the term in which undergraduate degree requirements are met, at which point they will transition to graduate student status. Other exceptions to this policy must be approved by the Graduate School.

Program Completion

Upon completing an undergraduate degree, students will be recertified as graduate-level degree-seeking students and charged the graduate tuition rate.

Early Acceptance to Graduate School

Early Acceptance Programs are designed for academically superior high-school students. Early Acceptance Programs allow high achieving students to be conditionally admitted into a graduate program at the same time they are admitted to an undergraduate program.

Requirements

Eligible students will be notified at the time of matriculation. In order to maintain eligibility for the Early Acceptance program, students must maintain a 3.5 UAB undergraduate GPA, meet all relevant pre-requisites of the program they wish to pursue, and maintain continuous enrollment while at UAB.

Undergraduate Enrollment in Graduate Certificates

Some certificates may open enrollment to undergraduate students on a case by case basis, allowing students to potentially complete a graduate certificate at the same time they earn their undergraduate degree. Enrollment in a graduate certificate is not permitted until the student has earned at least 60 undergraduate hours, 36 of which must have been completed at UAB, with a 3.0 institutional GPA. In addition to academic standing requirements administered at the undergraduate level, once admitted, students must maintain a 3.0 in all graduate coursework.

Awarding of a graduate certificate is contingent upon a student completing all requirements of their undergraduate degree, and cannot be awarded until these requirements are met.

Concurrent Degrees

Students who do not qualify for a combined degree program but wish to begin work toward a second graduate degree may enroll in and earn up to 12 semester hours in the secondary program without special permission while simultaneously earning credit toward their original degree. However, no more than 12 semester hours earned while pursuing the first degree program may be applied toward the second degree without prior approval by both the graduate program and the Dean of the Graduate School.

UAB Employee Admission

To maintain university accountability, UAB faculty and staff who wish to take occasional graduate courses may only register for these courses after admission to the Graduate School as either a non-degree seeking student or a degree-seeking student. Admission of a UAB employee as a degree-seeking graduate student requires the concurrence of the applicant’s department chair and dean(s), as well as the approvals required for other applicants to the same program. For more information regarding Educational Assistance, visit the UAB Human Resources Web page at http://www.uab.edu/humanresources/home/benefits.

UAB employees who wish to become full-time graduate students and continue to work part-time cannot work more than 10 hours per week outside their commitment to meet the requirements of their pre-doctoral program.

UAB employees who enroll in a Ph.D. program and continue to work full time must meet the following requirements:

1. Are not eligible to be supported by a training grant
2. Cannot be simultaneously supported by a UAB Graduate Assistantship/Traineeship
3. Thesis or dissertation work may not be initiated until the student enrolls in a program (i.e. data generated by the employee/student prior to enrollment that has been submitted for publication or published cannot be included in a thesis or dissertation)
4. Must meet the same set of program requirements as all other students.
5. The dissertation committee is responsible for assuring that these stipulations are met.
6. The Program Director and dissertation committee must agree in writing to a protracted course of study.

Equal Opportunity Policy

UAB administers its educational programs and activities, including admission, without regard to race, color, religion, sex, sexual orientation, age, national origin, disability unrelated to job performance or Vietnam-era or disabled veteran status. The full text of this policy can be found here.

Office of Graduate Admissions

Mailing Address for Documents and Credentials:

G03 Lister Hill Library
1720 2nd Avenue South
Birmingham, AL 35294-0013

Physical Address:

1700 University Boulevard
Birmingham, Alabama 35294-0013
(205) 934-8227
gradschool@uab.edu

Enrollment

Registration

Students must register for all courses for which they wish to earn graduate credit. The UAB class schedule is accessible via BlazerNET located at http://www.uab.edu/blazernet. The class schedule lists the courses offered each semester and provides full details on prerequisites, registration dates, and procedures. Students are able to register for courses as well as adjust their schedule by adding and dropping courses through the end of the drop/add period which is denoted on the academic calendar.

To be enrolled as a full-time graduate student, a student must register for at least 9 semester hours in the fall, spring, and summer semesters. To be classified as a half-time graduate student, they must register for at least 5 semester credit hours in the fall, spring, and summer semesters. Degree-seeking students who wish to receive financial aid must be enrolled at least half-time.

Certain funding sources (e.g., training grants, individual grants, and fellowships) may have additional enrollment requirements that must also be satisfied. In addition, student loan recipients must satisfy certain minimal enrollment requirements to defer repayment. Students should consult with their funding source or the Financial Aid Office to determine these requirements as they apply to their specific situation.

Auditing Graduate Courses

Graduate students who have been formally admitted as either a non-degree or degree-seeking student may audit courses available for graduate credit with the permission of the instructor and payment of appropriate fees. Courses taken for audit credit are not counted toward the hours required for full-time status, are not counted as earned hours, are not assigned a letter grade, and do not impact a student’s GPA. Provided the instructor’s requirements are met, the course will appear on the transcript with the notation AU.

The Permission to Audit Graduate Level Coursework form, which can be obtained online at www.uab.edu/graduate/online-forms, should be submitted to the Graduate School for approval prior to registration.

Withdrawal from Courses

Graduate students are expected to complete courses for which they have registered unless unusual and unforeseen circumstances require withdrawal. The procedures for withdrawal are specified on BlazerNET. Mere cessation of class attendance does not constitute withdrawal, either academically or for tuition purposes. Students who wish to withdraw from a class or classes after the drop/add period must proceed with the withdrawal in BlazerNET no later than the last day to withdraw for the semester, which is denoted on the Academic Calendar at, www.uab.edu/students/academics/academic-calendar. If a student follows the appropriate procedures to withdraw in BlazerNET, a grade of “W” will be entered on the transcript. Withdrawal from a course after the withdrawal deadline requires an academic appeal, which can be obtained online at www.uab.edu/graduate/online-forms, and documentation of extenuating circumstances.

Leave of Academic Absence

A graduate student experiencing extenuating circumstances may request a leave of academic absence for up to one (1) academic year. The Request for Leave of Academic Absence form can be found at the Graduate School Web site at www.uab.edu/graduate/online-forms and requires approval by the student's graduate program director and the Graduate School. Leave of Absences are term-based and students’ records will only be updated with a leave of absence status in a term in which they were not registered. If a student is receiving funding and fails to meet the requirements of their assistantship, their stipend can be ended at any time throughout the semester.

Course Numbering System

The scholastic level of UAB courses is indicated by the century number. Courses numbered 500 and above are graduate and post-baccalaureate courses. Courses numbered 500-599 are available to upper-level undergraduate and beginning graduate students. Courses numbered 600-699 are intended primarily for students at the master's level, with 698 reserved for non-thesis research and 699 reserved for thesis research. Courses numbered 700-799 are primarily for students at the doctoral level, except in the School of Education where the numbers from 700-729 are reserved for courses leading to the degree of Educational Specialist (Ed.S.). The number 798 is reserved for non-dissertation research and 799 for dissertation research. Seminars, practica, individual studies and projects, internships, and residencies will generally carry numbers in the upper range of these centuries.

Undergraduates Seeking Enrollment

The Graduate School allows undergraduate students who are not enrolled in a graduate program the opportunity to take graduate coursework for either undergraduate credit or graduate credit. They are required to fill the Undergraduate Student Enrollment in Graduate Level Coursework form that indicates how they would like the credit to be counted. Undergraduate students not enrolled in a graduate program can take graduate courses, but it is at the graduate program's discretion.
whether or not the course can fulfill requirements retroactively. The Graduate School will not allow the graduate course to count towards both graduate and undergraduate requirements if the student is not enrolled in an ABM.

Withdrawal from the UAB Graduate School

Students who wish to withdraw from the University of Alabama at Birmingham must submit a written request to the Graduate School expressing their intent to withdraw.

Academic Progress

Graduate Credit

For purposes of academic accounting, credits expressed in “semester hours” are assigned to each course. One semester hour of lecture course credit is awarded for 13-15 contact hours per semester. One semester hour of laboratory credit is awarded for approximately 30 hours of work in the laboratory. Students may not earn “credit by examination” at the graduate level.

A graduate student’s earned semester hours include all hours in which a grade of C or better or a grade of P in a pass/not pass course was earned. A graduate student’s attempted semester hours include all hours for which a student earned a grade of A, B, C, F, P or NP.

Transfer Credit

Previously earned graduate credit with a grade of B or above while enrolled at another regionally accredited graduate school may be eligible for transfer into the student’s current degree program if it has not been applied toward another degree (either at UAB or elsewhere). In addition, credit may be awarded for non-collegiate courses in accordance with American Council on Education recommendations and approval of the appropriate department chair and dean. All transfer credit requests must be initiated by the student and require the approval of the graduate program director and the Graduate School. Transfer of Credit forms are available online at http://www.uab.edu/graduate/online-forms. Completion of this form does not guarantee that the transfer credit will be granted. No more than 12 semester hours of graduate credit can be transferred to UAB. Students wishing to request an exception to the transfer credit hour limit must receive the approval of the program director, department chair, and Graduate School Dean. Once transfer credit has been approved, it will be included in the calculation of the grade point average in the student's current UAB program.

In programs offered jointly by UAB and other universities, all graduate credits earned in the program at a cooperating university are eligible for transfer to UAB. If a student earns credit in one UAB graduate program and is later admitted to another program, unused credits from the previous program, if applicable, are eligible for consideration for transfer into the current program.

Grading and Grade Point Average (GPA)

The grade of A indicates superior performance, B indicates adequate performance, and C indicates performance only minimally adequate for a graduate student. Any graduate student completing a course at the 500 level or above with a performance below the C level will receive a grade of F; the Graduate School does not use the grade of D. In some graduate programs, a grade of C is a failing grade. It is the student’s responsibility to know and abide by program grading requirements which may be more stringent than that of the Graduate School.

Four (4.0) quality points are awarded for each semester hour in which an A is earned, three (3.0) quality points are awarded for each semester hour in which a B is earned, and two (2.0) quality points are awarded for each semester hour in which a C is earned. No quality points are awarded for a grade of an F. A graduate student’s grade point average (GPA) is determined by dividing the total quality points awarded by a student’s semester hours attempted at the graduate level. Students can view their cumulative GPA in BlazerNET and can view their term GPA on their transcript which is also available in BlazerNET.

For courses designated as pass/not pass, a grade of P (passing) signifies satisfactory work. A grade of NP (not passing) indicates unsatisfactory work although there is no penalty assessed with respect to the grade point average (GPA).

Other Grade Notations

N (no grade reported) A temporary notation made by the Office of the Registrar if no grade (A, B, C, F, I or P) is assigned to the student by the course instructor. This notation is used only when the Office of Registrar is unable to obtain a grade from the instructor prior to the issuing of grades for the semester or when the course is designed to extend beyond a single term. It remains the instructor’s responsibility to assign a permanent grade. If the instructor has not submitted a grade by the end of the following term, the “N” (no grade submitted) is changed automatically to an “F” (failing) by the Office of the Registrar. The notation “N” cannot be extended. A notation of no grade submitted may not be used to meet a prerequisite requirement. A student cannot graduate with an no grade submitted notation on his or her academic record.

I (incomplete) The temporary notation of “I” (incomplete) may be reported at the discretion of the instructor to indicate that the student has performed satisfactorily in the course but, due to unforeseen circumstances, has been unable to finish all course requirements. An incomplete is never given to enable a student to raise a deficient grade. This notation should not be used unless there is reasonable certainty that the requirements will be completed during the following semester because, at the end of the next semester, the incomplete automatically changes to an F if it has not been replaced with a letter grade. In highly unusual circumstances, a student may request an extension of time to complete the requirements. This request must be submitted in writing in advance of the time when the grade automatically changes to an F because the approval of the instructor, graduate program director, and the Graduate School are all required.

A student cannot graduate with an I or N grade designation on their record.

W (withdrawn) A notation assigned by the Office of the Registrar reflecting an administrative action initiated by the student in accordance with regulations governing withdrawal from courses. “W” (withdrawn) may not be assigned by the instructor.

Academic Standing

It is critically important that graduate students at UAB understand both the Graduate School’s and their program’s academic standing policy and that they are aware of their own academic standing at all times. For a student to maintain good academic standing in the Graduate School, they must maintain a cumulative grade point average (GPA) of at least 3.0 (B average) and an overall satisfactory performance on pass/not pass
courses. Satisfactory performance on pass/not pass courses is defined as earning at least as many hours of P as of NP grades.

A degree-seeking or non-degree-seeking graduate student, who, at the end of any semester, fails to meet the criteria to maintain good academic standing will be placed on academic probation. Students on academic probation must re-establish good academic standing within the next two semesters during which they are enrolled at UAB. Failure to re-establish good academic standing at the end of their second term of enrollment while on academic probation will result in academic dismissal from the UAB Graduate School.

The rules stated above govern academic probation and dismissal administered by the Graduate School. Individual graduate programs may establish and administer program probation and dismissal governed by more stringent requirements. In general, a student’s retention in a specific graduate program is contingent on the faculty’s belief that the student is likely to complete the program successfully. If the faculty ceases to hold this belief at any point, the student may be dismissed from the program. It is a graduate student’s responsibility to be aware of and abide by program academic standing requirements in addition to the general academic standing policy in the Graduate School. Program probation and dismissal policies preempt the Graduate School policies.

Repeated Courses

Graduate students may repeat a course one (1) time in an effort to improve grades and/or to improve understanding of the course content only with the permission of the graduate program. All courses taken and all grades earned are permanently recorded on the student’s transcript. Both grades will also be calculated in the student’s GPA unless the Grade Replacement policy is applied; however, a student is only able to earn credit hours for the same class one time. Students wishing to repeat a course more than one time should seek approval of both their program director and the Graduate School. Graduate programs may choose to not allow students to repeat courses.

Grade Replacement

A graduate student who repeats a course taken at UAB and earns a better grade the second time may request a grade replacement in which the grade for the first course be excluded from their GPA calculation. The grade replacement policy may be used a maximum of two (2) times, only once for any course, which allows a student to use grade replacement for two different courses. Graduate programs reserve the right to not allow grade replacement or to allow less than the Graduate School’s maximum number of grade replacements. In addition, individual programs may have course repeat and grade replacement policy rules in addition to those of the Graduate School.

If approved, the student’s transcript will show both the original grade and the course repeat grade; however, the first grade will be excluded from the student’s GPA calculation and only the grade points and credit hours earned in the repeated courses will be counted toward degree completion. Once a course grade is replaced, the decision is irrevocable. In accordance with the UAB Academic Honor Code, any course grade of F for academic misconduct supersedes any other grade or notation for that class and therefore is not eligible for grade replacement.

It is the student’s responsibility to notify the Graduate School of their request to apply the grade replacement policy to a repeated course as the process is neither automatic nor guaranteed. The grade replacement policy requires the approval of the graduate program director and the Graduate School. Grade replacement requests must be made prior to application for degree. The grade replacement policy can only be applied to grades earned at UAB and may not be applied after the student has graduated.

The Grade Replacement Request form is available online at http://www.uab.edu/graduate/graduate-school-quicklinks/online-forms.

Graduate GPA Adjustment Policy

Occasionally, graduate students may have a cumulative Graduate GPA below 3.0 as a consequence of previous performance in coursework that is no longer valid, and/or taken as part of a program unrelated to that in which they are currently enrolled. When this occurs, Graduate GPA Adjustment may be appropriate.

Once during a student’s graduate academic career, grades from previously completed UAB courses may be petitioned for removal from the cumulative graduate GPA under the following conditions:

- When courses have expired (5 years for masters and 7 years for doctoral) and they
 1) are not credited towards current degree requirements
 2) were not validated via the Validation of Expired Coursework process or

- When the degree program has changed and previously completed courses are unrelated to the new degree requirements and are not counted towards degree requirements, regardless of the grade earned

When Graduate GPA Adjustment occurs, all previous graduate coursework will be removed from the graduate GPA calculation except in cases where previous coursework was applied toward a successfully completed program.

Coursework will remain on the academic record and UAB transcript, but will not be included in the student’s graduate GPA calculation.

In accordance with the UAB Academic Integrity Code, any course grade of F for academic misconduct supersedes any other grade or notation for that class and therefore is not eligible for inclusion in the Graduate GPA Adjustment Policy.

Graduate programs reserve the right to not allow Graduate GPA Adjustment.

Grade Changes

Final grades for an I (Incomplete) should be submitted no later than the grade submission deadline of the semester after the notation was originally awarded; Incomplete grades not changed by that time will convert to Fs. In general, grades submitted by graduate faculty members are not subject to change by reason of revision of the teacher’s judgment; nor are submitted grades to be revised on the basis of a second trial (e.g., a new examination or additional work undertaken or completed). Grade changes submitted in order to correct an error in computation or transcription must be made within two semesters after the grades were originally submitted. These grade changes must be submitted via BlazerNET and require the faculty member’s statement as to the reason for the change, the approval of the department head, and the approval of the dean of the school in which the course is taught.
Time Limitations

Graduate students are generally expected to complete all degree requirements within 5 years of matriculation for masters and certificates, and 7 years of matriculation for doctoral students. One extension of these time limits can be requested when mitigating circumstances preclude completion of requirements within the time limit. The request for an extension must include a written and signed completion plan outlining the timeline for degree completion. Instructions for preparing a completion plan are available on the Graduate School website at http://www.uab.edu/graduate/graduate-school-quicklinks/online-forms. Time limit extension requests require the approval of the student’s dissertation committee (if applicable) as well as graduate program director and must be presented in writing to the Dean of the Graduate School for consideration and approval. Masters and certificate courses taken more than 5 years before graduation and doctoral courses taken 7 years before graduation will not be applied toward a degree without the approval of the graduate program director and Graduate Dean.

Academic Ethics & Misconduct

Graduate students at UAB have joined a distinguished academic community that is guided by a conviction in the worth of knowledge and its pursuit. By virtue of their membership in this community, they accrue many benefits—among them, access to the ideas and materials of others. Graduate students not only learn from others but also engage in the pursuit of new knowledge and, in some instances, teach or provide service to others. Being a member of an academic community and functioning in multiple roles in the community carries with it certain responsibilities.

As members of an academic community, students, faculty, and administrators share a responsibility to seek truths and communicate them to others. As we pursue knowledge and encourage learning, we acknowledge the need for a free exchange of ideas and recognize the importance of listening to and maintaining respect for the views of others. We must always aspire to learn, apply, and communicate to others the best scholarly standards of the disciplines in which we are involved. High scholarly standards demand high ethical standards.

We must commit to learning and communicating the best ethical standards and their application to our disciplines. In interactions with others, we must demonstrate respect for them as individuals, give credit for significant academic or scholarly assistance, and respect the confidential nature of some exchanges. We must adhere to the highest standards of academic conduct, avoiding those acts of misconduct and dishonesty that undermine the purposes of the academic community.

All UAB students are expected to be familiar with the UAB Academic Integrity Code as well as any conduct codes that are specific to their schools or disciplines. The code represents a commitment to integrity in the academic community and a respect for an individual’s educational endeavors.

Conduct and Complaints

Student Conduct Code

The Student Conduct Code promotes honesty, integrity, accountability, rights and responsibilities expected of students consisted with the core missions of the University of Alabama at Birmingham. This Code describes the standards or behavior for all students, and outlines student's rights, responsibilities, and the campus processes for adjudicating alleged violations. Behavior that violates UAB standards of conduct listed within the Student Conduct Code and elsewhere will be subject to disciplinary action through the appropriate conduct process. Whether it is determined that an individual or group is responsible for the violation(s), either by direct involvement or by condoning, encouraging, or covering up the violation, appropriate response will occur with respect to the individual(s) and/or group involved.

Academic Integrity Code

The University of Alabama at Birmingham expects all members of its academic community to function according to the highest ethical and professional standards. Students, faculty, and the administration of the institution must be involved to ensure this quality of academic conduct. The purpose of the Academic Integrity Code is to support our academic mission and to maintain and promote academic integrity. All students in attendance at UAB are expected to pursue all academic endeavors with integrity, honor, and professionalism and to observe standards of conduct appropriate to a community of scholars.

To view the full Academic Integrity Code policy [here](http://www.uab.edu/graduate/graduate-school-quicklinks/online-forms).

Student Complaints

Academic Matters

Judgments on academic matters are most appropriately made by individuals with expertise in the particular academic discipline involved. For this reason, complaints by students on academic matters are the responsibility of the department and school involved. Normally, such complaints can be resolved quickly through discussion with the faculty directly involved. In rare situations where such resolution does not occur, the student should contact the chair of the appropriate academic department to file a formal grievance. For programs where no department chair is available, the grievance should contact the school’s Associate Dean.

The student’s grievance should be submitted in writing and accompanied by any appropriate documentation. Grievances should be submitted at the earliest possible time. Consideration will not be given to any grievance submitted later than the end of the term immediately following the term in which the matter in question arose. The department should acknowledge the date the grievance is received and provide notice to the student of when an answer may be expected. It is the responsibility of the department chair to provide an answer to the student within 10 working days. If the matter cannot be settled within the department, the student has 10 working days from the date the department’s response is received to appeal to the dean of the school in which the department is located. The dean should acknowledge receipt of the student’s appeal and inform the student of the course of action within 10 working days of the date the appeal is received in the dean’s office.

At the dean’s discretion, an advisory panel may be appointed to study the disagreement and make a recommendation to the dean. However, it is the responsibility and prerogative of the dean alone to make, in a timely manner, a decision on any academic disputes which have not been resolved at lower levels, and the decision of the dean is final.

Non-Academic Matters

When complaints on non-academic matters cannot be settled by the persons directly involved, a written complaint should be forwarded to the appropriate office. If the administrative officer is unsuccessful in resolving the complaint, it may then be forwarded in writing to the Provost or a
Steps Toward Earning a Master's Degree

1. Admission to master’s degree program
2. Selection of faculty advisor
3. Maintenance of academic good standing
4. Appointment of graduate study committee—Plan I (Thesis) only
5. IRB and/or IACUC approvals obtained and renewed annually
6. Admission to candidacy—at least one semester before graduation is expected—Plan I (Thesis) only
7. Application for Degree—See https://www.uab.edu/graduate/students/current-students/completing-your-degree/earning-your-degree for each semester’s deadline
8. Production of a preliminary version of thesis (Plan I only)
9. Defense of thesis (for Plan I only) (see www.uab.edu/graduate/students/current-students/theses-dissertations/candidacy-deadlines)
10. One PDF of the defended committee-approved thesis (Plan I only)
11. Conferring of degree

Faculty Advisor

Immediately after a degree-seeking student enters the UAB Graduate School, a member of the faculty of the graduate program to which the student has been admitted should be assigned to serve as the student’s advisor. The assignment may be a temporary arrangement. The student and the advisor should confer about courses and any special work to be taken on the basis of the student’s previous experience and the requirements of the graduate program.

Plan I or Plan II

The Graduate School recognizes two principal paths, known as Plan I and Plan II, that lead to the master’s degree. Where both Plan I and Plan II are available within the same graduate program, an early and meaningful choice should be made by the student, in close consultation with the student’s advisor. A change in choice of plans requires the approval of the program director.

Plan I requires the completion, in good academic standing, of at least 24 semester hours of appropriate graduate work and 6 semester hours of thesis research for a total of at least 30 semester hours, with the presentation of an acceptable thesis embodying the results of original research work.

Plan II may not require research and does not require a formal thesis. A minimum of 30 semester hours of appropriate graduate work must be completed in good academic standing. Although thesis research is not required as part of a Plan II course of study, the student is often expected to gain insight into the techniques of problem posing and problem solving and to use these insights to prepare a written report.

Graduate Thesis Committee

Traditionally, graduate study is highly flexible and individualized. A specific plan of study should be developed as soon as possible upon matriculation. Graduate thesis committees, often chaired by the student’s advisor, are appointed to guide the student toward their degree. Some graduate programs do not use a graduate thesis committee for Plan II students, particularly when flexibility in the course of study is limited by accreditation and other external constraints. Graduate thesis committees should consist of at least three Graduate Faculty members, each of whom must have credentials equal to or exceeding that of the degree that the student is pursuing, must have been approved by the Graduate School Dean for Graduate Faculty status, and should be able to contribute some relevant insight and expertise to guide the student. In addition, one committee member should be from outside the student’s graduate specialization. Graduate thesis committees cannot be comprised of faculty who are related to each other, the student, or otherwise fall under the Family or Household Member designation as defined in UAB’s policy on nepotism. Exceptions to this policy must be requested by the student and approved by the Graduate School Dean.

Recommendations for graduate thesis committee membership are submitted by the advisor and the student to the graduate program director, who subsequently submits these recommendations to the Graduate School Dean. Changes to a student’s committee must be submitted on the Request to Change Graduate Study Committee form available at www.uab.edu/graduate/online-forms. Graduate faculty appointees and instructions for requesting new appointments are available at www.uab.edu/graduate/gradfaculty. New Graduate Faculty appointments should be requested by the department and approved by the Graduate School Dean prior to being listed on the recommendation form to serve as a member of a student’s committee. Graduate Faculty status definitions are available at www.uab.edu/graduate/definitions-of-graduate-faculty-categories.

Minimum Course Credit Requirements

The Graduate School requires a minimum of 30 semester hours for students in masters programs. Program requirements for course work may exceed the Graduate School minimum but may not be less than the Graduate School minimum.

- Plan I requires the completion of at least 24 semester hours of appropriate graduate work, of which a maximum of 9 hours of non-thesis research (i.e. 698) can be applied, and 6 semester hours of thesis research (i.e. 699) over a minimum of one semester in candidacy.
- Plan II requires the completion of 30 semester hours of core graduate coursework directly related to the discipline. A maximum of 9 semester hours of non-thesis research (i.e. 698) may be applied.

Minimum Grade Point Average (GPA) Requirements

The Graduate School requires that students be in good academic standing in order to graduate. All masters students must have a 3.0 graduate-level GPA, as well as a 3.0 in their individual program in order to graduate. Program GPA requirements for course work may exceed the Graduate School minimum but may not be less than the Graduate School minimum.
Additional Program Requirements

In consultation with the faculty, the director of each graduate program will specify any additional requirements, such as a reading knowledge of a foreign language or a working knowledge of statistics, which are considered essential to mastery of the academic discipline. Such requirements become conditions for the completion of the degree. The program may also adopt a system of examinations that the student must pass at various points in the program.

Admission Into Degree Candidacy (Plan I Only)

Admission to candidacy is a formal step acknowledging that the student has been performing well and is likely to complete the degree. Candidacy admission is recommended by the student’s graduate study committee and approved by the graduate program director and the Graduate School Dean. For Plan I students, admission should occur when the student has obtained an adequate background and has provided the committee with an acceptable proposal for thesis research. In addition, the Vice President for Research requires that all students engaging in research complete the appropriate Responsible Conduct in Research requirements which can be found here. Responsible Conduct in Research requirements must be completed within four (4) years prior to applying for candidacy as they expire after that time. Students do not have to complete all coursework prior to admission to candidacy if the graduate study committee certifies that the student has an adequate foundation in the discipline. Students must be in good academic standing to be eligible for admission to candidacy, and admission must take place no later than one semester before the expected graduation. Before being admitted to candidacy, students must complete a Research Compliance Verification form and attach photocopies of the appropriate assurance letters and/or forms. Students must be admitted to candidacy before they can register for thesis research hours (i.e., 699). Applications for Admission to Candidacy are available online at www.uab.edu/graduate/forms.

IRB and IACUC Approval

In general, if a student’s research involves human or animal subjects, approval from the IRB or IACUC must be documented before admission to candidacy can be approved. Certain programs may have national accrediting or curricular requirements that necessitate admission into candidacy prior to seeking IRB/IACUC approval. For these students, IRB or IACUC approval must be submitted in order to register in a subsequent semester. IRB/IACUC approvals must be kept current until the research is completed. For ways in which students can be added to a protocol, refer to the Tip Sheet for Students Involved in Research Involving Human or Animal Subjects. The IACUC form must display the appropriate research protocol number.

Application for Degree/Certificate

Candidates for a master’s degree must notify their program and the Graduate School of their intent to graduate by submitting the Application for Degree/Certificate by the appropriate deadline. The application is accessible through BlazerNET by clicking Links/Forms and selecting Apply for Graduate Degree/Certificate. Note that some programs may have an earlier submission deadline than the Graduate School so students should check their department/program website for more information. Upon receipt of the Application for Degree/Certificate, both the graduate program and the Graduate School will audit the students’ requirements to ensure the degree can be awarded. UAB’s Graduation Planning System (GPS) contains a personalized degree audit that includes all courses required to earn the degree and will display completed, in-progress, and outstanding requirements. GPS is accessible through BlazerNET by clicking the GPS button in the menu on the right side of the page.

Master’s students must be registered for at least one (1) hour of 699 research credit during the semester in which degree requirements are completed. If degree candidates are covered by the student health insurance policy, hold an assistantship, or have student loans, it may be necessary to register for a prescribed minimum number of credit hours to retain these benefits. Students should check with the appropriate office(s) if retention of these benefits is a concern.

Thesis

The thesis required under Plan I should present the results of the candidate’s original research and the interpretation of those results. The document should also demonstrate the candidate’s acquaintance with the literature of the field and the proper selection and execution of research methodology.

The final approved version of the thesis must be submitted as a single PDF for final review no later than 2 weeks (10 business days) following the public defense. Master’s students must submit the Approval Form, signed by each committee member and the program director. Signatures of committee members and program directors on the approval form indicate their assurance that they have examined the document and have found that it is of professional quality from all standpoints, including writing quality, technical correctness, and professional competency, and that the document conforms to acceptable standards of scholarly presentation. The Graduate School is then responsible for ensuring that the final version of the thesis meets the physical standards required of a permanent, published document and for adherence to the requirements stated in the UAB Format Manual.

If, in the opinion of more than one member of the thesis committee, the student has failed the thesis defense, there is no consensus to pass. The chair of the committee shall notify the student in writing that the thesis fails to meet the requirements of the program and will share the reason(s) for failure. If the student resubmits or submits a new thesis for consideration by their graduate program, at least two members of the new examining committee shall be drawn from the original committee. If the modified or new thesis also fails to meet the requirements of the program, the student shall be dismissed from the graduate program.

If only one of the three committee members dissent, that individual must submit a letter outlining the reasons for their dissent to the student’s advisor. The advisor and student may then prepare a rebuttal statement that is submitted, along with the letter of dissent, to the advisory or executive committee of the program for review. The advisory committee can then decide to accept or reject the rebuttal statement. If the rebuttal is accepted, the student is passed on their thesis defense. If the rebuttal is rejected, the advisory committee can recommend to the student or advisor potential steps necessary to remediate the thesis and potentially also the work therein, or the committee can recommend that the student be dismissed from the program.

Thesis Defense

Under Plan I, the final examination should take the form of a presentation and public defense of the thesis, followed by an examination of the candidate’s comprehensive knowledge of the field. The time, date, and location of this examination is reported to the Graduate School via the
online Request for Thesis or Dissertation Approval forms and must be (submitted at least 10 days before the public defense). The meeting must be appropriately announced on campus, must be open to all interested parties, and must take place before the posted semester Thesis or Dissertation defense deadline.

The final examination for Plan II students should take the form of a comprehensive survey of the candidate’s activities in the graduate program. A Plan II final examination is not required in some graduate programs.

Commencement

UAB holds a semestery commencement ceremony at the conclusion of each Fall, Spring, and Summer semester. Students may participate in the ceremony that corresponds to their graduation term. Requests to attend a ceremony outside of a student’s graduation term must be made in writing to the Graduate School Dean and will be reviewed on a case by case basis by the Graduate School Dean. Commencement information is available here and students may indicate their attendance in BlazerNET.

Award of Degree

Upon approval by the Graduate School Dean and payment of any outstanding financial obligations to the university, the President confers students’ degrees by authority of the Board of Trustees. UAB does not determine the official degree type awarded as this is governed by the Alabama Commission on Higher Education and the Board of Trustees after receiving a program proposal. Students’ majors will be reflected on their transcript.

Steps Toward Earning a Doctoral Degree

1. Admission to doctoral degree program
2. Selection of faculty advisor
3. Maintenance of good academic standing
4. Appointment of graduate study committee
5. Passing of comprehensive examination
6. IRB and/or IACUC approvals obtained and renewed annually
7. Admission to candidacy— no later than two semesters before expected graduation
8. Application for degree— by the posted deadline available at https://www.uab.edu/graduate/students/current-students/completing-your-degree/earning-your-degree
9. Draft of preliminary version of dissertation
10. Review of the draft by committee members
11. Revisions made to dissertation in response to committee feedback
12. Defense of dissertation (see http://www.uab.edu/graduate/deadline-dates)
13. A PDF of the defended committee-approved dissertation to UAB/ProQuest submission web site —no later than 2 weeks (10 business days) following the published deadline date for the public defense
14. Conferring of the doctoral degree

Doctoral Degree Overview

The doctoral degree is granted in recognition of scholarly proficiency and distinctive achievement in a specific field of an academic discipline. The first component is demonstrated by successful completion of advanced coursework of both a didactic and an unstructured nature as well as by adequate performance on the comprehensive examination. Traditionally, the student demonstrates the second component by independently performing original research. In certain doctoral programs, performing a major project may be acceptable even though it may not consist of traditional research. However, in all programs, with the exception of DPT and DNP, a dissertation presenting the results of the student’s independent study is required.

The Graduate School also recognizes professional doctorates awarded in preparation for the autonomous practice of a profession. Professional doctorates are accredited programs of study usually designed to prepare students for the delivery of clinical services or to assume specific types of administrative responsibilities. Students in professional doctorate programs must demonstrate competence in clinical practice and/or scholarship but are not required to conduct and defend original independent research. In lieu of a dissertation, students in programs designated as professional doctorate programs are required to demonstrate that they are capable of evaluating existing research, applying it to their professional practice, and expanding the body of knowledge on which their professional practice is based. This requirement is often met by the design and completion of a research or scholarly project submitted in writing and presented formally before the faculty in the program.

Faculty Advisor

Immediately after a degree-seeking student enters the UAB Graduate School, a member of the faculty of the graduate program to which the student has been admitted should be assigned to serve as the student’s advisor. The assignment may be a temporary arrangement. The student and the advisor should confer about courses and any special work to be taken on the basis of the student’s previous experience and the requirements of the graduate program.

Graduate Thesis Committee

A graduate thesis committee should be formed as soon as possible upon matriculation to guide the student in a program of courses, seminars, and independent study designed to meet the student’s needs and to satisfy program and Graduate School requirements. Doctoral graduate thesis committees should consist of at least five graduate faculty members, each of whom should be able to contribute some relevant insight and expertise to guide the student and must have credential equal to or exceeding that of the degree the student is pursuing. In addition, one or two committee member(s) should be from outside the student’s graduate specialization. In all cases, at least three of the committee must be comprised of UAB Graduate Faculty members. Graduate thesis committees cannot be comprised of faculty who are related to each other, the student, or otherwise fall under the Family or Household Member designation as defined in UAB’s policy on nepotism. Exceptions to this policy must be requested by the student and approved by the Graduate School Dean.

Committee members who are not already UAB Graduate Faculty must be granted Ad Hoc Graduate Faculty status. Recommendations for graduate thesis committee composition are submitted by the advisor and the student to the program director, who subsequently submits these recommendations to the Graduate School Dean.

Changes to a student’s committee must be submitted on the Request to Change Graduate Study Committee form available at http://www.uab.edu/graduate/online-forms. Graduate faculty appointments and instructions for requesting new appointments are available at http://
www.uab.edu/graduate/gradfaclist. New Graduate Faculty appointments should be requested by the department and approved by the Graduate School Dean prior to any faculty member being recommended for placement on a student’s committee. Graduate Faculty status definitions are available at http://www.uab.edu/graduate/definitions-of-graduate-faculty-categories.

Minimum Course Credit Requirements

The Graduate School has minimum course credit requirements for students in doctoral programs. Program requirements for course work may exceed the Graduate School minimum but may not be less than the Graduate School minimum.

If entering with a baccalaureate degree, a student is required to earn a minimum of 72 credit hours comprised of the following:

1. Completion of 48 semester hours of coursework prior to candidacy:
 • A minimum of 22 hours of core coursework directly related to the discipline
 • No more than 16 hours of non-dissertation research (i.e. 798) can be counted
 • No more than 10 hours of labs, seminars, or GRD and CIRTL courses can be counted

2. Completion of 24 semester hours of research-based work over a minimum of two semesters in candidacy which can be designated as either:
 • A minimum of 24 semester hours in 799 dissertation research OR
 • A minimum of 12 semester hours in 799 dissertation research AND, either during or before candidacy, 12 semester hours in other appropriate research-based coursework which has been approved by the graduate student’s program

If entering with a previously earned master’s degree appropriate to the doctoral degree field, a student is required to earn a minimum of 51 credit hours comprised of the following. These requirements also apply to students with previously earned M.S., D.V.M., D.M.D., D.D.S., etc.:

1. Completion of 27 semester hours of coursework prior to candidacy:
 • A minimum of 15 hours of core coursework directly related to the discipline
 • No more than 6 hours of non-dissertation research (i.e. 798) can be counted
 • No more than 6 hours of labs, seminars, or GRD and CIRTL courses can be counted

2. Completion of 24 semester hours of research-based work over a minimum of two semesters in candidacy which can be designated as either:
 • A minimum of 24 semester hours in 799 dissertation research OR
 • A minimum of 12 semester hours in 799 dissertation research AND, either during or before candidacy, 12 semester hours in other appropriate research-based coursework which has been approved by the graduate student’s program

Up to 12 credits of course work that have not been applied toward meeting the requirements for an earned degree taken at UAB or other institutions may be used to satisfy these course credit requirements upon approval of the graduate program director and the Graduate School Dean. Courses which have been previously applied toward meeting the requirements of another degree are not eligible to satisfy minimum course credit requirements. The student’s graduate department or program should provide a course planning curriculum worksheet along with the student’s application for degree. This worksheet should detail the courses taken which are intended to be used toward meeting degree requirements.

Residence Requirement

The nature of doctoral study requires close contact between the student and the faculty of the graduate program, and the individual investigation OR other special work leading to the dissertation must be performed directly under the guidance and supervision of a full member of the UAB graduate faculty. The Graduate School requires doctoral students to enroll for a minimum of nine semesters in their doctoral degree program at UAB. Individual graduate programs may require a longer period of residence. The Graduate School does not require these nine semesters to be consecutive (i.e. fall, spring, and summer of each year); however, many programs choose to do so and as such, students are responsible for being aware of program-specific requirements.

Minimum Grade Point Average (GPA) Requirements

The Graduate School requires that students be in good academic standing in order to graduate. All masters students must have a 3.0 graduate-level GPA, as well as a 3.0 in their individual program in order to graduate. Program GPA requirements for course work may exceed the Graduate School minimum but may not be less than the Graduate School minimum.

Additional Program Requirements

In consultation with the faculty, the director of each graduate program will specify any additional requirements, such as a reading knowledge of a foreign language or a working knowledge of statistics, that are considered essential to mastery of the academic discipline. Such requirements become conditions for the completion of the degree.

Comprehensive Examination

The scholarly proficiency of a doctoral student in the chosen field of study must be evaluated by comprehensive examination. The conduct of these examinations is the responsibility of the graduate program in which the student is enrolled and may consist of either individual examinations in several appropriate areas or a single combined examination. When both written and oral examinations are given, the written examination should precede the oral so that there is an opportunity for the student to clarify any misunderstanding of the written examination questions. Comprehensive exams should be administered no later than the end of the third year of the student’s program.

Admission Into Degree Candidacy

Admission to candidacy is a formal and important step forward in a student’s pursuit of the doctoral degree. By approving admission to candidacy, the graduate student’s committee indicates its confidence that the student is capable of completing the proposed research project and the doctoral program. When the student has passed their comprehensive examination, satisfied any program requirements for foreign language proficiency or mastered special research tools, and presented to the graduate study committee an acceptable proposal for dissertation research or special study, the committee will recommend to the Graduate School Dean that the student be admitted to degree candidacy. In addition, the Vice President for Research requires that all students engaging in research complete the applicable Responsible Conduct in Research requirements which can be found here. Responsible Conduct
in Research requirements, including successful completion of GRD 717, must be completed within four (4) years prior to applying for candidacy as they expire after that time. A student must be in good academic standing to be admitted to candidacy and admission to candidacy must take place at least two semesters before the expected completion of the doctoral program. Students must be admitted to candidacy before they can register for dissertation research hours (i.e., 799).

IRB and IACUC Approval

If the research involves human or animal subjects, approval from IRB or IACUC must be documented before admission to candidacy can be approved and IRB/IACUC approvals must be kept current until the research is completed. For ways in which students can be added to a protocol, refer to the Tip Sheet for Students Involved in Research Involving Human or Animal Subjects. The IACUC form must display the appropriate research protocol number.

Application for Degree/Certificate

Candidates for a doctoral degree must notify their program and the Graduate School of their intent to graduate by submitting the Application for Degree/Certificate by the appropriate deadline. The application is accessible through BlazerNET by clicking Links/Forms and selecting Apply for Graduate Degree/Certificate. Note that some programs may have an earlier submission deadline than the Graduate School so students should check their department/program website for more information. Upon receipt of the Application for Degree/Certificate, both the graduate program and the Graduate School will audit the students’ requirements to ensure the degree can be awarded. UAB’s Graduation Planning System (GPS) contains a personalized degree audit that includes all courses required to earn the degree and will display completed, in-progress, and outstanding requirements. GPS is accessible through BlazerNET by clicking the GPS button in the menu on the right side of the page.

Doctoral students must be registered for at least one (1) hour of 799 dissertation research credit during the semester in which degree requirements are completed. If degree candidates are covered by the student health insurance policy, hold an assistantship, or have student loans, it may be necessary to register for a prescribed minimum number of credit hours to retain these benefits. Students should check with the appropriate office(s) if retention of these benefits is a concern.

Dissertation

The results of a candidate’s individual inquiry must be presented in a written dissertation comprising a genuine contribution to knowledge in the particular academic field. The document should also demonstrate the candidate’s acquaintance with the literature of the field and the proper selection and execution of research methodology.

Signatures of committee members and program directors on a student’s approval forms indicate their assurance that they have examined the document and have found that it is of professional quality from all standpoints, including writing quality, technical correctness, and professional competency, and that the document conforms to acceptable standards of scholarly presentation. The Graduate School is then responsible for ensuring that the final version of the dissertation meets the physical standards required of a permanent, published document and for adherence to the requirements stated in the UAB Format Manual which is available online at http://www.uab.edu/graduate/images/acrobat/forms/theses/FormatManual.pdf.

The final committee-approved dissertation must be submitted for final review as a single PDF no later than 2 weeks (10 business days) following the published deadline date for the public defense. One copy of the signed approval form is submitted to the Graduate School office. Additional information concerning completing graduation requirements and the dissertation submission and publication process is available online at http://www.uab.edu/graduate/theses-and-dissertations-at-uab. The UAB Publication Agreement, Survey of Earned Doctorates, and Graduate School Exit Survey must also be submitted.

Dissertation Defense

The dissertation defense should take the form of a presentation and defense of the dissertation work, which may include an examination of the candidate’s comprehensive knowledge of the field. The time, date, and location of this examination is reported to the Graduate School via the online Request for Thesis or Dissertation Approval forms and must be submitted at least 10 days before the public defense. The meeting must be open to all interested parties, publicized on the UAB campus, and must take place before the posted semester thesis and dissertation defense deadline. In addition, candidates must be registered during the semester in which the final examination is taken.

If, in the opinion of two or more of the five members of the dissertation committee, the student has failed the dissertation defense, there is no consensus to pass. The chair of the committee shall notify the student in writing that the dissertation fails to meet the requirements of the program and will share the reason(s) for failure. If the student resubmits or submits a revised dissertation for consideration by their graduate program, at least three members of the new examining committee shall be drawn from the original committee. If the revised dissertation also fails to meet the requirements of the program, the student shall be dismissed from the graduate program.

In the event that only one of the five committee members dissent, that individual must submit a letter outlining the reason(s) for their dissent to the student’s advisor. The advisor and student may then prepare a rebuttal statement that is submitted, along with the letter of dissent, to the advisory or executive committee of the program for review. The advisory committee can then decide to accept or reject the rebuttal statement. If the rebuttal is accepted, the student is passed on their dissertation defense. If the rebuttal is rejected, the advisory committee can recommend to the student or advisor potential steps necessary to remediate the dissertation and potentially also the work therein, or the committee can recommend that the student be dismissed from the program.

Graduate Student Exit Survey

Doctoral graduates are required to take the Graduate School Exit Survey as part of graduation requirements. Collecting important information and feedback from graduate students will help to improve the quality of graduate program offerings. After submission of the revised version of a student’s final dissertation, they will be contacted via email and provided the secure link to take the electronic survey.

Commencement

UAB holds a semestery commencement ceremony at the conclusion of each Fall, Spring, and Summer semester. Students may participate in the ceremony that corresponds to their graduation term. Requests to attend a ceremony outside of a student’s graduation term must be made in writing to the Graduate School, and will be reviewed on a case by
case basis by the Graduate School Dean. Commencement information is available here and students may indicate their attendance in BlazerNET.

Award of Degree

Upon approval by the Graduate School Dean and payment of any outstanding financial obligations to the university, the President confers students’ degrees by authority of the Board of Trustees. UAB does not determine the official degree type awarded as this is governed by the Alabama Commission on Higher Education and the Board of Trustees after receiving a program proposal. Students’ majors will be reflected on their transcript.

Graduate Level Postbaccalaureate or Post-Master’s Certificates

Several UAB graduate programs offer Certificates which do not involve conferral of either a Masters or Doctoral degree. Earning a certificate usually involves taking a specific set of graduate level courses which is designed to provide the Certificate holder expertise in a specialty area of a profession or practice. Certificate programs often consist of 12 or more credits of course work. In some cases the nature of the course work is specified by skill requirements, or may be mandated by State level requirements, for example, by the Alabama State Department of Education.

Certificate requirements vary by discipline. Therefore students should determine what the requirements are of the Certificate program in which they are interested by communicating directly with the program director of the program in which the Certificate is offered. In general, financial aid is not available for certificate programs.

Application for Degree/Certificate

Candidates for a graduate-level certificate must notify their program and the Graduate School of their intent to graduate by submitting the Application for Degree/Certificate by the appropriate deadline. The application is accessible through BlazerNET by clicking Links/Forms and selecting Apply for Graduate Degree/Certificate. Note that some programs may have an earlier submission deadline than the Graduate School so students should check their department/program website for more information.

Students pursuing state teacher certification do not need to complete this process.

Upon receipt of the Application for Degree/Certificate, both the graduate program and the Graduate School will audit the students’ requirements to ensure the certificate can be awarded. UAB’s Graduation Planning System (GPS) contains a personalized audit which includes all courses required to earn the certificate and will display completed, in-progress, and outstanding requirements. GPS is accessible through BlazerNET by clicking the GPS button in the menu on the right side of the page.

Financial Information

Tuition and Fees

Graduate Courses and Fees

The Detailed Tuition and Fee Schedule is available online here. Students who do not make the initial payment of 100 percent of the total account balance by the first payment deadline will automatically be enrolled in the Blazer Flex Plan which will include a $25 enrollment fee. The Blazer Flex Plan allows students to make payments in three equal installments. Payment deadline dates are available on the Academic Calendar and at here.

Penalties

Students who fail to pay by the deadline are subject to substantial late fees. Students with delinquent accounts will not be allowed to register at UAB, and transcript requests will not be honored until all accounts are paid in full. The list of penalties is available online at here.

How to Pay

Payments can be made via the web with a Blazer ID and Password at www.uab.edu/blazernet. Payments can also be made in Student Accounting Services located on the ground level of the Lister Hill Library. All fees are due by the published deadline, as indicated on the UAB Academic Calendar at http://www.uab.edu/academiccalendar. For tuition questions please call Student Accounting Services at (205) 934-3570.

Contact

Student Accounting Services
1700 University Blvd.
Lister Hill Library G10
Birmingham, AL 35294-0013
(205) 934-3570

Assistantships and Fellowships

In many programs, graduate student awards are available in limited number in the form of assistantships, which require service to the department, or fellowships, which do not require service. The Graduate School also assists students in preparation of applications for extramural fellowships. The university's Financial Aid Office administers traditional loan, grant, and work-study programs, and students in certain graduate programs may participate in UAB’s Cooperative Education Program, combining their studies with paid work experiences. Only degree-seeking graduate students who are registered for at least 5 hours of graduate coursework are eligible for financial aid. For information concerning these programs, contact the Office of Student Financial Aid at (205) 934-8223, or via email at finaid@uab.edu. Students can also visit the office in the Lister Hill Library G20, 1700 University Blvd or view information online at here.
Veterans
Enrolled veterans and dependents who are eligible for federal educational benefits through the Department of Veterans Affairs should apply online at the VA website, www.GI BILL.va.gov. UAB-VA is responsible for verifying enrollment and semester hours and forwarding the information to the Regional VA office. For more information about federal educational benefits, contact UAB-VA in the Office of Veteran Recruitment and Student Services at (205) 934-8804 or via email at veteransaffairs@uab.edu. Students can also visit the office in the Hill Student Center, Room 313, 1400 University Boulevard.

Withdrawing from Courses
To avoid academic penalty, a student must withdraw from a course by the withdrawal deadline shown in the academic calendar and the UAB Class Schedule and receive a grade of W (withdrawn). Failure to attend class does not constitute a formal drop or withdrawal.

For financial aid purposes, the date of last class attendance will be the official date of withdrawal unless otherwise documented. Note that individual schools may have withdrawal rules in addition to the above.

Withdrawal from a course while a possible violation of the Academic Honor Code is under review will not preclude the assignment of a course grade that appropriately reflects the student’s performance prior to withdrawal if the violation is substantiated.

Contact
Graduate School
1700 University Boulevard
G03 Lister Hill Library
Birmingham, AL 35294-0013
(205) 934-8227

Financial Aid to Students
Students should apply for financial aid if they need assistance in paying for the cost of education. Students applying for financial aid are considered for all programs for which they are eligible. Assistance generally takes the form of a combination of grant, loan, and employment. The amount of the award is based on the financial need of the student, taking into consideration the student’s total expenses and the family’s financial circumstances. A nationally recognized method of analysis approved by the federal government is used to determine the family’s ability to pay toward the cost of education.

Applying for Financial Aid
Students are encouraged to complete the Free Application for Federal Student Aid (FAFSA) available online at http://fafsa.gov/ in early October. The earliest students can submit the FAFSA is October 1. Instructions and UAB forms are available online at https://www.uab.edu/students/paying-for-college. Since some of the aid programs have limited funding, students are encouraged to submit all required forms to the financial aid office by December 1 for financial aid for the following fall to ensure they receive aid from all programs for which they are eligible. In order to meet the tuition and fee deadlines, completed applications should be submitted no later than 30 days prior to the tuition due date. Students must reapply for financial aid each academic year.

Since procedures and rules are subject to change, students interested in applying for financial aid can receive further information online at https://www.uab.edu/financialaid.

Contact
Student Financial Aid
finaid@uab.edu
(205)934-8223

Mailing address
LHL G20
1720 2nd Ave South
Birmingham, AL 35294

Financial Aid Programs
Federal College Work-Study Program
Eligible graduate students may work part time and earn money to help pay their educational expenses while attending school. On-campus and off-campus jobs are available in areas related to the student’s educational interests.

Federal Direct Unsubsidized Loan
This is a non-need-based loan with a current fixed rate of 4.30%. Interest must be paid while the student is in school or must be capitalized as agreed upon by the borrower and lender. Repayment of the principal and any capitalized interest begins when the student’s enrollment status drops below half time. The maximum annual loan amount is $20,500.

Federal Direct PLUS Loan for Graduate and Professional Students
This is a non-need-based loan with a current fixed rate of 5.30%. Annual loan limits are the cost of living minus other aid.

Student and Faculty Educational Opportunities
Research participation and science education programs administered by Oak Ridge Institute for Science and Education (ORISE).

UAB Financial Information
UAB Graduate Family Assistance Scholarship
Scholarship funds will be provided to graduate students who have family-related financial commitments that would, if not resolved, prevent them from enrolling in a degree-granting graduate program. ONLY INCOMING STUDENTS WHO ARE ALREADY ACCEPTED INTO A RESEARCH BASED DOCTORAL PROGRAM ARE ELIGIBLE TO APPLY.

Comprehensive Minority Faculty and Student Development Program (CMFSDP) Fellowships
Graduate Fellowships are available to qualified African American students, newly enrolled at UAB and seeking to earn a Ph.D. degree.

License to Learn Scholarship
UAB National Alumni Society License To Learn Scholarships are designed to provide additional financial aid to currently enrolled, undergraduate and graduate level UAB students.

Joseph F. Volker Alumni Scholarship
In an effort to recognize the accomplishments of currently enrolled UAB students, the UAB National Alumni Society established a scholarship award program named in honor of the late Dr. Joseph F. Volker.

Distinguished Alumni Scholarship
Distinguished Alumni Scholarship The Student Relations Committee established a new scholarship endowment in 1994 to honor the Society’s Distinguished Alumni Award recipients.

Dr. Charles A. McCallum International Scholarship
This scholarship is awarded annually to recognize UAB National Alumni Society international chapters located in Thailand and Taiwan, and to honor Dr. Charles “Scotty” McCallum, UAB president emeritus, who helped to establish these two chapters.

BBVA Compass Mortgage Graduate Student Scholarship
For graduate students.

Other Sources of Financial Aid

Funding Links
- [Revised PHS 398 and PHS 2590 Forms](#)
- [Community of Science](#)
- [Candid - The Foundation Center](#)
- [National Science Foundation](#)
- [NSF Graduate Research Fellowship Program](#)
- [GrantsNet](#)
- [ScienceCareers](#)
- [Academic Position Network](#)
- [Employment Resources from the Alabama Department of Rehabilitation](#)
- [Guidance on job searching and lists of available state jobs](#)

Academic Common Market
The Academic Common Market is an interstate agreement among selected southern states for sharing academic programs at both the baccalaureate and graduate levels. Participating states are able to make arrangements for their residents who qualify for admission to enroll in specific programs in other states on an in-state tuition basis. Participating states are Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.

If you are not an Alabama resident and you wish to enroll at UAB as an Academic Common Market student, you must be accepted for admission into a UAB program to which your state has obtained access for its residents through the Academic Common Market coordinator in your home state.

Certification of eligibility must be received by the Graduate School before the first day of class in the initial semester of registration to obtain in-state tuition status for the entire program; otherwise, in-state tuition status will be awarded beginning with the semester following receipt of this certification. Please note that if a student who enrolls at UAB as an Academic Common Market student changes majors, the student will revert to paying out-of-state tuition.

To obtain the name and address of a state coordinator, visit the Academic Common Market website (www.sreb.org/page/1304/).

Graduate Assistantships and Traineeships (Fellowships)
Graduate Assistantships and Traineeships (Fellowships) provide support from research grants or other institutional funds for students engaged in activities that support the research, teaching, and service missions of the university. The fundamental responsibility of Graduate Assistants is to work closely with their faculty mentors in carrying out research, teaching, or service activities, while at the same time making good progress toward the completion of the degree program. If a student’s assistantship responsibilities and academic program are properly coordinated, these responsibilities will be compatible. The assistant and mentor should articulate their goals early in the term of appointment and work together to achieve them. If problems arise in the assistantship assignment, the Graduate Assistant should seek help first from the faculty mentor. If problems cannot be resolved, the student should consult their program director.

Qualifying for an Assistantship/Traineeship
Students who are receiving a Graduate Assistantship or Traineeship are required to be enrolled according to the following criteria:

- at least 9 credit hours in the fall and spring terms, and
- registration for credit hours in the summer at a minimum level established by their academic School or College. Students should consult with their program director before registering for summer credit hours.

Students enrolled in programs that traditionally only offer course work and research opportunities during fall and spring terms are considered to be full-time even if they do not enroll during the summer term.

Graduate Assistant and Trainee Leave
Graduate assistants and trainees are not entitled to paid leave. Any schedule time away must be coordinated between the student and the...
Student Life

Graduate students at UAB have many opportunities to become involved in the life of the university. Information about additional groups, both on and off campus, can be found in the UAB Student Handbook, Direction at http://www.uab.edu/handbook/.

UAB Student Experience would like to invite you to complete your UAB experience by becoming involved in the many activities and organizations available to you as a student. Events range from relaxing at free movies or comedy shows, involvement in student governance, cheering on the Blazers, writing for the Kaleidoscope student newspaper, rappelling down a cliff, hiking the Grand Canyon and so much more. Each semester brings new events, new organizations, opportunities to make friends, get physically fit, learn, socialize, relax, and have a good time becoming a part of the Blazer community! We want you to get involved!!

This section of the catalog contains an alphabetical list of many of the activities and organizations and activities available to students.

Contact Us:

Department of Student Experience
205-934-4175
studentlife@uab.edu
Physical Address:
Hill Student Center, Suite 401
1400 University Boulevard

Student Involvement & Leadership
205-934-8020
getinvolved@uab.edu
Physical Address:
Hill Student Center, Suite 230
1400 University Boulevard

Student Multicultural & Diversity Programs
205-996-6778
diversity@uab.edu
Hill Student Center, Suite 311
1400 University Boulevard

Student Organizations
205-934-8020
bsync@uab.edu
Hill Student Center, Suite 230
1400 University Boulevard

Black Graduate Student Association

The Black Graduate Student Association (BGSA) was founded in 1993 and is dedicated to the pursuit of academic excellence and social and political awareness with respect to African-Americans at UAB.

The BGSA sponsors social events, pertinent forums dedicated to issues of interest in the African-American community at our Black Lecture Series “Meeting of the Minds,” activism opportunities, and an annual conference. For detailed information about the BGSA, visit the Web site at http://www.uab.edu/bgsa/.

Graduate Student Government

UAB graduate students are represented by the Graduate Student Government (GSG), which works closely with the Graduate School and other offices of the university administration in formulating policies and meeting student needs. All graduate students are automatically members of the GSG, and the GSG Senate is composed of student representatives from the various graduate programs. The GSG provides partial funding for graduate student travel to professional meetings. The organization co-sponsors a variety of services and activities, including the Honors Convocation, Graduate Student Research Days, and Graduate Student Orientation. Information on the Graduate Student Medical Assistance Fund and travel grants may be obtained on the GSG Web site (www.uab.edu/gsg).

Three Minute Thesis

Three Minute Thesis (3MT) is an annual competition in which graduate students present their original research in an open forum. Information regarding participating in UAB's 3MT competition is available at the Graduate School Web site (https://www.uab.edu/graduate/events/3-minute-thesis).

UAB Graduate Career Awareness Trends

The UAB GCAT, previously called the Industry Roundtable, is sponsored by the UAB Graduate School. The GCAT is a student-initiated and student run informal discussion group open to all graduate students and dedicated to fostering a greater awareness of career opportunities outside academia. Its goals are to provide a forum for networking with industry representatives; establish an interface between academia and industry; introduce students to the process of making industry contacts; encourage students to comment, ask questions, and seek advice from non-academics; stimulate students to begin career development early in their educational experience; and provide information to students about career opportunities outside academia. More information regarding the GCAT can be found at http://www.uab.edu/gcat/.

Student Outreach

Student Outreach, a function of the Office of Student Conduct & Outreach, assist students who may be struggling or distressed in some way by linking them to appropriate resources on or off campus. Staff meet with students to identify sources of stress and discuss individualized options to address those factors. The ultimate goal of the office is to help students reduce their stress and increase their support in order to be as successful as possible at UAB. Student Outreach serves as part of the UAB CARE Team (Communicate, Assess, Refer, Educate) to help develop strategies to support students experiencing academic, social, and crisis situations, including mental health concerns.
Student Outreach also coordinates Blazer Kitchen at Hill Student Center, one of the University’s two on campus food pantry locations. Open to any active UAB student, the location provides access to perishable and non-perishable food, school supplies, and personal hygiene items.

Additional information is available by stopping by 303 Hill Student Center, visiting uab.edu/studentoutreach, or calling 205-975-9509.

Title IX

The University of Alabama at Birmingham Division of Student Affairs oversees the University’s compliance with Title IX of the Education Amendments of 1972. The Title IX Office works with students, University administration, departments, faculty, staff, campus police, and other support services to ensure that University policies and programs foster a campus community free of sex discrimination including gender-based assault, harassment, exploitation, dating and domestic violence, stalking as well as discrimination based on sex, sexual orientation, gender identify and gender expression, and related retaliation.

For more information about Title IX, policy, procedures, reporting, protections, resources, and support, please email titleixoffice@uab.edu or visit uab.edu/titleix. Kayse M. Robinson serves as the University’s Title IX Coordinator and can be reached at 405 Hill Student Center, 205-996-1340, or kaseyr@uab.edu.

Student Services & Facilities

This page contains a list of facilities and services available to UAB students. For further information on these and other facilities and activities, contact the Information Desk, located at the Hill Student Center or refer to the UAB student handbook, Direction, at https://www.uab.edu/students/ and on BlazerNET on the Student Resources tab.

University Recreation

UAB University Recreation (URec) provides fitness, wellness, and recreational opportunities for the UAB community and beyond. URec makes this possible by offering a variety of premier programs, facilities, and services, all in the heart of UAB’s campus!

COVID-19 Re-entry Disclaimer

Please note that UAB URec is currently operating under modified operations and to view the most up to date information on what is currently offered, visit the UAB URec Website.

Campus Recreation Center

The 152,000 square foot facility covers three floors housing: four basketball/volleyball courts; four racquetball courts (one of which can be converted to squash and three for walleyball); four aerobics studios (one dedicated to F45 - Functional Training); Studio V - functional fitness area; 18,000 square feet of weight and cardio-fitness areas and iron cave; a game room; an aquatics center with both lap and leisure components; a multi-purpose court used for indoor soccer, floor hockey, and badminton; an indoor track; and a climbing and bouldering wall.

Patrons can take advantage of the fitness and wellness services here at the Campus Recreation Center, which offer personal fitness assessments, massage therapy, and personal training. In addition, we have a Pro Shop in house. So if you forget something we've got you covered, along with the PowerZone to keep you fueled before and after your workout.

URec also offers a number of lockers available for rent in 12 month or 3 month options. Lockers are limited, so if you are interested, please contact us at 205-996-5038 or stop by our Member Services desk today! If you prefer not to purchase a locker, we have several areas in the facility, including the locker rooms, with day-use lockers available; just bring a lock, store your belongings while you work out with your own lock, and take it with you when you leave - free of charge! The Campus Recreation Center is located at 1501 University Boulevard, next to the Campus Green.

Campus Green & Intramural and Club Sports Complex

University Recreation is also responsible for the scheduling of the Campus Green and the full operation of the Intramural and Club Sports Complex on the north side of campus.

For more details on reserving any University Recreation space visit our Facilities website.

Aquatics

The Aquatics Center housed within the Campus Recreation Center provides a place for members to swim laps as well as meet their leisure aquatic needs by swimming laps, floating through the river or taking a dip in the hot tub. In addition, the aquatics program offers group swim classes, private lessons, lifeguarding certifications WSI (Water Safety Instructor) classes, and pool parties for special events. For details about pool party requests and/or other pool activities, please visit our website.

Fitness & Wellness Services

The Fitness and Wellness programs offered at the UAB Campus Recreation Center range from traditional Ufit (Group Exercise) classes and F45 classes to personal training packages to campus rec kitchen and wellness massage services. For more information on all of our fitness and wellness services or to schedule an appointment today, check out our FitWell page.

Ufit (In-person & Virtual) and F45 Classes

Ufit classes are FREE to anyone with an active URec membership. Feel free to drop in any time or day of the week to participate in the wide variety of classes available! If you are interested in participating in any of the F45 classes please register on our Mobile App.

We offer a wide variety of fitness classes, designed to fit your scheduling needs. From seasoned cyclers to those wanting to try yoga for the first time, Ufit has a class that will get you moving! Please visit our website to view our current schedule.

F45 - Functional Training

If high intensity interval training is something you are looking for, you will love F45 – Functional Training. The F45 program is uniquely developed to offer systemized training program that changes daily and is structured to build as the most effective workout method for burning fat and building lean muscle.

For more information about F45 and to view the current F45 schedule, visit the F45 website.

Rec On The Go

Rec on the Go is a program designed to cater to any recreation, health, and/or wellness topic to the UAB community. All programs are presented
by a recreation professional and can be modified for your group's exact needs. Topics covered vary from fitness classes to chair massages and nutrition demonstrations. Departments have the opportunity to pick a topic to be presented at a staff meeting, lunch group, or any time of your choice! To find out more, please contact our Fitness team at fitness@uab.edu.

Complete Fitness Assessments

Fitness Assessments provide individuals with their baseline measurements of flexibility, endurance, blood pressure, muscular strength, body composition, and cardiovascular fitness. The results of these tests are reviewed by a certified Personal Trainer and are used to help personalize a tailored workout plan specifically for you. To schedule your Fitness Assessment please email our FitWell team at fitness@uab.edu and complete the Health History Questionnaire as well as the Fitness Assessment Form prior to the appointment.

Personal Training

Do you want to get back into shape or are you simply looking to kick start a new workout routine? Personal training is the right choice for you! URec offers a variety of Personal training packages for everyone. Check out our website now for complete pricing, packing, and details.

Massage Therapy Services

Celebrate a little YOU time by scheduling yourself a massage today! Appointments are available for 30 or 60 minutes and are performed by certified massage therapists. Choose from a variety of massage packages in order to customize the perfect relaxation for you. Massage therapy appointments are based upon the therapists’ schedules and availability. Please allow at least 48 hours of advanced notice of your preferred appointment time in order for us to best schedule your appointment.

For more information or to schedule your next appointment, please email a completed Health History Form and Massage Therapy Request Form for your appointment to fitness@uab.edu today!

Competitive Sports

The Competitive Sports program offers activities such as intramurals and club sports that involve individual and team competition, as well as other fun events.

Intramurals

All UAB students, staff, and faculty are eligible to participate in intramural sports. Faculty and Staff must adhere to the specific entrance policies if they are not campus recreation facility members. Individuals in any team league must have their campus card in possession to be eligible to participate.

Every team league is offered in men’s, women’s and co-rec format. Each league will have a 4-week regular season followed by a single-elimination playoff. For more information please visit our website or contact intramurals@uab.edu.

Club Sports

A club sport is student organization established to promote interest in a sport and develop skills of its members in that sport. A club sport may be organized for recreational, instructional, performance, or competitive purposes. For more information please visit our website or contact clubsports@uab.edu.

Outdoor Pursuits

Outdoor Pursuits offers outdoor trips and clinics throughout the year including kayaking, backpacking, camping, climbing, canoeing, and whitewater rafting. Also offered are delay certification and lead climbing programs. Trips and clinics, such as the Wilderness First Responder training, are open to university students, faculty/staff, alumni, and the community. Contact outdoors@uab.edu or visit our Outdoor Pursuit page for more information on trips, clinics, and equipment rentals.

Climbing Wall & Bouldering Wall

Located on the mezzanine level of the Campus Recreation Center, the 36' tall by 42' wide climbing wall offers 1,512 square feet of climbing. The wall’s climbing surface is constructed of reinforced polymer concrete panels and imprinted to match the look and feel of natural rock. We also have a 12-foot bouldering wall for everyone to enjoy. Both are open to all URec members. The community may use the wall by private group rental.

Team Building

University Recreation offers many opportunities for team building initiatives, catering toward campus groups, corporate outings, school groups and more! Our enthusiastic and skilled facilitators will guide your group through fun activities focused on enhancing or developing vital workplace and life skills such as teamwork, cooperation, communication, and trust. Our program can accommodate groups of any size in both virtual and in-person settings. Initiatives work on developing or enhancing: communication, teamwork, trust, cooperation, team building, planning, and other common workplace functions. For more information, or to request team building, visit our website.

Outdoor Equipment Rentals

Planning a trip for the weekend but missing the gear? The Outdoor Pursuits Rental Center is here to save your adventure! We offer outdoor equipment for various events and the rental service is open to university students, faculty/staff, alumni, and the community. Whether backpacking, camping, or canoeing, the rental center has multiple rental time spans on the equipment you might need like sleeping bags, tents, backpacks, and cooking sets. To view the full list, pricing and to complete the rental request form, visit the Outdoor Pursuits Rental Center website.

Campus Dining

Dining on-campus gives you the advantage of never having to worry about keeping cash on hand and never losing your parking space. At UAB we have more than fifteen (15) restaurants on-campus. Just swipe your ONE Card and dine! For more information about Campus Dining, please stop by the UAB Campus Dining office located on the top floor of the Commons on the Green next to the Den, or call (205) 996-6567. You can also visit us online at https://www.uab.edu/students/dining/

For a map of dining locations and updated hours of operation visit: www.uab.edu/students/dining/locations-hours.

Meal Plans

Your meal plan gives you the advantage of never having to worry about keeping cash on hand to eat on-campus. Just swipe your ONE Card and dine. For meal plan options and requirements visit www.uab.edu/students/dining/meal-plans.

Dining Dollars
Dining Dollars are funds that you receive from your campus dining fee. All full-time undergraduate students (those students taking twelve (12) or more credit hours on campus) will be assessed a **$225 Campus Dining Fee** during fall and spring semesters. This Dining Dollars fee is loaded onto a student’s OneCard and is used as a declining balance account accepted at all on campus dining locations. Dining Dollars are not part of a student’s meal plan.

Libraries

UAB Libraries hold more than two million volumes and provide access to thousands of relevant digital resources for information, instruction, and research in support of UAB’s vast academic and medical enterprise. The UAB Libraries system comprises Mervyn H. Sterne Library as well as Lister Hill Library of the Health Sciences, which includes Lister Hill Library at University Hospital and UAB Historical Collections’ Reynolds-Finley Historical Library, UAB Archives, and the Alabama Museum of the Health Sciences. The faculty and staff of UAB Libraries provide the resources and essential expertise to support excellence in education, research, patient care, and community outreach. Priorities for UAB Libraries include increased access to resources, seamless cloud-based single search capability, campus-wide digital asset management, and increased support for distance and international students and researchers.

Mervyn H. Sterne Library

The *Mervyn H. Sterne Library* houses a collection of more than one million items and numerous electronic resources that support teaching and research in the arts and humanities, business, education, engineering, natural sciences and mathematics, and social and behavioral sciences. The library is located at 917 13th Street South and online at https://library.uab.edu/locations/sorne. The website is the gateway to all library services and collections including the Undergraduate Research Toolkit, subject- and course-specific Library Guides, and a list of FAQs. Services include research assistance, citation consultations, workshops and faculty-requested classes, assistance with locating materials, and interlibrary loan.

Named in memory of the late Birmingham philanthropist and civic leader Mervyn H. Sterne shortly after it opened in 1973, the library has seminar rooms, study rooms, lockable study carrels, computers, printers, scanners, copiers, and seating for 1,350 users. The first floor of the library was renovated in 2010 to make it even more user-friendly and houses the University Writing Center and a Starbucks. Due to student requests, Sterne Library has extended hours, opening 24 hours a day for five days a week except during holidays and summer terms. For more information on resources and services, visit the Sterne Library website at https://library.uab.edu/locations/sorne, call General Inquiries at (205) 934-6364 or request help by email, text, or chat at here.

Lister Hill Library of the Health Sciences

The *Lister Hill Library of the Health Sciences*, the largest biomedical library in the state, provides services and resources for UAB students, research and teaching faculty, and clinicians in medicine, nursing, optometry, dentistry, public health, health professions, and joint health sciences. The library was established in 1945, and then dedicated in 1971 in honor of Senator Joseph Lister Hill, a champion for health care and library legislation.

Lister Hill Library, located at 1700 University Boulevard, provides collaborative and group study space on the first floor and quiet study space on the second floor. Lister Hill Library’s website at www.uab.edu/ provides 24/7 access to databases, electronic journals, ebooks, LHL Guides, FAQs, and recorded classes and tutorials. Services include consultations for conducting searches, guidance for citing resources, assistance with locating materials, and interlibrary loan services. For more information on resources and services, visit the Lister Hill Library website at www.uab.edu/lister, call (205) 934-2230, or request help by email, text, or chat at www.uab.edu/lister/ask.

The *Lister Hill Library at University Hospital*, located in the West Pavilion, provides onsite support for education, research, and patient care. Access the resources and services for clinicians through the LHL@UH website at www.uab.edu/lhluh or call (205) 934-2275 for more information.

The **UAB Historical Collections**, located on the third floor of Lister Hill Library, includes the Reynolds-Finley Historical Library, UAB Archives, and the Alabama Museum of the Health Sciences. The Reynolds-Finley Historical Library contains rare books, pamphlets, and manuscripts in the history of medicine, science, and health-related fields. This collection dates from the mid-14th century to the early 20th century and includes a core of world-renowned medical classics with important concentrations on medicine in the Civil War, the South, and early Americana. UAB Archives is the official repository for the permanent records of the University and for archival collections held by UAB. One collecting area for manuscripts is the history of the health sciences, but the repository preserves collections with a wide variety of topics. The Alabama Museum of the Health Sciences preserves over seven hundred years of medical history with instruments, specimens, equipment, and pharmacology used by health care professionals throughout the world, with a special emphasis on material used on and around the University of Alabama at Birmingham campuses. Please call (205) 934-4475 for more information on the Reynolds-Finley Historical Library or the Alabama Museum of the Health Sciences. Call (205) 934-1896 for more information on UAB Archives.

The UAB Bookstore

The UAB Bookstore is located at 1400 University Boulevard inside the new Hill Student Center. The bookstore posts official lists of UAB courses and stocks the textbooks and all other items necessary for successful UAB coursework. Most textbooks can be purchased new or used. The option to rent textbooks is also available for most courses. The bookstore carries study aids, reference materials, school and office supplies; medical instruments, lab coats, and scrubs; and the largest assortment of UAB logo apparel and gifts available. Contact the UAB Bookstore at (205) 996-2665 or visit the store online at www.shopuab.com.

University Writing Center

Located on the first floor of Mervyn Sterne Library, the *University Writing Center* (UWC) is UAB students’ go-to place for writing assistance, whether the task at hand is a Freshman Composition paper, a lab report, or a graduate school application essay. In a friendly and professional one-on-one setting, UWC tutors teach students to use writing to discover, apply, and communicate knowledge in all disciplines. Students commonly visit to get help with understanding a writing assignment; brainstorming ideas; developing outlines and claims; understanding and applying instructor feedback; and revising and editing complete drafts. While UWC tutors do not edit for students, they can help students identify their common errors and develop stronger editing processes.

In addition to one-on-one sessions in the Sterne Library location, the UWC offers online consultations for students enrolled in online courses;
Ask-a-Tutor, an email service for short writing questions; and regular workshops on topics of common interest. To make an appointment, visit the UWC’s website and log onto the online scheduling system with your Blazer ID and password. Like the UWC’s Facebook page and follow the UWC’s Twitter page to stay in touch and find out about upcoming workshops.

One Stop

What if you could get answers to your questions about your student account, financial aid and registration all in one place? Stop running from office to office and make the One Stop your first and possibly your only stop! If we can’t help you on the spot, we’ll do the leg-work for you or connect you to the appropriate resource.

Contact us by email, phone, or in person.

One Stop Student Services, Room 103 of the Hill Student Center, 1400 University Blvd
onestop@uab.edu
(205) 934-4300
855-UAB-1STP (822-1787)
8:00 am - 5:00 pm, Monday - Thursday
9:00 am - 5:00 pm, Friday

Information Center

Information regarding programs, services, and activities at UAB is available at the UAB Information Center. Referrals to the appropriate department, office, or person may be made for more specific information. The Information Center is located just inside the 14th Street entrance of the Hill Student Center, 1400 University Blvd.

For additional information, call (205) 934-8000, or see the Web page at https://www.uab.edu/studentaffairs/studentcenter/

UAB Career Center

The UAB Career Center, in the Division of Student Services, assists undergraduate and graduate students in selecting appropriate fields of study, furthering their education, learning effective job searching strategies, and making connections with employers.

Career Consultants and Peer Career Advisors are available to meet one-on-one with students to explore career or educational options, revise résumés and cover letters, hone interviewing techniques, conduct searches for internships and full-time jobs, and ready themselves for interviews with employers.

The UAB Career Center is now providing UAB students with the opportunity to enhance career readiness through Canvas modules focused on key career components and resources. These modules can be completed as a series or individually. The modules are designed to walk you through various aspects and tasks to ensure you are ready for your career journey.

In addition, students may utilize Handshake, UAB Career Center’s career management platform to do the following:

• Search and apply for internships
• Search and apply for full-time jobs
• RSVP for events
• Sign-up for Interviews
• Upload resumes cover letters and more
• Connect with Students

• Make Appointments with Career Consultants
• Explore Resources

The mission of the UAB Career Center to engage and empower members of the UAB community through meaningful career and experiential learning opportunities, to revolutionize the future of work. Over 25,000 employers use the UAB Career Center to connect with students. The UAB Career Center hosts a number of events throughout the year to further connect students and employers, including career fairs, employer meet-ups, and on-campus interviews.

Location
Hill Student Center, Suite 307
1400 University Boulevard

Contact
Website: https://www.uab.edu/students/cpd/
Office Number: 205.934.4324
Office Email: careercenter@uab.edu
Facebook: https://www.facebook.com/uabcareercenter
Instagram: https://www.instagram.com/uabcareercenter/?hl=en
Youtube: UAB Career Center Playlist

Disability Support Services

Disability Support Services (DSS), located in the Hill Student Center, serves as the central campus resource for students with disabilities. The goal of DSS is to provide a physically and educationally accessible university environment that ensures an individual is viewed on the basis of ability, not disability. DSS staff members work individually with students to determine appropriate accommodations. To be eligible for services, students need to complete an application, submit documentation of their disability and meet with a DSS staff member.

For more information, contact Disability Support Services at (205) 934-4205 (voice) or 934-4248 (TTY) or http://www.uab.edu/students/disability/ E-mail contacts are welcome at dss@uab.edu.

Physical Address
Hill Student Center
1400 University Boulevard

Mailing Address
UAB One Stop
1400 University Blvd., Hill 103
Birmingham, AL 35294

Office of Education Abroad

Contact Education Abroad

Mission

The mission of the UAB Office of Education Abroad (UABEA) is to administer, establish, and send UAB students on high-quality education abroad opportunities to prepare them for success in the globalized world.

Education Abroad

The Office of Education Abroad is a member of the Forum for Education Abroad (Forum), Institute of International Education, and Association of International Educators (NAFSA). The Office of Education Abroad strives to meet the Forum’s Standards of Good Practice for Education Abroad, 6th Edition and Code of Ethics.
UAB Education Abroad administers, establishes, and sends UAB students on high-quality education abroad opportunities to prepare them for success in the globalized world.

Pursuant to our mission, UABEA engages in the activities described below.

- **Study Abroad:** Take courses for which academic credit is received and transferred to UAB on our supported study abroad programs. This includes academic credit for student exchanges, UAB affiliate programs, and faculty-led programs that feature traditional classes, research, service learning, internships, volunteerism, shadowing, clinical rotation, and observations.

- **International Internships, Research & Service-Learning:** Take courses for which academic credit is received and transferred to UAB on our supported study abroad programs. These opportunities are designed to enhance your resume with hands-on experiential learning abroad and offer credit-bearing outcomes.

- **Virtual/COIL Experiences:** UAB students may participate in a variety of virtual/remote learning experiences, which vary from COIL courses, group internships, part/full time internships, and remote academic courses. Explore these opportunities to immerse yourself in a virtual remote experience while earning academic credit at UAB.

- **Student Organizations Abroad:** Travel abroad as part of a UAB student organization; including Outreach Abroad, Outdoor Pursuits, artistic performances, athletic activities, or other student organization travel. Our office can help students register travel with the university, obtain the necessary education abroad insurance, and prepare for travel.

- **Student Conference Travel Abroad:** Present at or attend a conference that takes place abroad as a UAB representative. Our office can help students register travel with the university, obtain the necessary education abroad insurance, and prepare for travel.

- **Passport Office:** Apply for a passport conveniently on campus. As an official U.S. Department of State Passport Acceptance Facility, we are happy to accept passport applications for students, employees, and members of the community. Our passport service is open to the public.

Eligibility

To be eligible to apply for our programs, one must:

1. be an enrolled UAB student;
2. be 18 years of age or older (or have parental permission); and
3. be in good academic, disciplinary, and financial standing with UAB.

Some programs have additional eligibility requirements, such as GPA minima, listed on the individual program webpages.

Students may petition to the Director of Education Abroad for a possible exception to the eligibility criteria.

Grade Posting

All grades earned while abroad will be posted to the student's UAB transcript and included in GPA calculations. Letter grades are used rather than pass/fail marks. In all cases, students must participate fully in all course activities and meet all stated course requirements. Auditing of any course abroad is not permitted. The process of grade posting varies depending on the program type:

UAB Exchanges

Students earn direct UAB course credit. Courses taken on student exchanges will begin with IN ("International" indicating that the course took place at an international UAB exchange location) and a two-letter subject code such as ME (Mechanical Engineering), GN (German), SP (Spanish), etc. to indicate the subject that was studied. Additionally, each of the courses are numbered. All courses are variable in the number of credit hours students can receive based upon their enrollment at the host university. INxx courses are repeatable. INxx courses include:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INAB</td>
<td>Study Abroad Arabic</td>
</tr>
<tr>
<td>INAH</td>
<td>Study Abroad Art History</td>
</tr>
<tr>
<td>INAN</td>
<td>Study Abroad Anthropology</td>
</tr>
<tr>
<td>INAR</td>
<td>Study Abroad Art Studio</td>
</tr>
<tr>
<td>INAT</td>
<td>Study Abroad Astronomy</td>
</tr>
<tr>
<td>INBE</td>
<td>Study Abroad Biomedical Engineering</td>
</tr>
<tr>
<td>INBU</td>
<td>Study Abroad Business</td>
</tr>
<tr>
<td>INBY</td>
<td>Study Abroad Biology</td>
</tr>
<tr>
<td>INCH</td>
<td>Study Abroad Chinese</td>
</tr>
<tr>
<td>INCM</td>
<td>Study Abroad Communication Studies</td>
</tr>
<tr>
<td>INCS</td>
<td>Study Abroad Computer & Information Science</td>
</tr>
<tr>
<td>INCY</td>
<td>Study Abroad Chemistry</td>
</tr>
<tr>
<td>INDC</td>
<td>Study Abroad Digital Community</td>
</tr>
<tr>
<td>INEC</td>
<td>Study Abroad Economics</td>
</tr>
<tr>
<td>INED</td>
<td>Study Abroad Education</td>
</tr>
<tr>
<td>INEE</td>
<td>Study Abroad Electrical Engineering</td>
</tr>
<tr>
<td>INEH</td>
<td>Study Abroad English</td>
</tr>
<tr>
<td>INES</td>
<td>Study Abroad Earth Science</td>
</tr>
<tr>
<td>INEV</td>
<td>Study Abroad Environmental Science</td>
</tr>
<tr>
<td>INFN</td>
<td>Study Abroad Finance</td>
</tr>
<tr>
<td>INFR</td>
<td>Study Abroad French</td>
</tr>
<tr>
<td>INGN</td>
<td>Study Abroad German</td>
</tr>
<tr>
<td>INHY</td>
<td>Study Abroad History</td>
</tr>
<tr>
<td>INIS</td>
<td>Study Abroad International Studies</td>
</tr>
<tr>
<td>INIT</td>
<td>Study Abroad Italian</td>
</tr>
<tr>
<td>INJP</td>
<td>Study Abroad Japanese</td>
</tr>
<tr>
<td>INJS</td>
<td>Study Abroad Justice Sciences</td>
</tr>
<tr>
<td>INMA</td>
<td>Study Abroad Mathematics</td>
</tr>
<tr>
<td>INME</td>
<td>Study Abroad Mechanical Engineering</td>
</tr>
<tr>
<td>INMG</td>
<td>Study Abroad Management</td>
</tr>
<tr>
<td>INMK</td>
<td>Study Abroad Marketing</td>
</tr>
<tr>
<td>INMU</td>
<td>Study Abroad Music</td>
</tr>
<tr>
<td>INPC</td>
<td>Study Abroad Physics</td>
</tr>
<tr>
<td>INPE</td>
<td>Study Abroad Physical Education</td>
</tr>
<tr>
<td>INPH</td>
<td>Study Abroad Philosophy</td>
</tr>
<tr>
<td>INPS</td>
<td>Study Abroad Political Science</td>
</tr>
<tr>
<td>INPY</td>
<td>Study Abroad Psychology</td>
</tr>
<tr>
<td>INSC</td>
<td>Study Abroad Sociology</td>
</tr>
</tbody>
</table>
For all other programs, visit UAB Education Abroad's website for details.

Residency

Courses taken on UAB Exchanges, USAC programs, ISA programs, CISAbrad programs, U.S. - UK Fulbright Commission Summer Institutes, U.S. Department of State Critical Language Scholarship Program, Clinton Scholarship at the American University in Dubai, UAB Faculty-Led Programs, and UAB Internship/Pacticum Courses Abroad will satisfy the UAB residency requirement. Students must contact UABEA to ensure their Graduation Planning System records are noted accordingly.

Changes of Grades

Requests for grade changes to UABEA must be accompanied by official documentation sent directly from the host university.

International Student and Scholar Services

ISSS provides immigration compliance expertise and cultural events for international students on F-1 and J-1 visas. Specifically, we issue and extend federal immigration documents (Forms I-20 and DS-2019), help students apply for CPT and OPT work authorization, issue letters necessary to obtain Social Security cards and driver licenses, offer assistance filing taxes, and hold annual events such as Coffee Hour, International Barbecue, International Thanksgiving, and global holiday celebrations. Our vision is to provide cutting-edge immigration advising and programming to UAB and its international community, preserving the integrity of our programs while advocating for the unique needs of international students and scholars, leading to enriched educational and research opportunities, broadened cultural perspectives, and ease of adjustment to life in the US. ISSS shares space with INTO UAB on the second floor of Mervyn H. Sterne Library, located on the corner of 9th Avenue and 13th Street South. Drop by the Welcome Desk any time between 8:00 AM and 5:00 PM, or book an appointment online at https://www.uab.edu/global/students/international-students/book-an-appointment.

For additional information, visit https://www.uab.edu/global/students/international-students/current-students.

ONE Card

The UAB ONE Card serves as the official student ID and offers access to a variety of services and resources on and around campus. Students use their ONE Card to enter residence halls and the Campus Recreation Center, attend UAB athletic and cultural events and check out materials from UAB libraries. With their ONE Card, students can enjoy discounts on tickets to a wide variety of on and off-campus events through the UAB Ticket Office. The ONE Card also functions as a debit card, allowing students a convenient and secure way to pay for goods and services at a variety of on campus and local area merchant locations.

General information about the UAB ONE Card, including a list of carding locations, is available at www.uab.edu/onecard.

Questions about ONE Card services can be directed to onestop@uab.edu or (205) 934-4300.

Note: A photo ID is required to have your initial ONE Card made.

The University of Alabama at Birmingham is located in the central business district of Birmingham offering multiple transportation options. On-campus and nearby housing make walking, bicycling, and on-campus transit convenient. Public transit, private transportation providers, and personal automobiles make longer trips accessible. Regional and national transportation options help expand connections to much of the world and planned innovative transportation projects are increasingly making it easier to get to, from, and around UAB regardless of your travel preferences.

On-Campus Transportation

Walking and Bicycling

With a relatively flat, compact campus, many popular destinations are convenient to UAB and most trips to and from classes will be made on foot. In the United States, the average pedestrian commute is one-mile with the average bicycle commute approximately three miles. The UAB campus footprint is about 1.5 miles wide. UAB Housing and Residence Life and Off-Campus Student Services are able to assist students in identifying nearby on- and off-campus housing options. Apps such as Rave Guardian and other services below help make walking and bicycling easier and safer. Students and employees wishing to register their bicycle for free will also receive a bicycle helmet and u-lock.

Blazer Express

Blazer Express provides transit service throughout the University campus. With a valid UAB One Card, students, employees, and authorized visitors can enjoy fare-free bus transportation along designated routes. Buses are ADA-accessible and can seat up to 35 riders. Bus service is provided Monday-Friday from 5:30 a.m.-12:00 a.m. Routes, stops, and real-time location of buses may be found online at through the DoubleMap smartphone app.

Blaze Ride and Safety Escort

For trips within the UAB footprint, Blaze Ride offers daytime transportation for students and employees with limited mobility, while Safety Escort provides late-night service to all students and employees. Safety Escort service is available seven days a week from 9:00 p.m.-5:30 a.m. by calling (205) 934-8772. Access to Blaze Ride is limited to students gaining eligibility through Disability Support Services and employees registering with the AWARE Program. Blaze Ride is available from 7:30 a.m.-7:30 p.m. by calling (205) 975-7433. Rides for both services may also be requested through the TapRide smartphone app.

Public Transit and Other Providers

Public transit is provided by MAX Transit, Birmingham On-Demand, and CommuteSmart. Other transportation providers include micromobility, ride-hailing and carpool ride-matching apps, while future transportation innovations such as bus-rapid transit are planned to launch.

MAX Transit

Local public bus service is provided by MAX Transit. Discounted passes are available from the UAB One Stop with over thirty bus routes serving the metro Birmingham area. Real-time bus tracking is available from myStop Mobile app with trip planning available from most major mapping apps.
Birmingham On-Demand
The City of Birmingham has partnered with Via to provide the shuttle van service, Birmingham On-Demand. These trips are similar to other ride-hailing apps except using branded vans, paid drivers and with lower-priced trip costs and a more limited service area.

CommuteSmart
CommuteSmart, a program of the Regional Planning Commission, provides a subsidy for vanpooling and incentives to anyone choosing to walk, bicycle, take the bus, carpool, or work from home. Carpool participants can receive online ride-matching and all participants must log their commutes to receive incentives. Visit CommuteSmart for more information about vanpooling, ride-matching, and incentives.

Micromobility (Bicycle & Scooter Sharing)
Shared electric bicycles and scooters, known as micromobility, are provided by multiple vendors for on- and off-campus trips. These vehicles are best for short trips and may be rented through smartphone apps. Users should familiarize themselves on where they are permitted and how to safely operate them around UAB. Information on using the shared micromobility vehicles is available through the UAB Transportation website, which includes a tool to report their unsafe usage or improper parking.

Regional/National Transportation
The City of Birmingham is served by the Birmingham-Shuttlesworth International Airport (BHM) with direct and indirect flights connecting to most domestic and international destinations. Ride-hailing and taxi apps are available for transportation to and from BHM. Groome Transportation offers airport shuttle service picking up at Blazer Hall and dropping off at Hartsfield-Jackson Atlanta International Airport (ATL). Other regional transportation providers include Amtrak train service and bus service from Greyhound and Megabus, all accessible from the Birmingham Intermodal Facility.

Other Providers and Upcoming Innovative Options
Innovative transportation options are consistently launching in the city. Ride-hailing and similar taxi services operate in and around the Birmingham area. Bus Rapid Transit (BRT) is due to launch in 2022 under the name, Birmingham Xpress. BRT offers the comfort of light rail train service at a lower cost. Partially running on dedicated lanes with signal priority, BRT is expected to make traveling across the city faster and more efficient.

Parking
For those choosing to bring a vehicle, a permit is required to access student parking. Permits are purchased through the UAB Transportation website with a limited number available each semester. Incoming students may purchase permits as soon as they have been accepted by UAB and created a Blazer ID. Students unable to purchase a permit will need to develop their own transportation arrangements from the options above or other parking providers around town. Once purchased, permits are mailed to the address provided by the student. As such, it is important to regularly update your contact information in the parking system. Parking spaces are available on a first-come, first-served basis to vehicles with the proper permit displayed. Designated spaces are offered for motorcycles, carpooling, and ADA-accessible parking. Students requiring temporary or permanent ADA accessible parking must provide state-issued documentation in the student’s name. A full list of parking policies and regulations are available on our website. Please note that metered street spaces are operated and enforced by the City of Birmingham.

Motorist Assistance (MARS)
Motorist Assistance Roadside Service (MARS) is a free service available to all visitors, students, and employees parking on campus who need help with a dead battery, air in a flat tire, keys locked in a car, or empty gas tank. The service is available weekdays 7:30 a.m. - 4:30 p.m., except holidays. For help, call 205-975-6277.

UAB Transportation Contact
608 8th Street South • Telephone (205) 934-3513 • E-mail: transportation@uab.edu • Website: http://www.uab.edu/transportation/

Student Health & Wellness Center
The Student Health & Wellness Center (SHWC) provides a comprehensive and integrated program of services to meet the medical, counseling and wellness needs of UAB’s undergraduate, graduate and professional students. Creating a healthy campus and promoting student wellness are essential to supporting student learning and success. The SHWC is staffed by a group of committed medical providers, counselors, nurses, clinicians, wellness promotion professionals, and support staff who embrace the opportunity to meet your wellness, medical and counseling needs. Those services and resources are available in the state-of-the-art Student Health & Wellness Center located at 1714 9th Ave. South (LRC building), Birmingham, AL 35294-1270. Blazer Express has convenient drop-off and pick-up locations near the Student Health & Wellness Center. Patient and client parking is available at the South entrance to the building.

Health Services
Student Health Services offers comprehensive primary care services including acute and chronic care, women’s health, a Registered Dietitian, mental health evaluation and treatment with an on-site psychiatrist and mental health Nurse Practitioner, immunizations, allergy immunotherapy, and treatment of minor emergencies. SHS provides COVID-19 vaccines, both Moderna and Pfizer and COVID-19 testing, symptomatic and asymptomatic, at no cost to the student. A dedicated Sports Medicine and Sexual Health Clinic and Eye Care Clinic are also available, as well as Certified Athletic Trainers located in the UAB Recreational Center. Medical Clearance/Immunizations and Insurance Department are also available to assist students. On-site lab and x-ray services are available. After-hour’s consultation is provided through provider on call coverage, 24 hours a day/7 days a week/365 days a year. To ensure convenience and access, Student Health Services operates under an open-access appointment scheduling system. Go to www.uab.edu/students/health for more information or to schedule an appointment through our patient portal. You may also call (205) 934-3580 to schedule an appointment or for general information. All currently enrolled UAB undergraduate and graduate students are eligible for services at a low to no out-of-pocket cost under the student benefit. Many carriers have agreed to waive copays for these services. A more complete listing of low to no out-of-pocket cost services and those services available, but at additional cost, can be accessed at http://www.uab.edu/students/health/health-services.

Counseling Services
Counseling Services assists in developing students’ potential in physical, academic, spiritual, psychosocial, emotional, and vocational areas.
Common presenting concerns include depression, anxiety, grief, relationship concerns, stress management, eating disorders, alcohol or substance abuse concerns, identity, conflict, gender transition and trauma. In addition to individual and couples counseling, services include wellness programs, group opportunities, and educational resources. Confidential counseling services are available to all currently enrolled UAB students at no cost. For more information or to schedule an appointment call (205) 934-5816 or visit http://www.uab.edu/students/counseling/.

Wellness Promotion
Wellness Promotion provides students with programs, education, and resources to promote personal wellness in the areas of interpersonal violence prevention; alcohol, tobacco, and other drug misuse prevention; and self-care. Wellness Promotion offers honest conversations, provides accurate information, and develops skill-building activities to help students navigate decisions outside the classroom that can impact their personal and academic success.

Wellness Promotion also supports the Promoters of Wellness peer health education program. Promoters of Wellness (POW) are undergraduate and graduate students who are nationally Certified Peer Educators and work as student health educators. POW peer health educators seek to positively influence the campus by providing workshops, outreach and events. They also serve as a catalyst for healthy norms within the student campus culture. Additional information about the POW program can be found at www.uab.edu/students/wellness.

You can get involved with Wellness Promotion and become eligible to apply for a POW position by taking CHHS 426: Wellness Promotion Peer Education. This 3-credit hour course provides the national Certified Peer Educator credential, focuses on participant self-care, and teaches in depth information on topics that are relevant to college students.

Student Insurance Coverage (Mandatory and Optional)
All full-time students enrolled in a degree seeking program have a mandatory requirement to have major medical health insurance to ensure coverage for hospital, emergency room, specialty physician care and diagnostic testing. For more information on the mandatory insurance coverage requirement go to the SHWC website https://www.uab.edu/students/health/insurance-waivers.

Information regarding the Student Health Insurance Plan for full-time registered undergraduate students taking a minimum of 9 credit hours and full-time graduate students taking a minimum of 6 credit hours can be found at https://www.uab.edu/students/health/insurance-waivers/insurance-requirement-overview. All students enrolled in a clinical program that has a mandatory health insurance requirement will continue to have the same requirement regardless of the number of credit hour of enrollment.

To learn more about services available through the Student Health and Wellness Center, please visit any of the following website:

Student Health Services http://www.uab.edu/students/health/
Student Counseling Services counseling/ http://www.uab.edu/students/counseling/
Wellness Promotion http://www.uab.edu/students/wellness/

You can also contact us at one of the following phone numbers for assistance.

Call Health Services at (205) 934-3580 or schedule/cancel an appointment through the patient portal.

Call Counseling Services at (205) 934-5816 for questions or to schedule an appointment. Appointments can be canceled through the patient portal. Appointments cannot be scheduled through the patient portal.

Call Wellness Promotion at (205) 996-0834 for appointments. Office hours vary for this department.

Office Hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday - Friday</td>
<td>8:00 a.m. - 5:00 p.m.</td>
</tr>
</tbody>
</table>

UAB Testing Services
UAB Testing Services provides testing services for UAB students, prospective students, and the community at large. Assessments include, but are not limited to, MAT, LSAT, PRAXIS, DSST, and CLEP. For more information, visit www.uab.edu/testing.

UAB Ticket Office
The UAB Ticket Office is an excellent source for discounted tickets to local and regional attractions along with on-campus events. Discounted tickets are available for AMC and Regal Cinemas, and to most major theme parks across the southeast, Georgia Aquarium, Birmingham Zoo and McWane Science Center. Additional perks can be found at TicketsAtWork.com with the discount code UABTICKETS for cooperating attractions. First-class postage stamps are also available for purchase.

For additional information, contact the UAB Ticket Office, located inside One Stop Student Services in Room 103 of the Hill Student Center, 1400 University Blvd., Birmingham, AL 35294-1150 Telephone: (205) 934-8001.

Visit our website: https://www.uab.edu/one-stop/student-resources/ticket-office.

Veterans Services
UAB Veterans Services (UAB-VS) assists veterans, reservists, guardsmen, and dependents of disabled or deceased veterans to access their educational benefits. UAB-VS serves as a liaison between the student and the local and federal agencies, including the State Department of Education, Department of Defense, and the Department of Veterans Affairs. The office staff assist students in applying for educational benefits, securing tutorial assistance and obtaining veterans work-study positions. For further information, contact UAB Veterans Services, Hill Student Center, Room 313, 1400 University Blvd., Telephone (205) 996-0404 or read about our programs and services at www.uab.edu/students/veterans.

VA Complaint Policy
Any VA Complaint against the school should be routed through the VA GI Bill Feedback System by going to the following link: http://www.benefits.va.gov/GIBILL/Feedback.asp. The VA will then follow up.
through the appropriate channels to investigate the complaint and resolve it satisfactorily.

Choice Act

The University of Alabama at Birmingham in the State of Alabama complies with section 702 - Tuition under Veteran's Access Choice and Accountability Act of 2015, providing for resident (in-state) tuition and fees for the following:

- A Veteran using educational assistance under either chapter 30 (Montgomery G.I. Bill – Active Duty Program) or chapter 33 (Post 9/11 G.I. Bill), of title 38, United States Code, who lives in the State of Alabama while attending a school located in the State of Alabama (regardless of his/her formal State of residence) and enrolls in the school within three years of discharge from a period of active duty service;
- Anyone using transferred Post – 9/11 G.I. Bill benefits (38 U.S.C. § 3319) who lives in the State of Alabama while attending a school located in the State of Alabama (regardless of his/her formal State of residence) and enrolls in the school within three years of the transferor's discharge from a period of active duty service;
- A spouse or child using benefits under the Marine Gunnery Sergeant John David Fry Scholarship (38 U.S.C. § 3311 (b) (9)) who lives in the State of Alabama while attending a school located in the State of Alabama (regardless of his/her formal State of residence) and enrolls in the school within three years of the Service member's death in the line of duty following a period of active duty service.
- Anyone described above while he or she remains continuously enrolled (other than during regularly scheduled breaks between courses, semesters, or terms) at the same school. The person so described must have enrolled in the school prior to the expiration of the three-year period following discharge or death described above and must be using educational benefits under either chapter 30 or chapter 33, of title 38, United States code.

Veteran Student Resident Tuition Rates

The University of Alabama at Birmingham complies with veteran student regulations regarding tuition rates. The following individuals shall be charged a rate of tuition not to exceed the in-state rate for tuition and fees purposes:

- A Veteran using educational assistance under either chapter 30 (Montgomery G.I. Bill – Active Duty Program) or chapter 33 (Post-9/11 G.I. Bill), of title 38, United States Code, who lives in Alabama while attending a school located in Alabama (regardless of his/her formal State of residence) and enrolls in the school within three years of discharge or release from a period of active duty service of 90 days or more.
- Anyone using transferred Post-9/11 G.I. Bill benefits (38 U.S.C. § 3319) who lives in Alabama while attending a school located in Alabama (regardless of his/her formal State of residence) and enrolls in the school within three years of the transferor's discharge or release from a period of active duty service of 90 days or more.
- Anyone described above while he or she remains continuously enrolled (other than during regularly scheduled breaks between courses, semesters, or terms) at the same school. The person so described must have enrolled in the school prior to the expiration of the three year period following discharge or release as described above and must be using educational benefits under either chapter 30 or chapter 33, of title 38, United States Code.
- Anyone using benefits under the Marine Gunnery Sergeant John David Fry Scholarship (38 U.S.C. § 3311(b)(9)) who lives in Alabama while attending a school located in Alabama (regardless of his/her formal State of residence).
- Anyone using transferred Post-9/11 G.I. Bill benefits (38 U.S.C. § 3319) who lives in Alabama while attending a school located in Alabama (regardless of his/her formal State of residence) and the transferor is a member of the uniformed service who is serving on active duty.
- Anyone using educational assistance under chapter 31, Vocational Rehabilitation/Employment (VR&E), also be charged the resident rate. Effective for courses and terms beginning after March 1, 2019, a public institution of higher learning must charge the resident rate to chapter 31 participants, as well as the other categories of individuals described above. When an institution charges these individuals more than the rate for resident students, VA is required to disapprove programs of education sponsored by VA.
- The policy shall be read to be amended as necessary to be compliant with the requirements of 38 U.S.C. 3679(c) as amended.

V.A. Education Benefits

Effective 8/1/2019 - (PL 115-407 Sec. 103)

Students utilizing VA education benefits shall not be charged a penalty, including assessment of late fees, denial of access to classes, libraries or other institutional facilities, or be required to borrow additional funds because of the individual's inability to meet their financial obligations due to the delayed disbursement of a payment to be provided by the Department of Veterans Affairs.

UAB Sustainability

UAB Sustainability understands that our future belongs to the present. We focus on sustainability and the triple bottom line theory to empower our leaders to make data-driven decisions. We partner across our institution to ensure the decisions we make now will have a positive impact on the quality of life of the UAB community for generations to come.

UAB has a special responsibility to act as a driver of sustainable solutions in our region and beyond. Our urban campus is a living laboratory, because of its:

- more than 200 classroom, office, research, and hospital buildings,
- space occupying more than 100 city blocks,
- role as one of the top employers in the region,
- role as the largest electricity user in the state, and
- responsibility as the single-biggest contributor to Birmingham’s economy

Sustainability Courses at UAB

UAB’s expanding undergraduate sustainability curriculum engages academic disciplines and multidisciplinary programs to prepare our students to become environmentally and socially responsible global citizens. Each term UAB offers courses with content related to sustainability,
Anthropology
ANTH 104 Introduction to Peace Studies (3 s.h.)
ANTH 200 Applied Anthropology
ANTH 351 Anthropology of Human Rights
ANTH 360 Ecological Anthropology
ANTH 404 Human Rights, Peace, and Justice
ANTH 413 Peace & Environmental Sustainability
ANTH 437 Real World Remote Sensing Applications
ANTH 483 Intern in Peace, Justice and Environmental Study
ANTH 504 Human Rights, Peace, and Justice
ANTH 505 Anthropology of Peace, Justice, and Ecology
ANTH 513 Peace & Environmental Sustainability
ANTH 652 Sustainable Peace Seminar

Biology
BY 124 Introductory Biology II
BY 468 Ecological Genetics
BY 470 Ecology
BY 585 Northern Field Studies
MESC 208 Biology and Conservation of Marine Turtles
MESC 230 The Ecology of Florida Everglades
MESC 302 Coastal Zone Management
MESC 303 Coastal Climatology
MESC 330 Marine Conservation Biology

Civil, Construction, and Environmental Engineering
CE 236 Environmental Engineering
CE 431 Energy Resources
CE 537 Environmental Experimental Design and Field Sampling
CE 537L Environmental Experimental Design and Field Sampling Lab
CE 600 Sustainable Construction
CE 608 Green Building Design
CE 610 The Engineered Environment
CE 631 Environmental Law
CE 636 Stormwater Pollution Management
CE 690 Special Topics in (Area)

Sustainable Smart Cities MS Program first year courses
CESC 600 Principles of Sustainable Development
CESC 602 Introduction to Sustainable Smart Cities
CESC 604 Low-Carbon and Renewable Energy Systems for Smart Cities
CESC 606 Managing Natural Resources and Sustainable Smart Cities
CESC 608 Green Infrastructure and Transportation
CESC 610 Health and Liveability
CESC 612 Green Buildings
CESC 614 Smart Cities Technologies
CESC 616 Big Data and Smart Cities
CESC 618 Research Methods and Project Planning
CESC 620 Sustainable Smart Cities Research Project

Geography
GEO 491 Environmental Policy

Political Science and Public Administration
PSC 103 Foundations of International Relations
PSC 266 The United Nations
PSC 316 Human Rights
PSC 355 Politics of Development
PSC 361 North/South International Relations
PSC 386 Economics of Public Policy
PSC 465 International Law

Chemistry
ES 101 Physical Geology
ES 102 Physical Geology Laboratory

Marketing, Industrial Distribution, and Economics
EC 308 Economics of Environment

Honors College, Science and Technology Honors Program
STH 199 Introduction to the Scientific Process

Environmental Health Sciences
ENH 615 Environmental Justice and Ethics
ENH 660 Fundamentals of Air and Water Pollution

History
HY 439 American Environmental History
Sociology

SOC 431 Environmental Sociology

SOC 470 Population Dynamics
Collat School of Business

Dean: Eric P. Jack, Ph.D.

The Collat School of Business offers the following graduate programs:

Degree Programs
- Master of Accounting (M.Ac.)
- Master of Business Administration (M.B.A.)
- Master of Science in Management Information Systems (M.S.MIS) - Online only

Certificate Programs
- Graduate Certificate in Business Analytics
- Graduate Certificate in Cybersecurity Management
- Graduate Certificate in Information Technology
- Graduate Certificate in Social Media
- Graduate Certificate in Technology Commercialization and Entrepreneurship
- Graduate Certificate in Foundations of Business Administration

The Collat School of Business offers an engaging learning environment with classrooms extending well beyond the walls of the UAB campus. We meet the varying needs of our students by offering classes face-to-face, online, and in hybrid formats. Our unique location allows our faculty to integrate the practical experiences of the State’s leading companies - from Fortune 500 corporations to entrepreneurial start-ups - into the programs we offer.

The Collat School of Business is accredited at the baccalaureate and master’s level by AACSB International and holds separate AACSB International accreditation of the undergraduate and master’s programs in accounting, an accomplishment held by less than 2% of business schools worldwide. AACSB International is the largest and longest standing specialized accrediting agency for business and accounting programs in the world and represents the highest standard of achievement.

Mission Statement
At Collat, we prepare students for success as leaders and professionals, in Birmingham and beyond, using a balanced approach to teaching, research and service.

Vision Statement
Collat is known for innovative programs, impactful scholarship and transformative service.

Shared Values
- Integrity – We act ethically and do what is right.
- Respect – We treat others with courtesy and civility.
- Diversity and inclusiveness – Everybody counts every day. We actively seek varied perspectives in our decision-making.
- Collaboration – We trust each other and work cooperatively across disciplinary boundaries in the spirit of shared governance.
- Excellence and achievement – We constantly innovate, solve problems and improve ourselves and others through learning.
- Stewardship – Fiscal and environmental sustainability guide our decisions.
- Accountability – We are answerable to each other and act with the best interests of the university in mind.

Business Analytics with Information Technology (IT) Certificate Program

Purpose
The objective of the Graduate Certificate in Business Analytics with Information Technology (IT) is to help working professionals advance in their careers by improving understanding about how analytics plays a strategic role in the modern organizational environment. The emphasis of this certificate program is on the application of IT tools for business analytics and its alignment with organizational strategy, data-driven decision-making, and the visualization of data analysis for presentation to key organizational stakeholders. Students will gain understanding of fundamental analytics concepts, the process of extracting, transforming, and loading data from a variety of sources into manageable datamarts that can be used for analysis by organizations, and the use of IT tools in the analytics field.

Eligibility
The entry requirements for the graduate certificate will be the same as the requirements to be accepted as a non-degree seeking student in the School of Business Graduate School (completed undergraduate degree with a GPA of 3.0 or higher, and/or meets the qualifications for graduate MIS admissions).

The certificate will require the successful completion of 15 credit hours (see 5 required courses below) and a cumulative grade point of average of 3.0 or better.

Business Analytics with Information Technology (IT) Certificate Program

Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA Requirement</td>
<td>A cumulative GPA of 3.0 or greater is required to successfully complete the certificate program.</td>
</tr>
<tr>
<td>Certificate Courses</td>
<td></td>
</tr>
<tr>
<td>IS 608 Desktop Analytics with IT Tools</td>
<td>3</td>
</tr>
<tr>
<td>or MBA 662 Quantitative Analysis for Business Managers</td>
<td></td>
</tr>
<tr>
<td>IS 617 Data Science for Business</td>
<td>3</td>
</tr>
<tr>
<td>IS 619 Advanced Business Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 651 Data Management & SQL for Analytics</td>
<td>3</td>
</tr>
<tr>
<td>IS 652 Data Visualization for Business</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Students who have previously taken equivalent courses from a regionally accredited, AACSB institution may receive transfer credit towards the graduate certificate program with a grade of 3.0 (i.e., B) or better. Up to 6 credits may be transferred into the graduate certificate program with the approval of the program director.
Benefits
This certificate serves as a credential for students wishing to gain further depth in their knowledge, skills, and abilities within the field of business analytics. Earning a Business Analytics with IT Certificate differentiates students in a competitive hiring environment.

Cybersecurity Management Certificate Program

Purpose
The objective of the Graduate Certificate in Cybersecurity Management is to help working professionals advance in their careers by improving understanding about the field of cybersecurity and the role security plays in the modern organizational environment. The emphasis of this certificate program is on the managerial aspects of cybersecurity, including security strategy and planning, policy development, risk and vulnerability assessment and management, and managing under uncertainty during security incidents.

Eligibility
The entry requirements for the graduate certificate will be the same as the requirements to be accepted as a non-degree seeking student in the School of Business Graduate School (completed undergraduate degree with a GPA of 3.0 or higher, and/or meets the qualifications for graduate MIS admissions).

The certificate will require the successful completion of 15 credit hours (see 5 required courses below) and a cumulative grade point of average of 3.0 or better.

Graduate Certificate in Digital Marketing

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 655</td>
<td>Digital Marketing Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MBA 656</td>
<td>Integrated Marketing Communications Practicum</td>
<td>3</td>
</tr>
<tr>
<td>MBA 657</td>
<td>Digital Marketing Topics</td>
<td>3</td>
</tr>
<tr>
<td>MBA 653</td>
<td>Marketing Analysis and Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>or MBA 617</td>
<td>Data Science for Business</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Approved by Program Director</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 15

Information Technology (IT) Management Certificate Program

Purpose
The objective of the Graduate Certificate in Information Technology (IT) Management is to help working professionals advance in their careers by improving understanding about how technology plays a strategic role in the modern organizational environment. The emphasis of this certificate program is on the managerial application of technology in business and its alignment with organizational strategy, key stakeholders, and the translation of strategy into operational activities. Students will gain understanding of organizational strategy, leadership and persuasion techniques, financial budgeting and decision making with resource constraints, regulatory requirements and compliance procedures, and managing business operations under uncertainty.

Eligibility
The entry requirements for the graduate certificate will be the same as the requirements to be accepted as a non-degree seeking student in the School of Business Graduate School (completed undergraduate degree with a GPA of 3.0 or higher, and/or meets the qualifications for graduate MIS admissions).

The certificate will require the successful completion of 15 credit hours (see 5 required courses below) and a cumulative grade point of average of 3.0 or better.

Graduate Certificate in Information Technology (IT) Management

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 611</td>
<td>Information Technology and Business Strategy</td>
<td>3</td>
</tr>
<tr>
<td>IS 612</td>
<td>IT Governance and Management</td>
<td>3</td>
</tr>
<tr>
<td>IS 621</td>
<td>Incidence Response and Business Continuity</td>
<td>3</td>
</tr>
<tr>
<td>IS 640</td>
<td>Technology Planning and Capital Budgeting</td>
<td>3</td>
</tr>
<tr>
<td>IS 641</td>
<td>Leadership in IT</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 15

Students who have previously taken equivalent courses from a regionally accredited, AACSB institution may receive transfer credit towards the graduate certificate program with a grade of 3.0 (i.e., B) or better. Up to 6

Students who have previously taken equivalent courses from a regionally accredited, AACSB institution may receive transfer credit towards the graduate certificate program with a grade of 3.0 (i.e., B) or better. Up to 6
credits may be transferred into the graduate certificate program with the approval of the program director.

Benefits
This certificate serves as a credential for students wishing to gain further depth in their knowledge, skills, and abilities within the field of information technology. Earning a IT Management Certificate differentiates students in a competitive hiring environment.

Certificate in Social Media

Purpose
The purpose of the Graduate Certificate in Social Media is to help working professionals advance their knowledge and understanding of social media marketing. The emphasis of the certificate is on the application of social media tools, strategy, and analytics. Upon completion, students should have a better understanding of how social media fits into the broader context of business and marketing strategy.

Eligibility
The entry requirements for the graduate certificate will be the same as the requirements to be accepted as a non-degree seeking student in the School of Business Graduate School (completed undergraduate degree with a GPA of 3.0 or higher, and/or meets the qualifications for graduate MBA admissions).

The certificate will require the successful completion of 12 credit hours (see 5 required courses below) and a cumulative grade point of average of 3.0 or better.

Certificate in Social Media

Requirements
<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 616 Web Analytics</td>
<td>3</td>
</tr>
<tr>
<td>MBA 617 Data Science for Business</td>
<td>3</td>
</tr>
<tr>
<td>2 Social Media related courses approved by MBA Program Director</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Benefits
Students who complete the Certificate in Social Media should have an advanced knowledge of social media strategy, analytics, tools, and tactics. Earning this certificate should differentiate students among their peers.

Doug Ayers, Ph.D. dayers@uab.edu
Mike Wittmann, Ph.D. wittmann@uab.edu

Certificate in Technology Commercialization and Entrepreneurship

Purpose
The Graduate Certificate in Technology Entrepreneurship and Commercialization is designed for those interested in starting or working in a growth-focused, startup organization. The emphasis is on entrepreneurial thinking, identifying entrepreneurial opportunities, translating ideas into launchable business models and understanding the challenges of leading a startup organization. The program has a practical focus and utilizes current best practice in Entrepreneurship. No prior business coursework is required for this graduate certificate.

Eligibility
The entry requirements for the graduate certificate will be the same as the requirements to be accepted as a non-degree seeking student in the School of Business Graduate School (completed undergraduate degree with a GPA of 3.0 or higher, and/or holds a current graduate degree).

The certificate will require the successful completion of 12 credit hours (see 4 required courses below) and a cumulative grade point of average of 3.0 or better.

Certificate in Technology Commercialization & Entrepreneurship

Requirements
<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 673 Planning and Pitching a New Business Concept</td>
<td>3</td>
</tr>
<tr>
<td>MBA 681 From Idea to IPO</td>
<td>3</td>
</tr>
<tr>
<td>MBA 683 Leading Innovation</td>
<td>3</td>
</tr>
<tr>
<td>MBA 688 Special Topics in Management (Entrepreneurship focused class approved by advisor)</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Benefits
This certificate serves as a credential for students wishing to gain further depth in their knowledge, skills, and abilities in the fields of innovation, entrepreneurship and the management of rapidly growing enterprises. Earning a Certificate in Technology Commercialization and Entrepreneurship prepares students to start and manage startup companies as well as to lead innovation initiatives within established organizations.

Certificate in Foundations of Business Administration

The Certificate in Foundations of Business Administration provides the fundamental tools for success in business administration. It affords students the opportunity to acquire these skills in a five course (15 credit hours) format and the ability to complete the certificate in one calendar year if taken on a part-time basis. This certificate will appeal to students who need knowledge of the basic business disciplines without the commitment of time and resources required by the MBA degree.

This program will also appeal to employers who want a graduate-level certificate learning experience to enhance the skill sets of valued employees at a reduced cost within a one-year time frame.

Requirements
<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Program Core Courses</td>
<td>12</td>
</tr>
<tr>
<td>MBA 601 Accounting and Finance for Managers</td>
<td></td>
</tr>
<tr>
<td>MBA 631 Management and Organizations</td>
<td></td>
</tr>
<tr>
<td>MBA 619 Information Technology and Business Strategy</td>
<td></td>
</tr>
<tr>
<td>MBA 651 Marketing Strategy</td>
<td></td>
</tr>
<tr>
<td>Certificate Program Elective Courses (select one)</td>
<td>3</td>
</tr>
<tr>
<td>MBA 662 Quantitative Analysis for Business Managers</td>
<td></td>
</tr>
<tr>
<td>MBA 642 Economics for Managers</td>
<td></td>
</tr>
<tr>
<td>MBA 608 Strategic Cost Analysis and Decision Making</td>
<td></td>
</tr>
<tr>
<td>MBA 621 Topics in Corporate Finance</td>
<td></td>
</tr>
</tbody>
</table>
Accounting

Degree Offered: Master of Accounting

Degree Offered: Master of Accounting
Director: James Byrd, Ph.D.
Phone: (205) 934-8829
E-mail: jimbyrd@uab.edu
Website: www.uab.edu/mac

The Department of Accounting and Finance (ACFN) in the Collat School of Business is proud to offer a Master of Accounting (M.Ac.) program that holds a separate accreditation by the Association of Advance Collegiate Schools of Business (AACSB), the highest honor a business school can achieve for its accounting programs.

Courses in the program are offered in the classroom primarily in an evening format, with some classes having an online option. An enhanced online with premium program (https://www.uab.edu/business/home/programs/100-online) is also available 100% online and offers a guaranteed path of progression with a tuition premium.

High-achieving UAB accounting undergraduate students interested in pursuing the M.Ac. degree should consider the UAB Fast-Track Master of Accounting Program. Details are outlined below.

Admission

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page:
https://www.uab.edu/business/home/master-of-accounting/mac-admission

The course requirements are listed under the M.Ac. tab, above.

Admission Requirements

1. A bachelor's degree from an institution that is AACSB or regionally accredited, received within the five-year period immediately preceding the desired term of enrollment (or a bachelor's degree in any discipline from a regionally accredited institution). Applicants who do not have an undergraduate accounting degree will be required to complete up to nine foundation courses in addition to the classes listed in the Program Description section of the catalog and will be required to earn at least a B in the foundation courses numbered 300 or above for admission to the M.Ac. The courses which must be completed are listed below. Students may be eligible to receive the Certificate in Accounting upon completion of these courses.

- AC 200 Principles of Accounting I
- AC 201 Principles of Accounting II
- AC 300 Financial Accounting I
- AC 304 Accounting Information Systems
- AC 310 Financial Accounting II
- AC 401 Cost Accounting
- AC 402 Income Taxation I
- AC 423 External Auditing
- AC 430 Financial Accounting III

International Applicants' prerequisite requirements:

Please note that only courses covering US Generally Accepted Accounting Principles (GAAP), Generally Accepted Auditing Standards (GAAS), and U.S. Taxation will be accepted as meeting prerequisite requirements. Applicants without these courses will be required to complete the prerequisite courses at UAB (listed above).

2. A minimum score of 500 on the Graduate Management Admission Test (GMAT) administered by the Graduate Management Admission Council (GMAC, www.gmac.com) within the five-year period immediately preceding the desired term of enrollment. The GMAT is waived for UAB accounting graduates and other students with an overall GPA of 3.4 or higher who take all of the foundation accounting courses at the undergraduate level at UAB.

The GMAT requirement may also be waived by the M.Ac. Director if one of the following conditions apply:

- Applicant earned or will have earned an undergraduate accounting degree from an AACSB accredited institution and have achieved an overall GPA of 3.4 or higher.
- Applicant is completing the accounting bridge program at UAB.
- Applicant has an advanced degree in a business related field (e.g. MBA) from an AACSB accredited institution.
- Applicant has a terminal degree in another discipline.
- Applicant has a professional accounting certification (CPA or equivalent) which requires continuing professional education.
- Applicant has significant (3-5 years) experience at the executive level.

3. Satisfactory academic performance as measured by the undergraduate accounting grade point average (3.0 or higher). [Note: UAB undergraduates planning to pursue the M.Ac. degree should take AC 423 as their accounting elective. If they do not take AC 423, they should plan to take AC 523 as an elective in the M.Ac. program before taking AC 606.]

Application Deadlines

Fall Semester: July 1st
Spring Semester: November 1st
Summer Semester: April 1st

Required Documents

- Application form including 2 evaluation forms/letters of reference
- Current resume/CV detailing work experience
- Official transcripts from all colleges and universities attended (including dual enrollment and Community Colleges) sent directly by the Registrar or responsible head of the institution to the UAB Graduate School, LHL G03, 1720 2nd Ave. S., Birmingham, AL 35294-0013. Transcripts may also be sent electronically to gradschool@uab.edu.
- GMAT score* sent directly from the testing agency. Institution code: 1CB5S61
- 500 word Statement of Purpose
International Applicants
The following additional documents are required of international applicants:

A minimum composite score of 80 with a minimum score of 20 in each section of the Test of English as a Foreign Language (TOEFL) administered by the Educational Testing Service (ETS, www.toefl.org) within the five-year period immediately preceding the desired term of enrollment. We will also accept an IELTS score of 6.5 in lieu of the TOEFL.

Financial Affidavit of Support
Immigration documentation if currently residing in the United States, or proof of citizenship if currently a U.S. citizen.

A transcript evaluation report prepared by Educational Credential Evaluators, Inc. (ECE, www.ece.org) or World Education Services (WES, www.wes.org)

Full Time Student Enrollment Status
To be enrolled as a full-time graduate student, a student must register for at least 9 semester hours in the fall, spring, and summer semesters. http://catalog.uab.edu/graduate/enrollment/. If a student is enrolled in courses offered in a 7-week format, those credit hours are applied toward the 9 semester hour requirement for the entire 14-week term.

Example: If a student is enrolled in 6 credit hours in the Spring A term (first 7 weeks) and 3 credit hours in the Spring B term (second 7 weeks), the university recognizes this student to be enrolled in 9 semester hours for the entire period (14-week term), and of full time status.

Accelerated Bachelor's/Master's Program (ABM)
A successful graduate of the ABM will earn a bachelor's degree and Master of Accounting degree from the University of Alabama at Birmingham Collat School of Business in an accelerated time period compared to the independent completion of these two degrees. Students will graduate with a Bachelor degree upon completion of the Bachelor degree requirements, then graduate with a Masters' degree upon completing the requirements for the Master of Accounting.

Admissions
The Accelerated Bachelors/Master's Program is for exceptional students. The accepted student will have:

• an average GPA of 3.5 in all institutional courses
• a minimum of 60 credit hours (36 of these credit hours must have been taken at UAB)

Before applying, the student must meet with their graduate program coordinator and their undergraduate advisor to discuss program requirements; students should also meet with a financial aid/scholarship advisor to determine the impact of ABM on their scholarships and/or aid award. The student should also be advised that additional credit hours may be required for licensure as a CPA.

Upon acceptance, a detailed plan of study must be mapped out specific to each ABM student. This plan must be agreed upon by the student, their undergraduate academic advisor, and graduate program coordinator and strictly adhered to while in the ABM program to guarantee their continued participation in the ABM. Acceptance into the program takes place after a student has earned 60 credit hours of coursework. Admission is by a committee chaired by the graduate program director, consisting of the graduate program director and department program coordinator.

To maintain status in ABM, the student must:

• maintain an institutional GPA of 3.25 or higher
• receive a B (or higher) in all courses taken while still an undergraduate student
• maintain full time student status at UAB
• Accounting and Finance Department will waive the hour requirement for internship terms if the internship causes them to drop below the full time student hour requirement.

If any of these requirements is violated, the student will be withdrawn from the ABM program. If a student is withdrawn from the ABM program, they will retain credit for the courses already completed in the program.

Once the student has completed all undergraduate course requirements for graduation, their undergraduate degree will be awarded. Once the student graduates from a bachelor's degree program, they enter the Master of Accounting program and must maintain the requirements of that program. Tuition is then charged at the graduate rate.

To accelerate progress through the Master of Accounting degree, a limited number of courses (up to 12 credit hours) may be counted toward the completion of the bachelor's degree and toward the completion of the Master of Accounting degree. The selected Master of Accounting courses must be approved by the student's undergraduate academic advisor.

Graduate courses allowed for credit sharing are the following:

AC 523 External Auditing (requires approval of program director)
AC 530 Financial Accounting III (prerequisite - AC 310)
AC 557 Business Law for Accountants (requires approval of program director) AC 573 Fraud Examination (prerequisite - AC 423/523)
AC 580 Advanced Accounting (prerequisite - AC 430/530) AC 600 Accounting Research (prerequisite - AC 430/530)
AC 612 Governance and the Business Environment (prerequisite - AC 401)

Early Acceptance Program
Early Acceptance Programs are designed for academically superior high-school students. Early Acceptance Programs allow high achieving students to be admitted to the Master of Accounting (M.Ac.) program at the same time they are admitted to an undergraduate program.

Eligible students are required to maintain a 3.5 undergraduate GPA and complete the following pre-requisite courses: AC 200, AC 201, AC 300, AC 304, AC 310, AC 401, AC 402, AC 423, and AC 430.

Uniform CPA Examination
Eligibility requirements for sitting for the Uniform CPA examination vary among the states and territories. For detailed information about these requirements, please contact the National Association of State Boards of Accountancy (NASBA) at https://nasba.org/stateboards/. The state of Alabama, through its Accountancy Laws and the Alabama State Board of Public Accountancy (ASBPA, www.asbpa.alabama.gov), requires
that applicants for the Uniform CPA Examination hold a baccalaureate degree from an accredited institution and possess a total of 120 semester hours of postsecondary education, including at least 24 semester hours of accounting in specified areas at the upper-division or graduate level and 24 semester hours in business-related courses. The UAB 120-hour undergraduate accounting program does not provide all of the classes needed for a 150 hour CPA licensure in Alabama. The M.Ac. combined with either the 24-hour bridge (outlined under Admission Requirements) or an undergraduate program will provide the necessary hours.

Other Professional Accounting Certifications

Other examinations leading to professional certification (CMA, CIA, CFE, CISA, etc.) generally do not require academic course work beyond the baccalaureate degree. Students interested in other accounting certifications should contact any member of the accounting faculty for further information.

Master of Accounting

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses (5)</td>
<td></td>
</tr>
<tr>
<td>AC 580 Advanced Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>AC 600 Financial Accounting Research</td>
<td>3</td>
</tr>
<tr>
<td>AC 606 Advanced Auditing and Attestation</td>
<td>3</td>
</tr>
<tr>
<td>AC 612 Governance and the Business Environment</td>
<td>3</td>
</tr>
<tr>
<td>AC 620 Tax Research</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses -Choose Five From:</td>
<td>15</td>
</tr>
<tr>
<td>AC 513 Internal Auditing</td>
<td></td>
</tr>
<tr>
<td>AC 514 Governmental and Not-for-Profit Accounting</td>
<td></td>
</tr>
<tr>
<td>AC 523 External Auditing</td>
<td></td>
</tr>
<tr>
<td>AC 530 Financial Accounting III</td>
<td></td>
</tr>
<tr>
<td>AC 540 International Accounting: From a User’s Perspective</td>
<td></td>
</tr>
<tr>
<td>AC 541 International Accounting: Study Abroad</td>
<td></td>
</tr>
<tr>
<td>AC 564 Accounting Internship</td>
<td></td>
</tr>
<tr>
<td>AC 573 Fraud Examination</td>
<td></td>
</tr>
<tr>
<td>AC 574 Forensic Accounting Practicum</td>
<td></td>
</tr>
<tr>
<td>AC 672 Advanced Information Technology Auditing</td>
<td></td>
</tr>
<tr>
<td>IS 607 Introduction to Cyber Security</td>
<td></td>
</tr>
<tr>
<td>IS 613 Information Security Management</td>
<td></td>
</tr>
<tr>
<td>IS 620 Cyber Attacks and Threat Mitigation</td>
<td></td>
</tr>
<tr>
<td>IS 621 Incident Response and Business Continuity</td>
<td></td>
</tr>
<tr>
<td>IS 644 Digital Forensics</td>
<td></td>
</tr>
<tr>
<td>LS 571 Legal Elements of Fraud Investigation</td>
<td></td>
</tr>
<tr>
<td>LS 557 Business Law for Accountants</td>
<td></td>
</tr>
<tr>
<td>MBA 613 Information Security Management</td>
<td></td>
</tr>
<tr>
<td>MBA 614 Social Media and Virtual Communities in Business</td>
<td></td>
</tr>
<tr>
<td>MBA 617 Data Science for Business</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 30

1 May be taken as graduate courses only if not previously taken as undergraduate level courses.

Courses

AC 500. Financial Accounting I. 3 Hours.
Accounting cycle, environment of financial accounting, conceptual framework of financial accounting, financial statements, time value of money, cash and receivables. Enrollment requires permission of the M.Ac. Program Director.

AC 501. Cost Accounting. 3 Hours.
Basic Theory and procedures involving cost determination, analysis, and control. Cost allocations, applications of overhead, budgeting, standard costs, job order, process and byproduct costing, spoilage, and quantitative techniques. Enrollment requires permission of the M.Ac. Program Director.

AC 502. Income Taxation I. 3 Hours.
Fundamentals and basic concepts of various entities, with emphasis on federal income taxation of individuals. Enrollment requires permission of the M.Ac. Program Director.

AC 504. Accounting Information Systems. 3 Hours.
Transaction processing cycles of accounting system; internal control, development, and control of information systems; emerging development of information technology. Enrollment requires permission of the M.Ac. Program Director.

AC 510. Financial Accounting II. 3 Hours.
Continuation of AC 500. Inventories, plant assets, intangible assets, current liabilities, long term debt and stockholders’ equity, dilutive securities, earnings per share, and investments. Enrollment requires permission of the M.Ac. Program Director.

AC 513. Internal Auditing. 3 Hours.
Theory and practice of internal auditing and application of internal auditing principles and techniques to selected audit problems. Enrollment requires permission of the M.Ac. Program Director.

AC 514. Governmental and Not-for-Profit Accounting. 3 Hours.
Special features of budgetary and fund accounting as applied to municipalities, other government units, and to other non-profit entities.

AC 523. External Auditing. 3 Hours.
Study of the external audit function and the essential standards that govern audit practice. Enrollment requires permission of the M.Ac. Program Director.

AC 530. Financial Accounting III. 3 Hours.
Dilutive securities, earnings per share, investments, accounting for income taxes, accounting changes and error analysis, statement of cash flows, retirement benefits, leases and selected disclosures. Enrollment requires permission of the M.Ac. Program Director.

AC 540. International Accounting: From a User’s Perspective. 3 Hours.
Development of international accounting knowledge needed to make informed decisions in global business environment.

AC 564. Accounting Internship. 3 Hours.
Work experience enabling students to better integrate academic knowledge with practical applications by exposure to accounting practice and business environment.

AC 572. Information Technology Auditing. 3 Hours.
Introduction to the practice of information technology auditing. An emphasis is placed on information technology auditing standards and methodology, as well as guidance on auditing general computer controls and application controls.
Business Administration

Degree Offered: Master of Business Administration (M.B.A.)

Director: Douglas J. Ayers, PhD
Phone: (205) 934-8855
E-mail: dayers@uab.edu
Website: http://www.uab.edu/mba

Master of Business Administration

The UAB MBA is designed to provide competency in management and to acquaint the student with all aspects of business activity. In order to deal effectively with increasingly complex and ambiguous problems of business and organizations, managers require training in sophisticated analytical techniques, appreciation for the behavioral facets of management, as well as an ability to anticipate and adapt to changes in an organizational environment. The program stresses critical thinking and is decision oriented, focusing on key aspects of business administration.

The MBA program is suitable not only for students with baccalaureate degrees in business but also for those who have degrees in engineering, the sciences, or liberal arts.

UAB’s MBA program offers an online MBA, and an on-campus program where students may take a combination of face-to-face and online classes. Students may choose to follow either a one or two-year-plan of study to guarantee graduation with a specified time-frame, or to pursue the degree at their own pace. Students have 5 years from term of entry to complete degree requirements.

Concentrations are available in finance, management information systems, marketing, health services, business analytics and entrepreneurship. Dual Degree options available include MD/MBA, DMD/MBA, OD/MBA, MPH/MBA, MSHA/MBA, ASEM/MBA, and several Engineering/MBA. Applicants interested in these dual degree options are required to apply and be accepted to both degree programs.

Quantitative Requirement

Applicants are expected to have completed a pre-calculus class with a grade of "C" or better within the last five years. If an applicant does not meet this requirement, they may be admitted with the contingency of satisfying the requirement before their first term of enrollment.

More information about this can be found on the Collat School of Business website.

Grade Point Average Policy

Any student who receives three "C"s or one "F" in any graduate level course while in the MBA Program will be dismissed from the program.

Admission

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page:

https://www.uab.edu/business/home/admissions/graduate/mba
Application Deadlines
Fall semester - July 1st
Spring semester - November 1st
Summer semester- April 1st

*It is suggested that international applicants should apply at least 6 months in advance of the deadline in order to ensure processing of all Visa paperwork

Required Documents
- Application form including 3 evaluation forms/letters of reference
- Current resume detailing work experience
- Official transcripts from all colleges and universities attended
- Undergraduate cumulative GPA of 3.0 or higher. Non-degree seeking candidates interested in non-degree seeking admission must have an undergraduate cumulative GPA of 3.0 or higher. Non-degree seeking students are limited to earning 12 hours credit in this status. The option to enter as non-degree seeking will be offered to candidates who miss the application deadline for applying to the MBA program, but who submit all materials prior to the beginning of the term and meet admission requirements, provided that there are seats available. We will require a resume, copies of transcripts, and GMAT scores along with the application. Permission of the MBA office is needed in order to register for classes as a non-degree seeking student.

Full Time Student Enrollment Status
To be enrolled as a full-time graduate student, a student must register for at least 9 semester hours in the fall, spring, and summer semesters.

Academic requirements for international applicants required if transcripts are not in English is strongly recommended. Applicants without a comparable standardized test was required for entry into their program. In addition, the GMAT may be waived for applicants with 3-5 years of demonstrated professional work experience and exceptional academic performance. Professional experience is determined on a case-by-case basis using a resume, and any requested supporting documents, including undergraduate transcript. Our admissions committee evaluates an individual's accomplishments, roles, and responsibilities to determine the total number of years of professional experience. Normally, professional experience begins at the point of graduation; however, we may consider prior work experience based on type of experience. Students who wish to petition for a GMAT waiver based on professional work experience may submit a resume and unofficial transcript to MBA Admissions prior to applying.

Additional Documents Required for International Applicants
- TOEFL IBT score of 80 with a minimum score of 20 in each section or IELTS of 6.5 with a minimum score of 6.0 in each section (international applicants only)
- General academic credentials evaluation (ECE or WES report) for international applicants required if transcripts are not in English is strongly recommended. Applicants without a credentialing evaluation should apply at least 6 months in advance of application deadline to allow time for in-house evaluation by the Office of International Admissions.

Non-Degree Seeking Admission
Candidates interested in non-degree seeking admission must have an undergraduate cumulative GPA of 3.0 or higher. Non-degree seeking students are limited to earning 12 hours credit in this status. The option to enter as non-degree seeking will be offered to candidates who miss the application deadline for applying to the MBA program, but who submit all materials prior to the beginning of the term and meet admission requirements. Permission of the MBA office is needed in order to register for classes as a non-degree seeking student.

Accelerated Bachelor's to Master's Program (ABM)
Exceptional students currently enrolled in an undergraduate degree program at UAB are encouraged to apply to our Accelerated Bachelor's/ Master's program (ABM). This program is open to all students who meet the criteria for admission, regardless of their major.

How it Works
To accelerate progress through a master's degree in the Masters of Business Administration, a limited number of graduate courses (up to 12 credit hours) may be counted towards both the completion of the undergraduate degree and the MBA graduate degree. While concurrent completion of both degrees is possible, it is often not the case. Students who satisfy requirements for the undergraduate degree before the complete of 12 hours of MBA coursework must file for undergraduate graduation and then proceed in the MBA program as a degree-seeking graduate students paying graduate tuition.

For non-business majors, these 12 hours of MBA coursework may count as elective credit towards completion of the undergraduate degree. For business majors, approved MBA classes and their corresponding undergraduate courses approved for sharing credit are listed at the end of this section.

Admissions
The Accelerated Bachelors/Master's Program is for exceptional students. The accepted students will have:
- A minimum GPA of 3.7 in all institutional courses
- A minimum of 60 credit hours (45 of these credits must have been taken at UAB)
- Completion of a precalculus course with a grade of “B” or better. Students who have not completed a precalculus class will be required to enroll in the Graduate School of Management's free, online Math 105 equivalent course (Quantitative Analysis Review Course). This not-for-credit course contains tutorial videos and a short proficiency test. Student must pass the quiz with a 70% or above before enrolling in MBA classes.
- All ABM students must complete a graduate level internship, which will count as one of the two required electives. For students pursuing
a concentration, the internship must be in the area of concentration. A student with business experience within their field of study may appeal to the MBA Director to waive the internship requirement and substitute another elective course.

• All non-business undergraduate students must successfully complete BUS 101 or BUS 102 with a grade of B or better before beginning MBA courses.

Before applying, the student must meet with their MBA graduate program advisor and their undergraduate advisor to discuss program requirements; students should also meet with financial aid/scholarship advisor to determine the impact of ABM on their scholarships and/or aid award.

Next, students must submit the MBA ABM program application including ABM form, application fee, essay, resume, and one recommendation.

Upon acceptance, a detailed plan of study must be mapped out specific to each MBA ABM student. This plan must be agreed upon by all parties (student; their undergraduate academic advisor, undergraduate program director, graduate program advisor, and graduate program director) and strictly adhered to while in the MBA ABM program to guarantee their continued participation in the MBA ABM.

Acceptance into the program happens after the student has earned 60 credit hours of coursework. Admission is by a committee chaired by the graduate program director, consisting of the graduate program director and the graduate program advisor.

Credit Sharing Policy

To accelerate progress through the MBA degree, a limited number of courses (up to 12 credit hours) may be counted as an elective towards the completion of the bachelor’s degree and toward the completion of the MBA degree.

• The selected MBA courses must be approved by the student’s undergraduate academic advisor, undergraduate program director, graduate program advisor, and graduate program director.
• Limited to a total of 12 credit hours of coursework

Maintaining Status in ABM

To maintain status in the ABM, the student must:

• maintain a 3.25 average in undergraduate courses
• receive a grade of B or better in the MBA classes taken while still an undergraduate student
• maintain fulltime student status at UAB

If any of these requirements is violated, the student will be withdrawn from the ABM program. If a student is withdrawn from the ABM program, they will retain credit for the courses already taken in the program.

Once the undergraduate student has completed all requirements for graduation, their undergraduate degree may be awarded.

Once the student graduates from a bachelor’s degree program, they enter the MBA program as a regular, degree-seeking student and must maintain the requirements of that program. Tuition is then charged at the MBA graduate rate.

Graduate Courses Allowed for Credit Sharing

*(Successful completion of MA 105 or equivalent and completion of BUS 101 or BUS 102 with a grade of B or better are required before enrolling in MBA courses.)

The 4 classes below are typically used for elective credit by students pursuing an undergraduate major other than business:

MBA 601 Accounting and Finance for Managers
MBA 631 Management and Organizations
MBA 642 Economics for Managers
MBA 662 Quantitative Analysis for Managers

For business undergraduate majors, the following classes may be allowed to take the place of the indicated undergraduate business requirements, pending approval of undergraduate major advisor and MBA Program:

MBA 601: AC 200, AC 201 or FN 310
MBA 631: MG 302 or MG 401
MBA 662: QM 215
MBA 642: EC 210 or EC 310
MBA 608: AC 401
MBA 621: FN 410
MBA 637: MG 403
MBA 619: IS 303
MBA 634: BUS 450
MBA 651: MK 450

Early Acceptance

Early Acceptance Programs are designed for academically superior high-school students. Early Acceptance Programs allow high achieving students to be admitted to the Master of Business Administration (MBA) program at the same time they are admitted to an undergraduate program.

Eligible students are required to maintain a 3.5 undergraduate GPA and complete BUS 101 or 102 prior to beginning MBA coursework. Find additional information here: https://www.uab.edu/admissions/academics/early-acceptance-programs/graduate-school.

Requirements for the MBA Program:

• 36 semester hours
• 30 hours of required classes (MBA 601, 608, 619, 621, 631, 634, 637, 642, 651, 662)
• 6 hours of electives (9 hours of electives for concentration)
Master of Business Administration Degree Options

Master of Business Administration

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Concentrations</td>
<td></td>
</tr>
<tr>
<td>MBA 601</td>
<td>Accounting and Finance for Managers</td>
</tr>
<tr>
<td>MBA 608</td>
<td>Strategic Cost Analysis and Decision Making</td>
</tr>
<tr>
<td>MBA 619</td>
<td>Information Technology and Business Strategy</td>
</tr>
<tr>
<td>MBA 621</td>
<td>Topics in Corporate Finance</td>
</tr>
<tr>
<td>MBA 631</td>
<td>Management and Organizations</td>
</tr>
<tr>
<td>MBA 634</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>MBA 637</td>
<td>Operations and Supply Chain Management</td>
</tr>
<tr>
<td>MBA 642</td>
<td>Economics for Managers</td>
</tr>
<tr>
<td>MBA 651</td>
<td>Marketing Strategy</td>
</tr>
<tr>
<td>MBA 662</td>
<td>Quantitative Analysis for Business Managers</td>
</tr>
</tbody>
</table>

MBA Courses

- MBA 613: Information Security Management
- MBA 617: Data Science for Business
- MBA 618: Technology Based Project Management
- MBA 622: Portfolio Theory and Construction
- MBA 623: Mergers and Acquisitions
- MBA 624: Global Financial Management
- MBA 625: Real Estate Decision Analysis
- MBA 626: Credit Markets and Instruments
- MBA 627: Financial Risk Analysis and Management
- MBA 628: Valuation Seminar
- MBA 629: Short-Term Financial Management
- MBA 633: International Business Policy
- MBA 636: Human Resource Administration
- MBA 638: Managerial Communication Skills
- MBA 643: Healthcare Leadership Development
- MBA 644: Transformational Leadership and Change
- MBA 645: Game Theory in Industrial Organization
- MBA 652: Sales Management
- MBA 653: Marketing Analysis and Decision Making
- MBA 654: International Marketing
- MBA 655: Digital Marketing Strategy
- MBA 656: Integrated Marketing Communications Practicum
- MBA 658: Applied Marketing Research
- MBA 671: Health Care Marketing
- MBA 686: Special Topics in Marketing

Choose Three From:

- MBA 652: Sales Management
- MBA 653: Marketing Analysis and Decision Making
- MBA 654: International Marketing
- MBA 655: Digital Marketing Strategy
- MBA 656: Integrated Marketing Communications Practicum
- MBA 658: Applied Marketing Research
- MBA 671: Health Care Marketing
- MBA 686: Special Topics in Marketing

Or other Marketing course approved by advisor

Total Hours:

Marketing Concentration

Requirements

<table>
<thead>
<tr>
<th>MBA Required Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 601</td>
<td>Accounting and Finance for Managers</td>
</tr>
<tr>
<td>MBA 608</td>
<td>Strategic Cost Analysis and Decision Making</td>
</tr>
<tr>
<td>MBA 619</td>
<td>Information Technology and Business Strategy</td>
</tr>
<tr>
<td>MBA 621</td>
<td>Topics in Corporate Finance</td>
</tr>
<tr>
<td>MBA 631</td>
<td>Management and Organizations</td>
</tr>
<tr>
<td>MBA 634</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>MBA 637</td>
<td>Operations and Supply Chain Management</td>
</tr>
<tr>
<td>MBA 642</td>
<td>Economics for Managers</td>
</tr>
<tr>
<td>MBA 651</td>
<td>Marketing Strategy</td>
</tr>
<tr>
<td>MBA 662</td>
<td>Quantitative Analysis for Business Managers</td>
</tr>
</tbody>
</table>

Choose Three From:

- MBA 652: Sales Management
- MBA 653: Marketing Analysis and Decision Making
- MBA 654: International Marketing
- MBA 655: Digital Marketing Strategy
- MBA 656: Integrated Marketing Communications Practicum
- MBA 658: Applied Marketing Research
- MBA 671: Health Care Marketing
- MBA 686: Special Topics in Marketing

Or other Marketing course approved by advisor

Total Hours: 39

Health Services Concentration

Requirements

<table>
<thead>
<tr>
<th>MBA Required Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 601</td>
<td>Accounting and Finance for Managers</td>
</tr>
<tr>
<td>MBA 608</td>
<td>Strategic Cost Analysis and Decision Making</td>
</tr>
<tr>
<td>MBA 619</td>
<td>Information Technology and Business Strategy</td>
</tr>
<tr>
<td>MBA 621</td>
<td>Topics in Corporate Finance</td>
</tr>
<tr>
<td>MBA 631</td>
<td>Management and Organizations</td>
</tr>
<tr>
<td>MBA 634</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>MBA 637</td>
<td>Operations and Supply Chain Management</td>
</tr>
<tr>
<td>MBA 642</td>
<td>Economics for Managers</td>
</tr>
<tr>
<td>MBA 651</td>
<td>Marketing Strategy</td>
</tr>
<tr>
<td>MBA 662</td>
<td>Quantitative Analysis for Business Managers</td>
</tr>
</tbody>
</table>

Two MBA or HPO electives at the 600 level or other health-related courses approved by advisor

Total Hours: 39

Finance Concentration

Requirements

<table>
<thead>
<tr>
<th>MBA Required Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 601</td>
<td>Accounting and Finance for Managers</td>
</tr>
<tr>
<td>MBA 608</td>
<td>Strategic Cost Analysis and Decision Making</td>
</tr>
<tr>
<td>MBA 619</td>
<td>Information Technology and Business Strategy</td>
</tr>
<tr>
<td>MBA 621</td>
<td>Topics in Corporate Finance</td>
</tr>
<tr>
<td>MBA 631</td>
<td>Management and Organizations</td>
</tr>
<tr>
<td>MBA 634</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>MBA 637</td>
<td>Operations and Supply Chain Management</td>
</tr>
<tr>
<td>MBA 642</td>
<td>Economics for Managers</td>
</tr>
<tr>
<td>MBA 651</td>
<td>Marketing Strategy</td>
</tr>
</tbody>
</table>
MBA 662 Quantitative Analysis for Business Managers 3

Choose Three From:

MBA 622 Portfolio Theory and Construction
MBA 624 Global Financial Management
MBA 625 Real Estate Decision Analysis
MBA 626 Credit Markets and Instruments
MBA 627 Financial Risk Analysis and Management
MBA 629 Short-Term Financial Management
MBA 685 Special Topics in Finance
Or other Finance course approved by advisor

Total Hours 39

Management Information Systems Concentration

Requirements

MBA Required Courses

MBA 601 Accounting and Finance for Managers 3
MBA 608 Strategic Cost Analysis and Decision Making 3
MBA 619 Information Technology and Business Strategy 3
MBA 621 Topics in Corporate Finance 3
MBA 631 Management and Organizations 3
MBA 634 Strategic Management 3
MBA 637 Operations and Supply Chain Management 3
MBA 642 Economics for Managers 3
MBA 651 Marketing Strategy 3
MBA 662 Quantitative Analysis for Business Managers 3

Choose Three From:

IS 613 Information Security Management
IS 617 Data Science for Business Management
IS 618 IT Project Management
IS 621 Incident Response and Business Continuity

Total Hours 39

Entrepreneurship Concentration

Requirements

MBA Required Courses

MBA 601 Accounting and Finance for Managers 3
MBA 608 Strategic Cost Analysis and Decision Making 3
MBA 619 Information Technology and Business Strategy 3
MBA 621 Topics in Corporate Finance 3
MBA 631 Management and Organizations 3
MBA 634 Strategic Management 3
MBA 637 Operations and Supply Chain Management 3
MBA 642 Economics for Managers 3
MBA 651 Marketing Strategy 3
MBA 662 Quantitative Analysis for Business Managers 3

Choose Three From:

MBA 673 Planning and Pitching a New Business Concept
MBA 681 From Idea to IPO
MBA 683 Leading Innovation
MBA 688 Special Topics in Management (Entrepreneurship related topic approved by advisor)

Total Hours 39

Business Analytics Concentration

Requirements

MBA Required Classes

MBA 601 Accounting and Finance for Managers 3
MBA 662 Quantitative Analysis for Business Managers 3
MBA 631 Management and Organizations 3
MBA 642 Economics for Managers 3
MBA 608 Strategic Cost Analysis and Decision Making 3
MBA 621 Topics in Corporate Finance 3
MBA 619 Information Technology and Business Strategy 3
MBA 651 Marketing Strategy 3
MBA 637 Operations and Supply Chain Management 3
MBA 634 Strategic Management 3

Choose three (3) courses from:

MBA 617 Data Science for Business
IS 619 Advanced Business Analytics
IS 651 Data Management & SQL for Analytics
IS 652 Data Visualization for Business
MK 536 Digital Marketing Analytics
MBA 616 Web Analytics

Total Hours 39

Requirements

MBA 601 Accounting and Finance for Managers 3
MBA 631 Management and Organizations 3
MBA 642 Economics for Managers 3
MBA 662 Quantitative Analysis for Business Managers 3
MBA 608 Strategic Cost Analysis and Decision Making 3
MBA 619 Information Technology and Business Strategy 3
MBA 621 Topics in Corporate Finance 3
MBA 637 Operations and Supply Chain Management 3
MBA 651 Marketing Strategy 3
MBA 634 Strategic Management 3
MBA 500/600 level elective 3

Total Hours 30

Dual Degree Option for M.B.A./M.S.H.A.

Requirements

MBA 601 Accounting and Finance for Managers 3
MBA 631 Management and Organizations 3
MBA 642 Economics for Managers 3
MBA 662 Quantitative Analysis for Business Managers 3
MBA 608 Strategic Cost Analysis and Decision Making 3
MBA 629 Short-Term Financial Management
or MBA 621 Topics in Corporate Finance
MBA 637 Operations and Supply Chain Management 3
MBA 651 Marketing Strategy 3
MBA 634 Strategic Management 3
MBA 500/600 level elective 3

Total Hours 30
Dual Degree Option for M.B.A./M.D.

Requirements	Hours
MBA 601 | Accounting and Finance for Managers | 3
MBA 631 | Management and Organizations | 3
MBA 642 | Economics for Managers | 3
MBA 608 | Strategic Cost Analysis and Decision Making | 3
MBA 619 | Information Technology and Business Strategy | 3
MBA 621 | Topics in Corporate Finance | 3
MBA 637 | Operations and Supply Chain Management | 3
MBA 651 | Marketing Strategy | 3
MBA 634 | Strategic Management | 3
MBA 688 | Special Topics in Management (Healthcare Innovation) | 3

Total Hours 30

Degree with Concentration requires additional approved elective in selected area of study: 39 Total Hours (13 Courses). Concentrations are offered in Finance, Health Services, Information Systems, and Marketing.

Courses

MBA 601. Accounting and Finance for Managers. 3 Hours.
Decision oriented survey course of the principles of both financial accounting and financial management. Broad study of the basic concepts and tools of financial accounting and finance from both the theoretical and practical perspectives. Topics include financial reporting responsibilities of management, analysis and interpretation of financial statements, and the application of time value concepts to the valuation of stocks, bonds, and capital projects.

MBA 608. Strategic Cost Analysis and Decision Making. 3 Hours.
Determination and use of cost data for decision making, control, and evaluation of performance, and formulation of goals and budgets. The strategic context of managerial decision making is emphasized.

Prerequisites: MBA 601 [Min Grade: C]

MBA 613. Information Security Management. 3 Hours.
Develop an understanding of key information security concepts. Develop an understanding of how people, technology and organizational policies should be developed and managed to safeguard an organization's information resources. Learn how to manage under uncertainty and risk. Develop policies and procedures to make information systems secure. Learn how to audit and recover from security breaches.

MBA 616. Web Analytics. 3 Hours.
The Web Analytics course introduces technologies and tools used to realize the full potential of web sites. The course focuses on collection and use of web data such as web traffic and visitor information to design web sites that will enable firms to acquire, convert, and retain customers.

MBA 617. Data Science for Business. 3 Hours.
This course is an introduction to the topic of Business Intelligence with the emphasis of providing a descriptive understanding to the following major components: data warehousing, business performance management, data mining, and business intelligence implementation.

MBA 618. Technology Based Project Management. 3 Hours.
Equips students with the fundamental principles of project management required for successfully implementing IT solutions.

MBA 619. Information Technology and Business Strategy. 3 Hours.
Designed to improve students’ understanding of business strategies and the technology management practices that support them, this course focuses on understanding the basic concepts and terminology of information technology and developing insight into the role of information technology in the strategy and management of organizations.

MBA 621. Topics in Corporate Finance. 3 Hours.
An advanced course in finance with emphasis on special topics such as financial planning, working capital management, leasing, hybrid financing, real options, and international capital budgeting. Case studies are used.

Prerequisites: MBA 601 [Min Grade: C]

MBA 622. Portfolio Theory and Construction. 3 Hours.
Theoretical and practical aspects of investments and portfolio management. Preq: MBA 621.

MBA 623. Mergers and Acquisitions. 3 Hours.
In-depth examination, study, and analysis of current issues and problems in selected areas of finance. Preq: MBA 621.

MBA 624. Global Financial Management. 3 Hours.
Financial analysis and decision-making in international context. All traditional areas of corporate finance explored. Preq: MBA 621.

MBA 625. Real Estate Decision Analysis. 3 Hours.
Master's level course designed to provide students with the tools and analytical framework for making real estate decisions. Preq: MBA 621.

MBA 626. Credit Markets and Instruments. 3 Hours.
Detailed coverage of the credit markets (Money and Bond markets) of the U.S. and an introduction to the international aspects of those instruments. Preq: MBA 621.

MBA 627. Financial Risk Analysis and Management. 3 Hours.
Exploration of issues in the measurement, analysis, and management of financial risk including interest rate, exchange rate, and commodity price risks. Preq: MBA 621.

MBA 628. Valuation Seminar. 3 Hours.
A blend of theory and practice to gain knowledge and skills in the valuation of businesses and interests therein. Preq: MBA 621.

MBA 629. Short-Term Financial Management. 3 Hours.
This course covers the principles of short-term financial management. Specific topics include liquidity, management of working capital, corporate cash management, and short-term investing and borrowing.

Prerequisites: MBA 621 [Min Grade: C]

MBA 631. Management and Organizations. 3 Hours.
Course focuses on both the internal organizational environment, specifically organizational behaviors, and externally, the legal, ethical, and social environment both domestically and internationally. Students will be able to identify policy issues externally from the legal, social, and ethical environment. Students will also gain an understanding of internal organizational behavior.

MBA 634. Strategic Management. 3 Hours.
The integration of management, finance, accounting, marketing, economics, production, information technology, and decision making concepts through the study of business policy and strategy. Must be in last term in the MBA program to register. Permission of advisor required.

MBA 635. International Business Policy. 3 Hours.
Problems and strategic considerations of firms engaged in international business.
MBA 636. Human Resource Administration. 3 Hours.
Critical management theory as applied to human resource problems such as employment, employee education and training, labor management, health and safety, compensation, and human resources research.

MBA 637. Operations and Supply Chain Management. 3 Hours.
Concepts and principles necessary to manage the operations and supply chain function in both service and manufacturing operations. Topics include planning, controlling, directing, and organizing of people, facilities, and materials involved in operations and supply chain management. Global considerations also presented.

MBA 638. Managerial Communication Skills. 3 Hours.
An advanced business communications course for MBA students focusing on the verbal and nonverbal communication skills required of managers in today's business environment.

MBA 641. Macroeconomics Analysis and Decision Making. 3 Hours.
Macroeconomic analysis; modern theory of aggregate demand and supply; forecasting and link between business firm and micro environment. Prereq: MBA 662.
Prerequisites: MBA 662 [Min Grade: C]

MBA 642. Economics for Managers. 3 Hours.
Enables students to understand core microeconomic and macroeconomic concepts and how economics theory can be used to direct managers in understanding economic forces and making rational global and domestic economic decisions.

MBA 643. Healthcare Leadership Development. 3 Hours.
Assesses and develops current and emerging leaders in healthcare. Increases awareness of topics and essential skills relevant to effective leadership and management. Participation in a team-based course project is required.

MBA 644. Transformational Leadership and Change. 3 Hours.
This course examines and applies team-based leadership principles; assesses and hones leadership skills in negotiation and conflict management; and challenges team-based leaders to address current and emerging issues via strategic thinking and organizational change. Participation in a team-based course project is required.
Prerequisites: MBA 643 [Min Grade: B]

MBA 645. Game Theory in Industrial Organization. 3 Hours.
Introduces students to the logic of game theory, in the context of selected topics in the theory of industrial organization. Emphasis will be on applying game-theoretic logic to generic business issues, studied as cases. Preq: MBA 642.

MBA 646. Leadership Development. 3 Hours.
The course assesses and develops leadership knowledge, skills, and abilities by presenting students with the opportunity to reflect on their leadership strengths and confront their leadership weaknesses. Throughout the course students will learn and practice the effective application of various leadership domains as required for different leadership situations (e.g., we will examine leading in the middle rank of an organization and leading in times of crisis). Participants will complete the class with a better understanding of their own individual leadership style and a personal leadership development plan.

MBA 651. Marketing Strategy. 3 Hours.
This course focuses on planning, implementing, and controlling strategic marketing activities. The objective is for students to understand the concepts and processes that guide marketing strategy decision making and to be able to apply these concepts and processes to organizations. Marketing strategy is examined in the context of uncertain competitive environments and from a global perspective.

MBA 652. Sales Management. 3 Hours.
This course focuses on the strategic role of an effective sales force in the organization's total marketing effort and business strategy. Students learn to formulate, implement, and evaluate a sales program. Topics include developing sales goals, creating a sales organizational structure, building a sales program, leading and motivating the sales force.

MBA 653. Marketing Analysis and Decision Making. 3 Hours.
Fundamentals of market-based management and the impact of marketing decisions on profitability. Core themes include customer value, customer satisfaction and marketing performance metrics. Students acquire an understanding of important marketing tools by applying them to key marketing mix decisions.

MBA 654. International Marketing. 3 Hours.
Examination of international marketing activities, including environmental issues, marketing strategy, and tactical considerations in entering foreign markets.

MBA 655. Integrated Marketing Communications Practicum. 3 Hours.
Students will leverage their knowledge in a marketing consulting project for a local business or organization. The integrated marketing communications practicum is offered for graduate students completing a social media marketing certificate.
Prerequisites: MBA 655 [Min Grade: C]

MBA 656. Digital Marketing Topics. 3 Hours.
Digital Marketing Topics is a lecture-based course that focuses on digital marketing topics that are both relevant and timely. Topics may include, but are not limited to, new digital marketing tools and techniques, past, present, and future of digital marketing, social media ethics, artificial intelligence, etc. Topics focused upon will be reviewed on an annual basis to ensure relevance in relation to industry.

MBA 657. Applied Marketing Research. 3 Hours.
This course covers the fundamentals of the marketing research process, including problem definition, research design, research performance, collecting, inputting and analyzing data using IBM SPSS software, interpretation of statistical results into managerial insights, and the presentation of those results to business managers.

MBA 658. Green and Gold Fund Investment Portfolio Management. 3 Hours.
The Green and Gold Fund is UAB's student-managed investment portfolio. Fund members perform actual investment portfolio management with real money. For three credit hours in MBA 659, a student must hold the position of OIC, chief economist, or portfolio manager.

MBA 662. Quantitative Analysis for Business Managers. 3 Hours.
Covers a wide range of topics in quantitative analysis for managerial decision making. The goal is to provide students with essential analytical skills needed to make better business decisions with an emphasis on proficiency using Microsoft Excel.

MBA 671. Health Care Marketing. 3 Hours.
This class is designed for master level students seeking employment in the healthcare industry. The primary objective of this course is to provide students with a comprehensive overview of the marketing fundamentals in the health care environment. This course also examines health care organizations as customers in a B2B environment.
MBA 673. Planning and Pitching a New Business Concept. 3 Hours.
The business plan is the DNA or genetic map of a technology venture. It is the foundation for the capital raise, as well as the roadmap for operational milestones. Unfortunately, most business plans focus on internal strategy rather than a comprehensive assessment of the competitive landscape. Therefore, particular attention will be paid to market research, competitive analysis, and product/market fit.

MBA 676. MBA Internship. 3 Hours.
Offers qualified graduate students the chance to gain first-hand experience in a local business while receiving academic credit.

MBA 681. From Idea to IPO. 3 Hours.
This course is specifically designed to give graduate students in business, medicine, and engineering a deeper understanding of the issues involved in determining how to take the right idea from the laboratory to the marketplace.

MBA 683. Leading Innovation. 3 Hours.
This course exposes students to the nature of innovation, how innovation occurs, barriers to innovation and how to create and sustain an environment that encourages and rewards innovation. Students will also learn how to build, manage and grow a start-up company. Areas such as lean start-up techniques will be covered along with defining mission, vision and values, hiring and staffing and building effective business processes.

MBA 684. Special Topics in Accounting. 3 Hours.
Selected topics in accounting, graduate level.

MBA 685. Special Topics in Finance. 3 Hours.
Selected topics in finance, graduate level.

MBA 686. Special Topics in Marketing. 3 Hours.
Selected graduate-level topics in marketing.

MBA 687. Special Topics in Economics. 3 Hours.
Selected graduate-level topics in economics.

MBA 688. Special Topics in Management. 3 Hours.
Selected topics in management, graduate level.

MBA 689. Special Topics in International Business. 3 Hours.
Selected international business topics.

Management Information Systems

Degree Offered: Master of Science in Management Information Systems (MS MIS)

Director: Sam Goh, Ph.D.
Phone: (205) 934-8830
Email: sgoh@uab.edu
Website: http://misdegree.businessdegrees.uab.edu/ lp-mis-short/

The UAB Collat School of Business, Master of Science in Management Information Systems (MS MIS) program focuses on the business side of information systems and how to strategically position technology to maximize value for an organization. This program provides the broad perspective needed to advance in the information systems management field, and allow students to tailor their education based on specific career goals by focusing in one of three areas: Cyber Security Management, IT Management, or Business Analytics. UAB’s emphasis is on the managerial aspects of information systems, and although the program does provide opportunities for skill development in the latest technologies, the goal of the program is to help those currently working in information systems related fields move into managerial positions by improving understanding of how to use the latest information technologies to benefit organizational stakeholders, such as managers, organizations, employees, customers and partners.

The Management of Information Systems field is growing at an exponential rate as organizations struggle to stay current with new and emerging technologies, such as mobile applications, social media, and business analytics. Professionals are needed that can help organizations understand the business potential of these new technologies, how to develop new applications to meet changing market dynamics, and how to secure these systems from threats. Students graduating from this program are prepared to succeed in an exciting and dynamic career field combining a solid technical information system foundation with business skills so they can immediately contribute to solving business problems, and can drill down into specific fields, such as IT management, web and mobile development or information security.

Program Details

The MS MIS program is taught completely online. Most students can complete degree requirements within 1.6 years (1 year for full-time students). Concentrations are available in Cyber Security Management, IT Management, and Business Analytics. Each concentration consists of twelve semester hours. The Collat School of Business is accredited by AACSB–The Association to Advance Collegiate Schools of Business.

Master of Science in Management Information Systems - Concentration in Cyber Security Management

Requirements Hours
Core Curriculum
IS 607 Introduction to Cyber Security 1 3
IS 608 Desktop Analytics with IT Tools 3
IS 611 Information Technology and Business Strategy 3
IS 618 IT Project Management 2 3
IS 650 Business Intelligence Strategy 3
IS 660 Emerging IT Trends & Technologies 3

Concentration Course Requirements
IS 620 Cyber Attacks and Threat Mitigation 3
IS 621 Incident Response and Business Continuity 3
IS 613 Information Security Management 3
IS 644 Digital Forensics 3

Total Hours 30

Concentration in Information Technology Management

Requirements Hours
Core Curriculum
IS 607 Introduction to Cyber Security 1 3
IS 608 Desktop Analytics with IT Tools 3
IS 611 Information Technology and Business Strategy 3
IS 618 IT Project Management 2 3
IS 650 Business Intelligence Strategy 3
IS 660 Emerging IT Trends & Technologies 3

Concentration Course Requirements
Concentration in Business Analytics

Requirements	**Hours**
Core Curriculum |
* IS 607 | Introduction to Cyber Security | 3
* IS 611 | Information Technology and Business Strategy | 3
* IS 650 | Business Intelligence Strategy | 3
* IS 660 | Emerging IT Trends & Technologies | 3
* IS 608 | Desktop Analytics with IT Tools | 3
* IS 618 | IT Project Management | 3

Concentration Course Requirements |
* IS 617 | Data Science for Business | 3
* IS 619 | Advanced Business Analytics | 3
* IS 651 | Data Management & SQL for Analytics | 3
* IS 652 | Data Visualization for Business | 3

Total Hours | **30**

Students have a maximum of 3 years to complete degree requirements. Certain professional certifications are eligible for transfer credit upon Program Director approval. Students must be in current good standing and provide proof of completed continuing education requirements if certification is scheduled to expire with the calendar year. No more than 6 semester hours may be credited using certifications.

1. Security+ earned through CompTIA, or Certified Information Systems Security Professional (CISSP) earned through ISC2 may satisfy this course requirement.
2. Project Management Professional earned through PMI may satisfy this course requirement.

Courses

IS 599. Directed Readings. 1-3 Hour.
Readings and independent study in selected areas.

IS 607. Introduction to Cyber Security. 3 Hours.
This course serves as an introduction to the field of cyber security where students will develop a basic understanding of the cyber security principles. Students will be able to understand the business value of cyber security and its legal / ethical considerations. Students will also gain an appreciation for security planning and risk management and how risk may be mitigated through technical, physical, and administrative controls.

IS 608. Desktop Analytics with IT Tools. 3 Hours.
Business decisions require the basic skills of analyzing data to understand the problem more completely and to produce better solutions. This course examines the role of IT desktop tools to support a wide variety of business problems in the field of business analytics. Students work at the operational level using business analytics desktop tools to learn foundational topics relating to analysis, statistical modeling, and decision-making in an IT-based business environment. Students will gain hands-on experience with spreadsheet modeling and practical business problems that require analysis and interpretation of data.

Prerequisites: IS 607 [Min Grade: C]

IS 611. Information Technology and Business Strategy. 3 Hours.
This course is designed to improve your understanding of business strategy and the information technology that supports and shapes it. Information technology spans all business functions. We will study both the challenges and the opportunities that are the result of this pervasiveness.

IS 612. IT Governance and Management. 3 Hours.
This course introduces the concept of IT governance and will expose students to various IT governance frameworks. Particular focus will be given to the IT Governance Institutes COBIT framework, ITIL and ISO standards. Students will have an advanced understanding of the various IT governance frameworks, their application in an organizational setting and the managerial issues associated with different governance structures.

IS 613. Information Security Management. 3 Hours.
The primary objectives of the course are for the students to develop a managerial and operational understanding of critical information security risk management concepts. The focus of this course will be on an in-depth investigation of how risk, threats, and vulnerabilities impact information systems and work processes. The course will provide students with an opportunity to gain insights into critical security mitigation best practices.

Prerequisites: IS 607 [Min Grade: C]

IS 617. Data Science for Business. 3 Hours.
This course will introduce students to the rapidly growing fields of business analytics/ data science, focusing on how data can be used to support decision making in organizations. It explains what and how principles and technologies of data science can be used to extract useful information and knowledge from large volume of structured and unstructured data (e.g., textual content) in order to improve business decision making.

Prerequisites: IS 608 [Min Grade: C]

IS 618. IT Project Management. 3 Hours.
The course provides the foundation for the management and successful execution of projects of many types applying PMBOK, or the PMI Project Management Body of Knowledge. The objective is to provide students with an understanding of how to manage technology-oriented projects. A combination of skill development in the general area of project management and application of those skills in evaluating case studies involving technology projects will be used.

IS 619. Advanced Business Analytics. 3 Hours.
The course is the study and practice of how we can extract insightful knowledge from large amounts of data. It is a burgeoning area, currently attracting substantial demand from academy and industry.

Prerequisites: IS 617 [Min Grade: C]

IS 620. Cyber Attacks and Threat Mitigation. 3 Hours.
Covers the concepts of network vulnerabilities from a hacker’s perspective. Addresses the latest cutting edge attacks and common attacks still prevalent. Students will explore legal issues associated with computer network attacks. The course also provides students with the knowledge they need to design, build, and operate network systems to prevent, detect, and respond to attacks.

IS 621. Incident Response and Business Continuity. 3 Hours.
This course provides students with the knowledge necessary to prepare for and respond to computer security incidents. Topics include incident response preparation, detection, reaction, recovery, and maintenance. Computer-related disaster recovery and business continuity planning are also addressed.
IS 640. Technology Planning and Capital Budgeting. 3 Hours.
This course will cover financial techniques and metrics that IT managers should be familiar with, including topics such as measuring returns on IT investments, categories of IT investments, defining and quantifying expected benefits, managing the IT investment portfolio, and budgeting for IT expenditures.

IS 641. Leadership in IT. 3 Hours.
The Leadership in IT course will prepare students for leadership roles in IT related careers. The course will provide students with the knowledge, skills, and foundation in Leadership necessary to be effective in organizational settings, and develop an understanding of the components that make leadership successful.

IS 644. Digital Forensics. 3 Hours.
This course focuses on how organizations conduct digital forensics investigations due to intrusion or cyber crime. This course explores how organizations identify, track, and potential aide in the prosecution of cyber criminals. Students will gain an appreciation for how to conduct digital investigations, preserve evidence, understand the role of law enforcement, and intellectual property concerns associated with cyber crime.

IS 650. Business Intelligence Strategy. 3 Hours.
The goal of this course is to develop a managerial level understanding the strategic role of business analytics. Students gain an appreciation for data-driven decision-making and its role in supporting business and IT strategy. This course explores the differences between the fields of data science, business analytics, and business intelligence. Topics covered include an introduction to the field of business analytics, data management planning, and decision-making with data. This course is designed to provide a high level overview of the disruptive nature of data in business today and how to prepare for a data-driven business environment.

IS 651. Data Management & SQL for Analytics. 3 Hours.
Explore various concepts of data management/ data warehousing for business analytics. The focus of this course is the process of extracting data from a diverse set of sources, transforming and cleaning data, and loading this data into a format used by analytics professionals. Students will also gain expertise in advanced data querying using Structured Query Language (SQL).

IS 652. Data Visualization for Business. 3 Hours.
In this course, students gain experience with techniques on how to effectively communicate the results of an analysis using information and visual aids. Students learn effective methods of presenting information in textual and graphical formats and how to frame data results in a business case format for interpretation by business managers. Students gain hands-on experience with the use of Tableau.

IS 660. Emerging IT Trends & Technologies. 3 Hours.
This course explores emerging IT trends and technologies arising in the business environment based on current events and business developments. The focus of this course will be on the presentation of emerging technologies and an exploration of their business role. Students will gain an appreciation for the business case associated with emerging technologies and IT trends facing IT managers.

IS 690. Current Topics in Information Systems. 3 Hours.
A study of selected current developments in information systems emphasizing development and managerial implications. Permission of instructor required.
College of Arts and Sciences

Dean: Dr. Kecia M. Thomas

The College of Arts and Sciences includes departments in the arts, humanities, mathematics, social, behavioral, natural and physical sciences.

The College offers 17 degree programs leading to a master’s degree and 7 programs leading to a doctoral degree. Traditional programs as well as interdisciplinary and graduate level certificate programs help to keep the College on the leading edge of progressive academic offerings. Situated at the center of an internationally renowned research university and academic medical center, students and faculty in the College of Arts and Sciences have unparalleled opportunities to be part of the innovative and ground-breaking research and creative work that is the signature of UAB.

We offer a student-centered, experiential curriculum designed to prepare students not only for the careers and challenges of the 21st century, but also to be the leaders in the global marketplace of ideas. Students within arts and sciences programs develop the ability to understand diverse perspectives making them better prepared to work creatively and productively with others to solve the most important problems of our times.

Interdisciplinary Programs

Interdisciplinary programs of study are increasingly popular as we realize the benefits of multiple perspectives and methods to advance understanding and improve solutions. Students in the College of Arts and Sciences may pursue formal interdisciplinary programs such as the Master’s degree in Cyber Security, which involves faculty from the departments of Computer Science and Criminal Justice (College of Arts and Sciences), and the Departments of Management, Information Systems Quantitative Methods, and Accounting & Finance (School of Business). Our newest Master’s degree in Cultural Heritage Studies brings together art history, anthropology, and public administration.

Cyber Security

Program Contact Information

Dr. Ragib Hasan
Department of Computer Science
1402 10th Avenue South.
UH 4149
Birmingham, AL 35294-1241
ragib@uab.edu

Program Information

The Master of Science in Cyber Security (formerly known as Computer Forensics and Security Management) (MSSec) is an interdisciplinary program that prepares graduates for a professional career in the field of cyber security by developing in them the necessary skills crucial for success. The program also provides current practitioners the opportunity to obtain advanced-level training to facilitate career advancement. The program includes a set of core, required courses and the opportunity to select from a default option or two tracks of specialization.

Admission Requirements

Students accepted into the program will have earned a bachelor’s degree from an accredited college or university or recognized university from abroad. Most of these students will have earned a cumulative undergraduate grade point average (GPA) of 3.0 or higher. Applicants whose native language is not English are required to take either the TOEFL or the IELTS and score 80 or higher on the TOEFL or 6.5 or higher on the IELTS. The GRE is NOT required.

Students seeking admission to the program who lack a background in computer science but meet the remaining minimum requirements for admission may be admitted contingent on them completing a set of prerequisite courses (or their equivalents) that may include the following (the program directors may waive/require some courses in addition to the ones listed below depending upon the students’ specific background): Among these courses, CS 532/532L can also be counted towards the MS Cyber Security degree.

Master of Science in Cyber Security

A total of 30 semester hours are required for the degree, organized into: (a) 15 hours of required core courses, (b) 6 hours of electives from an approved list of relevant Computer Science courses, and (c) 9 hours of coursework in one of the following two pathways: Approved Cyber Security Centric Courses or Cybercrime Investigations track.

a. Core coursework

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 534</td>
<td>Networking</td>
</tr>
<tr>
<td>CS 623</td>
<td>Network Security</td>
</tr>
<tr>
<td>CS 636</td>
<td>Computer Security</td>
</tr>
<tr>
<td>CS 689</td>
<td>Cyber Risk Management</td>
</tr>
<tr>
<td>CJ 502</td>
<td>Computer Forensics</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>
b. Electives

In addition to the core courses, students must take two CS electives for a total of six hours. The electives must be from 500+ level or 600+ level, chosen from the following courses:

CS 500-level courses: CS 501 and CS 501L, CS 510, CS 520 and CS 520L, CS 520L and CS 520L
CS 520L and CS 533L, CS 555, CS 591, CS 592, CS 597,CS 598

CS 600-level courses: CS 600, CS 601, CS 602, CS 610, CS 614, CS 616, CS 617, CS 620, CS 621 and CS 621L, CS 622, CS 624, CS 625, CS 626, CS 630, CS 631, CS 632, CS 677, CS 683, CS 684, CS 690, CS 691, CS 692, CS 697, CS 698,CS 699

c. Tracks

In addition to the five core courses and two electives listed above, students must choose either of the following two pathways (Cyber Security Centric Courses or Cybercrime Investigations track, both worth 15 credit hours) to fulfill the requirements of the Master’s degree.

1. Cyber Security Centric Courses

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 645 Modern Cryptography</td>
<td>3</td>
</tr>
<tr>
<td>CS 646 Blockchain and Cryptocurrency</td>
<td>3</td>
</tr>
<tr>
<td>CS 643 Cloud Security</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

2. Cybercrime Investigations Track

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS/CJ 519 Investigating Online Crimes</td>
<td>3</td>
</tr>
<tr>
<td>CS/CJ 537 Digital Media Forensics</td>
<td>3</td>
</tr>
<tr>
<td>CJ 675 Law Evidence and Procedure</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>9</td>
</tr>
</tbody>
</table>

Interdisciplinary Graduate Certificate in Social Behavioral Statistics

Graduate Certificate in Social & Behavioral Statistics

The Graduate Certificate in Social & Behavioral Statistics is available to students currently enrolled in a Graduate Program who have a 3.0 GPA or higher.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 707 Statistical Programming for Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Statistics Courses

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 719 Multivariate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>or PY 719L for Multivariate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>PY 727 Longitudinal Data Analysis Laboratory</td>
<td></td>
</tr>
<tr>
<td>or SOC 71 Advanced Longitudinal and Multi-level Data Analysis</td>
<td></td>
</tr>
<tr>
<td>PY 746 Structural Equation Modeling</td>
<td></td>
</tr>
<tr>
<td>SOC 704 Categorical Data Analysis</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1 Other advanced statistics electives may be approved by the Program Director

Contact

Program Director Sylvie Mrug, Ph.D.
E-mail smrug@uab.edu

Anthropology

The Anthropology of Peace and Human Rights Master’s Program

Anthropology is the science committed to the comparative and historical study of humankind, looking across different cultural circumstances and into the depths of prehistory. Anthropology literally means the study of humankind, looking across different cultural circumstances and into the depths of prehistory. Anthropology offers a unique set of perspectives. It can contribute to understanding cultural diversity; reflection on cultural relativism; appreciation of multiculturalism; understanding of effective communication in cross-cultural interactions; knowledge regarding cultural variation in norms, values, beliefs, and culturally-embedded conflict resolution styles; and the development of respect for cultural differences and human rights. This unique knowledge-base and set of perspectives is at the heart of the Master’s program’s focus on peace and human rights, which contributes to the explicitly stated goals of the UAB College of Arts and Sciences to promote diversity and facilitate students meeting the challenges and opportunities posed by globalization. In accordance with the Strategic Plan of the UAB College of Arts and Sciences, the Anthropology of Peace and Human Rights seeks to “enhance students’ global perspective” in an era where “globalization is diminishing the importance of national and political boundaries while increasing the opportunity for international harmony.”

The history of the Civil Rights Movement in Birmingham, Alabama constitutes one reason why the development of peace and human rights at UAB is historically and culturally important. The Anthropology of Peace and Human Rights, with its educational purpose, can be seen as the continuation of positive developments made in social justice and civil rights in Birmingham and Alabama over the last half century. The Master’s program complements the educational and outreach activities of the UAB Institute for Human Rights (IHR). The IHR and the Department of Anthropology work together on a variety of local and global projects. Anthropology faculty are involved in a variety of research, educational, and service activities, and work regularly with students to help them pursue their academic interests and to develop the skills needed locally and globally in the 21st century.
Nationwide, the graduates of peace and conflict studies programs have found positions in human and social services, community mediation organizations, in multicultural education, at legal centers, as U.S. Congressional staffers, at NGOs and human rights organizations, and at the United Nations. In addition to preparing students for such career paths, the Master’s in the Anthropology of Peace and Human Rights aims also to ready students for doctoral studies in peace and human rights areas.

Educational Outcomes

Upon completion of the Master’s program in the Anthropology of Peace and Human Rights, students will gain relevant and marketable skills and knowledge. Learning outcomes include, for example, for students to be able to:

1) Thoroughly integrate and critically analyze how factors such as ecological sustainability, human security, democracy, justice, peace, and human rights are interconnected constructs related to the unifying construct positive peace.

2) Discuss and explain the kinds of human rights violations that are currently taking place (e.g., against migrants, indigenous peoples, women, and children) and analyze and critically evaluate the types of efforts that are ongoing to enhance and safeguard human rights worldwide.

3) Explain how cultural relativism relates (positively and negatively) to the application of human rights standards internationally, and students will develop culturally relativistic communication skills that are respectful of and open to cultural differences and different points of view.

4) Draw from multiple anthropologically relevant models and perspectives (e.g., models of socialization-enculturation, third-party mediation, conflict transformation, nonviolent practice, equity, social reciprocity, peace systems, and so forth) in order to apply anthropological perspectives to the analysis of problems in areas such as conflict resolution, peace education, social justice, and human rights protection.

Program Options: Plan I (Thesis) and Plan II (Exam)

The Anthropology of Peace and Human Rights is a two-year Master’s program that requires a total of 36 semester hours. In consultation with an advisor, a student during the first year will make the choice to follow either the Plan I (thesis) or Plan II (no thesis) to complete the master’s degree. All students, whether following the Plan I or Plan II path, will take the four required courses, which total to 12 semester hours (see below). Students following Plan I take 6 elective courses (18 semester hours), plus enroll in 6 semester hours of thesis credit. Students opting for Plan II, take 8 elective courses (24 semester hours), and at the end of their studies must pass a final exam that reflects the comprehensive activities of the student in the program, as prescribed in the UAB Graduate Student Handbook.

Required Curriculum

Four required courses are ANTH 504, ANTH 505, ANTH 509, & ANTH 652. For all students, two of the four are foundational (to be taken in the first year of study). These two courses, “Human Rights, Peace, and Justice” and “Anthropology of Peace, Justice, and Ecology” (the latter being team taught), are designed to provide an introduction to the topic of the Master’s program. A required methods course, “Methods in Peace and Human Rights Research and Practice,” can be taken either in the first or second year. The fourth required course, “Sustainable Peace Seminar,” is an advanced seminar, to be taken in the second year of study.

All procedures and requirements listed in the UAB Graduate Student Handbook apply to this program. Whereas the program offers a diverse set of electives, a community internship also may be substituted for one 3 credit elective course. Additionally, recognizing both that the particular interests of students will vary and that certain relevant graduate level courses are offered in other UAB schools and College of Arts and Sciences departments or at the UA Anthropology Department, students will have the option of taking a maximum of two electives (6 credits) from other departments (e.g., Biology, History, or Justice Science). Finally, students can pursue their interests by requesting to work on a Special Problems (independent study) course under the guidance of a professor within the Anthropology Department (e.g., ANTH 587, ANTH 588, or ANTH 686).

Advising

Upon entry into the Master’s program, each student will be assigned an academic advisor from among the Anthropology faculty. The student and advisor will confer and develop a study plan that is in accordance with the student’s interests and the requirements of the Master’s program. Early on, students can consult with their advisors about whether to pursue either Plan I (thesis) or Plan II (exam). Advisors will be assigned to match as closely as feasible a student’s areas of interest and also in such a way as to distribute the advising duties across the Anthropology faculty. Near the end of the first year, students can request to change advisors if they think a particular faculty member’s area of expertise aligns with their thesis topic.

Student Support

Several Graduate Teaching Assistantships and Graduate Research Assistantships are awarded by the Department of Anthropology each semester on a competitive basis. Additionally, some graduate students are employed part-time as assistants on research projects. International students should consult with the Graduate Director about possible tuition reductions. More information can be found here.

Admissions

The deadline for applications for the fall semester will be early in the spring semester. Please check with the Graduate School or the Graduate Program Director for exact deadlines. All of the minimum criteria for admission set by the UAB Graduate School must be met, and the Department of Anthropology has some additional admission requirements.

For details on the Graduate School admission requirements, see the Graduate School website. A brief summary of the requirements is as follows:

- An online application and payment of an application fee.
- A personal statement as part of the application that specifies your academic interests, career goals, and relevant background experience, in this case, in relation the Anthropology of Peace and Human Rights program to which you are applying. Include in your personal statement any peace and human rights volunteer work or work experience, and any other relevant information as to why you wish to study in this program.
- A recognized baccalaureate, graduate, or professional degree.
The M.A. degree requires a minimum of 36 credit hours for the Anthropology of Peace and Human Rights program. Further Information

For more information about the faculty, researchers, direction, and focus of the department, please see our Department of Anthropology web pages.

Master of Arts in Anthropology of Peace and Human Rights

The M.A. degree requires a minimum of 36 credit hours for the Anthropology of Peace and Human Rights program.

Plan I

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 504 Human Rights, Peace, and Justice</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 505 Anthropology of Peace, Justice, and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 509 Methods in Peace & Human Rights Research & Practice</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 652 Sustainable Peace Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses 1

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 508 Conflict Resolution in Cross-Cultural Perspective</td>
<td>1</td>
</tr>
<tr>
<td>ANTH 512 Peaceful Societies and Peace Systems</td>
<td></td>
</tr>
<tr>
<td>ANTH 513 Peace & Environmental Sustainability</td>
<td></td>
</tr>
<tr>
<td>ANTH 514 Prehistory of War and Peace in North America</td>
<td></td>
</tr>
<tr>
<td>ANTH 515 Peace through Global Governance</td>
<td></td>
</tr>
<tr>
<td>ANTH 516 War & Peace in Ancient Mesopotamia</td>
<td></td>
</tr>
<tr>
<td>ANTH 517 Peace Ethology</td>
<td></td>
</tr>
<tr>
<td>ANTH 518 The Power of Nonviolence</td>
<td></td>
</tr>
<tr>
<td>ANTH 519 Religion, Reconciliation, & Forgiveness</td>
<td></td>
</tr>
<tr>
<td>ANTH 521 Technological Monitoring of Cultural Resources, Human Rights and Conflict</td>
<td></td>
</tr>
<tr>
<td>ANTH 524 Transitional Justice and Human Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 526 NAGPRA, Repatriation, and Indigenous Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 531 Memory and Memorialization</td>
<td></td>
</tr>
<tr>
<td>ANTH 532 Villains, Victims, & Vigilantes</td>
<td></td>
</tr>
<tr>
<td>ANTH 533 Anthropology of Art</td>
<td></td>
</tr>
<tr>
<td>ANTH 543 Propaganda, Fake News, and Hate Speech</td>
<td></td>
</tr>
</tbody>
</table>

Plan II

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 504 Human Rights, Peace, and Justice</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 505 Anthropology of Peace, Justice, and Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 509 Methods in Peace & Human Rights Research & Practice</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 652 Sustainable Peace Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Anthropology Electives 1

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 508 Conflict Resolution in Cross-Cultural Perspective</td>
<td>1</td>
</tr>
<tr>
<td>ANTH 512 Peaceful Societies and Peace Systems</td>
<td></td>
</tr>
<tr>
<td>ANTH 513 Peace & Environmental Sustainability</td>
<td></td>
</tr>
<tr>
<td>ANTH 514 Prehistory of War and Peace in North America</td>
<td></td>
</tr>
<tr>
<td>ANTH 515 Peace through Global Governance</td>
<td></td>
</tr>
<tr>
<td>ANTH 516 War & Peace in Ancient Mesopotamia</td>
<td></td>
</tr>
<tr>
<td>ANTH 517 Peace Ethology</td>
<td></td>
</tr>
<tr>
<td>ANTH 518 The Power of Nonviolence</td>
<td></td>
</tr>
<tr>
<td>ANTH 519 Religion, Reconciliation, & Forgiveness</td>
<td></td>
</tr>
<tr>
<td>ANTH 521 Technological Monitoring of Cultural Resources, Human Rights and Conflict</td>
<td></td>
</tr>
<tr>
<td>ANTH 524 Transitional Justice and Human Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 526 NAGPRA, Repatriation, and Indigenous Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 531 Memory and Memorialization</td>
<td></td>
</tr>
<tr>
<td>ANTH 532 Villains, Victims, & Vigilantes</td>
<td></td>
</tr>
<tr>
<td>ANTH 533 Anthropology of Art</td>
<td></td>
</tr>
<tr>
<td>ANTH 543 Propaganda, Fake News, and Hate Speech</td>
<td></td>
</tr>
<tr>
<td>ANTH 587 Special Problems in Peace Research</td>
<td></td>
</tr>
<tr>
<td>ANTH 588 Special Problems in Human Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 601 Forensic Anthropology</td>
<td></td>
</tr>
<tr>
<td>ANTH 602 The Conquest of Mexico</td>
<td></td>
</tr>
<tr>
<td>ANTH 605 Advanced Cultural Anthropology</td>
<td></td>
</tr>
<tr>
<td>ANTH 613 Human Osteology</td>
<td></td>
</tr>
<tr>
<td>ANTH 621 Archaeological Laboratory Methods</td>
<td></td>
</tr>
<tr>
<td>ANTH 633 Economic Development and Indigenous Societies</td>
<td></td>
</tr>
<tr>
<td>ANTH 636 Community Internship</td>
<td></td>
</tr>
<tr>
<td>ANTH 641 Anthropology of Human Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 645 Medical Anthropology & Health Disparities</td>
<td></td>
</tr>
<tr>
<td>ANTH 650 Nationalism Ethnicity and Violence</td>
<td></td>
</tr>
<tr>
<td>ANTH 654 Biological Anthropology and Contemporary Issues</td>
<td></td>
</tr>
</tbody>
</table>
and warless world? do peaceful societies and peace systems hold for creating a less violent each other and possibly not with any outside groups either. The main that is, clusters of neighboring societies that do not make war on

This course explores peaceful societies, some of which are internally

ANTH 512. Peaceful Societies and Peace Systems. 3 Hours.

ANTH 509. Methods in Peace & Human Rights Research & Practice. 3 Hours.

This course explores conflict and conflict management from an

ANTH 504. Human Rights, Peace, and Justice. 3 Hours.

This is a companion course to ANTH 505, designed for first-year Masters students. Both courses explore the central themes of the MA program, including peace systems, human rights, social justice, and global ecological and sociopolitical interdependence. Both analytical and applied approaches to anthropological research and practice are examined. In the first semester, in ANTH 504, these central themes are explored empirically, primarily through an intensive survey of select ethnographic literature.

ANTH 505. Anthropology of Peace, Justice, and Ecology. 3 Hours.

This is a companion course to ANTH 504, designed for first-year Masters students. Both courses explore the central themes of the MA program, including peace systems, human rights, social justice, and global ecological and sociopolitical interdependence. In the second semester, in ANTH 505, these central themes are explored through a critical examination of comparative and theoretical literature. This is a team-taught course, directed by a course master and involving select faculty from the department and across the University.

ANTH 508. Conflict Resolution in Cross-Cultural Perspective. 3 Hours.

This course explores conflict and conflict management from an anthropological perspective. It includes ethnographic examples from around the globe. Do all societies engage in war? How are conflicts handled in other cultures? The course will challenge a Western view that humans are naturally violent and warlike and consider some interesting anthropological controversies. Specific topics considered include conflict models, origins of war, conflict resolution, socialization of conflict styles, third party mediation, and ways to reduce violence and prevent war.

ANTH 509. Methods in Peace & Human Rights Research & Practice. 3 Hours.

The study of peace, justice, ecology, and human rights draws on a diverse methodological tool-kit and comprehensive skill-sets. This course introduces students to some of these methods such as using online databases, conducting interviews, text analysis, meta-analyses and literature reviews, participant observation, behavior observation, and content analysis. Concrete examples of research methods and practice reveal the interconnectedness of basic and applied research as well as theory and practice.

ANTH 513. Peace & Environmental Sustainability. 3 Hours.

By highlighting that ecology sets the stage for the social and economic domains, this course traces our interdependence with nature and makes the case that sustaining the natural conditions that are essential for the functioning of the ecosystem on which our lives depends equals sustaining peace. The course takes a positive peace perspective on environmental sustainability goals and methods to achieve them.

ANTH 514. Prehistory of War and Peace in North America. 3 Hours.

This course explores the origins, development, and consequences of conflict and warfare among the prehistoric and early historic Indigenous cultures of North America, as well as the complimentary processes of cooperation and peace-making. Archaeological, biological, and ethnohistorical sources are utilized to understand the ways in which war and peace were carried out among a wide variety of Native American cultures from the earliest evidence of human occupation to European contact and beyond. Both Indigenous and European practices of war and peace are considered.

ANTH 515. Peace through Global Governance. 3 Hours.

Global governance represents a new dimension in social organization. Anthropology has much to contribute to understanding it. Global governance has the potential to promote social progress and human development, the protection of human rights, peace, and human security. The course examines security—military, collective, and human security —and the evolution of international identity, norms, values, and laws and their contributions to the development of global civil society.

ANTH 516. War & Peace in Ancient Mesopotamia. 3 Hours.

“War & Peace in Ancient Mesopotamia” (ca. 10,000 - 323 BCE) begins with an introduction to the advent of farming, urban life, various crafts, writing, and other innovations in the region of the “Two Rivers,” namely the Tigris and Euphrates’ flood plain. It proceeds with the rise and fall of early state complex societies and empires in the Bronze and Iron Ages, and terminates in the Persian period. Although providing much focus on diverse issues dealing with war, alliances, diplomacy, treaties, and peace, this course also integrates a comprehensive background context and overview of other aspects of past societies in this region, including history, archaeology, language, literature, religion, architecture, art, material culture, and trade.

ANTH 517. Peace Ethology. 3 Hours.

This course provides insights into causes, mechanisms, development, function, and evolution of peaceful behavior in humans and nonhuman animals. The course shows how studying the role of peaceful behavior in the survival and propagation of animal life has direct significance for improving our understanding of the evolved abilities for peace in humans.

ANTH 518. The Power of Nonviolence. 3 Hours.

This course introduces students to the theory and practice of nonviolence as a manner of social change and as a philosophy. The course explores some of the classic writings on nonviolence such as those by Tolstoy, Gandhi, and King as well as current research findings on the efficacy of nonviolent social change, for instance, the work of Sharp, Nagler, Ackerman, and Chenoweth. Readings, films, small group and whole class discussions, guest lectures by activists will contribute to an understanding of the necessary skills for practicing and promoting nonviolent social change. Students will develop projects and presentations that utilize an online nonviolence database.
ANTH 519. Religion, Reconciliation, & Forgiveness. 3 Hours.
This course examines the role of religion, spirituality, reconciliation, apology, and forgiveness in conflict situations, from the individual to the global. Topics include the role of religion in both war and peace. The course has a cross-cultural and inclusive dimension and goes well beyond Christianity to also consider Buddhism, Confucianism, Islam, and other religions. The spiritual dimensions of Gandhian nonviolence are also considered.

ANTH 521. Technological Monitoring of Cultural Resources, Human Rights and Conflict. 3 Hours.
This class will give students an overview of how cultural heritage and humanitarian work intersects with innovation and technological advances. The class will introduce students to how social media, remote sensing technologies/drones, cell phones, open source, crowd sourcing, Big Data, cloud computing, the Internet, and sensors are all changing how we collect data and interpret the world around us, and how that information is revolutionizing cultural preservation efforts as well as humanitarian and conflict monitoring.

ANTH 523. Vikings: Raiders, Traders, Farmers. 3 Hours.
The Vikings are most popularly thought of as warriors raiding settlements along the northern coastline of Europe during the Viking Age (ca. 793 – 1050 AD), but their society and activities extended well beyond this scope. This course furnishes an overview of Viking social structure, subsistence, art, architecture, religion, language, and literature. It covers hostile and peaceful interactions with the peoples of Greenland, the Arctic, Labrador and Newfoundland and considers the evidence for Norse explorations and influence in North America.

ANTH 524. Transitional Justice and Human Rights. 3 Hours.
Significant developments in politics, law, and human rights occur during periods of transitional justice. Anthropology is invaluable for understanding these developments, including conceptions of justice, truth-seeking, memory and memorials, reparations, institutional reform, and human rights discourse. This course begins with the Nuremberg Trials and progresses through the major historical events that shaped transitional justice throughout the 20th and 21st centuries. These include the abuse of amnesty laws during the Cold War; the development of truth and justice commissions, international criminal tribunals, and hybrid courts in the 1990s; and the establishment of the International Criminal Court (ICC) in the 2000s. The course concludes by examining contemporary issues such as reparations, war torts, post-conflict memory and education, ongoing conflicts worldwide, and the future of the ICC.

ANTH 526. NAGPRA, Repatriation, and Indigenous Rights. 3 Hours.
Debates over the return of Native American cultural property from university and museum settings across the country lie at the forefront of modern archaeological research in the United States. Central to these debates are critical questions about the rights of Indigenous peoples, the intellectual freedom of researchers, the importance of cultural resource and heritage management, and the history and role of museums today. This seminar course introduces students to the Native American Graves Protection and Repatriation Act (NAGPRA) as federal law and further examines the impacts of this law through a multiplicity of involved perspectives. Class discussions will examine legal, ethical, anthropological, museum, and tribal perspectives, including both the theoretical and practical aspects of NAGPRA compliance and repatriation.

ANTH 528. Drugs and Culture. 3 Hours.
This course takes a cross-cultural perspective on experiences with mind-altering substances. It explores world views about what counts as a ‘drug’ and how drugs fit in with systems of moral judgement and social relationships. Together, we will consider case studies that explore how drugs fit into cultural and social contexts around the world. Specific topics include drug use in human history, drugs in contexts of healing, spirituality, and recreation; addiction, drug production and trade as a form of livelihood, and legality and the War on Drugs (considering drug penalties, public health vs. criminal approaches, social justice & human rights, etc.). We will also examine the development of knowledge and skills necessary for knowledge and skills necessary for effective drug education.

ANTH 531. Memory and Memorialization. 3 Hours.
This course explores memory, collective memory, and the uses made of historical narratives, artifacts, and memorials in diverse cultural settings. The course begins with an examination of the complex relationship between memory and social amnesia, and collective memory. It then considers memory at multiple levels of society, including nationalism and the development of traumatic memory and social amnesia, and conflicting narratives over peace and war monuments and memorialization.

ANTH 532. Villains, Victims, & Vigilantes. 3 Hours.
This course examines ways in which the concepts of “rights” and “justice” are understood and enacted in local communities, particularly in regions of the world experiencing high rates of violent criminality. Beginning with a review of formal law and legal principles underlying state systems of justice, the course surveys settings in which dissatisfaction with state efforts to protect rights have induced communities to develop alternate policing and judicial institutions.

ANTH 533. Anthropology of Art. 3 Hours.
This course surveys the anthropology of art, focusing on economic, historical, and aesthetic dimensions of Western and non-Western art forms. The course considers the problem of whether “art” is a universal cultural phenomenon and examines cross-cultural aesthetics; form, style, and meaning in multiple cultural contexts; and the convergence of anthropology, art history, museum studies, and the marketing of culture. The course concludes with a brief discussion of contemporary art practices with respect to expressive culture and considers the power of art as it relates to knowledge, language, and culture.

ANTH 543. Propaganda, Fake News, and Hate Speech. 3 Hours.
This course examines the challenges of propaganda, fake news, and hate speech in human rights and peacebuilding. It begins with a brief history of propaganda and explores the relationship between technology and mass persuasion, including the speed and scope of social media in the current global context. The course then draws from anthropology to understand how misinformation, disinformation, and hate speech interact with culture, politics, and public discourse, and ultimately influence individual decision-making. The course then turns to human rights, peace studies, and law to explore open questions regarding speech freedoms, prohibitions against hate speech, international speech crime trials, and current measures taken by social media companies, courts, and governmental agencies to regulate speech online.

ANTH 587. Special Problems in Peace Research. 3 Hours.
Supervised study of specified topic area in peace studies; defined problem explored in depth. Topics are determined by student and instructor interest.
ANTH 588. Special Problems in Human Rights. 3 Hours.
Supervised study of specified topic area in Human Rights; defined problem explored in depth. Topics are determined by student and instructor interest.

ANTH 601. Forensic Anthropology. 4 Hours.
Forensic Approaches to Osteology Applied human osteology, emphasizing ability to identify age, sex, and population type of skeletal material. Effects of disease and behavior on bones.

ANTH 602. The Conquest of Mexico. 3 Hours.
This course examines the Spanish conquest of Mexico from both Spanish and indigenous perspectives. It further surveys the institutionalization of Spanish control over the fallen Aztec Empire and the broader intellectual and material consequences of the conquest.

ANTH 605. Advanced Cultural Anthropology. 3 Hours.
Advanced Cultural Anthropology Critical review of theoretical approaches in cultural anthropology.

ANTH 608. Advanced Linguistic Anthropology. 3 Hours.
Advanced LINGUISTIC Anthropology Historical development of theory and field practice of linguistics; psycholinguistics, sociolinguistics, nonverbal communication, semiotics, and ethnosemantics; applied linguistics.

Prerequisites: ANTH 120 [Min Grade: C]

ANTH 609. Archaeological Ethics and Theory. 3 Hours.
Advanced Archaeological Anthropology Principal theoretical approaches to 19th/20th century archaeology; historical, processual, and post-processual.

ANTH 610. Advanced Biological Anthropology. 3 Hours.
Advanced Biological Anthropology Human evolution, primatology, race, human genetics. Tasks performed by physical anthropologists.

ANTH 611. Field Archaeology. 3-6 Hours.
Field Archaeology Archaeological field and laboratory techniques, including excavation, surveying, and artifact analysis and description; general problems of archaeological interpretation.

ANTH 613. Human Osteology. 3 Hours.
The identification of human skeletal remains. This laboratory/lecture course provides the groundwork for much of the work in physical anthropology. The first course of the sequence into Anth 401/601.

ANTH 615. Ethnographic Field Methods. 3-6 Hours.
Ethnographic Field Methods Classroom instruction and practical experience in techniques of ethnographic fieldwork, including participant observation, household surveys, structured and unstructured interviewing, and genealogies.

ANTH 619. Food and Culture. 3 Hours.
This course is designed to present a broad view of the role of food in human culture through time and in a variety of geographic settings, offering students and opportunity to reflect on the cultural meanings of food in human life. Class lectures, assigned readings, and films will be used to enhance each student's understanding of the subject from a cross cultural perspective. We will examine the biological basis of diet how foodways develop and change, how and why anthropologists study diet, and variations in foodways around the world.

ANTH 622. Landscape Archaeology. 3 Hours.
The course will cover the techniques and strategies employed by archaeologists to reconstruct past landscape, which involves scientific testing, remote sensing, GIS, survey, excavation and environmental analysis. Examples will be drawn from projects across diverse landscape types in Europe, the Middle East, Africa, Central America and Asia. In-field and laboratory application of techniques will be emphasized.

ANTH 624. The Law of Historical and Cultural Resources. 3 Hours.
This survey course will familiarize students with federal and state laws and regulations relevant to archaeology and anthropology, such as the Antiquities Act, National Environmental Policy Act (NEPA), National Historic Preservation Act (NHPA), Archeological and Historic Preservation Act (AHPA), Archaeological Resources Protection Act (ARPA), and the Native American Graves Protection and Repatriation Act (NAGPRA), among others. It will also introduce students to other legal issues such as obtaining National Register listings, preservation easements and federal income tax rehabilitation credits.

ANTH 625. African-American Archaeology. 3 Hours.
African American Archaeology is one of the better established research interests within U.S. Historical Archaeology. This course will examine the development of the archaeology of the African diaspora from its beginnings in the 1960s to the present day. Its principal focus will be the plantation of the Southern United States. The course will include an examination of history of the plantation economy as well as an exploration of issues currently of interest to archaeologists studying the archaeological record of African American life.

ANTH 627. Archaeological Laboratory Methods. 3 Hours.
This course introduces students to the principles and practice of archaeological laboratory research. The goal of the course is to familiarize students with the stages of archaeological research that follow fieldwork and precede publication. Emphasis is placed on practical, hands-on experience in identifying and analyzing archaeological remains, as well as building interpretations of the past through their analysis.

ANTH 628. Comparative Religion. 3 Hours.
Human behavior in relation to the supernatural; religion as a system of social behavior and values; theories of religion.

ANTH 629. Egypt: Arch Field School. 6 Hours.
Two week field school in Egypt. Students will visit Egypt old and new, including Islamic Cairo, Coptic churches, the pyramids of Giza, Alexandria, the tombs and temples of Luxor (Valley of the Kings), Aswan (Abu Simbel), and an archaeological excavation. Experience Egyptian folklore through dance and musical performances.

ANTH 630. Zooarchaeology. 3-6 Hours.
This course includes an introduction to methods and theories of zooarchaeological research. Practical experience in processing, identification, and interpretation of animal bone remains from archaeological sites forms a large part of class time.

ANTH 634. Observing the Earth from Space. 3 Hours.
The course will give students the ability to analyze remotely sensed data from satellite images. Students will learn about the physics and mathematics behind remote sensing. They will also learn about the wide range of satellite images and techniques to analyze them via ERDAS Imagine, ER Mapper and other programs. Applications of remote sensing to a variety of fields will form a key component of the class. The course will culminate in a term project involving remote sensing applications to UAB faculty-led initiatives in health, medicine, geography and anthropology. There will be a weekly lab component of the course.
ANTH 636. Community Internship. 3-6 Hours.
Application of anthropological approaches to the efforts of a public or private sector. Institutional approval of both the host institution and the department of anthropology required before registration.

ANTH 637. Real World Remote Sensing App. 3 Hours.
This course will be offered as a research seminar focusing on real world applications of remote sensing technology. Students will work closely with UAB professors and scientists at NASA's Marshall Space Flight Center in Huntsville doing original remote sensing research on new satellite datasets. These datasets cover diverse areas including terrorism, global warming, health, anthropology / archaeology, atmospheric studies, urban expansion and coastal management. Students will be responsible for analyzing the satellite imagery and presenting papers to NASA.

ANTH 640. Arch and Hist Bible Lands. 3 Hours.
Archaeology and History of the Bible Lands. Examination of region spanning modern Syria, Lebanon, Isreal, and Jordan from 10,000-585 BC.

ANTH 641. Anthropology of Human Rights. 3 Hours.
Examination of conceptual, political, and legal aspects of human rights from an anthropological perspective. Topics considered may include: state violence; the history of human rights claims; the opposition of cultural rights and human rights claim; human rights as a form of political discourse; human rights practices in select contemporary settings.

ANTH 642. Historical Archaeology. 3 Hours.
This course involves all stages of archaeological filed work at a historical archaeology site. Students will learn survey skills, excavation, mapping, recovery, and post-field analysis techniques.

ANTH 645. Medical Anthropology & Health Disparities. 3 Hours.
This course explores the bio-cultural basis of health and cross-cultural variation in illness and healing which includes theoretical bases of medical anthropology, comparative health care systems, and social, political, and economic issues related to health care delivery.

ANTH 646. Explorers, Mummies and Hieroglyphs. 3 Hours.
This course provides a thematic approach to pharaonic Egypt in general, with one portion covering diverse aspects such as geography, an overview of the history of Dynasties 1-31, society and government, daily religion, mortuary religion, architecture, literature, the military, trade, economy, and daily life. Another portion of the course provides several documentaries regarding early to more recent explorers and Egyptologists. The third focus introduces Egyptian hieroglyphs in eight grammar classes and follow-up user-friendly, in-class exercises, aiming to enable students to translate basic hieroglyphic texts.

ANTH 647. Advanced Peace Studies. 3 Hours.
Intensive exploration of concepts and issues involved in the study of peace, social justice, nonviolence and conflict resolution. Students will engage in an in-depth examination and critique of anthropological approaches to peace and the associated theoretical and practical problems and applications.

ANTH 649. Egyptian History & Arch. 3 Hours.

ANTH 650. Nationalism Ethnicity and Violence. 3 Hours.
Social and cultural analysis of ethnicity and nationalist ideologies particularly where these have led to violent confrontations within modern nation-states. Considers primordialist versus constructionist theories of difference; the varying weight to be attributed to political, historical and cultural factors in the study of nationalism; and the politics of culture vs the culture of politics.

ANTH 652. Sustainable Peace Seminar. 3 Hours.
This course will focus on the integration of knowledge related to peace, justice, ecology, and human rights, or in other words, on the numerous interrelated aspects of the “positive peace” concept. This course is a seminar, meaning that participants will engage in much discussion. In turn, participants will present topics for discussion and others will respond and engage in dialogue. At times the focus will be on one participant’s research, and at other times the focus will be on a particular book or set of readings.

ANTH 653. Primatology. 3 Hours.
Biological, behavior, and distribution of living non-human primates Emphasis on field studies of old-world monkeys and apes.

ANTH 654. Biological Anthropology and Contemporary Issues. 3 Hours.
This course applies a biological anthropological perspective to explore what it means to be human and to develop critical perspectives on our culture, science, and media. How did humanity arrive in its current position? How do we understand human diversity? What can we learn from the differences among people, their overwhelming biological similarity, and their common humanity? How do we use this knowledge to build a sustainable future for ourselves?.

ANTH 655. Archaeology of Alabama. 3 Hours.
This course explores the archaeology of Alabama and adjacent areas of the Southeastern United States, spanning some 13,000+ years of human history. Throughout the course, students will be introduced to the rich history and diversity of Indigenous cultures of the Southeast, from big game hunters of the Ice Age to the rise of large, complex chiefdoms. Case studies are used to demonstrate how archaeologists use the archaeological record to make interpretations about the lives of past peoples throughout the ancient Southeast.

ANTH 657. Anthropology of Gender. 3 Hours.
Cultural construction of gender differences in human societies; shifting definitions of proper male and female roles across cultures and through time.

ANTH 658. Human Sexuality. 3 Hours.
This course will explore human sexuality and gender from an anthropological perspective, including biological and cultural perspectives, as well as the areas where anthropology meets psychology. The evolution of sexual behavior in humans and in non-human primates will be examined, as well as how sexuality is embedded in socio-cultural context both across and within societies.

ANTH 659. Politics, Drugs and Society in Latin America. 3 Hours.
This course will examine the role of drug production and the drug trade in the economic and political life of Latin American societies. Viewed historically and ethnographically, the course will include coverage of the traditional uses of drugs in indigenous societies as well as the more recent globalization of the industry.

ANTH 660. Ecological Anthropology. 3 Hours.
Examines interactions among behavioral, technological, organizations, and ideological features of human cultures that serve to adapt societies to their physical environment.

ANTH 664. Political Anthropology. 3 Hours.
The Comparative analysis of political structures and process throughout the world, focusing especially on non-Western forms; a survey of anthropological attempts to understand the complex interplay of culture and power in human societies.
ANTH 667. Museum Studies. 3 Hours.
Designed for students interested in museums and museum-related careers, this course introduces the field of museum studies, with a focus on anthropology and natural history museums. This course uses case studies, guest lectures and field trips, hands-on collections work, and problem-based learning exercises to demonstrate real-world museums work to students. Topics covered include museum legal and ethical guidelines, standard collections care, organization and display of exhibits, and collaboration with museum communities and visitors, as well as key contemporary issues such as contested rights to collections and the representation and interpretation of cultures in museum settings.

ANTH 669. Ethnography of Mexico. 3 Hours.
Comparative and historical analysis of rural Mexican communities, emphasizing the impact of neoliberal economic policies and democratic political reforms.

ANTH 686. Special Problems in Applied Anthropology. 3 Hours.
Supervised study of specified topic area in peace studies; defined problem explored in depth. Topics are determined by student and instructor interest.

ANTH 691. Special Problems in Cultural Anthropology. 1-6 Hour.
Special Problems in Cultural Anthropology Supervised study of specified topic area; defined problem explored in depth. Topics determined by student and instructor interest in cultural anthropology.

ANTH 692. Special Problems in Archaeology. 1-6 Hour.
Special Problems in Archaeology Supervised study of specified topic area; defined problem explored in depth. Topics determined by student and instructor interest in archaeology.

ANTH 693. Special Problems in Linguistics. 1-6 Hour.
Special Problems in Linguistics Supervised study of specified topic area; defined problem explored in depth. Topics determined by student and instructor interest in linguistics.

ANTH 694. Special Problems in Biological Anthropology. 1-6 Hour.
Special Problems in Biological Anthropology Supervised study of specified topic area; defined problem explored in depth. Topics determined by student and instructor interest in biological anthropology.

ANTH 697. Special Topics in Anthropology. 0-3 Hours.
Topics vary. See class schedule for topic.

ANTH 699. Thesis Research. 1-6 Hour.
Thesis Research Independent development of research project.
Prerequisites: GAC M

Art History

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page: https://www.uab.edu/cas/art/graduate/ma-art-history

Degree Offered: M.A.*
Director: Noa Turel, Ph.D.
Phone: (205) 934-8973
E-mail: nturel@uab.edu
Website: www.uab.edu/cas/art

* A program leading to the Master of Arts degree in art history is offered jointly by UAB and the University of Alabama (Tuscaloosa). The MA degree in Art History prepares students for further academic study at the doctoral level or for professional careers in museums, galleries, and other arts-related fields.

Admission Requirements

For admission in good standing, applicants to UAB must meet Graduate School requirements for scholarship. A Minimum GPA of 3.0 (B) is required for acceptance into the program. The applicant should have completed 24 semester hours in art history and related areas such as history, aesthetics, archaeology, and anthropology, although this requirement may be reduced depending on the applicant's background and preparation. It is desirable that an applicant be able to read a foreign language related to the proposed field of study. Students may apply for admission for either the fall or spring semester.

Degree Requirements

Plan I: Thesis Track

Courses

Plan I students must complete 24 semester hours in art history.* For breadth of knowledge, students must take at least one Western and one non-Western course, and take courses in both modern and pre-modern time periods. A maximum of 3 semester hours of independent study will be permitted. Each student must take ARH 680, which should be taken in the first semester of enrollment in the M.A. program, as well as ARH 652 Advanced Research Seminar, which should be taken in the final semester of coursework. Each student must take at least 6 semester hours of coursework at the University of Alabama (Tuscaloosa).

* Note: A maximum of 6 of the required hours in art history may be taken in a related field with the concurrence of the joint faculty.

Foreign Language Requirement

By the completion of 15 hours of coursework towards the M.A., students should have met the language requirement of a reading knowledge of one foreign language relevant to the student's area of study, approved by the Graduate Program Director and Faculty Advisor. Students may demonstrate language competency by passing a translation exam administered by the Department of Foreign Languages (French or German) or by attaining at minimum a B in a 200-level course (e.g., FR 201 or FR 202 or GN 201 or GN 202). For other languages, students must consult with the Graduate Program Director and Faculty Advisor and arrange an appropriate translation exam or course to fulfill the language requirement. Students may not enroll in ARH 652 until the language requirement is completed. A reading knowledge of a second foreign language is strongly recommended. Students may not advance to candidacy until the language requirement is completed.

Thesis

The student must present a thesis under the direction of a member of the joint art history faculty. Each student will register for ARH 699 for 6 semester hours of credit. Students must be registered for at least 3 hours of thesis credit (ARH 699) in the semester of graduation.

Plan II: Non-Thesis Track

Courses

Plan II students must complete 24 semester hours in art history. For breadth of knowledge, students must take at least one Western and
one non-Western course, and take courses in both modern and pre-modern time periods. A maximum of 3 semester hours of independent study will be permitted. Each student must take ARH 680 Methods and Approaches to the History of Art, which should be taken in the first semester of enrollment in the M.A. program, as well as ARH 652 Advanced Research Seminar, which should be taken in the final semester of coursework. Each student must take at least 6 semester hours of coursework at the University of Alabama (Tuscaloosa).

It is recommended that Plan II students take ARH 585 Special Topics: Museum Studies as one of their art history electives in the first 24 hours of coursework.

* Note: A maximum of 6 of the required hours in art history may be taken in a related field with the concurrence of the joint faculty.

Foreign Language Requirement

By the completion of 15 hours of coursework towards the M.A., students should have met the language requirement of a reading knowledge of one foreign language relevant to the student’s area of study, approved by the Graduate Program Director and Faculty Advisor. Students may demonstrate language competency by passing a translation exam administered by the Department of Foreign Languages (French or German) or by attaining at minimum a B in a 200-level course (e.g. FR 201 or FR 202 or GN 201 or GN 202). For other languages, students must consult with the Graduate Program Director and Faculty Advisor and arrange an appropriate translation exam or course to fulfill the language requirement. Students may not enroll in ARH 652 until the language requirement is completed. A reading knowledge of a second foreign language is strongly recommended. Students may not advance to candidacy until the language requirement is completed.

Final Coursework and Capstone Presentation to Faculty

The final two courses (6 hours) are geared toward professional study:

- 3 hours: ARH 592 Museum/Gallery Internship or ARH 598 AEIVA Internship
- 3 hours: ARH 585 Special Topics Museum Studies or ARH 698 Independent Studies or MPA 600 Administrative Ethics or MPA 602 Scope of Public Administration or MPA 671 Marketing and Fundraising or MPA 672 Nonprofit Management or MPA 684 Grants Management

The specific courses will be determined by the Graduate Program Director in consultation with the student.

Upon the successful completion of their coursework, Plan II students will make a capstone presentation to the faculty (summary and analysis of major project undertaken as part of internship or other professional or practicum-based class). This presentation should be completed by the last day of the classes in the student’s final semester, before the start of final exam week.

* ARH 585 may be repeated once for credit.

UA-Tuscaloosa Faculty:

Castenell, Wendy
Curzon, Lucy
Feltman, Jennifer
Jones, Tanja
Stephens, Rachel
Sung, Doris

Additional Information

Deadline for Entry Term(s): Fall or Spring Semester
Deadline for All Application Materials to be in the Graduate School Office:
Number of Evaluation Forms Required: Three
Entrance Tests: GRE (TOEFL and TWE also required for international applications whose native language is not English.)

Contact Information

For detailed information, contact Dr. Noa Turel, Graduate Program Director, UAB Department of Art and Art History:

Telephone 205-934-8973; Fax (205) 996-6986.
E-mail nturel@uab.edu (cathleen@uab.edu)

Prospective students should use this checklist to obtain specific admissions requirements on how to apply to Graduate School.

Master of Arts in Art History

Plan I: Thesis Track

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARH 680</td>
<td>Methods and Approaches to the History of Art</td>
</tr>
<tr>
<td>Select courses from two of the six areas</td>
<td>21</td>
</tr>
</tbody>
</table>

Medieval Art

| ARH 507 | The Art of Rome |
| ARH 519 | Arts of Death in the Middle Ages |

Early Modern Art

ARH 507	The Art of Rome
ARH 521	Italian Renaissance Art
ARH 522	The Birth of Painting: Portable Pictures Across Renaissance Europe
ARH 523	Study Abroad: European Art
ARH 524	Northern Renaissance Art
ARH 530	Eighteenth-Century Art in Europe
ARH 531	European Painting in the Seventeenth Century
ARH 535	Arts of Power in Early Modern Europe
ARH 581	Special Topics: Early Modern Art
ARH 583	Special Topics: Gender and the Visual Arts
ARH 595	Seminar: Early Modern Art
ARH 630	Seminar: Early Modern Art

Eighteenth-Century/Nineteenth-Century Art

| ARH 540 | Nineteenth Century Art I: Neoclassicism, Romanticism, and Realism |

UA-Tuscaloosa Faculty:

Castenell, Wendy
Curzon, Lucy
Feltman, Jennifer
Jones, Tanja
Stephens, Rachel
Sung, Doris

Additional Information

Deadline for Entry Term(s): Fall or Spring Semester
Deadline for All Application Materials to be in the Graduate School Office:
Number of Evaluation Forms Required: Three
Entrance Tests: GRE (TOEFL and TWE also required for international applications whose native language is not English.)

Contact Information

For detailed information, contact Dr. Noa Turel, Graduate Program Director, UAB Department of Art and Art History:

Telephone 205-934-8973; Fax (205) 996-6986.
E-mail nturel@uab.edu (cathleen@uab.edu)

Prospective students should use this checklist to obtain specific admissions requirements on how to apply to Graduate School.

Master of Arts in Art History

Plan I: Thesis Track

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARH 680</td>
<td>Methods and Approaches to the History of Art</td>
</tr>
<tr>
<td>Select courses from two of the six areas</td>
<td>21</td>
</tr>
</tbody>
</table>

Medieval Art

| ARH 507 | The Art of Rome |
| ARH 519 | Arts of Death in the Middle Ages |

Early Modern Art

ARH 507	The Art of Rome
ARH 521	Italian Renaissance Art
ARH 522	The Birth of Painting: Portable Pictures Across Renaissance Europe
ARH 523	Study Abroad: European Art
ARH 524	Northern Renaissance Art
ARH 530	Eighteenth-Century Art in Europe
ARH 531	European Painting in the Seventeenth Century
ARH 535	Arts of Power in Early Modern Europe
ARH 581	Special Topics: Early Modern Art
ARH 583	Special Topics: Gender and the Visual Arts
ARH 595	Seminar: Early Modern Art
ARH 630	Seminar: Early Modern Art

Eighteenth-Century/Nineteenth-Century Art

| ARH 540 | Nineteenth Century Art I: Neoclassicism, Romanticism, and Realism |
ARH 541 Nineteenth-Century Art II: Impressionism and Post-Impressionism
ARH 550 American Art to 1900
ARH 582 Special Topics: Modern Art
ARH 596 Seminar: Modern Art
ARH 640 Seminar: Modern Art

Twentieth-Century/Contemporary Art
ARH 560 Twentieth Century Art to 1945
ARH 561 Modern Design
ARH 564 Art Since 1945
ARH 565 Aspects of Contemporary Art
ARH 568 Race and Representation
ARH 584 Special Topics: Contemporary Art
ARH 585 Special Topics: Museum Studies
ARH 598 AEIVA Internship
ARH 660 Seminar: Contemporary Art

East Asian Art
ARH 570 Tomb Art in East Asia
ARH 573 Japanese Prints and Printmakers
ARH 574 Landscape and Image in East Asia
ARH 575 Japanese Art
ARH 578 Buddhist Arts of East Asia
ARH 594 Seminar: East Asian Art

South Asian Art
ARH 571 Topics in Asian Cinema
ARH 572 Buddhist & Hindu Art in India to 1200
ARH 577 Piety and Power: Art in India after 1200
ARH 579 Study Abroad: Art and Culture of South Asia
ARH 586 Special Topics: South Asian Art

Plan II: Non-Thesis Track

Requirements Hours
ARH 680 Methods and Approaches to the History of Art 3
Select courses from two of the six areas 21

Medieval Art
ARH 507 The Art of Rome
ARH 519 Arts of Death in the Middle Ages

Early Modern Art
ARH 507 The Art of Rome

ARH 521 Italian Renaissance Art
ARH 522 The Birth of Painting: Portable Pictures Across Renaissance Europe
ARH 523 Study Abroad: European Art
ARH 524 Northern Renaissance Art
ARH 530 Eighteenth-Century Art in Europe
ARH 531 European Painting in the Seventeenth Century
ARH 535 Arts of Power in Early Modern Europe
ARH 581 Special Topics: Early Modern Art
ARH 583 Special Topics: Gender and the Visual Arts
ARH 595 Seminar: Early Modern Art
ARH 630 Seminar: Early Modern Art

Eighteenth-Century/Nineteenth-Century Art
ARH 541 Nineteenth-Century Art I: Neoclassicism, Romanticism, and Realism
ARH 550 American Art to 1900
ARH 582 Special Topics: Modern Art
ARH 640 Seminar: Modern Art

Twentieth-Century/Contemporary Art
ARH 560 Twentieth Century Art to 1945
ARH 561 Modern Design
ARH 564 Art Since 1945
ARH 565 Aspects of Contemporary Art
ARH 567 Modern Architecture
ARH 568 Race and Representation
ARH 584 Special Topics: Contemporary Art
ARH 585 Special Topics: Museum Studies
ARH 598 AEIVA Internship
ARH 660 Seminar: Contemporary Art

East Asian Art
ARH 570 Tomb Art in East Asia
ARH 573 Japanese Prints and Printmakers
ARH 574 Landscape and Image in East Asia
ARH 575 Japanese Art
ARH 578 Buddhist Arts of East Asia
ARH 594 Seminar: East Asian Art

South Asian Art
ARH 571 Topics in Asian Cinema
ARH 572 Buddhist & Hindu Art in India to 1200
ARH 577 Piety and Power: Art in India after 1200
ARH 579 Study Abroad: Art and Culture of South Asia
ARH 586 Special Topics: South Asian Art
Cultural Heritage Studies Track

M.A. in Cultural Heritage Studies with a Cultural Heritage Studies Track

Requirements

Required Coursework

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARH 650</td>
<td>Issues in Cultural Heritage Policy and Practice (Plan to take in the first semester in the program.)</td>
<td>3</td>
</tr>
<tr>
<td>MPA 601</td>
<td>The Public Policymaking Process (Plan to take in the first semester in the program.)</td>
<td>3</td>
</tr>
<tr>
<td>MPA 600</td>
<td>Administrative Ethics</td>
<td>3</td>
</tr>
<tr>
<td>MPA 602</td>
<td>Scope of Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>ARH 591</td>
<td>Capstone Internship: Experience and Presentation (Plan to take in the second year of program)</td>
<td>3</td>
</tr>
</tbody>
</table>

Anthropology Electives

Select three from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 515</td>
<td>Peace through Global Governance</td>
</tr>
<tr>
<td>ANTH 519</td>
<td>Religion, Reconciliation, & Forgiveness</td>
</tr>
<tr>
<td>ANTH 650</td>
<td>Nationalism Ethnicity and Violence</td>
</tr>
<tr>
<td>ANTH 667</td>
<td>Museum Studies</td>
</tr>
<tr>
<td>ANTH 521</td>
<td>Technological Monitoring of Cultural Resources, Human Rights and Conflict</td>
</tr>
<tr>
<td>ANTH 526</td>
<td>NAGPRA, Repatriation, and Indigenous Rights</td>
</tr>
<tr>
<td>ANTH 531</td>
<td>Memory and Memorialization</td>
</tr>
<tr>
<td>ANTH 624</td>
<td>The Law of Historical and Cultural Resources</td>
</tr>
<tr>
<td>ANTH 627</td>
<td>Archaeological Laboratory Methods</td>
</tr>
<tr>
<td>ANTH 634</td>
<td>Observing the Earth from Space</td>
</tr>
<tr>
<td>ANTH 637</td>
<td>Real World Remote Sensing App</td>
</tr>
</tbody>
</table>

Art History Elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARH 570</td>
<td>Issues in Cultural Heritage Policy and Practice</td>
</tr>
<tr>
<td>ARH 541</td>
<td>The Public Policymaking Process</td>
</tr>
<tr>
<td>ARH 550</td>
<td>Scope of Public Administration</td>
</tr>
<tr>
<td>ARH 560</td>
<td>Human Resources Management</td>
</tr>
<tr>
<td>ARH 566</td>
<td>Capstone Internship: Experience and Presentation</td>
</tr>
<tr>
<td>ANTH 667</td>
<td>Museum Studies</td>
</tr>
</tbody>
</table>

Public Administration Electives

Select two from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPA 600</td>
<td>Administrative Ethics</td>
</tr>
<tr>
<td>MPA 671</td>
<td>Marketing and Fundraising</td>
</tr>
<tr>
<td>MPA 672</td>
<td>Nonprofit Management</td>
</tr>
<tr>
<td>MPA 673</td>
<td>Strategic Planning</td>
</tr>
<tr>
<td>MPA 686</td>
<td>Data Management</td>
</tr>
</tbody>
</table>

Total Hours: 30

1 Select two Art History graduate courses from the following: ARH 519, ARH 521, ARH 522, ARH 524, ARH 530, ARH 531, ARH 535, ARH 540, ARH 541, ARH 550, ARH 560, ARH 564, ARH 567, ARH 568, ARH 570, ARH 573, ARH 574, ARH 572, ARH 575, ARH 577.

Courses

ARH 505. Special Topics in African Art. 3 Hours.
Survey of the arts of Africa, ranging from Ancient Egypt through the contemporary period.

ARH 507. The Art of Rome. 3 Hours.
Covers Ancient Rome, but focuses on Medieval through early Baroque painting, sculpture, and architecture. Examines the city of Rome over time. Also considers the impact of the papacy on the city and its use of ancient Roman models.

ARH 519. Arts of Death in the Middle Ages. 3 Hours.
The visual culture of death and the afterlife from the Roman catacombs to cadaver tombs, 300-1500.

ARH 521. Graduate Research in Italian Renaissance Art. 3 Hours.
The visual arts of the Italian Renaissance (1300-1550) in their historic context.

ARH 522. The Invention of Painting in Renaissance Europe. 3 Hours.
The emergence of modern easel painting, 1300-1600.

ARH 523. Study Abroad: European Art. 3 Hours.
On-site study of art and architecture in Europe.

ARH 524. Graduate Research in Northern Renaissance Art. 3 Hours.
The visual arts of the Northern Renaissance (1300-1600) in their historic context.

ARH 530. Eighteenth-Century Art in Europe. 3 Hours.

ARH 531. Graduate Research in Seventeenth Century European Painting. 3 Hours.
Painting in Europe from Italian and Spanish Baroque through the Dutch Golden Age.
ARH 535. Arts of Power in Early Modern Europe. 3 Hours.
The visual arts in service of kings, popes, and the people, 1300-1700.

ARH 540. Graduate Research in Nineteenth Century Art I:
Neoclassicism, Romanticism, and Realism. 3 Hours.
Painting, sculpture, and graphic arts in Europe, 1780-1850.

ARH 541. Graduate research in Nineteenth-Century Art II:
Impressionism and Post-Impressionism. 3 Hours.
Painting, sculpture, and graphic arts in Europe, 1860-1900.

ARH 550. Graduate Research in American Art and Material Culture. 3 Hours.
Painting, sculpture, and architecture in the U.S., with an emphasis on 19th century.

ARH 560. Graduate Research in Twentieth Century Art to 1945. 3 Hours.
Painting, sculpture, and architecture in Europe and the United States, 1900-1945.

ARH 561. Graduate Research in Modern Design. 3 Hours.
History of modern design. Will examine various design disciplines, design theory, well as the relationships between design, fine art, architecture and popular culture.

ARH 564. Graduate Research in Art Since 1945. 3 Hours.
Painting, sculpture, and architecture, primarily in the United States, 1945 to the present.

ARH 565. Aspects of Contemporary Art. 3 Hours.
Topics in contemporary art, ca. 1970 to the present. Course offerings will vary from year to year and will study a specific historical moment, medium, theme, or subject. Prerequisite: ARH 204 or permission of instructor.

ARH 567. Graduate Research in Modern Architecture. 3 Hours.
History of modern architecture, covering examples from the late 18th century to the present and emphasizing the United States.

ARH 568. Graduate Research in Race and Representation. 3 Hours.

ARH 570. Graduate Research in Arts of the Afterlife in East Asia to ca. 1300. 3 Hours.
What is the purpose of a tomb? How do its structure and décor convey ancient perceptions of death? Who are the occupants, and how did they envision their journey into the afterlife? This course is a survey of the funerary arts of China, Korea, and Japan. By investigating tombs, shrines, sarcophagi, wall paintings, and grave goods throughout East Asia, we will gain a deeper understanding of ancient religions, social structures, ethnic identities, and cross-cultural interactions. Lectures will be supplemented by several visits to the Museum’s Asian collections.

ARH 571. Topics in Asian Cinema. 3 Hours.
This course offers students an introduction to a vital aspect of contemporary Asian culture, recognizing that film can be an important focus of contemporary cultural commentary and critique. The course presumes no prior knowledge of Asia or cinema and its artistic tradition. The goal of the course is to view and discuss, as a class, approximately ten films, emphasizing an understanding of their cultural background and an appreciation of their aesthetic merits as films and cultural settings in Asia. Attendance at weekly screenings is mandatory.

ARH 572. Graduate Research in Art in India to 1200. 3 Hours.
This course explores the environments of worship and devotion particular to India’s major indigenous religious traditions, from their earliest expressions in approximately the fifth century BCE through to the arrival of Islam in India, ca. 1200. We will examine aesthetic conventions, religious ideals, and urban cultures by focusing on the sculpture and architecture traditions of Hinduism, Buddhism, and Jainism.

ARH 573. Graduate Research in Japanese Prints and Printmakers. 3 Hours.
History of Japanese wood-block prints and printmakers from the seventeenth through the twentieth centuries.

ARH 574. Graduate Research in Landscape and Image in East Asia. 3 Hours.
This course surveys the major traditions of landscape art in East Asia. We will explore the ways in which places and spaces are transformed into famous places and sacred sites and consider the critical role played by visual representation in this process. Major topics include the relationship between landscape and power, cultural memory, literature, mythology, seasonality, travel, and literati culture. We will examine the functions of landscape art in various cultural, geographical, and temporal contexts of East Asia. We will look at landscape painting in China from the Tang through the Ming dynasties and consider the complex processes of cultural dissemination and adaptation by looking at the reception of Chinese landscape painting tradition in Korea and Japan.

ARH 575. Graduate Research in Japanese Art. 3 Hours.
Art and culture of Neolithic era through Nineteenth century.

ARH 577. Graduate Research in Piety and Power: Art in India after 1200. 3 Hours.
This course looks at the arts of India after 1200, when Indian art and culture was increasingly influenced and altered by religious and secular powers from outside the subcontinent. We will examine Islamic art and architecture under the patronage of various Sultanate traditions, and finally the Mughals, who expressed their power and piety in monumental architecture and extensively illustrated books. We will also consider the influence of Europeans in South Asia, culminating with the colonial project of the British Raj. Ongoing negotiations between these newly-arriving groups and Indians older, indigenous traditions will be studied. Throughout the course we will dissect the categories of knowledge about South Asia and its art that were constructed primarily by the British, considering, for example, the usefulness of dividing India’s art history into categories of “Hindu,” “Islamic,” “European,” and etc.

ARH 578. Buddhist Arts of East Asia. 3 Hours.
Survey of art and architecture created for Buddhist religious purposes in China, Japan, and to a lesser extent Korea and Central Asia. The course will include a brief overview of Buddhist monuments in South Asia, study of the iconography of Buddhist images in graphic and sculptural media, and analysis of a variety of Buddhist styles in painting, sculpture, and architecture.

ARH 579. Study Abroad: Art and Culture of South Asia. 3 Hours.
This course allows students to become immersed in the art and culture of Asia through direct experience in the field. Focus will be primarily on South Asia but may vary with each course offering to include Nepal, Tibet, and Southeast Asia. Preliminary lectures in Birmingham and significant written assignments required.

ARH 580. Art Criticism and Theory. 3 Hours.
A topics course on subjects in art criticism and theory. The specific focus will vary by instructor and may emphasize either non-Western or Western theories, criticisms, and approaches.
ARH 581. Special Topics: Early Modern Art. 3 Hours.
Special topics in the arts of the Early Modern period in the Western Art tradition. Subject will vary with each offering.

ARH 582. Special Topics: Modern Art. 3 Hours.
A special topics course on subjects in the Modern period in the Western tradition, beginning in the later eighteenth century. Specific course topics will vary by semester.

ARH 583. Special Topics: Gender and the Visual Arts. 3 Hours.
Topic will vary, depending on instructor. This course will address ways in which gender has affected the history of artistic practice and patronage. It will consider such issues as the gendering of pictorial practice and space, strategies of representing gendered subjects, and the impact of women as patrons of art and architecture.

ARH 584. Special Topics: Contemporary Art. 3 Hours.
Special topics in the arts of the Contemporary period in the Western art tradition. Subject will vary with each offering.

ARH 585. Special Topics: Museum Studies. 3 Hours.
Museum operation; organization and preparation of exhibitions; cataloging objects in collection; experience with UAB Institute of Visual Art and Birmingham Museum of Art.

ARH 586. Special Topics: South Asian Art. 3 Hours.
Special topics in the arts of South Asia. Subject will vary with each offering.

ARH 587. Special Topics: Field Study. 3 Hours.
Trips to prominent museums and galleries in United States. Preliminary lectures in Birmingham and significant written assignments required.

ARH 588. Special Topics: East Asian Art. 3 Hours.
Special topics in the arts of East Asia. Subject will vary with each offering.

ARH 590. Art Theory: Special Topics. 3 Hours.
Topics in art theory will vary with each offering.

ARH 591. Capstone Internship: Experience and Presentation. 3 Hours.
This is a practical internship with a Cultural Heritage organization. The Internship Practicum is where a graduate student participates in practical and general training experiences in the workplace, under the direction of an external field supervisor in conjunction with the university instructor. It is intended to give the student an opportunity to apply theory, expand knowledge, and gain experience in a cultural heritage or cognate organization (museum, gallery, library or archive, commercial or nonprofit conservation or preservation facility, research facility, governmental or political agency, law firm, etc). The student will ordinarily be expected to spend between 10-15 hours per week on location for each three hours of credit.

ARH 592. Museum/Gallery Internship. 3 Hours.
Through active participation in the daily operations of a museum, gallery, or art space, students will acquire direct working knowledge of cooperating art institution. Students will be required to work at the institution a minimum of 10 supervised hours per week during the term. Permission of instructor required. May be repeated to a maximum of 6 semester hours.

ARH 593. Seminar: South Asian Art. 3 Hours.
Seminar in the arts of South Asia. Subject will vary with each offering.

ARH 594. Seminar: East Asian Art. 3 Hours.
Seminar in the arts of East Asia. Subject will vary with each offering.

ARH 595. Seminar: Early Modern Art. 3 Hours.
Seminar in Early Modern Art. Research seminar focused on topics in the visual arts of Europe and its colonies 1300-1750. Subject will vary with each offering.

ARH 596. Seminar: Modern Art. 3 Hours.
Seminar in Modern Art. Subject will vary with each offering.

ARH 597. Seminar: Contemporary Art. 3 Hours.
Seminar in Contemporary Art. Subjects will vary with each offering.

ARH 598. AEIVA Internship. 3 Hours.
The AEIVA Intern Team will participate in all phases of daily gallery operations, ranging from curatorial practices, exhibition design, video/photographic documentation and production, technical and analytical writing, graphic design, etc. This team will act as a support staff for the AEIVA curatorial/administrative staff in a hands-on museum/gallery work environment. May be repeated to a maximum of 6 semester hours.

ARH 630. Seminar: Early Modern Art. 3 Hours.
Seminar in Early Modern Art.

ARH 640. Seminar: Modern Art. 3 Hours.
Seminar in Modern Art.

ARH 650. Issues in Cultural Heritage Policy and Practice. 3 Hours.
This seminar considers a series of issues centered around the core question, “who owns the past?” Exploring constructs of cultural heritage/cultural property and the museum, we will examine ideas about art objects, especially “antiquities” of a sacred or religious nature, from multiple perspectives, including politics, public and international policy, law, economics and economic development, public custodianship, and heritage preservation.

ARH 652. Advanced Research Seminar. 3 Hours.
This advanced seminar focuses on the development and application of discipline-specific research skills. Students will broaden their knowledge of art historical methodologies and themes generally, as well as construct a research program specific to their field/area of study (Medieval, Early Modern, Modern/Contemporary, etc.).

ARH 660. Seminar: Contemporary Art. 3 Hours.
Seminar in Contemporary Art.

ARH 670. Seminar: South Asian Art. 3 Hours.
Seminar in South Asian Art.

ARH 680. Methods and Approaches to the History of Art. 3 Hours.
This literature-intensive course covers the historiography of the field and a range of theoretical approaches. Should be taken in the first semester of enrollment in the M.A. program.

ARH 698. Independent Studies. 1-6 Hour.
Independent Study Topics vary. Permission of instructor required.

ARH 699. Thesis Research. 1-6 Hour.
Thesis Research. Must be admitted to master level candidacy to take this course. At least 6 graduate credits needed for graduation.

Prerequisites: GAC M

Cultural Heritage Studies

The Master of Arts degree in Cultural Heritage Studies is the only graduate program of its kind in the state. The M.A. degree in Cultural Heritage Studies provides students with the theoretical background and practical skills necessary to enter a career in the emerging fields of cultural heritage practice, policy, and management. The program is interdisciplinary; in addition to core and elective courses in art history, students will take additional relevant classes in anthropology and
public administration. The small size of the program affords graduate students the opportunity to work closely with individual faculty members in seminars and directed research projects.

Students in the M.A. in Cultural Heritage Studies program may select one of two study tracks: the Cultural Heritage track or the Cultural Heritage Administration track.

The Cultural Heritage track provides students with an in-depth understanding and analytical grasp of international cultural heritage, and cultural property protection and response, intersections of cultural heritage and aid; the geopolitics of heritage as diplomacy; the role of international structures on the conservation of world heritage, looting and willful destruction of historic sites and buildings, and a variety of related issues.

The Cultural Heritage Administration track provides students with an in-depth understanding and analytical grasp of public policy and advocacy, including aspects of museum studies relevant to the administration and management of not-for-profit museums, public arts policy, the management of public cultural activity, commercial and non-profit sides of the business of culture, including organizational structures and staff roles, the fundamentals and legal features of public administration and nonprofit management.

Program Details

The M.A. in Cultural Heritage Studies is a 30-hour degree. Students in both tracks enroll in 27 hours of course work, including the core course ARH 650 Issues in Global Cultural Heritage Preservation: Practice & Policy and 3 credit hours of a practicum or internship. Degree requirements include the completion of a final professional research project to ensure the student has achieved proficiency of the knowledge and skills expected of a professional in the discipline.

Graduates will obtain a broad foundation of knowledge applicable to careers and further study in historic preservation and museum studies; arts management and administration; cultural and public advocacy; art and cultural policy; law and transnational justice; international affairs, diplomacy, government, arts centers, government, museums, private arts agencies, arts councils, community arts programs, foreign service; peace and justice studies; art journalism; and other fields.

Admission Requirements

A minimum GPA of 3.0 (B) is required for acceptance into the program. The applicant should have completed 18 semester hours in related coursework such as art history, anthropology, history, political science, or museum studies, although this requirement may be waived depending on the applicant's background and preparation. Qualified applicants will be invited for a required personal interview, which may take place over Skype or similar. The committee will consider all applicant information to select students who will be offered program admission.

Plan of Study

- Cultural Heritage Studies Track
- Cultural Heritage Administration Track

Year One

Fall:

- ARH 650: Issues in Global Cultural Heritage
- MPA 600: Administrative Ethics
- Anthropology Elective

Spring:

- MPA 601: The Public Policymaking Process
- Anthropology Elective
- Art History Elective

Year Two

Fall:

- MPA 602: Scope of Public Administration
- Anthropology Elective
- Art History, Anthropology, or Public Administration Elective

Spring:

- ARH 591: Capstone Practicum

Application Due Dates

Students may apply for admission for either the fall or spring semester.

- Fall 2020 admission: applications due by August 1
- Spring admission: applications due by December 1

For more information about the M.A. in Cultural Heritage Studies, please contact Cathleen Cummings, Associate Professor and Graduate Program Director.

M.A. in Cultural Heritage Studies with a Cultural Heritage Studies Track

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARH 650 Issues in Cultural Heritage Policy and Practice (Plan to take in the first semester in the program.)</td>
<td>3</td>
</tr>
<tr>
<td>MPA 601 The Public Policymaking Process (Plan to take in the first semester in the program.)</td>
<td>3</td>
</tr>
<tr>
<td>MPA 600 Administrative Ethics</td>
<td>3</td>
</tr>
<tr>
<td>MPA 602 Scope of Public Administration</td>
<td>3</td>
</tr>
<tr>
<td>ARH 591 Capstone Internship: Experience and Presentation (Plan to take in the second year of program)</td>
<td>3</td>
</tr>
</tbody>
</table>

Anthropology Electives

Select three from:

- ANTH 515 Peace through Global Governance
- ANTH 519 Religion, Reconciliation, & Forgiveness
- ANTH 650 Nationalism Ethnicity and Violence
- ANTH 667 Museum Studies
- ANTH 521 Technological Monitoring of Cultural Resources, Human Rights and Conflict
- ANTH 526 NAGPRA, Repatriation, and Indigenous Rights
- ANTH 531 Memory and Memorialization
- ANTH 624 The Law of Historical and Cultural Resources
- ANTH 627 Archaeological Laboratory Methods
- ANTH 634 Observing the Earth from Space
- ANTH 637 Real World Remote Sensing App

Art History Elective 1 3
with emphases on ecophysiology, cellular and molecular biology of plant specialization in research activities at all levels of biological organization. Graduate students in the M.S. and Ph.D. programs in biology may specialize in research activities at all levels of biological organization, with emphases on ecophysiology, cellular and molecular biology of plant

Areas of Specialization

Graduate students in the M.S. and Ph.D. programs in biology may specialize in research activities at all levels of biological organization, with emphases on ecophysiology, cellular and molecular biology of plant

Admission

For admission in good standing, applicants must meet the following requirements, in addition to the Graduate School's standards: an undergraduate degree in biological science, B-level scholarship in all biology courses, two semesters of organic chemistry, two semesters of physics, mathematics through calculus, and a personal statement of career goals. The GRE may be waived during Covid-19. The graduate program director in biology must approve admission with deficiencies in one of the above requirements. Three letters of evaluation from individuals who have a thorough knowledge of the applicant's academic abilities and potential are also required. It is strongly recommended that a student contact a mentor before applying. Students may enter at the beginning of any semester, with deadlines of March 1 for summer and fall applicants and October 15 for spring applicants.

Coursework, Thesis, and Dissertation

A dissertation embodying the results and analysis of an original experimental investigation is required for Ph.D. candidates. Students in the M.S. program may write a thesis based on a research project (Plan I) or, alternatively, may elect to submit a nonresearch project incorporating a review and analysis of one or more topics of current or historical interest in biology (Plan II).

Since scientific problems encountered today are multifaceted and require multidisciplinary approaches, students are expected to acquire a broad background in the physical and life sciences. Doctoral students must complete formal course work in or have equivalent training related to six of the following seven areas: ecology, physiology, cell biology, developmental biology, genetics, microbiology, and molecular biology. Master's students must have competency in five of these life-science areas. Each student is also expected to satisfactorily complete a course or sequence in biometry and any advanced courses designated by the student's graduate study committee consistent with the chosen area of specialization. Each student must also enroll in three seminar courses approved by his or her graduate study committee, and one of the seminars must be outside the student's primary area of specialization. Also, each student is required to demonstrate proficiency in teaching by delivering formal course lectures or by conducting instructional laboratories. Certificates for advanced training in teaching are also available.

Examinations

To qualify for candidacy, a student in the Plan I Master's program must satisfactorily complete either a written or an oral comprehensive examination. A doctoral student must take both written and oral comprehensive examinations. As part of a student's final defense of his or her dissertation or thesis, a public departmental seminar must be presented.

Class A Teaching Certification

Under the Alabama Department of Education’s “Strengthened Subject Matter Option,” students who complete the requirements for the master's degree in biology can also receive class A teaching certification, providing that certain prerequisites and requirements are met. Complete details are available from the School of Education Certification Office, EB 100,
1530 3rd Avenue South, Birmingham, Alabama 35294-1250 (Telephone 205-934-5423).

Accelerated Learning Opportunities

Biology offers both a Fast-Track and Accelerated Bachelors/Masters (ABM) (p. 10) option for high-achieving undergraduate students. The following courses are approved for shared credit for students pursuing an ABM in Biology: BY 501, BY 511, BY 512, BY 520, BY 527, BY 530, BY 531, BY 535, BY 555, BY 567, BY 568, BY 569, BY 570, BY 605, BY 607, BY 614, BY 616, BY 618, BY 626, BY 629, BY 633, BY 634, BY 636, BY 637, BY 640, BY 642, BY 650, BY 651, BY 655, BY 656, BY 656L, BY 668, BY 670, BY 674, BY 675, BY 680, BY 689, BY 696

Additional Information & Mailing Address

Deadline for Entry Terms: Each semester
Deadline for All Application Materials to be in the Graduate School Office: March 1 for summer and fall; October 15 for spring admission
Number of Evaluation Forms Required: Three
Entrance Tests: TOEFL TWE, DuoLingo or IELTS are required for international applicants whose native language is not English.

Contact Information

For detailed information contact Dr. Stephen A. Watts, Graduate Program Director.
Telephone 205.934.4290
Fax 205.975.6097
E-mail sawatts@uab.edu
Web https://www.uab.edu/cas/biology/graduate

Master of Science in Biology

Plan 1
Requirements	Hours
Biology Coursework | 15
BY 678 Biology Graduate Seminar (enrollment required every fall and spring semester while degree-earning student) | 0
BY 698 Nonthesis Research | 9
BY 699 Thesis Research | 6
Total Hours | 30

1 15 credits of Biology courses from BY 501:597, 600:697 or GRD 715

Plan 2
Requirements	Hours
Biology Coursework | 18
BY 678 Biology Graduate Seminar (enrollment required every fall and spring semester while degree-earning student) | 0
Other Science Related Coursework | 6
BY 678 Biology Graduate Seminar (enrollment required every fall and spring semester while degree-earning student) | 0
BY 698 Nonthesis Research | 6
Total Hours | 30

1 Biology coursework selected from BY 501:697

PhD in Biology

Requirements

Statistics Requirement

BY 655 Biometry
BY 755 Biometry
BST 601 Biostatistics
BST 611 Intermediate Statistical Analysis I

GBSC 722 Special Topics
GRD 715 Preparing TAs to Be Effective Teachers
GRD 717 Principles of Scientific Integrity
Seminar 1

Additional Discipline Coursework 2
BY 678 Biology Graduate Seminar (enrollment required every fall and spring semester while degree-earning student) 0

Research: 6
BY 798 Nondissertation Research

Dissertation Research: 18
BY 799 Dissertation Research

Total Hours: 72

1 Seminars from BY 681:695, BY 781:795, GBS 737, GBS 777, GBS 792, GBSC 701, NTR 690, NTR 728, NTR 788, NTR 789

Graduate Certificate in Science Policy

The Science Policy Graduate Certificate program is aimed at training students to solve key societal problems using science and innovation. This program will train students in scientific fields to learn about the policy making process & ethical technology development, while training students in non-scientific fields about contemporary science as they pertain to policy needs. Trainees will develop key core competencies that link science and society together making them valuable resources to academic, public, and private job sectors. The program will focus on effective science communication, the impact and processes of establishing policies, and the real time assessment of innovations for society at local, national, and global level. Participants will gain essential skills to be applied in solving real world problems and develop leadership skills through the science policy community of practice. The certificate is geared to trainees from diverse programs including, but not exhaustively, biology, chemistry, physics, sociology, public health, biomedicine, public administration, political science, communications, and computer science.

Application for the Certificate Program

To complete the Graduate Certificate in Science Policy, students must be admitted as a graduate student as defined by the UAB Graduate School. These requirements include an earned undergraduate degree from an accredited institution. Prospective students must also complete
the application form and submit it to the Science Policy Program Director (pegbiga@uab.edu) prior to the application deadline.

Courses

Students must obtain a grade of at least B in any course used to satisfy the certificate requirements. 12 of the 15 required credit hours must be earned at UAB, and 12 of the credits must be at or above 600-level.

Graduate Certificate in Science Policy 1,2,3

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course Requirement</td>
<td>3</td>
</tr>
<tr>
<td>BY 617 or MPA 617 Science Policy</td>
<td></td>
</tr>
<tr>
<td>Foundational Knowledge Skills</td>
<td>3</td>
</tr>
<tr>
<td>BY 647 or MPA 647 Contemporary Issues in Science</td>
<td></td>
</tr>
<tr>
<td>MPA 601 The Public Policymaking Process</td>
<td></td>
</tr>
<tr>
<td>MPA 602 Scope of Public Administration</td>
<td></td>
</tr>
<tr>
<td>MPA 604 Human Resources Management</td>
<td></td>
</tr>
<tr>
<td>SOC 620 Public Sociology</td>
<td></td>
</tr>
<tr>
<td>MPA 682 Economic Development</td>
<td></td>
</tr>
<tr>
<td>Humanistic Knowledge Skills</td>
<td>3</td>
</tr>
<tr>
<td>MPA 600 Administrative Ethics</td>
<td></td>
</tr>
<tr>
<td>SOC 626 Applied Sociology</td>
<td></td>
</tr>
<tr>
<td>SOC 627 Applied Social Psychology</td>
<td></td>
</tr>
<tr>
<td>SOC 645 Sociological Practice</td>
<td></td>
</tr>
<tr>
<td>HA 616 Biomedical Ethics</td>
<td></td>
</tr>
<tr>
<td>ANTH 524 Transitional Justice and Human Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 641 Anthropology of Human Rights</td>
<td></td>
</tr>
<tr>
<td>ANTH 624 The Law of Historical and Cultural Resources</td>
<td></td>
</tr>
<tr>
<td>PY 619 Diversity, Equity and Inclusion in Research and the Workplace</td>
<td></td>
</tr>
<tr>
<td>PY 734 Applied Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>Meta Knowledge Skills</td>
<td>3</td>
</tr>
<tr>
<td>SOC 715 Program Evaluation</td>
<td></td>
</tr>
<tr>
<td>SOC 770 Techniques of Population Analysis</td>
<td></td>
</tr>
<tr>
<td>SOC 772 Medical Demography</td>
<td></td>
</tr>
<tr>
<td>MPA 689 Program Evaluation</td>
<td></td>
</tr>
<tr>
<td>MPA 605 Information Management for Government</td>
<td></td>
</tr>
<tr>
<td>MPA 603 Public & Nonprofit Budgeting</td>
<td></td>
</tr>
<tr>
<td>BY 670 Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>or BY 770 Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>CM 604 Analysis of Communication Audiences</td>
<td></td>
</tr>
<tr>
<td>CM 605 Communication Effects</td>
<td></td>
</tr>
<tr>
<td>CM 616 Health and Med Communication</td>
<td></td>
</tr>
<tr>
<td>CM 620 Persuasion</td>
<td></td>
</tr>
<tr>
<td>PY 718 Advanced Research Design</td>
<td></td>
</tr>
<tr>
<td>ANTH 521 Technological Monitoring of Cultural Resources, Human Rights and Conflict</td>
<td></td>
</tr>
<tr>
<td>Capstone</td>
<td>3</td>
</tr>
<tr>
<td>BY 677 Design Thinking to Solve Problems through Science Policy</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 15

1 The student must obtain a grade of at least B in any course used to satisfy the certificate requirements
2 12 of the 15 required credit hours must be earned at UAB
3 12 of the credits must be at or above the 600-level

BY-Biology Courses

BY 501. Advanced Genetics for Teachers I. 3 Hours.
Basic genetic principles; recent research developments. Prerequisite: Permission of instructor.

BY 502. Botany for Teachers. 3 Hours.

BY 503. Advanced Biology for Teachers III. 1 Hour.
Laboratory supplementing lecture (BY 502) through use of human specimens, models, and demonstrations.

BY 504. Life Science for Middle School Teachers. 3 Hours.
Life Science for Middle School Teachers.

BY 507. Microbial Ecology. 3 Hours.
Microorganisms in nature; interactions with each other and with environment. Independent project required. Prerequisite: BY 271.

BY 511. Molecular Genetics. 3 Hours.
Prokaryotic and eukaryotic gene structure and function. Independent project required.
Prerequisites: BY 210 [Min Grade: D] and BY 330 [Min Grade: D] and CH 234 [Min Grade: D]

BY 512. 21st Century Gene Editing. 3 Hours.
The course will cover basic concepts of molecular genetics, including an introduction to the DNA biology (structure and function), the use of model organisms and experimental approaches for molecular genetic analysis and an understanding of human genetic disorders and possible genetic therapies. The first part of the course, while dealing with introductory material through lectures and discussions, will give students a hands-on experience with well-known molecular techniques like DNA isolation and polymerase chain reaction (PCR), and how these techniques are used in the context of gene editing. The participants will also have direct exposure to working with zebrafish (Danio rerio) embryos (<3 days old, therefore exempt from detailed IACUC regulations) and roundworms (C. elegans) as an alternate model system to use the CRISPR-Cas9 technology. These broadly applicable techniques will be reiterated in the second part of the course with a special emphasis on the CRISPR-Cas9 technology. The activities involved in these two parts will provide an opportunity for rich pedagogical discussion on fundamental concepts in biology, chemistry, the process of scientific experimentation, and the nature of evidence. In-service teachers will learn how to design and implement a meaningful high school lesson module on the CRISPR-Cas9 technology and complete formative and summative assessment for that module.

BY 515. Human Anatomy for Educators. 4 Hours.
Principles of vertebrate structure with emphasis on gross and microscopic human anatomy. Survey of human embryology and evolution. Lecture and laboratory. Graduate project/presentation required.

BY 515L. Human Anatomy for Educators - Laboratory. 0 Hours.
Principles of vertebrate structure with emphasis on gross and microscopic human anatomy. Survey of human embryology and evolution. Lecture and laboratory. Course is targeted to current and future Human Anatomy educators.

BY 527. Histology. 4 Hours.
Microscopic anatomy of cells, tissues, and organs of animals; correlation of structure and function. Techniques and methodology. Lecture and laboratory. Completion of additional independent project required for graduate credit.
BY 527L. Histology Laboratory. 0 Hours.
Histology Lab required with BY 527 lecture.

BY 530. Graduate Cell Biology. 3 Hours.
This course will introduce students to key concepts of cell biology with a focus on cellular components, cell metabolism, cell organization, molecular dogma, cellular trafficking, cell cycle, cell signaling, cancer and stem cells. Classical cell biology will be discussed in historical perspectives. Current techniques used in the study of cell biology will be discussed in the appropriate sections. The course is divided into three modules: weeks 1-6, weeks 7-11, and weeks 12-15. 3 Credit Hours. Graduate Project required.

BY 531. Advanced Recombinant DNA Technology. 3 Hours.
Manipulation of genes and their regulations, and techniques used in recombinant DNA technology. Independent project required. Prerequisites: BY 311, BY 330, CH 233 and CH 460 or 461.

BY 535. Natural History of Vertebrates. 4 Hours.
Adaptations of vertebrates for survival in particular environments. Survey and classification of local vertebrates. Two lectures, one laboratory or field trip per week. Independent project required.

BY 535L. Natural History of the Vertebrates Lab. 0 Hours.
Lab must be taken with BY 535 lecture.

BY 555. Biological Data Interpretation and Analysis. 3 Hours.
The course covers the basics of scientific investigation with an emphasis on understanding methods of the scientific process, experimental design, data analysis and data interpretation, and graphical presentation, and scientific writing. Special emphasis will be placed on the use of data management and the understanding of statistical packages language to address the most common types of data analyses used to investigate specific applications in biology. Quantitative Literacy is a significant component of this course. Recommend course is taken during the first year of graduate education.

BY 560. Advanced Invertebrate Zoology. 3 Hours.
Selected topics. Lecture and student projects. Prerequisite: BY 255.

BY 567. Tropical Ecology. 3 Hours.
An overview of the major tropical ecotypes with emphasis on ecology of terrestrial, aquatic, and marine tropical organisms. Major portion of course taught at a tropical field station in the Caribbean. Lectures, laboratory, and field trips. Library research paper required. Prerequisites: Graduate Standing and Permission of Instructor.

BY 568. Galapagos Ecology. 3 Hours.
The ecology of the Galapagos Islands, with an emphasis on terrestrial & marine organisms. Major portion conducted on the Galapagos Islands. Lecture & field trips. Library research paper required. Prerequisites: Graduate Standing and Permission of Instructor. Prerequisites: BY 255 [Min Grade: D] or BY 256 [Min Grade: D] or BY 470 [Min Grade: D]

BY 569. Rain Forest Ecology. 3 Hours.
Overview of physical and environmental factors that structure the rainforest, biodiversity of life, and interactions of its organisms. A survey of prominent biota will be conducted. Major portion of course taught in Costa Rica. Lectures and field trips. Library research paper required. Prerequisites: Graduate Standing and Permission of Instructor.

BY 570. Ecology. 3 Hours.
The study of interactions between organisms and their environment. An introduction to ecological processes at individual, population, community, and ecosystem levels and their relevance to current environmental problems Lectures. Independent project required. Prerequisite: Graduate Standing.

BY 585. Northern Field Studies. 3 Hours.
Ecology of northern coniferous forest and tundra ecosystems. Major portion of course taught on site in Alaska. Lecture and field trips. Graduate project/paper required. 3 hours. (Irregular offering).

BY 595. Special Topics in Biology I. 1-4 Hour.
This course will consider graduate-level topics from the various disciplines in the biological sciences and the topics will differ each term. Course requirements may include lecture, laboratory, readings, discussion, reporting, and internships or fieldwork, which may be conducted on- or off-campus as well as online. May be taken more than once for credit.

BY 596. Special Topics in Biology II. 0-4 Hours.
This course will consider advanced graduate-level topics from the various disciplines in the biological sciences and the topics will differ each term. Course requirements may include lecture, laboratory, readings, discussion, reporting, and internships or fieldwork, which may be conducted on- or off-campus as well as online. May be taken more than once for credit.

BY 597. Investigative Techniques. 2 Hours.
This course focuses on the application of modern experimental techniques in solving research problems. Specifically, we will discuss important methodological advances in various subdisciplines of biology by examining seminal papers from the scientific literature. The articles might include a mix of historical and current articles. The class will use a journal club format for weekly discussions in person or virtually, with additional content provided CMS.

BY 598. MR Lev Non-Thesis Research. 1-10 Hour.

BY 605. Microbial Physiology. 3 Hours.
Microbial structure and function, growth, metabolism, and regulation of cellular activity. Independent project required. Prerequisites: Permission of instructor. 3 credit hours.

BY 607. Microbial Ecology. 3 Hours.
This course examines microorganisms in their natural habitats, with a focus on soil and aquatic ecosystems as well as symbiotic interactions between microbes and animals and plants. Students will learn both theory and practical techniques for studying microbial ecology, including hands-on exposure to modern bioinformatic analysis methods for microbial communities. Independent project required. 3 credit hours.

BY 610. Comparative Animal Physiology. 3 Hours.
Special physical and chemical processes occurring at cell tissue, and organ levels. Independent projects required.

BY 611. Advanced Human Anatomy. 4 Hours.
This course is a detailed, advanced examination of human anatomy and histology. In a laboratory setting, students will achieve course objectives from dissecting a human cadaver, and observing prospected cadavers and casted models.

BY 612. CIRTL-Biology. 1-4 Hour.
This discipline specific seminar course in CIRTL (The Center for the Integration of Research, Teaching and Learning) - Biology is specially designed to offer students a hands-on opportunity to do an in-depth analysis on various effective teaching techniques that can be utilized in a typical college classroom setting. In the light of this analysis, students are expected to deliver a presentation simulating a classroom lecture on any topic related to Biology or if they prefer, they can also give an oral presentation on any pedagogical topic.
Responsibilities will also include preparation of quizzes and practicals. Student will assist in instruction of an introductory biology laboratory.

BY 613. CIRTL Service-Learning Workshop. 1 Hour.
This workshop offered by the Department of Biology for CIRTL (The Center for the Integration of Research, Teaching and Learning) @UAB is specially designed to offer students a hands-on opportunity on designing a service-learning course in the realm of their study with an added emphasis on the importance of service-learning in today’s classroom.

BY 614. Advanced Cell Biology. 3 Hours.
This course will focus on understanding cell signaling, function, and dynamics, which is the core of modern cell biology topics. This course is targeted to students who are interested in the advanced level current topics of Cell Biology. Topics include the cellular organization and function, cell cycle, autophagy, apoptosis, stem cell and cellular signaling pathways. This course also includes reading of primary literature, and writing and presenting a research proposal. Graduate project required.

BY 616. Cellular Physiology. 3 Hours.
Structure and function of cells and their components at the molecular level. Laboratory experience using modern equipment and biochemical methods. Independent project required.

BY 617. Science Policy. 3 Hours.
Science and technology intersect with multiple areas of public policy. Think of the growing concerns over technological surveillance, the debates over policy for climate change mitigation, the challenges posed due to global health crises, or the fear that American research and development competitiveness is eroding in a globalized economy. These issues reflect important questions about the relationship between science, technology, and public policy. Are scientific and technological developments governable, and if so, how and by whom? Is more and better science always better for policymaking? Who is the best judge of the value of scientific research programs and the validity of scientific findings? Are scientific and technological innovations generally socially beneficial, and who decides? What role should policymakers play in regulating science?

BY 618. Colloquium in Biology of Aging. 1 Hour.
The course will focus on readings and interpretation of scientific papers, data, and experimental results relevant to endocrinology and aging. In addition to readings, oral presentations, discussions, and a research proposal are the major components of the course.

BY 619. Reproductive Physiology. 3 Hours.
Comparative reproductive physiology in animals with emphasis on mammals. Independent project required.

BY 620. General Endocrinology. 3 Hours.
The central theme of this course is the role of hormone chemical messengers in the regulation of physiological processes. Topics include structure of endocrine cells and glands, hormone synthesis and chemistry, physiological effects of hormones, and mechanisms of hormone action. Emphasis is placed on vertebrate systems, but instructive invertebrate systems are also considered. Term paper required.

BY 621. Evolutionary Biology. 3 Hours.
This course introduces the history of evolutionary thought and modern evolutionary theory. Discussions cover (but are not limited to) the history of life, mechanisms of evolutionary change, sexual selection, adaptation, speciation, and molecular evolution. Students will also be introduced to historical and contemporary studies of evolution on a wide variety of topics and organisms. Regular meetings outside of lecture will involve discussions of classic and contemporary research papers in the field.

BY 622. Biological Information Resources. 3 Hours.
The National Center for Biological Information (NCBI) website is a treasure house of information and tools for researchers in all areas of modern Biology. The goal of this course is to provide guidance for students who wish to become familiar with the NCBI website through an online learning experience. They will learn many of the features available at this site and will gain experience using some of the tools. The course will be taught completely online and will consist of 1) Guidelines for navigating through NCBI, 2) Study guide questions for students to answer online, 3) NCBI tutorials with questions to be answered online, 4) Assignments with questions to be answered online, 5) Online exams. Graduate levels require a graduate project.

Prerequisites: BY 123 [Min Grade: C] or BY 124 [Min Grade: C]

BY 623. Advanced Molecular Genetics. 3 Hours.
Examination of the molecular genetics of eukaryotic organisms, including genomes, nucleosomes, chromosomes, transcription, splicing, transposition and signal transduction. The role of molecular biology in immune diversity and cell growth will also be studied.

BY 624. Functional Genomics and Systems Biology. 3 Hours.
Systems biology is an inter-disciplinary study underlying complex biological processes as integrated systems of many interacting components. This course will give students a foundation in understanding complex biological interactions at the molecular, network and genomic level. This course will cover state-of-the-art high throughput established and novel approaches used in genome sequencing, transcriptomics, proteomics and metabolomics to obtain, integrate and analyze complex data. The students will also get familiar with knowledge on experimental perturbation of genomes, gene regulatory networks, comparative genomics and evolution, basic bioinformatics. This course will be a combination of text based lectures and discussions of the current literature relevant to Functional Genomics and Systems Biology.

Prerequisite: BY210 minimum grade of C.

Prerequisites: BY 210 [Min Grade: C]

BY 625. Biological Processes in Aging. 3 Hours.
The #1 threat to human health – far greater than cancer, heart disease, and Alzheimer’s disease combined – is aging. Aging is also a fascinating biological puzzle. Why do we, and virtually every other species, age in the first place? Why can’t nature simply maintain the body it built? This course will introduce you to the fascinating process of biological aging, its impact on human and animal life, how it evolved, and the manner in which its biology is investigated, the cellular and molecular process that underlie aging, and how efforts to slow human aging are progressing. We will cover the history of exceptionally long human and animal lives and also delve into current and historical approaches to alter the rate of aging in humans with an emphasis on current promising research areas. In covering this material we will also encounter some of the many colorful scientists who have worked on the problem of aging as well as the past and current frauds and charlatans who are just trying to make a buck off of people’s fear of death and disability.

Prerequisites: BY 123 [Min Grade: C] and BY 210 [Min Grade: C]
BY 637. Epigenetics. 3 Hours.
This course provides a survey of the field of epigenetics, introducing
the student to the diverse areas of epigenetic research in a variety of
ekaryotic systems. The course combines lectures with discussion of
primary literature and research talks from invited faculty speakers
working in epigenetics. In addition to providing an overview of the field
of epigenetics, this course emphasizes working with primary scientific
literature and the development of critical reading skills. Additional
assignments are required for graduate credit.

BY 640. Immunology. 3 Hours.
Immune system and functions of host humoral and cellular immune
responses. Mechanisms of antigen and antibody reactions and basic
immunological methods. Term paper required.

BY 642. Experimental Phycology. 4 Hours.
Introduction to algae. Experimental approaches to productivity. Algae as
model systems. Independent project required. Concurrent enrollment
in BY 642 lab required.

BY 642L. Experimental Phycology Lab. 0 Hours.
Lab must be taken concurrently with BY 642 lecture.

BY 644. Biological Experimental Design and Methods. 3 Hours.
This course focuses on advanced modern experimental design and its
use in biological research. Specifically, we will discuss principles of
open science and their implications for data management as they apply to commonly used methods in biological research. We will
discuss experimental design, the use of appropriate controls, and the
interpretations of the results obtained. Methods covered in detail
will include for example PCR, DNA sequencing (Sanger and NGS),
fluorescent microscopy, and bioinformatics. The class will use a
combination of lecture, in-class activities, and discussion sessions, with
additional content provided on Canvas.

BY 645. Neuroanatomy. 4 Hours.
This course will provide detailed lecture and laboratory experiences that
describe the anatomy of the human brain, spinal cord, and peripheral
nervous system. Students will culture rat hippocampal neurons and
map the cerebral and cerebellar cortex on preserved human brains.
Deep brain structures will be identified and their functional significance
explored. Cranial nerves and major peripheral nerves will be described
and identified through cadaveric dissections. Normal pathways will
be contrasted with examples of abnormalities along with the resulting
functional impairments. Graduate credit will be earned through the
completion of additional term papers and/or projects.

BY 646. Techniques in Biological Research. 3 Hours.
Concepts and practical application of techniques pertinent to biological
research.

BY 647. Contemporary Political Issues in Science. 3 Hours.
Our rapidly changing world faces significant, multi-faceted problems
at the nexus of technology and society. The response to these socio-
scientific issues will impact the future of the human condition. The
scientific process has a role to play in finding timely, effective, and
evidence-based solutions. This course showcases science as a
dynamic and iterative process that includes collecting and connecting
observations, making hypotheses based on the current understanding,
and constructing models that are revised as new knowledge is acquired.
It emphasizes the role of dialogue and communication in shaping
responses to socio-scientific issues.

BY 648. Psychoneuroimmunology. 3 Hours.
Explores communication between neuroendocrine and immune systems.

BY 651. Advanced Plant Biology. 3 Hours.
This course introduces the student to the advanced concepts of plant
biology including plant diversity, structure, physiology, metabolism,
reproduction, genetics, molecular biology, evolution and ecology. It
is targeted to Biology Graduate Students. This class brings together
knowledge and methodologies from a number of different disciplines to
provide students with an intensive and comprehensive plant curriculum
from the molecular to the organismal level.

BY 652. Field Botany for Teachers. 4 Hours.
Principles and techniques of plant identification and classification;
consideration of phylogenetic systems. Lectures and field trips.
Independent project required.

BY 652L. Field Botany Lab. 0 Hours.
Lab must be taken with BY 652 lecture.

BY 655. Biometry. 3 Hours.
Statistical techniques used to analyze and interpret data, with emphasis
on biological applications. Lecture and computer-based laboratory. 3
semester hours. Graduate standing and permission of instructor.

BY 656. Comparative Vertebrate Anatomy. 4 Hours.
Study of the anatomical systems of vertebrates in an evolutionary and
functional context. Covers form, function, development and phylogeny
of vertebrates, with overviews of organ systems, and the major adaptive
events of vertebrate evolution. Labs complement lectures with dissections
of representative species, and surveys of specializations in other forms.
Lecture and laboratory.

BY 656L. Comparative Vertebrate Anatomy Lab. 0 Hours.
Comparative Vertebrate Anatomy Lab required with BY 656 lecture.

BY 662. Introductory Neurobiology. 3 Hours.
Introduction to biological basis of nervous system function. Comparative
approach applying molecular, cellular, and systems' concepts to nervous
system function is used to examine electrical and chemical signaling,
neural circuitry, and cellular basis of behavior and neural development.
Independent project required.

BY 667. Population Ecology. 3 Hours.
This course covers the structure and dynamics of populations with an
emphasis on understanding how reproduction, mortality, and dispersal
interact to control fluctuations in population size and structure. Special
emphasis will be placed on the use of models to address specific
applications in conservation biology and natural resource management.
Independent project/paper required. Preqs: BY 570 & graduate standing
or permission of instructor.

BY 668. Ecological Genetics. 3 Hours.
This intensive course will introduce students to the genetic tools of
modern population biology – which ones are available, practical, and
useful for particular questions – and how these genetic analyses have
been applied to a wide variety of ecological topics, including: dispersal,
life histories, recruitment, habitat and mate choice, local selection,
genetic differentiation, the conservation of biodiversity, and speciation.
Importantly, this course is an opportunity to become proficient at applying
molecular tools to bolster ecological studies. Time will be spent in
lectures and learning practical coding and data analyses. Graduate-level
assignments required.

BY 670. Scientific Communication. 3 Hours.
Becoming a professional biologist is challenging and requires mastering
a variety of skills. This course complements the biological knowledge
graduate students gain from other courses and their thesis research
by providing training, experience, and critical feedback in the following
areas.
BY 671. Biochemical Adapt Environment. 3 Hours.
Examination of physiological and biochemical adaptations of organisms to physical environment.

BY 673. Biochemical Adaptation to the Environment. 3 Hours.

BY 674. Chemical Ecology. 3 Hours.
Study of chemical interactions between organisms or between organisms and their environment. Topics include chemical signaling between organisms, sensing of the chemical environment, and chemical defenses against predators, pathogens, biofoulers, or competitors. Students will be introduced to these topics in a wide variety of terrestrial and aquatic habitats. Independent project/paper required. Preq: Graduate standing.

BY 675. Comparative Developmental Biology. 3 Hours.
Mechanisms of development with emphasis on comparative biology. Graduate standing.
Prerequisites: BY 210 [Min Grade: D]

BY 677. Design Thinking to Solve Problems through Science Policy. 3 Hours.
This program capstone course includes the application of the basic tools of inquiry into social problems; basic ethical issues in contemporary science; analyzing the problem; analyzing any relevant policies; data validity and reliability; data-gathering techniques; data management; solution(s) generation; disciplinary standards for writing the proposal and reporting findings. Over the course of the semester, students will be exposed to different sectors that overlap science and society (public, private, non-profit).

BY 678. Biology Graduate Seminar. 0 Hours.
Graduate Students in Biology MS Plan I or PhD programs will participate in a series of departmental seminars exposing them to versatile sub-disciplines of Biology as well as various career paths. Departmental seminars are part of an enriching experience that lays the foundation for our students' future professional careers. Attendance will be required.

BY 679. Colloquium in Evidenced Based Teaching. 1 Hour.
This pedagogy based colloquium is designed to prepare the next generation of future STEM faculty members in evidence-based practices. The course will begin with an in-depth discussion related to the Vision and Change in Biology Undergraduate Education: A Call to Action. Specific chapters from this document will be assigned as "Reading Assignments" on a weekly basis. Furthermore, journal article discussions will be included to better understand innovative teaching strategies like active-learning, classroom-response system, inclusive learning environments and initiating team based learning activities.

BY 680. Epigenetics Discussion. 1 Hour.
This course provides the student with an exposure to a wide range of basic epigenetics research topics. It will promote scientific literacy, discussion skills, and critical thinking skills. In addition, students will gain experience developing lectures and providing constructive criticisms to their peers.

BY 681. Colloquium in Physiological Ecology. 1 Hour.
Current research.

BY 682. Colloquium in Immunology. 1 Hour.
Current research.

BY 683. Colloquium in Physiology. 1 Hour.
Current research.

BY 684. Colloquium in Microbial Ecology. 1 Hour.
Current research.

BY 685. Colloquium in Cell Biology. 1 Hour.
Current research.

BY 686. Colloquium in Mammalian Development. 1 Hour.
Current research.

BY 687. Colloquium in Endocrinology. 1 Hour.
Current research.

BY 688. Colloquium in Algal Ecophysiology. 1 Hour.
Current research in specific areas.

BY 689. Colloquium in Genetics. 1 Hour.
Current research.

BY 690. Colloquium in Cellular Physiology. 1 Hour.
Current research in specific areas.

BY 691. Colloquium in Botany. 1 Hour.
Current research developments.

BY 692. Colloquium in Ecology. 1 Hour.
Current research.

BY 693. Colloquium in Embryology. 1 Hour.
Current research.

BY 694. Colloquium in Microbiology. 1 Hour.
Current research in microbial ecology and microbial physiology.

BY 695. Special Topics in Biology I. 1-4 Hour.
This course will consider graduate-level topics from the various disciplines in the biological sciences and the topics will differ each term. Course requirements may include lecture, laboratory, readings, discussion, reporting, and internships or fieldwork, which may be conducted on- or off-campus as well as online. May be taken more than once for credit.

BY 696. Special Topics in Biology II. 1-4 Hour.
This course will consider advanced MS-level topics from the various disciplines in the biological sciences and the topics will differ each term. Course requirements may include lecture, laboratory, readings, discussion, reporting, and internships or fieldwork, which may be conducted on- or off-campus as well as online. May be taken more than once and may be repeated for no more than a total of 8 credits.

BY 697. Investigative Techniques. 1-2 Hour.
Application of modern experimental techniques in solving research problems.

BY 698. Nonthesis Research. 1-12 Hour.
Non-thesis research hours.

BY 699. Thesis Research. 1-10 Hour.
Prerequisite: Admission to candidacy.
Prerequisites: GAC M

BY 718. Colloquium in Biology of Aging. 1 Hour.
The course will focus on readings and interpretation of scientific papers, data, and experimental results relevant to endocrinology and aging. In addition to readings, oral presentations, discussions, and a research proposal are the major components of the course.
The National Center for Biological Information (NCBI) website is a treasure house of information and tools for researchers in all areas of modern Biology. The goal of this course is to provide guidance for students who wish to become familiar with the NCBI website through an online learning experience. They will learn many of the features available at this site and will gain experience using some of the tools. The course will be taught completely online and will consist of 1) Guidelines for navigating through NCBI, 2) Study guide questions for students to answer online, 3) NCBI tutorials with questions to be answered online, 4) Assignments with questions to be answered online, 5) Online exams. Graduate levels require a graduate project.

Prerequisites: BY 123 [Min Grade: C] or BY 124 [Min Grade: C]

BY 734. Functional Genomics and Systems Biology. 3 Hours.
Systems biology is an inter-disciplinary study underlying complex biological processes as integrated systems of many interacting components. This course will give students a foundation in understanding complex biological interactions at the molecular, network and genomic level. This course will cover state-of-the-art high throughput established and novel approaches used in genome sequencing, transcriptomics, proteomics and metabolomics to obtain, integrate and analyze complex data. The students will also get familiar with knowledge on experimental perturbation of genomes, gene regulatory networks, comparative genomics and evolution, basic bioinformatics. This course will be a combination of text based lectures and discussions of the current literature relevant to Functional Genomics and Systems Biology.

Prerequisites: BY 210 minimum grade of C.

BY 732. Biological Information Resources. 3 Hours.
The National Center for Biological Information (NCBI) website is a treasure house of information and tools for researchers in all areas of modern Biology. The goal of this course is to provide guidance for students who wish to become familiar with the NCBI website through an online learning experience. They will learn many of the features available at this site and will gain experience using some of the tools. The course will be taught completely online and will consist of 1) Guidelines for navigating through NCBI, 2) Study guide questions for students to answer online, 3) NCBI tutorials with questions to be answered online, 4) Assignments with questions to be answered online, 5) Online exams. Graduate levels require a graduate project.

Prerequisites: BY 123 [Min Grade: C] or BY 124 [Min Grade: C]

BY 736. Biological Processes in Aging. 3 Hours.
The #1 threat to human health – far greater than cancer, heart disease, and Alzheimer’s disease combined – is aging. Aging is also a fascinating biological puzzle. Why do we, and virtually every other species, age in the first place? Why can’t nature simply maintain the body it built? This course will introduce you to the fascinating process of biological aging, its impact on human and animal life, how it evolved, and the manner in which its biology is investigated, the cellular and molecular process that underlie aging, and how efforts to slow human aging are progressing. We will cover the history of exceptionally long human and animal lives and also delve into current and historical approaches to alter the rate of aging in humans with an emphasis on current promising research areas. In covering this material we will also encounter some of the many colorful scientists who have worked on the problem of aging as well as the past and current frauds and charlatans who are just trying to make a buck off of people’s fear of death and disability.

Prerequisites: BY 123 [Min Grade: C] and BY 210 [Min Grade: C]

BY 737. Epigenetics. 3 Hours.
This course provides a survey of the field of epigenetics, introducing the student to the diverse areas of epigenetic research in a variety of eukaryotic systems. The course combines lectures with discussion of primary literature and research talks from invited faculty speakers working in epigenetics. In addition to providing an overview of the field of epigenetics, this course emphasizes working with primary scientific literature and the development of critical reading skills. Additional assignments are required for graduate credit.

BY 746. Tech in Biological Research I. 3 Hours.
Concepts and practical application of techniques pertinent to biological research.
BY 792. Colloquium in Ecology. 1 Hour.
Current research.

BY 793. Colloquium in Embryology. 1 Hour.
Current research.

BY 794. Colloquium in Microbiology. 1 Hour.
Current research in microbial ecology and microbial physiology.

BY 795. Special Topics in Biology I. 1-4 Hour.
This course will consider graduate-level topics from the various disciplines in the biological sciences and the topics will differ each term. Course requirements may include lecture, laboratory, readings, discussion, reporting, and internships or fieldwork, which may be conducted on- or off-campus as well as online. May be taken more than once for credit.

BY 796. Special Topics in Biology II. 1-4 Hour.
This course will consider advanced graduate-level topics from the various disciplines in the biological sciences and the topics will differ each term. Course requirements may include lecture, laboratory, readings, discussion, reporting, and internships or fieldwork, which may be conducted on- or off-campus as well as online. May be taken more than once and may be repeated for no more than a total of 8 credits.

BY 797. Investigative Techniques. 1-2 Hour.
Application of modern experimental techniques in solving research problems.

BY 798. Nondissertation Research. 1-10 Hour.
Non-dissertation research hours.

BY 799. Dissertation Research. 1-10 Hour.
Dissertation research hours. Admission to candidacy required.
Prerequisites: GAC 7

MESC-Marine Environmental Sci Courses

MESC 541. Benthic Community Structure. 4 Hours.
Benthic Comunity Structure.

MESC 550. Marine Plant and Animal Interactions. 2 Hours.
Marine Plant and Animal Interactions.

MESC 595. Phytoplankton Ecology and Physiology. 2 Hours.
Phytoplankton Ecology and Physiology.

MESC 796. Special Topics in Marine Science. 1-6 Hour.

Chemistry

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page: https://www.uab.edu/cas/chemistry/graduate-program

Degree Offered: Ph.D., M.S.
Director: Aaron L. Lucius, Ph.D.
Phone: (205) 934-8096
Fax: (205) 934-2543
E-mail: allucius@uab.edu
Website: www.uab.edu/cas/chemistry

Program Information
The UAB Department of Chemistry offers graduate programs leading to the Doctor of Philosophy (Ph.D.) and Master of Science (M.S.) degrees that are designed to ensure disciplinary quality and research competency. The Department of Chemistry has an outstanding research active faculty and highly collaborative culture that is conducive to stimulating graduate studies in a collegial atmosphere. The graduate program in the Department of Chemistry provides opportunities for research mentors to provide personalized attention to the academic and research progress of each of our graduate students.

Key features of the Department of Chemistry Graduate Program:

- Students are quickly integrated into research laboratories (ideally in first semester)
- Research is highly collaborative, both within the Department of Chemistry and the UAB biomedical research complex
- Interdisciplinary programs to broaden research interests including drug discovery, advanced materials, biophysical chemistry, structural biology, and nanomaterials
- Strong record of career success for graduates in academia, industry, and government

All graduate students are required to pursue a graduate curriculum that provides the general knowledge-based foundation through a series of six core curriculum courses (18 semester hours). The graduate student and the graduate research mentor (in consultation with the student’s graduate research committee) select additional graded graduate courses to complete a minimum of 24 semester hours. There is no semester hour requirement for additional course work but the student must complete a minimum of 24 semester hours of graduate coursework with an overall GPA of 3.0 or higher. Chemistry graduate students may also participate in and enroll in interdisciplinary graduate programs, requiring enrollment in courses in other departments throughout the UAB campus that will broaden the students background in selective areas and greatly strengthen their ability to carry out interdisciplinary research.

All graduate students are to demonstrate communication skill competency. Adequate performance is required on the departmental literature seminar, written responses to essay questions, dissertation defense, teaching, written publications, and professional presentations at scientific meetings. All chemistry graduate students are required to complete GRD 715 (Graduate Teaching Assistantship Training) during their first term in the program. Students with English as a second language enroll for 3 semester hours. All others enroll in this course for 2 semester hours. This course is required but is not counted toward the 24 semester hour minimum.

During the Fall semester, first year graduate students are required to enroll in CH 790 (Introduction to Graduate Research). The student will be introduced to the graduate research faculty and their research interests. The student is required to meet with prospective research mentors to discuss interest in the prospective mentor’s laboratory and if needed, schedule a 3-4 week rotations in research laboratories of interest. The process of selecting the graduate research mentor must be completed by the end of the student’s first year.

Core Courses:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 629/729</td>
<td>Special Topics in Physical Chemistry</td>
</tr>
<tr>
<td>CH 630/730</td>
<td>Physical Organic Chemistry</td>
</tr>
<tr>
<td>CH 631/731</td>
<td>Organic Reactions and Their Mechanisms</td>
</tr>
<tr>
<td>CH 632/732</td>
<td>Organic Reactions and Synthesis</td>
</tr>
<tr>
<td>CH 633/733</td>
<td>Reactive Intermediates and Conservation of Bonding</td>
</tr>
<tr>
<td>CH 639/739</td>
<td>Special Topics in Organic Chemistry</td>
</tr>
<tr>
<td>CH 642/742</td>
<td>Organometallic Chemistry and Catalysis</td>
</tr>
</tbody>
</table>
Admission Requirements:

- Achieved status of Senior chemistry major
- GPA of 3.0 or higher
- Enrolled in CHEM 297 (Introduction to Undergraduate Research) by the Fall semester of the Junior year
- Selection of faculty research mentor (in the Department of Chemistry or Department of Biochemistry & Molecular Genetics) by Spring semester of the Junior year and enroll in CHEM 497 (Undergraduate Research) by Spring semester of the Junior year

Admission to the 5th-year MS program will additionally require:

- Satisfactory performance on Graduate Record Exam (GRE) taken in the Senior year (first term)
- Strong letter of nomination for admission to the program from their undergraduate research mentor

The 5th-year M.S. Chemistry/Biochemistry Oversight Committee, composed of two faculty members from the Department of Chemistry (including the Department of Chemistry Graduate Program Director) and two faculty members from the Department of Biochemistry (GBS-BSSB theme including the GBS-BSSB Graduate Program Director) will review applicants and approve admission to the program.

For detailed information, contact Ms. Laura J. Knighten, Graduate Recruitment Coordinator, 1720 2nd Avenue South, Birmingham, AL 35294-1240.

Telephone 205-934-8139 | E-mail knighten@uab.edu | Web www.uab.edu/cas/chemistry

Ph.D. Program

For Ph.D. students, there are no specific course requirements beyond the core courses. The academic program is determined through the action of the student’s graduate research mentor and graduate research committee. The student is required to successfully complete their departmental seminar by the end of their second year. A written qualifying examination must be passed in the student’s area of specialization. If failure occurs, only one repeat exam is allowed. An original research proposal must be successfully defended within 12 months of completion of the written qualifying examination. If failure occurs, one repeat defense is allowed. Once admitted to candidacy for the Ph.D. degree, the student must write and successfully defend a research dissertation.

Courses

CH 525. Physical Chemistry I for Graduate Study. 3 Hours.
Thermodynamics and chemical equilibria; and chemical kinetics. Prerequisites: Calculus II, College Physics II and General Chemistry II.

CH 526. Physical Chemistry II for Graduate Study. 3 Hours.
Quantum mechanics, chemical bonding, and molecular spectroscopy. Prerequisites: Calculus II, College Physics II and General Chemistry II.

CH 535. Organic Chemistry I for Graduate Study. 3 Hours.
Structure, nomenclature, properties, and reactivity of compounds with various organic functional groups: alkanes, alkenes, alkynes, alkyl halides and aromatics. Emphasis on the mechanisms of organic reactions and problem solving. Prerequisite: General Chemistry II.

M.S. Program

Plan I

Plan I is a research program that requires a minimum of 24 semester hours (including 18 semester hours of core courses) of formal academic coursework approved by the student’s graduate study committee. The progress of the student’s research program is monitored by the graduate study committee. The student, having been admitted to candidacy and having completed an approved plan of research, will complete and defend a thesis.

Plan II

Plan II is a non-thesis program that requires a minimum of 30 semester hours (including 18 semester hours of core courses) of appropriate graduate work that has been approved by the student’s graduate study committee and Department of Chemistry Graduate Program Director.

5th Year Master’s Degree in Biochemistry

This is a research intensive degree program and to be eligible for admission in the senior year, students must start their undergraduate research experience as early as possible, preferably in their sophomore year.
CH 537. Organic Chemistry II for Graduate Study. 3 Hours.
Reactions of aromatic compounds and carbonyl containing functional groups: aldehydes, ketones, acids, esters and amides. Molecules of biological interest, such as proteins and carbohydrates. Prerequisite: Organic Chemistry I.

CH 540. Inorganic Chemistry I for Graduate Study. 3 Hours.
Chemical reactivity and descriptive chemistry in terms of structural and electronic parameters. Prerequisites: Organic Chemistry II and Organic Chemistry II laboratory with a grade of C or better.

CH 541. Transition Metal Chemistry. 3 Hours.
Atomic structure, chemical bonding characterization and reactivity of transition metal complexes. Prerequisites: Inorganic Chemistry and Physical Chemistry II.

CH 550. Instrumental Analysis for Graduate Study. 3 Hours.
Focus on modern analytical chemistry instrumentation including chemical separations, spectrosopies (atomic absorption, infrared, UV-visible, fluorescence), nuclear magnetic resonance spectroscopy, mass spectroscopy, and thermal analysis. Concurrent enrollment in CH 550L Instrumental Analysis Laboratory is recommended. Prerequisites: Quantitative Analysis Techniques.

CH 550L. Instrumental Analysis Laboratory for Graduate Study. 0 Hours.
Instrumental Analysis Laboratory. Concurrent enrollment in CH 550 Instrumental Analysis for Graduate Study required.

CH 555. Quantitative Analysis for Graduate Study. 4 Hours.
Principles of analytical measurements, gravimetric analysis, spectrophotometric analysis, and chromatography, with emphasis on equilibrium and applications. Lecture and laboratory. Concurrent enrollment in CH 555L Quantitative Quantitative Analysis Lab required. Prerequisite: General Chemistry II.

CH 555L. Quantitative Analysis Lab for Graduate Study Lab. 0 Hours.
Emphasizing quantitative analysis laboratory. Concurrent enrollment in CH 555 Quantitative Analysis required.

CH 560. Fundamentals of Biochemistry. 3 Hours.
Overview of biochemical principles; chemistry of aqueous solutions, biochemical building blocks including amino acids, carbohydrates, lipids, and nucleotides; structure and function of proteins, membranes and nucleic acids; enzyme kinetics. Catabolic and anabolic metabolism in biomolecules, regulation of metabolic processes. Prerequisites: CH 237 [Min Grade: C] or CH 247 [Min Grade: C]

CH 561. Advanced Biochemistry I. 3 Hours.
Advanced study of protein structure and function, enzymology, DNA structure, prokaryotic replication, transcription, and protein synthesis. Membrane structure and function, carbohydrate structure and function. Methods for isolating and characterizing macromolecule structure and function including chromatography, gel electrophoresis, CD, UV, and fluorescence spectroscopy, mass spectroscopy, X-ray crystallography and nuclear magnetic resonance spectroscopy. Prerequisites: CH 560 [Min Grade: C]

CH 562. Advanced Biochemistry II. 3 Hours.
Continuation of Advanced Biochemistry I focusing on eukaryotic replication, transcription, translation, regulation of gene expression, genomics, proteomics, biological signaling. Prerequisites: Successful completion of CHEM 561.

CH 563. Biochemistry Laboratory. 3 Hours.
Introduction to modern bioanalytical techniques used for the expression, isolation and characterization of proteins and other biological macromolecules. Prerequisites: Quantitative Analysis and Biochemistry and permission of instructor.

CH 564. Physical Biochemistry Laboratory. 3 Hours.
Physical/analytical approaches (including mass spectroscopy and NMR) toward determination of macromolecular structures, ligand binding, and enzymology. Prerequisites: Background in physical chemistry I and II, quantitative analysis, and biochemistry. Permission of instructor required. Prerequisites: CH 325 [Min Grade: C] and CH 355 [Min Grade: C] and CH 461 [Min Grade: C]

CH 565. Structural Biochemistry. 3 Hours.
Principles of macromolecular structure, emphasizing proteins, nucleic acids, and macromolecular assemblies. Computational methods used to teach principles and modeling software used for construction of computer models of proteins and nucleic acids. Lecture and computer laboratory.

CH 571. Medicinal Chemistry & Drug Discovery. 3 Hours.
An advanced organic course with emphasis on design strategies for discovering small organic molecule drugs using common macromolecular drug targets. Examples of successful design for clinically used drug classes will be presented.

CH 573. Electron Pushing and Total Synthesis. 3 Hours.
The advanced organic course is aimed to enhance students' comprehension of advanced organic chemistry theory and principles, and apply them to understand reaction mechanisms and tactic of total synthesis. It will cover different types of common organic reactions each week, for example, reactions involving anion intermediates, cation intermediates, rearrangement, photochemical process, carbonyl compounds, and other reactive intermediates. Using electron pushing for mechanistic reasoning will be emphasized.

CH 574. X-Ray Crystallography. 3 Hours.
Fundamental principles of X-ray crystallography. Students gain enough information to be able to collect meaningful data and analyze and refine structures. Students learn how to collect, process and analyze x-ray data, focus on heavy atom phasing techniques and use state of the art software for refinement. Permission of instructor.

CH 580. Polymer Chemistry I. 3 Hours.
Basic chemical principles of polymers with the focus on synthesis, characterization, and applications of synthetic and biological macromolecules. Includes laboratory. Prerequisites: undergraduate organic chemistry and permission of instructor. Concurrent enrollment in CH 580 is recommended.

CH 580L. Polymer Chemistry I for Graduate Study Laboratory. 1 Hour.
Polymer Chemistry I Laboratory.

CH 581. Polymer Chemistry II. 3 Hours.
Fundamentals of chemical, physical, and molecular aspects of polymers in bulk and solutions. Prerequisites: undergraduate organic chemistry and permission of instructor. Concurrent enrollment in CH 581L is recommended. Prerequisites: CH 580 [Min Grade: C]

CH 581L. Polymer Chemistry II Laboratory. 1 Hour.
Laboratory to accompany CH 581 (Polymer Polymer Chemistry II). Concurrent enrollment in CH 581 is recommended.
An exploration into the molecular level view of gases and how changes in pressure, temperature, and volume of a gas affect the particles of a gas. The mathematical relationships between these properties will be investigated. Applications of the Ideal Gas Law to real-world problems will be explored.

CH 583. Chemistry of Polymers and Polymeric Materials I. 3 Hours.
Basic chemical principles of polymers with the focus on synthesis, characterization, and applications of synthetic and biological macromolecules. No laboratory is required. This course sequence is for BME or Material Science Graduate Students. The laboratory accompanying Polymer Chemistry I is NOT required for these students.

CH 584. Chemistry of Polymers and Polymeric Materials II. 3 Hours.
Fundamentals of chemical, physical and molecular aspects of polymers in bulk and solutions. No laboratory is required. The laboratory accompanying Polymer Chemistry II is NOT required.

CH 602. Principles of Chemical Instruction. 3 Hours.
Responsibilities of laboratory instructors, safety regulations, grading, teaching styles and formats, and instructional objectives.

CH 609. Chemical Safety. 3 Hours.
Principles involved in the potential hazards of storing, using, and disposal of chemicals for chemical educators.

CH 610. Laboratory Experiences in Chemistry. 3 Hours.
Application of chemical experiments to high school science programs. Experiments and emphasis may change depending on instructor. Course may be repeated for credit.

CH 611. Atomic Structure and Periodicity for the 7-12 Classroom. 3 Hours.
Exploration of the historical development of atomic structure. Developing instructional strategies to analyze and predict patterns from atomic structure.

CH 612. Valence Electrons and Bonding Models for the 7-12 Classroom. 3 Hours.
Describes how to use the periodic table as a systematic representation to predict and explain physical properties. Explores ionic and covalent bonding models. Predicts molecular shapes and investigates how these predictions are related to macroscopic properties.

CH 613. Introductory Organic Chemistry for Teachers. 3 Hours.
A laboratory, lecture, demonstration course on the nature of carbon compounds including hydrocarbons, functional groups and their reactions. Emphasis given to laboratory experiments and demonstrations suitable for high school students.

CH 614. Introductory Biochemistry for Teachers. 3 Hours.
Lecture series covering carbohydrates, lipids, and proteins. Emphasis given to practical applications and relationship between chemistry and biology.

CH 615. Chemical Reactions and the Conservation of Mass for the 7-12 Classroom. 3 Hours.
Exploration of the types of intensive and extensive properties that allow scientists to identify a compound. Common chemical reaction types will be investigated, and activities showing how chemists use chemical equations to analyze and interpret reaction outcomes will be included. Exploration of the mathematical description of grams, moles, molecules, and atoms are presented. Solution concentration and the use of solutions in chemical reactions will also be investigated. Simple acid-base phenomena will be studied.

CH 616. Gases and the Kinetic Molecular Theory for the 7-12 Classroom. 3 Hours.
An exploration into the molecular level view of gases and how changes in pressure, temperature, and volume of a gas affect the particles of a gas. The mathematical relationships between these properties will be investigated. Applications of the Ideal Gas Law to real-world problems will be explored.
CH 652. Analytical Spectroscopy. 3 Hours.
Instrumentation and methodology used in modern analytical spectroscopy. Emphasis and examples taken primarily from vibrational spectroscopy (infrared and Raman), however, principles are applicable to many types of spectrometric measurements. Physical theory, optical principles, experimental methodology, instrument design, and numerical data processing are covered.

CH 654. Multivariate Analysis in Analytical Chemistry. 3 Hours.
Theoretical and practical concepts of multivariate statistical methods applied to data obtained from analytical measurements, including advanced data analysis in experimental spectroscopy. Systematic evaluation of high-dimensional data sets through multivariate means of calibration and classification. The course is intended for graduate students in chemistry, or related fields such as the physical or biochemical sciences, or engineering, who wish to understand the application of informatics methods and numerical analysis techniques to complex data sets.

CH 655. Analytical Separations. 3 Hours.
Advanced treatment of distillation, extraction, gas chromatography, HPLC, TLC, and GC-MS.
Prerequisites: CH 551 [Min Grade: C]

CH 659. Special Topics in Analytical Chemistry. 3 Hours.
Introduction to thermally initiated physical and chemical processes in the condensed phase systems such as liquids, crystalline solids, and glasses (amorphous solids). The course covers the use of calorimetry, thermogravimetry, and thermomechanical methods for exploring thermodynamics and kinetics of crystallization, glass transition, solid-solid and helix-coil transitions, decomposition, polymerization, etc.

CH 660. Fundamentals of Biochemistry. 3 Hours.
Overview of biochemical principles; chemistry of aqueous solutions, biochemical building blocks including amino acids, carbohydrates, lipids, and nucleotides; structure and function of proteins, membranes and nucleic acids; enzyme kinetics. Catabolic and anabolic metabolism in biomolecules, regulation of metabolic processes.

CH 661. Biochemistry II. 3 Hours.
Biochemistry II: Structure and function of proteins, membranes, membrane proteins, and nucleic acids. Ligand binding and enzyme kinetics. Molecular genetics (replication, transcription, translation) and the control of gene expression and protein synthesis.

CH 663. Biochemistry Laboratory. 3 Hours.
Introduction to modern analytical techniques used for the isolation and characterization of biological macromolecules.

CH 664. Biophysical Chemistry. 3 Hours.
Common physical methods for understanding the structure and stability of macromolecules that include several spectroscopic, thermodynamic and computational methods. Underlying physical principle described, instrumentation discussed, and examples cited from the literature. Spring.
Prerequisites: CH 323 [Min Grade: C]

CH 665. Structural Biochemistry. 3 Hours.
Principles of macromolecular structure, emphasizing proteins, nucleic acids, and macromolecular assemblies. Computational methods used to teach principles and modeling software used for construction of computer models of proteins and nucleic acids. Lecture and computer Laboratory.

CH 669. Special Topics in Biochemistry. 3 Hours.
Detailed consideration of areas of special interest.
Prerequisites: CH 462 [Min Grade: C]

CH 670. Chemical Literature. 3 Hours.
Use of on-line literature and development of searching techniques.

CH 671. Medicinal Chemistry and Drug Discovery. 3 Hours.
Description. Emphasis on design strategies for small organic drugs using common macromolecular drug targets. Examples of successful design for clinically used drug classes will be presented. Prerequisites include undergraduate organic chemistry (CH235 and CH237) and undergraduate biochemistry (CH461) or equivalent. 999999.
Prerequisites: CH 325 [Min Grade: C] and CH 237 [Min Grade: C] and CH 461 [Min Grade: C]

CH 672. Chemistry of Natural Products. 3 Hours.
The principal focus of this course will be the introduction of synthesis and medicinal chemistry of natural products. Drugs discovery using natural products, with specific examples in the areas of antibacterials, anticancer, and analgesic drugs will be introduced. An overview of structural classes, biosynthetic pathways and application of asymmetric synthesis in the synthesis of specific examples from each class will be discussed. This course is intended for undergraduate students at the senior level.

CH 673. Electron Pushing and Total Synthesis. 3 Hours.
The advanced organic course is aimed to enhance students’ comprehension of advanced organic chemistry theory and principles, and apply them to understand reaction mechanisms and tactic of total synthesis. It will cover different types of common organic reactions each week, for example, reactions involving anion intermediates, cation intermediates, rearrangement, photochemical process, carbonyl compounds, and other reactive intermediates. Using electron pushing for mechanistic reasoning will be emphasized.

CH 674. X-Ray Crystallography. 3 Hours.
Fundamental principles of X-ray crystallography. Students gain enough information to be able to collect meaningful data and analyze and refine structures. Students learn how to collect, process and analyse x-ray data, focus on heavy atom phasing techniques and use state of the art software for refinement. Permission of instructor.

CH 677. Radiochemistry for the life sciences. 3 Hours.
This course is intended to act as an introduction to radiochemistry. It will cover production, instrumentation, and radiochemistry techniques to make use of radiotracers in the life sciences from basic biological and environmental applications to medical imaging and therapy.

CH 680. Polymer Chemistry I. 3 Hours.
Basic chemical principles of polymers with the focus on synthesis, characterization, and applications of synthetic and biological macromolecules. Includes laboratory. Prerequisites: undergraduate organic chemistry and permission of instructor. Concurrent enrollment in CH 580L is recommended.

CH 680L. Polymer Chemistry I Laboratory. 1 Hour.
Polymer Chemistry I Laboratory. Recommended with CH 680 lecture.

CH 681. Polymer Chemistry II. 3 Hours.
Fundamentals of chemical, physical, and molecular aspects of polymers in bulk and solutions. Prerequisites: undergraduate organic chemistry and permission of instructor. Concurrent enrollment in CH 680L is recommended.
Prerequisites: CH 680 [Min Grade: C]

CH 681L. Polymer Chemistry II Laboratory. 1 Hour.
Laboratory to accompany CH 681 (Polymer Chemistry II). Concurrent enrollment in CH 681 is recommended.
CH 683. Chemistry of Polymers and Polymeric Materials I. 3 Hours.
Basic chemical principles of polymers with the focus on synthesis, characterization, and applications of synthetic and biological macromolecules. No laboratory is required. This course sequence is for BME or Material Science Graduate Students. The laboratory accompanying Polymer Chemistry I is NOT required for these students.

CH 684. Polymer Chemistry II. 3 Hours.
Fundamentals of chemical, physical, and molecular aspects of polymers in bulk and solutions. No laboratory is required. This course sequence is for BME or Material Science Graduate Students. The laboratory accompanying Polymer Chemistry II is NOT required for these students.

CH 689. Special Topics in Polymer Chemistry. 3 Hours.
Detailed consideration of areas of special interests in polymer chemistry.
Prerequisites: CH 580 [Min Grade: C] and CH 581 [Min Grade: C]

CH 691. Seminar. 1 Hour.
Seminars on current topics in chemical research.

CH 692. Seminar Presentation. 2 Hours.
Seminar given by graduate students on current topics in chemical research.

CH 698. Graduate Research. 1-12 Hour.
Prerequisite: Permission of graduate faculty member. Research hours.

CH 699. Thesis Research. 1-12 Hour.
Prerequisites: Admission to candidacy and permission of graduate faculty member. Must have approved 3 member committee and approved candidacy by the graduate dean before registering for 699.
Prerequisites: GAC M

CH 702. Principles of Chemical Instruction. 1 Hour.
Responsibilities of laboratory instructors, safety regulations, grading, teaching styles and formats, and instructional objectives. Prerequisite: Permission of instructor. Fall.

CH 715. Introductory Biochemistry for Teachers II. 3 Hours.
Lecture series covering vitamins, minerals, enzymes, biochemical energy and metabolism. Strong connections between chemistry and biology. Practical applications are emphasized.

CH 725. Molecular Structure and Spectroscopy. 3 Hours.
Classical and quantum mechanical descriptions of molecular structure and bonding. Basic principles and techniques of molecular spectroscopic methods. Exercises and experiments with computational software and spectroscopic instrumentation will be conducted.

CH 729. Special Topics in Physical Chemistry. 3 Hours.
Topics determined by mutual student-faculty interest. Typical are computational chemistry, molecular spectroscopy, nuclear magnetic resonance.
Prerequisites: CH 700 [Min Grade: C]

CH 730. Physical Organic Chemistry. 3 Hours.
Localized and delocalized chemical bonds, stereochemistry, acidity and basicity, determining organic mechanisms and structure. Fall.

CH 731. Organic Reaction and Their Mechanisms. 3 Hours.
Nucleophilic and electrophilic substitution, free radical substitutions, additions to carbon-carbon and carbon-hetero multiple bonds, elimination reactions. Spring.

CH 732. Organic Reaction and Synthesis. 3 Hours.
Strategy of synthesis, carbon skeletal assembly, selective functional group interconversion, blocking groups, stereochemical control. Spring.
Prerequisites: CH 731 [Min Grade: C]
CH 761. Biochemistry II. 3 Hours.
Biochemistry II: Structure and function of proteins, membranes, membrane proteins, and nucleic acids. Ligand binding and enzyme kinetics. Molecular genetics (replication, transcription, translation) and the control of gene expression and protein synthesis.

CH 763. Biochemistry Laboratory. 3 Hours.
Introduction to modern analytical techniques used for the isolation and characterization of biological macromolecules.

CH 764. Biophysical Chemistry. 3 Hours.
Common physical methods for understanding the structure and stability of macromolecules that include several spectroscopic, thermodynamic, and computational methods. Underlying physical principle described, instrumentation discussed, and examples cited from the literature. Spring.
Prerequisites: CH 325 [Min Grade: C]

CH 765. Structural Biochemistry. 3 Hours.
Principles of macromolecular structure, emphasizing proteins, nucleic acids, and macromolecular assemblies. Computational methods used to teach principles and modeling software used for construction of computer models of proteins and nucleic acids. Lecture and computer Laboratory.

CH 767. Advanced Biomolecular NMR spectroscopy: From Quantum Mechanics to Protein Dynamics. 3 Hours.
This course is designed for graduate students who use NMR as a major tool to study structure and dynamics of biomolecules. It covers quantum mechanics explanation of NMR, pulse programming, non-uniform sample, data processing, NMR dynamics at different time scales.

CH 768. Biochemistry and Biophysics Journal Club. 1 Hour.
Weekly journal literature seminar and discussion group for chemistry graduate students. Intended for students working in the fields of biochemistry and biophysics.

CH 769. Special Topics in Biochemistry. 1-3 Hour.
Detailed consideration of areas of special interest.
Prerequisites: CH 462 [Min Grade: C]

CH 770. Chemical Literature. 3 Hours.
Use of on-line literature and development of searching techniques.

CH 771. Medicinal Chemistry and Drug Discovery. 3 Hours.
Emphasis on the structure-based design strategies for small organic molecule drugs using common macromolecular drug targets. Students in CH 771 should have had undergraduate preparation including organic chemistry and biochemistry or the equivalent.

CH 772. Chemistry of Natural Products. 3 Hours.
The principal focus of this course will be the introduction of synthesis and medicinal chemistry of natural products. Drugs discovery using natural products, with specific examples in the areas of antibacterials, anticancer, and analgesic drugs will be introduced. An overview of structural classes, biosynthetic pathways and application of asymmetric synthesis in the synthesis of specific examples from each class will be discussed. This course is intended for undergraduate students at the senior level.

CH 773. Electron Pushing and Total Synthesis. 3 Hours.
The advanced organic course is aimed to enhance students’ comprehension of advanced organic chemistry theory and principles, and apply them to understand reaction mechanisms and tactic of total synthesis. It will cover different types of common organic reactions each week, for example, reactions involving anion intermediates, cation intermediates, rearrangement, photochemical process, carbonyl compounds, and other reactive intermediates. Using electron pushing for mechanistic reasoning will be emphasized.

CH 774. X-Ray Crystallography. 3 Hours.
Fundamental principles of X-ray crystallography. Students gain enough information to be able to collect meaningful data and analyze and refine structures. Students learn how to collect, process and analyze x-ray data, focus on heavy atom phasing techniques and use state of the art software for refinement. Permission of instructor.

CH 777. Radiochemistry for the life sciences. 3 Hours.
This course is intended to act as an introduction to radiochemistry. It will cover production, instrumentation, and radiochemistry techniques to make use of radiotracers in the life sciences from basic biological and environmental applications to medical imaging and therapy.

CH 780. Polymer Chemistry I. 3 Hours.
Basic chemical principles of polymers with the focus on synthesis, characterization, and applications of synthetic and biological macromolecules. Includes laboratory. Prerequisites: undergraduate organic chemistry and permission of instructor.

CH 780L. Polymer Chemistry I Laboratory. 1 Hour.
Polymer Chemistry I Laboratory.

CH 781. Polymer Chemistry II. 3 Hours.
Fundamentals of chemical, physical, and molecular aspects of polymers in bulk and solutions. Prerequisites: undergraduate organic chemistry and permission of instructor.
Prerequisites: CH 780 [Min Grade: C]

CH 781L. Polymer Chemistry II Laboratory. 1 Hour.
Laboratory to accompany CH 781 (Polymer Chemistry II).

CH 783. Chemistry of Polymers and Polymeric Materials I. 3 Hours.
Basic chemical principles of polymers with the focus on synthesis, characterization, and applications of synthetic and biological macromolecules. No laboratory is required. This course sequence is for BME or Material Science Graduate Students. The laboratory accompanying Polymer Chemistry I is NOT required for these students. Permission of instructor is required before registration.

CH 784. Chemistry of Polymers and Polymeric Materials II. 3 Hours.
Fundamentals of chemical, physical and molecular aspects of polymers in bulk and solutions. No laboratory is required. This course sequence is for BME or Material Science Graduate Students. The laboratory accompanying Polymer Chemistry II is NOT required for these students. Permission of instructor is required for registration.

CH 788. Special Topics in Polymer Chemistry. 3 Hours.
Detailed consideration of areas of special interests in polymer chemistry.
Prerequisites: CH 580 [Min Grade: C] and CH 581 [Min Grade: C]

CH 790. Introduction to Graduate Research. 1 Hour.
The purpose of this course is to acquaint incoming graduate student with departmental, school and university policies and procedures for conducting research and teaching undergraduate students. Pass/Fail.

CH 791. Seminar. 1 Hour.
Seminars on current topics in chemical research.

CH 792. Seminar Presentation. 2 Hours.
Seminar given by graduate students on current topics in chemical research.

CH 798. Non-Dissertation Research. 1-12 Hour.
Prerequisite: Permission of graduate faculty member.
Communication Studies

The Department of Communication Studies is concerned with human interaction and communication in all its forms. The Communication Studies Department provides research, teaching and service to enable students to develop understanding and skills in order to thrive in a global communication environment of unremitting change and increasing diversity. To this end the department offers an undergraduate major in Communication Studies, and graduate courses leading to a Master of Arts in Communication Management.

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page: https://www.uab.edu/cas/communication/graduate-program

Master of Arts in Communication Management

The program requires a total of 36 semester hours. Of the 36, no more than 6 hours can be CM 699 (Plan I), no more than 6 hours can be CM 698 (Plan II), and no more than 6 hours can be CM 618 (both Plan I and Plan II). 6 hours of additional coursework may be taken in lieu of a Plan II project. A grade of A or B is required in each course to count toward the degree.

Accelerated Learning Opportunities

The Department of Communication Studies offers a Communication Management Master’s (ABM) option for high-achieving undergraduate students. All CM Graduate classes may be used for undergraduate BA in Communication Studies through the ABM, excluding: CM 618, CM 675, CM 698, CM 699.

LINK to https://www.uab.edu/cas/communication/graduate

Plan I - 36 hours with Thesis

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 10 classes from list below</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select 10 classes from list below</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 601 Foundations of Communication Management</td>
<td></td>
</tr>
<tr>
<td>CM 602 Source Credibility</td>
<td></td>
</tr>
<tr>
<td>CM 603 Message Construction</td>
<td></td>
</tr>
<tr>
<td>CM 604 Analysis of Communication Audiences</td>
<td></td>
</tr>
<tr>
<td>CM 605 Communication Effects</td>
<td></td>
</tr>
<tr>
<td>CM 607 Seminar in Applied Communication Research</td>
<td></td>
</tr>
<tr>
<td>CM 609 Communibiology</td>
<td></td>
</tr>
<tr>
<td>CM 611 Seminar in Org Communication (DELETE)</td>
<td></td>
</tr>
<tr>
<td>CM 612 Instructional Communication</td>
<td></td>
</tr>
<tr>
<td>CM 613 Nonverbal Communication</td>
<td></td>
</tr>
<tr>
<td>CM 614 Seminar: Political Communication</td>
<td></td>
</tr>
<tr>
<td>CM 615 Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>CM 616 Health and Med Communication</td>
<td></td>
</tr>
<tr>
<td>CM 617 Training and Development in Communication</td>
<td></td>
</tr>
<tr>
<td>CM 618 Communications Independent Study</td>
<td></td>
</tr>
</tbody>
</table>

Plan II - 36 hours with Comprehensive Exam

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 10 classes from list below</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select 10 classes from list below</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 601 Foundations of Communication Management</td>
<td></td>
</tr>
<tr>
<td>CM 602 Source Credibility</td>
<td></td>
</tr>
<tr>
<td>CM 603 Message Construction</td>
<td></td>
</tr>
<tr>
<td>CM 604 Analysis of Communication Audiences</td>
<td></td>
</tr>
<tr>
<td>CM 605 Communication Effects</td>
<td></td>
</tr>
<tr>
<td>CM 607 Seminar in Applied Communication Research</td>
<td></td>
</tr>
<tr>
<td>CM 609 Communibiology</td>
<td></td>
</tr>
<tr>
<td>CM 611 Seminar in Org Communication (DELETE)</td>
<td></td>
</tr>
<tr>
<td>CM 612 Instructional Communication</td>
<td></td>
</tr>
<tr>
<td>CM 613 Nonverbal Communication</td>
<td></td>
</tr>
<tr>
<td>CM 614 Seminar: Political Communication</td>
<td></td>
</tr>
<tr>
<td>CM 615 Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>CM 616 Health and Med Communication</td>
<td></td>
</tr>
<tr>
<td>CM 617 Training and Development in Communication</td>
<td></td>
</tr>
<tr>
<td>CM 618 Communications Independent Study</td>
<td></td>
</tr>
</tbody>
</table>

Thesis Research

<table>
<thead>
<tr>
<th>Thesis Research</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 699 Thesis Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours

<table>
<thead>
<tr>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
</tr>
</tbody>
</table>

Plan II - 36 hours with Comprehensive Exam

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 10 classes from list below</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select 10 classes from list below</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 601 Foundations of Communication Management</td>
<td></td>
</tr>
<tr>
<td>CM 602 Source Credibility</td>
<td></td>
</tr>
<tr>
<td>CM 603 Message Construction</td>
<td></td>
</tr>
<tr>
<td>CM 604 Analysis of Communication Audiences</td>
<td></td>
</tr>
<tr>
<td>CM 605 Communication Effects</td>
<td></td>
</tr>
<tr>
<td>CM 607 Seminar in Applied Communication Research</td>
<td></td>
</tr>
<tr>
<td>CM 609 Communibiology</td>
<td></td>
</tr>
<tr>
<td>CM 611 Seminar in Org Communication (DELETE)</td>
<td></td>
</tr>
<tr>
<td>CM 612 Instructional Communication</td>
<td></td>
</tr>
<tr>
<td>CM 613 Nonverbal Communication</td>
<td></td>
</tr>
<tr>
<td>CM 614 Seminar: Political Communication</td>
<td></td>
</tr>
<tr>
<td>CM 615 Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>CM 616 Health and Med Communication</td>
<td></td>
</tr>
<tr>
<td>CM 617 Training and Development in Communication</td>
<td></td>
</tr>
<tr>
<td>CM 618 Communications Independent Study</td>
<td></td>
</tr>
</tbody>
</table>

Thesis Research

<table>
<thead>
<tr>
<th>Thesis Research</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 699 Thesis Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours

<table>
<thead>
<tr>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
</tr>
</tbody>
</table>

1 Up to 6 hours graduate work may be transferred from an accredited graduate program (Non-UAB) with approval from the Graduate Director.
Courses

CM 601. Foundations of Communication Management. 3 Hours.
Development of communication models, relationships between models and research, examination of functions of models and their impact on human communication in various media. 999999.

CM 602. Source Credibility. 3 Hours.
Theories of ethos, dynamics of credibility in public speaking, organizational, interpersonal, print and broadcasting contexts. Measures of credibility and methods for constructing credibility.

CM 603. Message Construction. 3 Hours.
Features of communication messages, including audience, situation, and culture and their impact on message construction. The principles underlying the creation of messages in various media.

CM 604. Analysis of Communication Audiences. 3 Hours.
Analysis of the audience and its place in the communication model. Includes needs and gratification from various media as well as how messages and feedback are interpreted.

CM 605. Communication Effects. 3 Hours.
Effects of Communication, especially through mass media, as a result of messages transmitted. Topics include violence, persuasion, and sexuality.

CM 607. Seminar in Applied Communication Research. 3 Hours.
Topics include interpersonal communication, small group communication, organizational communication, and political communication.

CM 611. Seminar in Org Communication. 3 Hours.

CM 612. Instructional Communication. 3 Hours.
Communication problems in the classroom. Definition of sign and sign process. Signs in communicative action.

CM 613. Nonverbal Communication. 3 Hours.
Elements of nonverbal behavior (physical appearance, gestures, space, voice) which affect communication in person-to-person situations.

CM 614. Seminar: Political Communication. 3 Hours.
Seminars.

CM 615. Intercultural Communication. 3 Hours.
This class provides students with a theoretical understanding of intercultural communication as well as the ability to apply these intercultural communication concepts, theories, and models to practice.

CM 616. Health Communication. 3 Hours.
This course provides students with a comprehensive understanding of health communication. The course encompasses how to communicate health-related information to targeted audiences and provides an overview of several behavior change theories that are frequently adopted in health contexts.

CM 617. Training and Development in Communication. 3 Hours.
Training and Development in Communication focuses on contemporary communication knowledge and skills that every trainer should have. The class will include topics such as: Designing Curricula, Training Content, Methods, Plans, Sessions, Assessment, and Career Opportunities.

CM 618. Communications Independent Study. 1-6 Hour.
Independent Study. Topics of mutual interest to student and faculty member.

CM 619. Communication and the Law. 3 Hours.
Communication and the Law focuses on general effects communication has in the law environment. Conflict, leadership, and use of the law will be considered.

CM 620. Persuasion. 3 Hours.
Current theories and research in the area of attitude formation and change will be explored in this class.

CM 621. Seminar in Small Group Dynamics. 3 Hours.
Current theories and research in small group communication dynamics will be explored in this class. The class will include topics such as: Leadership, Decision-making, conflict and conformity.

CM 622. Interpersonal Communication and Relationships. 3 Hours.
This class introduces students to interpersonal communication concepts, theories, and research and their broad applications to personal and professional relationships. A variety of theories and research are reviewed and applied to relationships in health, organizational, educational, and romantic contexts.

CM 623. Deception. 3 Hours.
This course examines theory and research on the topic of human deception from the perspective of Truth Default Theory. Topics include verbal and nonverbal aspects of deception, prevalence of deception, deception motives, information manipulation, truth-bias, and improving accuracy.

CM 624. Special Topics in Communication Theory and Research. 1-6 Hour.
Various topics selected by faculty.

CM 630. Seminar in Research Classics. 3 Hours.
Students read and discuss seminal works in Communication and social science.

CM 675. Graduate Internship. 3 Hours.
Professional experience in communication management.

CM 690. Communication Theory. 3 Hours.
The class will introduce students to communication theory providing an introduction to theory construction as well as an overview of several prominent communication theories.

CM 695. Data Analysis for Quantitative Communication Research. 3 Hours.
This course examines theory and research on the topic of human communication from a quantitative perspective. Data gathering, experimental and quasi-experimental design, field research and data analysis in applied contexts to be probed.

CM 696. Qualitative Communication Research. 3 Hours.
The study of communication theory from a qualitative perspective. Study of communication theory from a qualitative perspective. Historical/critical, participant-observation, and various data gathering methods and models explored from a theoretical and practical point of view.

CM 698. Master's Applied Project. 3-6 Hours.
Master's Applied Project.

CM 699. Thesis Research. 3-6 Hours.
Thesis Research.

Prerequisites: GAC M
Computer Science

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page: http://www.uab.edu/graduate/admissions

Degree Offered: Ph.D., M.S.
Contact Us: csgradprogram@uab.edu
Website: http://www.uab.edu/cas/computerscience/graduate-programs

Program Information

The field of computer science deals with theory and methods for processing of information. Graduate programs leading to the M.S. and Ph.D. degrees are designed to prepare individuals for professional and research-level careers in industry, government, and academia. Prospective students should have substantial background in computer science and mathematics.

M.S. Programs

We offer M.S. degrees in both Computer Science and Data Science. CS and CJ (Dept. of Criminal Justice) also jointly offer the MS in Cyber Security. For details, please check the [Cyber Security catalog](http://www.uab.edu/cas/computerscience/graduate-programs).

Ph.D. Program

The Ph.D. program consists of three phases (with some overlap between phases). The first phase of the program is devoted primarily to formal coursework and preparation for the qualifying examination. The second phase consists of coursework and research in preparation for the comprehensive examination. This examination requires presentation of a dissertation research proposal. Successful completion of this phase leads to admission to candidacy. The final phase is the completion of the dissertation research and its defense. Ph.D. student progress will be reviewed annually.

Contact Information

For detailed information, after first visiting the website below for basic information including application guidelines and prerequisites, contact Dr. Chengcui Zhang (cchang02@uab.edu, MS Program Director) for MS-program related questions, and contact Dr. Ragib Hasan (ragib@uab.edu, Ph.D. Program Director) for Ph.D.-program related questions.

Website: http://www.uab.edu/cas/computerscience/graduate-programs

Master of Science in Computer Science

Plan 1 - 30 hours with Thesis

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 24 credit hours of CS courses and approved non-CS electives at the 500+ level</td>
<td>24</td>
</tr>
</tbody>
</table>

Allowed Electives from other disciplines (up to 3 chrs)

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 660</td>
<td>Numerical Linear Algebra</td>
</tr>
<tr>
<td>MA 668</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>or</td>
<td>MA 669</td>
</tr>
</tbody>
</table>

Total Hours 30

Plan II - 30 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 30 credit hours of CS courses and approved non-CS electives at the 500+ level</td>
<td>30</td>
</tr>
</tbody>
</table>

Allowed Electives from other disciplines (up to 3 chrs)

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 660</td>
<td>Numerical Linear Algebra</td>
</tr>
<tr>
<td>MA 668</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>or</td>
<td>MA 669</td>
</tr>
</tbody>
</table>

Total Hours 30

1. No more than three (9 credit hours of) 500 level courses can count towards the MS degree
2. No more than one (3 credit hours of) special course (CS 697 or CS 598) can count towards the MS degree
3. May substitute any other graduate level course approved by the graduate program director

Master of Science in Data Science

Plan I

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>12</td>
</tr>
<tr>
<td>CS 510</td>
<td>Database Application Development</td>
</tr>
<tr>
<td>or CS 610</td>
<td>Database Systems</td>
</tr>
<tr>
<td>CS 652</td>
<td>Advanced Algorithms and Applications</td>
</tr>
<tr>
<td>CS 667</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 685</td>
<td>Foundations of Data Science</td>
</tr>
<tr>
<td>or CS 680</td>
<td>Matrix Algorithms for Data Science</td>
</tr>
</tbody>
</table>

Electives 12

Data Analytics

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 616</td>
<td>Big Data Programming</td>
</tr>
<tr>
<td>CS 660</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CS 662</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>CS 663</td>
<td>Data Mining</td>
</tr>
<tr>
<td>CS 665</td>
<td>Deep Learning</td>
</tr>
<tr>
<td>CS 673</td>
<td>Computer Vision and Convolutional Neural Networks</td>
</tr>
<tr>
<td>CS 675</td>
<td>Data Visualization</td>
</tr>
<tr>
<td>CS 680</td>
<td>Matrix Algorithms for Data Science</td>
</tr>
<tr>
<td>CS 687</td>
<td>Complex Networks</td>
</tr>
<tr>
<td>CS 555</td>
<td>Probability & Statistics in Computer Science</td>
</tr>
</tbody>
</table>

Cyber Security

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 636</td>
<td>Computer Security</td>
</tr>
<tr>
<td>CS 623</td>
<td>Network Security</td>
</tr>
<tr>
<td>CS 645</td>
<td>Modern Cryptography</td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Security</td>
</tr>
</tbody>
</table>

High Performance Computing

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 632</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>CS 633</td>
<td>Cloud Computing</td>
</tr>
</tbody>
</table>

Digital Forensics

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 519</td>
<td>Investigating Online Crimes</td>
</tr>
<tr>
<td>CS 537</td>
<td>Digital Media Forensics</td>
</tr>
<tr>
<td>CS 689</td>
<td>Cyber Risk Management</td>
</tr>
</tbody>
</table>

Non-Computer Science Electives 2
Plan II

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>CS 510</td>
<td>Database Application Development</td>
<td></td>
</tr>
<tr>
<td>or CS 610</td>
<td>Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 652</td>
<td>Advanced Algorithms and Applications</td>
<td></td>
</tr>
<tr>
<td>CS 667</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CS 685</td>
<td>Foundations of Data Science</td>
<td></td>
</tr>
<tr>
<td>or CS 680</td>
<td>Matrix Algorithms for Data Science</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>CS 616</td>
<td>Big Data Programming</td>
<td></td>
</tr>
<tr>
<td>CS 660</td>
<td>Artificial Intelligence</td>
<td></td>
</tr>
<tr>
<td>CS 662</td>
<td>Natural Language Processing</td>
<td></td>
</tr>
<tr>
<td>CS 663</td>
<td>Data Mining</td>
<td></td>
</tr>
<tr>
<td>CS 665</td>
<td>Deep Learning</td>
<td></td>
</tr>
<tr>
<td>CS 673</td>
<td>Computer Vision and Convolutional Neural Networks</td>
<td></td>
</tr>
<tr>
<td>CS 675</td>
<td>Data Visualization</td>
<td></td>
</tr>
<tr>
<td>CS 680</td>
<td>Matrix Algorithms for Data Science</td>
<td></td>
</tr>
<tr>
<td>CS 687</td>
<td>Complex Networks</td>
<td></td>
</tr>
<tr>
<td>CS 555</td>
<td>Probability & Statistics in Computer Science</td>
<td></td>
</tr>
<tr>
<td>Cyber Security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 636</td>
<td>Computer Security</td>
<td></td>
</tr>
<tr>
<td>CS 623</td>
<td>Network Security</td>
<td></td>
</tr>
<tr>
<td>CS 645</td>
<td>Modern Cryptography</td>
<td></td>
</tr>
<tr>
<td>CS 643</td>
<td>Cloud Security</td>
<td></td>
</tr>
<tr>
<td>High Performance Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 632</td>
<td>Parallel Computing</td>
<td></td>
</tr>
<tr>
<td>CS 633</td>
<td>Cloud Computing</td>
<td></td>
</tr>
<tr>
<td>Digital Forensics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 519</td>
<td>Investigating Online Crimes</td>
<td></td>
</tr>
<tr>
<td>CS 537</td>
<td>Digital Media Forensics</td>
<td></td>
</tr>
<tr>
<td>CS 689</td>
<td>Cyber Risk Management</td>
<td></td>
</tr>
<tr>
<td>Non-Computer Science Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST 611</td>
<td>Intermediate Statistical Analysis I</td>
<td></td>
</tr>
<tr>
<td>BST 612</td>
<td>Intermediate Statistical Analysis II</td>
<td></td>
</tr>
<tr>
<td>BST 621</td>
<td>Statistical Methods I</td>
<td></td>
</tr>
<tr>
<td>BST 622</td>
<td>Statistical Methods II</td>
<td></td>
</tr>
</tbody>
</table>

Bioinformatics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 601</td>
<td>Introduction to Bioinformatics</td>
</tr>
<tr>
<td>INFO 602</td>
<td>Algorithms in Bioinformatics</td>
</tr>
<tr>
<td>INFO 603</td>
<td>Biological Data Management</td>
</tr>
</tbody>
</table>

Business Intelligence

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 617</td>
<td>Data Science for Business</td>
</tr>
<tr>
<td>MBA 658</td>
<td>Applied Marketing Research</td>
</tr>
<tr>
<td>MBA 662</td>
<td>Quantitative Analysis for Business Managers</td>
</tr>
</tbody>
</table>

Thesis Research

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 699</td>
<td>Master's Thesis Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours: **30**

1. At most three credit hours of special courses (CS 697: Directed Readings or CS 598: Practical Work Experience) can count towards the MSDS degree. No more than three (9 credit hours of) 500 level courses can count towards the MSDS degree.

2. Students may take up to three (9 credit hours of) non-CS electives upon the approval of the graduate program director.

Ph.D. in Computer Science

Ph.D. students must meet the minimum course credit requirement of UAB Graduate School and may take any course from our graduate catalog and any graduate course approved by their dissertation advisor and the graduate program director.

Degree Requirements:

The program consists of three phases or levels. Level 1 is devoted primarily to formal CS coursework and preparation for a written survey and critique covering the breadth of a research area and an oral presentation of the work. Level 2 consists of additional CS coursework and research in preparation for the comprehensive examination, which requires presentation of a dissertation research proposal. Successful completion of this phase leads to admission to candidacy. The final phase (Level 3) is the completion of the dissertation research and its defense.

There is a residency requirement of at least one consecutive academic year of full-time study.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science Courses</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Select 45 hours from the Computer Science courses at the graduate level (24 hours if entering with a master's degree appropriate to CS field)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>CS 799</td>
<td>Dissertation Research</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: **72** (if entering with a baccalaureate degree)
51 (if entering with a master's degree)
Courses

CS 500. Advanced Object-Oriented Programming in C++. 3 Hours.
Object-oriented programming concepts in C++ including templates, multiple inheritance, const correctness. Types, streams, containers, references, pointers, iterators, lambdas, operator overloading, evolution of C++ in C++11/14/17/20, using the Standard Template Library (STL). Current techniques and tools for software development in C++: unit testing, compilation, version control using git, numerical libraries, linters, and generating documentation from annotated C++ sources.

CS 500L. Advanced Object-Oriented Programming in C++ Lab. 0 Hours.
Laboratory to accompany CS500.

CS 501. Programming Languages. 3 Hours.
CS501 is a programming language overview course. The course will discuss computability, lexing, parsing, type systems, and ways to formalize a language's semantics. The course will introduce students to major programming paradigms, such as functional programming and logic programming, and their realization in programming languages. Students will solve problems using different paradigms and study the impact on program design and implementation. The course enables students to assess strengths and weaknesses of different languages for problem solving.

CS 501L. Programming Languages Laboratory. 0 Hours.
Laboratory to accompany CS501.

CS 510. Database Application Development. 3 Hours.
Relational model of databases, structured query language, relational database design and application development, database normal forms, and security and integrity of databases.

CS 519. Investigating Online Crimes. 3 Hours.
Introduction to cyber-investigative techniques involving network forensics. Students will develop and learn to apply new programs and techniques to automatically evaluate digital evidence from network packet captures, emails, server logs, social media, darknets and online forums related to cyber crime cases from both a law enforcement and incident response perspective.

CS 520. Software Engineering. 3 Hours.
Design and implementation of large-scale software systems, software development life cycle, software requirements and specifications, software design and implementation, verification and validation, project management and team-oriented software development.

CS 520L. Software Engineering Laboratory. 0 Hours.
Laboratory to accompany CS520.

CS 522. Mobile Application Development. 3 Hours.
Fundamental concepts of mobile application development. Focused on native application development for Android and iOS. Understand application architecture and lifecycle best practices. UX considerations for mobile devices. Interact with device sensors. Compare native vs hybrid frameworks. This course has a laboratory component.

CS 522L. Mobile App Development Lab. 0 Hours.
Laboratory to accompany CS522.

CS 523. Operating Systems. 3 Hours.
Internal design and operation of a modern operating system, including interrupt handling, process scheduling, memory management, virtual memory, demand paging, file space allocation, file and directory management, file/user security and file access methods. Computer Networks.

CS 532L. Systems Programming Lab. 0 Hours.
Laboratory to accompany CS532.

CS 533. Operating Systems. 3 Hours.

CS 534L. Networking Laboratory. 0 Hours.
Project oriented hands-on approach.

CS 534. Networking. 3 Hours.

CS 537. Digital Media Forensics. 3 Hours.
Digital media forensics addresses all stored digital evidence types faced by cyber security professionals and computer forensics examiners. Students will learn to analyze character encoding, file formats, and digital media, including hard drives, smartphones and other portable devices, and cloud-hosted evidence, as well as disk acquisition, duplication and evidence preservation techniques and how to apply these techniques in typical criminal investigation scenarios.

CS 537L. Digital Media Forensics Lab. 0 Hours.
Laboratory to accompany CS 537.

CS 550. Automata and Formal Language Theory. 3 Hours.
Finite-state automata and regular expressions, context-free grammars and pushdown automata, turing machines, computability and decidability, and complexity classes.

CS 555. Probability & Statistics in Computer Science. 3 Hours.

CS 591. Special Topics. 1-3 Hour.
Selected Topics in Computer Science.

CS 592. Special Topics. 1-3 Hour.
Selected Topics in Computer Science.
CS 597. Competitive Programming Techniques. 1 Hour.
This course will help students become more competitive in a programming competition such as the ACM programming contest by exploring numerous problem solving techniques and algorithms not covered in the traditional curriculum.

CS 598. Practical Work Experience. 1-9 Hour.
Credit for working in the Computer Science field.

CS 600. Formal Semantics of Programming Languages. 3 Hours.
Context-sensitive and semantic aspects of programming languages, denotational semantics, mathematical foundations.

CS 601. Program Verification. 3 Hours.
Proving properties of programs, termination and correctness, computability and decidability, role of formal methods in software design.

CS 602. Compiler Design. 3 Hours.
Lexical and syntactical scan, semantics, code generation and optimization, dataflow analysis, parallelizing compilers, automatic compiler generation, and other advanced topics.

CS 610. Database Systems. 3 Hours.
This course offers an introduction to the advanced topics of database management systems. The following topics are addressed: System and file structure, efficient data manipulation using indexing and hashing, query processing, crash recovery, concurrency control, transaction processing, database security and integrity, distributed databases.

CS 613. Emerging Database Technologies. 3 Hours.
This course introduces new emerging and theoretical foundations for storing and organizing data for "Big Data" applications. Topics include emerging database technologies for high-velocity transaction processing, stream processing, real time analytics, and high-volume data processing. The focus will be on several real-world application domains, such as Internet advertising, health care, and social network analysis.

CS 614. Distributed Database Systems. 3 Hours.

CS 615. Multimedia Databases. 3 Hours.
This course introduces the principles of multimedia databases including multimedia information processing, modeling, and retrieval. The media to be considered include text, image, audio and video. At the conclusion of this course, the students should understand what multimedia data retrieval is, the principles, which allow the location of relevant information from amongst a large corpus of multimedia data, and the applications of multimedia information retrieval. The students should also have the expertise and competence to design and implement retrieval software for multimedia data.

CS 616. Big Data Programming. 3 Hours.
Introduction to Big Data. Properties of Big Data, platforms, programming models, applications, business analytics programming, big data processing with Python, R, and SAS, MapReduce programming with Hadoop.

CS 617. Database Security. 3 Hours.
Database fundamentals, introduction to database security, overview of security models, access control models, covert channels and inference channels, MySQL security, Oracle security, Oracle label security, developing a database security plan, SQL server security, security of statistical databases, security and privacy issues of data mining, database applications security, SQL injection, defensive programming, database intrusion prevention, audit, fault tolerance and recovery, Hippocratic databases, XML security, network security, biometrics, cloud database security, big database security.

CS 620. Software Design and Integration. 3 Hours.
This course provides hands-on experience in the design and integration of software systems. Component-based technology, model-driven technology, service-oriented technology, and cloud technology are all explored. Software design basics, including the decomposition of systems into recognizable patterns, the role of patterns in designing software and design refactoring, and attributes of good design. Agile culture, CASE tools, tools for continuous integration, build, testing, and version control.

CS 621. Advanced Web Application Development. 3 Hours.
Introduction to web application design and development. Includes traditional web applications utilizing server-side scripting as well as client/server platforms. Covers responsive design for both mobile and desktop users, as well as hands on server provisioning and configuration. Other topics include web security problems and practices, authentication, database access, application deployment and Web API design, such as REpresentational State Transfer (REST).

CS 621L. Advanced Web Application Development Laboratory. 0 Hours.
Laboratory to accompany CS621.

CS 622. Reflective and Adaptive Systems. 3 Hours.
This course examines the principles of compile-time and run-time adaptation in several contexts, including: reflection, metaprogramming, aspect-oriented software development, and metamodelling (applied to model-driven engineering).

CS 623. Network Security. 3 Hours.
Conventional network security (symmetric and public-key cryptography). Message encryption and authentication. Secure communication between computers in a hostile environment, including E-mail (PGP), virtual private networks (IPSec), remote access (SSH), and E-commerce (SSL), firewalls, intrusion detection and prevention, security of IEEE 802.11 wireless networks (WEP, WPA). Mandatory weekly Linux-based lab.

CS 623L. Network Security Laboratory. 0 Hours.
Laboratory to accompany CS 623.

CS 624. Formal Specification of Software Systems. 3 Hours.
Formal methods for software requirements specification, including VDM, Z, and object-oriented extensions; the relationship among formal requirements, design, and implementation.

CS 625. Metrics and Performance. 3 Hours.
Theory and practice of metrics for performance and scalability of software systems. The course will introduce students to the principles of queuing theory and statistical analysis relevant to analyzing the performance of software products. Students will use profiling frameworks to identify a range of performance problems in existing software. The course will enable students to improve the design of software and eliminate many common design oversights that hamper a system's performance and scalability.
CS 626. Secure Software Development. 3 Hours.
Why and how software fails, characteristics of secure and resilient software, life cycle of secure software development, metrics and models for secure software maturity, design methodology, best practices for secure programming, secure software for mobile computing, cloud computing and embedded systems, methodology for testing and validation.

CS 629. GPU Programming. 3 Hours.
GPU architecture, GPU programming models, GPU parallel algorithms, GPU communication models, GPU performance optimizations, GPU debugging, GPU libraries, multi-GPU program design, and applications of GPU computing.

CS 629L. GPU Programming Lab. 0 Hours.
Laboratory to accompany "CS629 GPU Programming."

CS 630. Computer Architecture. 3 Hours.
Introduction to computer architecture, including memory subsystems, direct-mapped and set-associative cache and multi-level cache subsystems, direct-access devices including RAID and SCSI disk drives, processor pipelining including super-scalar and vector machines, parallel architectures including SMP, NUMA and distributed memory systems, Interrupt mechanisms, and future microprocessor design issues.

CS 631. Distributed Systems. 3 Hours.
Object-oriented distributed systems design, distributed software architecture, data and resource access, communication, client-server computing, web technologies, enterprise technologies.

CS 632. Parallel Computing. 3 Hours.
Overview of parallel computing hardware, architectures, & programming paradigms; parallel programming using MPI, Pthreads, and OpenMP; design, development, and analysis of parallel algorithms for matrix computations, FFTs, and Sorting.

CS 633. Cloud Computing. 3 Hours.
Introduction to cloud computing architectures and programming paradigms. Theoretical and practical aspects of cloud programming and problem-solving involving compute, storage and network virtualization. Design, development, analysis, and evaluation of solutions in cloud computing space including machine and container virtualization technologies.

CS 633L. Cloud Computing Lab. 0 Hours.
Laboratory to accompany CS633.

CS 634. Virtualization. 3 Hours.
Theory and practice of virtualization. Origins, history, technical and economic motivations. Relationship to network operating systems and operating system architecture. Simulation, Emulation, Virtualization of CPUs, networks, storage, desktops, memory, devices, and combinations thereof. Different approaches to virtualization, including hardware assists and software-only techniques. Techniques, approaches, and methodologies for scale-out and scale-up computing, including security, performance and economic concerns.

CS 635. Network Programming. 3 Hours.
Remote procedure call and client-server mechanisms. Protocol definition and compilation; client and server stubs and application code; transport independence; multiple client and server systems. Applications, e.g., remote database query and update and image filtering and archiving; systems programming and file systems contexts.

CS 636. Computer Security. 3 Hours.
Study of the breadth of major computer security topics including cyber threats, malware, information assurance, authorization, applied cryptography, web security, mobile and wireless security, network security, systems/software security, database and storage security, user-centered security, and best security practices and countermeasures.

CS 640. Foundations in Bioinformatics. 3 Hours.
Foundations in bioinformatics, emphasizing the application of computational tools and methodology in genomics, analysis of protein functions and structures, and DNA sequencing. Students learn how to use a high level programming language such as Python together with software tools such as BLAST and ArrayTrack to solve bioinformatics problems.

CS 641. Algorithms in Bioinformatics. 3 Hours.
This course covers the design and analysis of algorithmic techniques applied in bioinformatics. Topics include sequence comparison, alignment and matching, suffix tree, sequence database search, phylogenetic tree, genome rearrangement, motif finding, RNA prediction, and peptide sequencing.

Prerequisites: CS 640 [Min Grade: B]

CS 642. Mobile and Wireless Security. 3 Hours.
Mobile/wireless devices are ubiquitous, raising the potential for many cyber threats. This course examines security vulnerabilities inherent in many existing and emerging mobile and wireless systems, ranging from smartphones to wearables and RFID tags. In addition to exposing security vulnerabilities, defensive mechanisms to address these vulnerabilities drawn from existing deployments and research literature will be studied.

CS 643. Cloud Security. 3 Hours.
Definition of cloud computing, cloud computing models, privacy, authenticity and integrity of outsourced data, proof of data possession / retrievability, cloud forensics, malware analysis as a service, remote verification of capability and reliability, proof of availability, economic attacks on clouds and outsourced computing, virtual machine security, trusted computing technology and clouds, verifiable resource accounting, cloud-centric regulatory compliance issues and mechanisms, business and security risk models, secure MapReduce, applications of secure cloud computing, private information retrieval and cloud cartography.

CS 645. Modern Cryptography. 3 Hours.
Theory and practices of modern cryptographic techniques, algorithms and protocols, including formal analysis. Secret key encryption algorithms, public key encryption algorithms, stream ciphers, one-way hashing algorithms, authentication and identification, digital signatures, signcryption, key establishment and management, secret sharing and data recovery, zero-knowledge proofs, public key infrastructures, efficient implementation, cryptanalytic attacks and countermeasures, security models, assumptions and proofs.

CS 646. Blockchain and Cryptocurrency. 3 Hours.
Fundamental principles of blockchains and their applications in digital cash systems including Bitcoin, Ethereum and other notable cryptocurrencies. Topics to be covered include how a cryptocurrency works, blockchain and other decentralized consensus protocols, proof of work, proof of stake, smart contracts, security and privacy of cryptocurrencies, cryptographic techniques for digital currency, and applications of blockchain in peer-to-peer trust establishment, digital asset management, financial exchanges and distributed autonomous organization.
CS 647. Biomedical Modeling. 3 Hours.
Modeling from biomedical datasets. Acquisition, segmentation; registration and fusion; construction of shame models; measurement; illustration modeling techniques for surgical planning.

CS 650. Theory of Computation. 3 Hours.
Topics include Turing machines, computability, computational complexity, complexity classes, P vs. NP, circuit complexity, randomized computation, interactive proofs, quantum, decidability, primality testing, and other computational models.

CS 651. Formal Language Theory. 3 Hours.
Parsing and translation theory, formal syntax, proof properties and complexity measures.

CS 652. Advanced Algorithms and Applications. 3 Hours.
The design and analysis of fundamental algorithms that underpin many fields of importance ranging from data science, business intelligence, finance and cyber security to bioinformatics. Algorithms to be covered include dynamic programming, greedy technique, linear programming, network flow, sequence matching, search and alignment, randomized algorithms, page ranking, data compression, and quantum algorithms. Both time and space complexity of the algorithms are analyzed.

CS 653. Computational Geometry. 3 Hours.
Basic methods and data structures, geometric searching, convex hulls, proximity, intersections.

CS 654. Malware Analysis. 3 Hours.
Hands-on course teaching static, dynamic and contextual analysis of malware. Malware analysis and reverse-engineering techniques are taught through interaction with both "classroom" and "wild" malware samples. Defensive and counter-measure techniques for both corporate and law enforcement environments are explored.

CS 654L. Malware Analysis Lab. 0 Hours.
Laboratory to accompany CS 654.

CS 655. Quantum Computing. 3 Hours.
Quantum mechanics, mathematical foundations, quantum gates, quantum circuits, quantum computer, quantum programming, quantum algorithms, quantum computing methods, and applications of quantum computing.

CS 656. Web Security. 3 Hours.
The web uses advanced applications that run on a large variety of browsers that may be built using programming languages such as JavaScript, AJAX, Google Web Toolkit and Apache Struts, to name a few. This course studies how core web technologies work, the common security vulnerabilities associated with them, and how to build secure web applications that are free from these vulnerabilities.

CS 657. Penetration Testing and Vulnerability Assessment. 3 Hours.
This course focuses on penetration testing and vulnerability analysis. It introduces methodologies, techniques and tools to analyze and identify vulnerabilities in stand-alone and networked applications. It also covers methodologies for legal and standards compliance.

CS 659. Multiprocessor Programming. 3 Hours.
This course examines synchronization in concurrent systems, available atomic primitives, non-blocking programming techniques, lock-wait-freedom, transactional memory, and memory models in hardware and software. The application of these techniques to the development of scalable data structures for multi-core architectures will be a central topic of this course.

CS 660. Artificial Intelligence. 3 Hours.
Programming methodologies, logic foundations, natural language applications, expert systems.

CS 662. Natural Language Processing. 3 Hours.
This course provides a broad introduction to Natural Language Processing (Computational Linguistics) and its applications. Topics covered include language modeling with neural networks, sequence labelling algorithms (segmentation, chunking, tokenization, part-of-speech tagging and others), syntactic and dependency parsing, vector-based representation models and using Deep Learning in NLP applications. Some application areas covered include information extraction and named entity recognition, semantic role labelling, word sense disambiguation, text generation, information retrieval, question answering, machine translation and other areas as time permits. There will be a focus on Deep Learning approaches using Tensorflow, PyTorch and keras for a major student project. Jupyter Notebooks will be used for assignments.

CS 663. Data Mining. 3 Hours.
Techniques used in data mining (such as frequent sets and association rules, decision trees, Bayesian networks, classification, clustering), algorithms underlying these techniques, and applications.

CS 665. Deep Learning. 3 Hours.
Deep Learning is a rapidly growing area of machine learning that has revolutionized speech recognition, image recognition and natural language processing. This course teaches you deep learning basics such as logistic regression, stochastic gradient descent, deep neural networks, convolutional neural networks and deep models for text and sequences. Students will also gain hands-on experience of using deep learning systems such as Tensorflow.

CS 666. Machine Learning. 3 Hours.
The course covers important issues in supervised learning, unsupervised learning and reinforcement learning. Topics include graphical models and Bayesian inference, hidden Markov model, mixture models and expectation maximization, density estimation, dimensionality reduction, logistic regression and neural network, support vector machines and kernel methods, and bagging and boosting.

CS 669. Introduction to the Internet of Things. 3 Hours.
Definition of the Internet of Things (IoT), history, IoT components, device specifications and examples, architectures, protocols, applications, security and privacy issues, programming and development environments for IoT, interoperability, interfacing IoT devices via web and mobile applications.

CS 670. Computer Graphics. 3 Hours.
Computer graphics is the study of the creation, manipulation, and rendering of shape models and images, for visualization, modeling, shape analysis, and animation. Topics include matrix transforms for motion and viewing, shading, viewing and camera modeling, shape modeling including meshes and smooth parametric curves and surfaces, visibility analysis, sampling, nonphotorealistic rendering, shape analysis, and texture mapping. Topics are explored through code, including OpenGL and GLSL.

CS 671. Shape Design. 3 Hours.
This course covers various aspects of the design of mathematical descriptions of shape. These geometric models are used in computer graphics, game design, automobile and aircraft design, robotics, anatomical modeling, and many other disciplines. Building geometry from images. Bezier and B-spline curves and surfaces.
CS 672. Geometric Modeling for Computer Graphics. 3 Hours.
The formal description of a motion is necessary in computer animation
for graphics, game design, robotics, and many other disciplines. This
course covers various aspects of the design of motions. Typical topics
include position control along Bezier curves, orientation control with
quaternion splines, motion planning, motion capture, camera control,
collision detection, visibility analysis.

CS 673. Computer Vision and Convolutional Neural Networks. 3 Hours.
Computer vision, the study of the interpretation of images, is central to
many areas of computer science, including data science and machine
learning, driverless cars, biomedical computing, image computation for
social media, and face detection in security. Recent algorithms for vision
also leverage deep learning with convolutional neural networks for object
recognition. Topics in this course include image smoothing and filtering,
edge detection, segmentation, clustering, Hough transform, deformable
contours, object recognition, and machine learning for object recognition
using large image datasets.

CS 675. Data Visualization. 3 Hours.
The amount and complexity of data produced everyday is increasing
at a staggering rate. Visualization presents an intuitive way to explore
and interpret data. This course will be an introduction to the principles,
and methods for effective visual analysis of data. Techniques to facilitate
information visualization for non-spatial data (e.g. graphs, text, high-
dimensional data) and scientific visualization for spatial data (e.g. gridded
data from simulations and scanners and sensors) will be covered.
Emphasis will be given to interactive approaches, especially while dealing
with massive volumes of data. Topics in the domain of data analytics
tightly coupled with visualization will also be covered. Students will learn
fundamentals of perception, visualization techniques and methods for
a broad range of data types, good practices for visualization, and will
ultimately be able to develop their own visualization system.

CS 676. Structure from Motion. 3 Hours.
Structure from motion extracts geometric information from a series
of images of an object, either still photographs or video streams. The
position of the camera may also be computed, yielding camera paths.
This topic has powerful applications in many areas, including computer
graphics, computer vision, photography, visualization, and video
augmentation. Projective geometry, multiple view geometry, feature
extraction.

CS 677. Big Data Privacy and Security. 3 Hours.
The course covers topics pertinent to privacy and security of big data
applications in practice. Topics include legal and policy aspects, privacy
v.s. convenience and usefulness, ethics, compliance with GDPR,
CCPA and other regional, national and global privacy regulations;
techniques and best practices for security, privacy and compliance
including secure and reliable tracking, tagging, audit and monitoring,
storage and transmission, integration and governance, sharing,
erasure, provenance, risk analysis, and privacy preservation; fairness,
accountability, transparency and explainability in machine learning and
artificial intelligence.

CS 680. Matrix Algorithms for Data Science. 3 Hours.
Computation with matrices and tensors is at the heart of many areas
of computer science, including machine learning, computer vision, computer
graphics, and self-driving cars. This course studies matrix computation
(solution of linear systems, least squares, spectral analysis, and singular
value decomposition) and its applications. These applications will be
explored through code.

CS 681. Simulation Models. 3 Hours.
Model development using popular simulation languages, e.g., Excel or
OpenOffice.org Calc Spreadsheet; interfacing to an animation system
such as Proof Animation or Open_GL.

CS 683. Open Source Security Systems. 3 Hours.
An introduction to the design, implementation, evaluation and
maintenance of secure software systems and applications using open
source technologies, with an emphasis on hands-on experience. Topics
include: open source ecosystems, open source security methodologies
and models, notable open source software systems and projects, quality
and security assurance through open source, open source supply
chain security, major open source cryptographic packages; designing,
implementing and maintaining security systems using open source
technologies; assessment and regulatory compliance using open source
tools, and open source hardware.

CS 684. Robot Motion. 3 Hours.
Path planning algorithms. Configuration space, potential functions,
roadmaps, cell decomposition, probabilistic motion planning, compliant
motion.

CS 685. Foundations of Data Science. 3 Hours.
Fundamental concepts and techniques in statistical inference and big
data analytics. Topics include high-dimensional space, singular value
decomposition, random graphs, random walks and Markov chains,
data streaming and sketching, and basics of data mining and machine
learning.

CS 686. Software-Defined Networking. 3 Hours.
Software defined networking (SDN) allows a logically centralized software
component to manage and control the behavior of an entire network.
Topics to be covered include abstractions and layered architecture of
SDN, data, control and management planes, network virtualization,
programming SDN, network functions (e.g. routing, load balancing and
security), comparison of OpenFlow and proprietary SDN technologies,
and network optimization with SDN.

CS 687. Complex Networks. 3 Hours.
Introduction to complex network theory and real-world applications
in biology, physics, sociology, national security and cyber enabled
technology systems such as social networks. Essential network
models including small world networks, scale free networks, spatial
and hierarchical networks together with methods to generate them
with a computer will be discussed. In addition, various techniques for
the analysis of networks including network modeling and evolution,
community structure, dynamic network analysis, and network
visualization will be explored.

CS 689. Cyber Risk Management. 3 Hours.
This course develops knowledge and skills in risk based information
security management geared toward preventive management and
assurance of security of information and information systems in
technology-enabled environments. It focuses on risk assessments,
risk mitigation strategies, risk profiling and sensitivity, quantitative and
qualitative models of calculating risk exposures, security controls and
services, threat and vulnerability management, financing the cost of
security risks, and return on investment for information security initiatives.
The course presents several risk assessment models with an ultimate
goal of identifying and realizing the unique and acceptable level of
information risk for an organization.

CS 690. Special Topics. 1-3 Hours.
Selected topics in Computer Science.
CS 691. Special Topics. 1-3 Hour.
Selected topics in Computer Science.

CS 692. Digital Image Processing. 1-3 Hour.
Selected topics in Computer Science.

CS 695. Digital Image Processing. 3 Hours.
Human visual system, image acquisition, binary image processing, image transformation, Fourier Transform, segmentation, edge detection, medical imaging modalities, image reconstruction from projections, 3D modelling algorithms, and imaging artifacts.

CS 697. Directed Readings. 1-6 Hour.
Selected readings, research and project development under direction of a faculty member. Must have permission of instructor and graduate program director.

CS 698. Master’s Plan II. 1-9 Hour.
Masters student registration.

CS 699. Master’s Thesis Research. 1-6 Hour.
Research for M.S. candidates writing a thesis.
Prerequisites: GAC M

CS 700. Formal Semantics of Programming Languages. 2,3 Hours.
Context-sensitive and semantic aspects of programming languages, denotational semantics, mathematical foundations.

CS 701. Program Verification. 3 Hours.
Proving properties of programs, termination and correctness, computability and decidability, role of formal methods in software design.

CS 702. Compiler Design. 3 Hours.
Lexical and syntactical scan, semantics, code generation and optimization, dataflow analysis, parallelizing compilers, automatic compiler generation, and other advanced topics.

CS 710. Database Systems. 3 Hours.
This course offers an introduction to the advanced topics of database management systems. The following topics are addressed: System and file structure, efficient data manipulation using indexing and hashing, query processing, crash recovery, concurrency control, transaction processing, database security and integrity, distributed databases.

CS 713. Emerging Database Technologies. 3 Hours.
This course explores new technological and theoretical foundations for storing and organizing data for “Big Data” applications. Topics include emerging database technologies for high-velocity transaction processing, stream processing, real time analytics, and high-volume data processing. The discussions will focus on several real-world application domains, such as Internet advertising, health care, and social network analysis.

CS 714. Distributed Database Systems. 3 Hours.

CS 715. Multimedia Databases. 3 Hours.
This course introduces the principles of multimedia databases including multimedia information processing, modeling, and retrieval. The media to be considered include text, image, audio and video. At the conclusion of this course, the students should understand what multimedia data retrieval is, the principles, which allow the location of relevant information from amongst a large corpus of multimedia data, and the applications of multimedia information retrieval. The students should also have the expertise and competence to design and implement retrieval software for multimedia data.

CS 716. Big Data Programming. 3 Hours.
Introduction to Big Data, Properties of Big Data, platforms, programming models, applications, business analytics programming, big data processing with Python, R, and SAS, MapReduce programming with Hadoop.

CS 717. Database Security. 3 Hours.
Database fundamentals, introduction to database security, overview of security models, access control models, covert channels and inference channels, MySQL security, Oracle security, Oracle label security, developing a database security plan, SQL server security, security of statistical databases, security and privacy issues of data mining, database applications security, SQL injection, defensive programming, database intrusion prevention, audit, fault tolerance and recovery, Hippocratic databases, XML security, network security, biometrics, cloud database security, big database security.

CS 720. Software Design and Integration. 3 Hours.
This course provides hands-on experience in the design and integration of software systems. Component-based technology, model-driven technology, service-oriented technology, and cloud technology are all explored. Software design basics, including the decomposition of systems into recognizable patterns, the role of patterns in designing software and design refactoring, and attributes of good design. Agile culture, CASE tools, tools for continuous integration, build, testing, and version control.

CS 722. Reflective and Adaptive Systems. 3 Hours.
This course examines the principles of compile-time and run-time adaptation in several contexts, including: reflection, metaprogramming, aspect-oriented software development, and metamodeling (applied to model-driven engineering).

CS 723. Network Security. 3 Hours.
Conventional network security (symmetric and public-key cryptography). Message encryption and authentication. Secure communication between computers in a hostile environment, including E-mail (PGP), virtual private networks (IPSec), remote access (SSH), and E-commerce (SSL), firewalls, intrusion detection and prevention, security of IEEE 802.11 wireless networks (WEP, WPA). Mandatory weekly Linux-based lab.

CS 723L. Network Security Laboratory. 0 Hours.
Laboratory to accompany CS 723.

CS 724. Formal Specification of Software Systems. 3 Hours.
Formal methods for software requirements specification, including VDM, Z, and object-oriented extensions; the relationship among formal requirements, design, and implementation.

CS 725. Metrics and Performance. 3 Hours.
Theory and practice of metrics for performance and scalability of software systems. The course will introduce students to the principles of queueing theory and statistical analysis relevant to analyzing the performance of software products. Students will use profiling frameworks to identify a range of performance problems in existing software. The course will enable students to improve the design of software and eliminate many common design oversights that hamper a system’s performance and scalability.

CS 726. Secure Software Development. 3 Hours.
Why and how software fails, characteristics of secure and resilient software, life cycle of secure software development, metrics and models for secure software maturity, design methodology, best practices for secure programming, secure software for mobile computing, cloud computing and embedded systems, methodology for testing and validation.
CS 729. GPU Programming. 3 Hours.
GPU architecture, GPU programming models, GPU parallel algorithms, GPU communication models, GPU performance optimizations, GPU debugging, GPU libraries, multi-GPU program design, and applications of GPU computing.

CS 729L. GPU Programming Lab. 0 Hours.
Laboratory to accompany "CS729 GPU Programming."

CS 730. Computer Architecture. 3 Hours.
Introduction to computer architecture, including memory subsystems, direct-mapped and set-associative cache and multi-level cache subsystems, direct-access devices including RAID and SCSI disk drives, processor pipelining including super-scalar and vector machines, parallel architectures including SMP, NUMA and distributed memory systems, Interrupt mechanisms, and future microprocessor design issues.

CS 731. Distributed Systems. 3 Hours.
Object-oriented distributed systems design, distributed software architecture, data and resource access, communication, client-server computing, web technologies, enterprise technologies.

CS 732. Parallel Computing. 3 Hours.
Overview of parallel computing hardware, architectures, & programming paradigms; parallel programming using MPI, Pthreads, and OpenMP; design, development, and analysis of parallel algorithms for matrix computations, FFTs, and Sorting.

CS 733. Cloud Computing. 3 Hours.
Introduction to cloud computing architectures and programming paradigms. Theoretical and practical aspects of cloud programming and problem-solving involving compute, storage and network virtualization. Design, development, analysis, and evaluation of solutions in cloud computing space including machine and container virtualization technologies.

CS 733L. Cloud Computing Lab. 0 Hours.
Laboratory to accompany CS733.

CS 734. Virtualization. 3 Hours.
Theory and practice of virtualization. Origins, history, technical and economic motivations. Relationship to network operating systems and operating system architecture. Simulation, Emulation, Virtualization of CPUs, networks, storage, desktops, memory, devices, and combinations thereof. Different approaches to virtualization, including hardware assists and software-only techniques. Techniques, approaches, and methodologies for scale-out and scale-up computing, including security, performance and economic concerns.

CS 735. Network Programming. 3 Hours.
Remote procedure call and client-server mechanisms. Protocol definition and compilation; client and server stubs and application code; transport independence; multiple client and server systems. Applications, e.g., remote database query and update and image filtering and archiving; systems programming and file systems contexts.

CS 736. Computer Security. 3 Hours.
Study of the breadth of major computer security topics including cyber threats, malware, information assurance, authorization, applied cryptography, web security, mobile and wireless security, network security, systems/software security, database and storage security, user-centered security, and best security practices and countermeasures.

CS 740. Foundations in Bioinformatics. 3 Hours.
Foundations in bioinformatics, emphasizing the application of computational tools and methodology in genomics, analysis of protein functions and structures, and DNA sequencing. Students learn how to use a high level programming language such as Python together with software tools such as BLAST and ArrayTrack to solve bioinformatics problems.

CS 741. Algorithms in Bioinformatics. 3 Hours.
This course covers the design and analysis of algorithmic techniques applied in bioinformatics. Topics include sequence comparison, alignment and matching, suffix tree, sequence database search, phylogenetic tree, genome rearrangement, motif finding, RNA prediction, and peptide sequencing.

CS 742. Mobile and Wireless Security. 3 Hours.
Mobile/wireless devices are ubiquitous, raising the potential for many cyber threats. This course examines security vulnerabilities inherent in many existing and emerging mobile and wireless systems, ranging from smartphones to wearables and RFID tags. In addition to exposing security vulnerabilities, defensive mechanisms to address these vulnerabilities drawn from existing deployments and research literature will be studied.

CS 743. Cloud Security. 3 Hours.
Definition of cloud computing, cloud computing models, privacy, authenticity and integrity of outsourced data, proof of data possession / retrievability, cloud forensics, malware analysis as a service, remote verification of capability and reliability, proof of availability, economic attacks on clouds and outsourced computing, virtual machine security, trusted computing technology and clouds, verifiable resource accounting, cloud-centric regulatory compliance issues and mechanisms, business and security risk models, secure MapReduce, applications of secure cloud computing, private information retrieval and cloud cartography.

CS 744. Modern Cryptography. 3 Hours.
Theory and practices of modern cryptographic techniques, algorithms and protocols, including formal analysis. Secret key encryption algorithms, public key encryption algorithms, stream ciphers, one-way hashing algorithms, authentication and identification, digital signatures, signcryption, key establishment and management, secret sharing and data recovery, zero-knowledge proofs, public key infrastructures, efficient implementation, cryptanalytic attacks and countermeasures, security models, assumptions and proofs.

CS 746. Blockchain and Cryptocurrency. 3 Hours.
Fundamental principles of digital cash systems including Bitcoin, Ripple and other notable cryptocurrencies. Topics to be covered include how a cryptocurrency works, blockchain and other decentralized consensus protocols, proof of work, proof of stake, security and privacy of cryptocurrencies, cryptographic techniques for digital currency, and applications of blockchain in peer-to-peer trust establishment, smart contracts, digital asset management, financial exchanges and distributed autonomous organization.

CS 747. Biomedical Modeling. 3 Hours.
Modeling from biomedical datasets. Acquisition, segmentation; registration and fusion; construction of shape models; measurement; illustration modeling techniques for surgical planning.

CS 750. Theory of Computation. 3 Hours.
Topics include Turing machines, computability, computational complexity, complexity classes, P vs. NP, circuit complexity, randomized computation, interactive proofs, quantum, decidability, primality testing, and other computational models.
CS 751. Formal Language Theory. 3 Hours.
Parsing and translation theory, formal syntax, proof properties and complexity measures.

CS 752. Advanced Algorithms and Applications. 3 Hours.
The design and analysis of fundamental algorithms that underpin all fields of importance ranging from data science, business intelligence, finance and cyber security to bioinformatics. Algorithms to be covered include dynamic programming, greedy technique, linear programming, network flow, sequence matching, search and alignment, randomized algorithms, page ranking, data compression, and quantum algorithms. Efficiency of algorithms is analyzed in both memory and time costs.

CS 753. Computational Geometry. 3 Hours.
Basic methods and data structures, geometric searching, convex hulls, proximity, intersections.

CS 755. Quantum Computing. 3 Hours.
Quantum mechanics, mathematical foundations, quantum gates, quantum circuits, quantum computer, quantum programming, quantum algorithms, quantum computing methods, and applications of quantum computing.

CS 756. Web Security. 3 Hours.
The web uses advanced applications that run on a large variety of browsers that may be built using programming languages such as JavaScript, AJAX, Google Web Toolkit and Apache Struts, to name a few. This course studies how core web technologies work, the common security vulnerabilities associated with them, and how to build secure web applications that are free from these vulnerabilities.

CS 757. Penetration Testing and Vulnerability Assessment. 3 Hours.
This course focuses on penetration testing and vulnerability analysis. It introduces methodologies, techniques and tools to analyze and identify vulnerabilities in stand-alone and networked applications. It also covers methodologies for legal and standards compliance.

CS 759. Multiprocessor Programming. 3 Hours.
This course examines synchronization in concurrent systems, available atomic primitives, non-blocking programming techniques, lock-wait-freedom, transactional memory, and memory models in hardware and software. The application of these techniques to the development of scalable data structures for multi-core architectures will be a central topic of this course.

CS 760. Artificial Intelligence. 3 Hours.
Programming methodologies, logic foundations, natural language applications, expert systems.

CS 762. Natural Language Processing. 3 Hours.
This course provides a broad introduction to Natural Language Processing (Computational Linguistics) and its applications. Topics covered include language modeling with neural networks, sequence labelling algorithms (segmentation, chunking, tokenization, part-of-speech tagging and others), syntactic and dependency parsing, vector-based representation models and using Deep Learning in NLP applications. Some application areas covered include information extraction and named entity recognition, semantic role labelling, word sense disambiguation, text generation, information retrieval, question answering, machine translation and other areas as time permits. There will be a focus on Deep Learning approaches using TensorFlow, PyTorch and keras for a major student project. Jupyter Notebooks will be used for assignments.

CS 763. Data Mining. 3 Hours.
Techniques used in data mining (such as frequent sets and association rules, decision trees, Bayesian networks, classification, clustering), algorithms underlying these techniques, and applications.

CS 765. Deep Learning. 3 Hours.
Deep Learning is a rapidly growing area of machine learning that has revolutionized speech recognition, image recognition and natural language processing. This course teaches deep learning basics such as logistic regression, stochastic gradient descent, deep neural networks, convolutional neural networks and deep models for text and sequences. Students will also gain hands-on experience of using deep learning systems such as TensorFlow.

CS 767. Machine Learning. 3 Hours.
The course covers important issues in supervised learning, unsupervised learning and reinforcement learning. Topics include graphical models and Bayesian inference, hidden Markov model, mixture models and expectation maximization, density estimation, dimensionality reduction, logistic regression and neural network, support vector machines and kernel methods, and bagging and boosting.

CS 768. Introduction to the Internet of Things. 3 Hours.
Definition of the Internet of Things (IoT), history, IoT components, device specifications and examples, architectures, protocols, applications, security and privacy issues, programming and development environments for IoT, interoperability, interfacing IoT devices via web and mobile applications.

CS 770. Computer Graphics. 3 Hours.
Computer graphics is the study of the creation, manipulation, and rendering of shape models and images, for visualization, modeling, shape analysis, and animation. Topics include matrix transforms for motion and viewing, shading, viewing and camera modeling, shape modeling including meshes and smooth parametric curves and surfaces, visibility analysis, sampling, nonphotorealistic rendering, shape analysis, and texture mapping. Topics are explored through code, including OpenGL and GLSL.

CS 771. Shape Design. 3 Hours.
This course covers various aspects of the design of mathematical descriptions of shape. These geometric models are used in computer graphics, game design, automobile and aircraft design, robotics, anatomical modeling, and many other disciplines. Building geometry from images: Bezier and B-spline curves and surfaces.

CS 772. Geometric Modeling for Computer Graphics. 3 Hours.
The formal description of a motion is necessary in computer animation for graphics, game design, robotics, and many other disciplines. This course covers various aspects of the design of motions. Typical topics include position control along Bezier curves, orientation control with quaternion splines, motion planning, motion capture, camera control, collision detection, visibility analysis.

CS 773. Computer Vision and Convolutional Neural Networks. 3 Hours.
Computer vision, the study of the interpretation of images, is central to many areas of computer science, including data science and machine learning, driverless cars, biomedical computing, image computation for social media, and face detection in security. Recent algorithms for vision also leverage deep learning with convolutional neural networks for object recognition. Topics in this course include image smoothing and filtering, edge detection, segmentation, clustering, Hough transform, deformable contours, object recognition, and machine learning for object recognition using large image datasets.
CS 775. Data Visualization. 3 Hours.
The amount and complexity of data produced everyday is increasing at a staggering rate. Visualization presents an intuitive way to explore and interpret data. This course will be an introduction to the principles, and methods for effective visual analysis of data. Techniques to facilitate information visualization for non-spatial data (e.g., graphs, text, high-dimensional data) and scientific visualization for spatial data (e.g., gridded data from simulations and scanners and sensors) will be covered. Emphasis will be given to interactive approaches, especially while dealing with massive volumes of data. Topics in the domain of data analytics tightly coupled with visualization will also be covered. Students will learn fundamentals of perception, visualization techniques and methods for a broad range of data types, good practices for visualization, and will ultimately be able to develop their own visualization system.

CS 776. Structure from Motion. 3 Hours.
Structure from motion extracts geometric information from a series of images of an object, either still photographs or video streams. The position of the camera may also be computed, yielding camera paths. This topic has powerful applications in many areas, including computer graphics, computer vision, photography, visualization, and video augmentation. Projective geometry, multiple view geometry, feature extraction.

CS 777. Big Data Privacy and Security. 3 Hours.
The course covers topics pertinent to privacy and security of big data applications in practice. Topics include legal and policy aspects, privacy v.s. convenience and usefulness, ethics, compliance with GDPR, CCPA and other regional, national and global privacy regulations; techniques and best practices for security, privacy and compliance including secure and reliable tracking, tagging, audit and monitoring, storage and transmission, integration and governance, sharing, erasure, provenance, risk analysis, and privacy preservation; fairness, accountability, transparency and explainability in machine learning and artificial intelligence.

CS 778. Matrix Algorithms for Data Science. 3 Hours.
Computation with matrices and tensors is at the heart of many areas of computer science, including machine learning, computer vision, computer graphics, and self-driving cars. This course studies matrix computation (solution of linear systems, least squares, spectral analysis, and singular value decomposition) and its applications. These applications will be explored through code.

CS 779. Simulation Models and Animations. 3 Hours.
Model development using popular simulation languages, e.g., Excel or OpenOffice.org Calc Spreadsheet; interfacing to an animation system such as Proof Animation or Open_GL.

CS 780. Open Source Security Systems. 3 Hours.
An introduction to the design, implementation, evaluation and maintenance of secure software systems and applications using open source technologies, with an emphasis on hands-on experience. Topics include: open source ecosystems, open source security methodologies and models, notable open source software systems and projects, quality and security assurance through open source, open source supply chain security, major open source cryptographic packages; designing, implementing and maintaining security systems using open source technologies; assessment and regulatory compliance using open source tools, and open source hardware.

CS 781. Robot Motion. 3 Hours.
Path planning algorithms. Configuration space, potential functions, roadmaps, cell decomposition, probabilistic motion planning, compliant motion.

CS 782. Complex Networks. 3 Hours.
Introduction to complex network theory and real-world applications in biology, physics, sociology, national security and cyber enabled technology systems such as social networks. Essential network models including small world networks, scale free networks, spatial and hierarchical networks together with methods to generate them with a computer will be discussed. In addition, various techniques for the analysis of networks including network modeling and evolution, community structure, dynamic network analysis, and network visualization will be explored.

CS 783. Foundations of Data Science. 3 Hours.
Fundamental concepts and techniques in statistical inference and big data analytics. Topics include high-dimensional space, singular value decomposition, random graphs, random walks and Markov chains, data streaming and sketching, and basics of data mining and machine learning.

CS 784. Software-Defined Networking. 3 Hours.
Software defined networking (SDN) allows a logically centralized software component to manage and control the behavior of an entire network. Topics to be covered include abstractions and layered architecture of SDN, data, control and management planes, network virtualization, programming SDN, network functions (e.g., routing, load balancing and security), comparison of OpenFlow and proprietary SDN technologies, and network optimization with SDN.

J. Frank Barefield, Jr. Department of Criminal Justice

Chair: Dr. Kent R. Kerley, krkerley@uab.edu
Graduate Director: Dr. Tara D. Warner, twarner2@uab.edu

The J. Frank Barefield, Jr. Department of Criminal Justice is home to multiple graduate programs, including programs of study leading to the Master of Science in Criminal Justice (p. 98) (MSCJ), the Master of Science in Forensic Science (p. 101) (MSFS), the Master of Science in Cyber Security (p. 53) (jointly with the Department of Computer Science) and graduate certificates in Computer Forensics. The department also co-sponsors a joint MSCJ/MPA program with the Department of Political Science and Public Administration.
The certificate in Computer Forensics is designed for people who want to have experience in computer forensics, but not at the level of a degree program. It can be an add on to a current graduate program (for example, criminal justice for those who want to be a forensic examiner for a law enforcement agency, forensic science to expand skills, or for other degrees where computer forensics could be helpful). It can also be helpful to professionals working in cybersecurity, forensics, and other fields who would like to have additional training in computer forensics. NOTE: This is not an online program. Some courses may be taken on line; but most have hands on requirements that necessitate classroom attendance.

Application Deadlines

- Fall semester: July 1 for completed application
- Spring semester: November 1 deadline for completed application

Application Information

Students are accepted into the program during the Fall or Spring of each year. Students are strongly encouraged to submit their completed application materials to the Graduate School no later than July 1 for Fall admission and November 1 for Spring admission. A completed application includes the following:

- application for admission
- payment of application fee
- transcripts from all post-secondary institutions the student attended
- three letters of recommendation
- a personal statement

All applications for admission to the Certificate Program are made through the UAB Graduate School and not to the Department. Application for admission can be made online through the UAB Graduate School website or by calling (205) 934-8227.

The Graduate School requires an official transcript from every institution attended. The mailing address to send official transcripts is:

UAB Graduate School
LHL G03
1720 2nd Avenue South
Birmingham, AL 35294-0013

Application Fees

Application fees are $50 for domestic students and $60 for international students.

Admission Requirements

Applicants must supply transcripts showing completion of a bachelor’s degree from a regionally accredited college or university in the United States

International Students

International students have additional requirements and are strongly urged to consult the UAB Graduate School before seeking admission to the Computer Forensics certificate program. TOEFL and TWE are required for international applicants whose native language is not English. Minimum scores:

- TOEFL: 80
- IELTS: 6.5
- PTEA: 53

Electronic transfer code for submission of TOEFL scores is 1856.

Read about the Certificate program and course descriptions in the Graduate Catalog.

Computer Forensics Certificate

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ 501 Foundations of Digital Forensics</td>
<td>3</td>
</tr>
<tr>
<td>CJ 502 Computer Forensics</td>
<td>3</td>
</tr>
<tr>
<td>CJ 519 Investigating Online Crimes</td>
<td>3</td>
</tr>
<tr>
<td>CJ 537 Digital Media Forensics</td>
<td>3</td>
</tr>
<tr>
<td>CJ 538 Investigation of Malicious Attacks</td>
<td>3</td>
</tr>
<tr>
<td>CJ 554 Financial Crimes and Investigations</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

CJ-Criminal Justice Courses

CJ 500. Drugs and Society. 3 Hours.
This course teaches students the pharmacological effects and different categories of drugs. Different theories of drug use are discussed as well as the historical development of drug laws including different methods of regulating drug use. Various harms associated with drug use are discussed as well as the consequences of drug prohibition.

CJ 501. Foundations of Digital Forensics. 3 Hours.
This course provides those who do not have a strong background in digital forensics the foundational information and programs used in countering cybercrime. You will become familiar with common programming languages and tools used in digital forensic investigations. You will also be required to learn an industry-focused writing style.

CJ 502. Computer Forensics. 3 Hours.
Use of analytical and investigative techniques in criminal or civil litigation to identify, collect, examine and preserve evidence/information magnetically stored or encoded.

CJ 503. Restorative Justice. 3 Hours.
Introduction to, and analysis of, movement in criminal justice to institutionalize peaceful approaches to harm, problem-solving and violations of legal and human rights. Includes discussion of specific programs, critical evaluation of these programs, and analysis of future directions of the movement.

CJ 504. Serial Killers. 3 Hours.
Examination of the psychology and sociology of serial killers; case studies and agency responses to these offenders.

CJ 507. Special Topics in Criminal Justice. 3 Hours.
In-depth analysis of substantive topic in criminal justice or criminology including contemporary issues, ethics, historical review, or related topics. Varies by semester and by Instructor. May be repeated twice for credit.

CJ 508. Juvenile Delinquency. 3 Hours.
Introduction to the nature, scope, and causes of illegal behavior by juveniles, and societal responses to that behavior.

CJ 511. Juvenile Justice System. 3 Hours.
Introduction to the evolution and operation of specialized agencies and procedures to address juvenile law-breaking, including emerging problems and solutions.
CJ 512. Juvenile Law. 3 Hours.
Review and analysis of emerging statutory and case law in American juvenile justice.

CJ 519. Investigating Online Crimes. 3 Hours.
Study of cyber investigative techniques, involving focused analysis of email and websites; examination of legal process and preparing evidence in cyber crime cases.

CJ 530. Ethics and Computer Forensics. 3 Hours.
Overview of different systems of ethics; the role of ethics in computer forensics, cybercrime investigation, and information security; examination of ethical issues facing professionals involved in computer forensics, cybercrime investigation, and information security.

CJ 537. Digital Media Forensics. 3 Hours.
Digital media forensics addresses all stored digital evidence types faced by cyber security professionals and computer forensics examiners. Students will learn to analyze character encoding, file formats, and digital media, including hard drives, smartphones and other portable devices, and cloud-hosted evidence, as well as disk acquisition, duplication and evidence preservation techniques and how to apply these techniques in typical criminal investigation scenarios.

CJ 537L. Digital Media Forensics Lab. 0 Hours.
Laboratory to accompany CJ 537.

CJ 538. Investigation of Malicious Attacks. 3 Hours.
An advanced examination of analysis of malicious attacks from a criminal justice perspective. Topics include investigative techniques and practices, static and dynamic analysis, and technique and tools of investigations of malicious attacks. The structure of a malicious attack investigations from the perspectives of both an incident responder and law enforcement investigators targeting a cyber criminal through a series of case studies. Counts toward the MSCJ and Computer Forensic certificate.

Prerequisites: CJ 502 [Min Grade: C]

CJ 540. White Collar and Corporate Crime. 3 Hours.
Introduction to, and analysis of, illegal/deviant behavior occurring in organizational settings, including crimes committed by and against complex organizations.

CJ 542. Race, Crime, Gender and Social Policy. 3 Hours.
Examination of how the subordinate status of minority groups (African Americans, Hispanics, Native Americans, and Women) affects interaction with the justice system as offenders, victims, and professionals.

CJ 543. Women and the Criminal Justice System. 3 Hours.
Evaluation of the changing role of women in the justice system as victims, offenders and professionals.

CJ 550. Questioned Death Investigation. 3 Hours.
Examination of forensic pathology as used in local medical examiners' offices.

CJ 554. Financial Crimes and Investigations. 3 Hours.
Survey of the field of financial crime and its investigation, including review of various financial crimes (fraud, money laundering, cybercrime, etc.), investigative techniques, resources specific to the investigation of these crimes, and the role of financial institutions in combating these crimes.

CJ 560. Violence: An American Tradition. 3 Hours.
The course examines violence as an American tradition. Although the class examines historical acts of violence as catalysts for social change, the emphasis will be on destructive or negative violence, -- criminal violence. The class examines many different acts of violence in society as well as policies and prevention strategies.

CJ 563. Urban Structures. 3 Hours.
One of the oldest explanations of criminal behavior is that crime is concentrated in particular areas of the city. This class examines the structure of cities, how they grow, and particularly how they decline. It addresses how this decline can produce high levels of crime. It also addresses how cities can be revitalized, and how the justice system can work to reduce crime in these areas.

CJ 564. Crime and Place. 3 Hours.
One of the oldest explanations of criminal behavior is that crime is concentrated in particular areas of the city. But why is that? Is it something about the people, the place, or both? This class will look at the structure of cities, how they grow, and particularly how they decline. We will talk about how this decline can produce high levels of crime. We will also talk about how cities can be revitalized, and how the justice system can work to reduce crime in these areas.

CJ 566. Spatial Analysis. 3 Hours.
This skills-based class will introduce students to the application of geographic information systems (GIS) to crime-related topics and issues.

CJ 583. Patterns in Crime. 3 Hours.
Examination of the major correlates of crime and criminality, including age, race, sex, and socio-economic status, examination of major sources of information from which data on crime correlates are gathered.

CJ 592. Study Away in Criminal Justice. 3 Hours.
Affords students the opportunity engage in academic study outside of the U.S. to examine substantive topics in crime and justice. Students spend time at a destination point, where they engage with students and faculty members in classroom and research settings at partner post-secondary institutions, experience immersion in foreign culture, and engage in comparative analysis of policies and programs relating to crime and justice.

CJ 600. Pro-Seminar in Criminal Justice. 3 Hours.
Critical analysis of formal and informal processing of offenders by criminal justice agencies, including police, courts, and corrections; effectiveness and future directions.

CJ 601. Seminar in Criminological Theory. 3 Hours.
Classic and contemporary theoretical explanations of crime and criminality.

CJ 602. Seminar in Criminal Justice Administration. 3 Hours.
Theories of organizational structure, motivation, and management applied to criminal justice agencies.

CJ 604. Seminar in Criminal Justice Policy. 3 Hours.
Origins, formulation, implementation, and evaluation of criminal justice policy; classic and contemporary examples of policy innovations.

CJ 605. Seminar in Research Design. 3 Hours.
Quantitative methods of empirical research emphasizing criminal justice/criminological applications; current research methodologies relating to analysis of issues involving crime and criminal justice.

CJ 606. Seminar in Data Analysis. 3 Hours.
Bivariate and multivariate analyses and intepretation of results from substantive research.

CJ 675. Law Evidence and Procedure. 3 Hours.
Overview and examination of the legal aspects of physical evidence, including rules of evidence, procedural rules, and the role of expert witnesses.

CJ 688. Special Topics in Criminal Justice. 3 Hours.
Special Topics in Criminal Justice.
CJ 693. Graduate Practitioner Internship in Criminal Justice. 3 Hours.
Internship specifically arranged for practitioners internship credit for the criminal justice major.

CJ 695. Graduate Independent Study (Non-Thesis). 3 Hours.
Independent study in a substantive area of interest under the direction of a faculty member.

CJ 696. Graduate Internship in Criminal Justice. 3 Hours.
Field experience in criminal justice agency setting. May be repeated for a maximum of 6 hours credit.

CJ 697. Graduate Plan II Research Project. 3 Hours.
Optional independent study in a student's substantive area of interest under the direction of a faculty member.

Independent study in a student's substantive area of interest under the direction of a faculty member.

Admission to candidacy and successful defense of thesis proposal.
Prerequisites: GAC M

FS-Forensic Science Courses

FS 550. Instrumental Analysis. 3 Hours.
This course concerns the theory and practice of instrumental methods for the separation, identification and quantitative analysis of chemical substances. Upon completion of this course, students will have a working knowledge of analytical instrumentation typically employed in chemical/biochemical research and industry laboratories.

FS 565. Cold Case Analysis. 3 Hours.
Introduction to the methods used in analyzing unsolved cases, including innovative uses of technology, 3rd party investigators, and teams.

FS 567. Forensic Toxicology. 3 Hours.
Discussion of drugs and poisons found in biological evidence, including the pharmacokinetic and pharmacodynamic properties of drugs and poisons, evidence collection and handling, selection of the most appropriate evidence, and analytical methods of detection.

FS 572. Molecular Genetics for Forensic Scientists. 3 Hours.
Gene structure, function, and regulation. Chromosome structure and inheritance. An overview of the human genome.

FS 560. Advanced Questioned-Death Investigation. 3 Hours.
Examination of forensic pathology as used in local medical examiners' offices.

FS 653. Advanced Investigation of Fires and Explosions. 3 Hours.
Introduction to arson investigation including overview of specific techniques used in case investigation.

FS 670. Elements of Forensic Science. 3 Hours.
Introduction to philosophical considerations and historic landmarks in the discipline; overview of major sub-disciplines in forensic science; examination of the ethics and expert witnesses and their role in forensic science.

FS 671. Conventional Criminalistics. 3 Hours.
Exploration of basic methodologies and approaches for identifying, collecting, and analyzing trace and pattern evidence, including an overview of microscopy.

FS 672. Advanced Conventional Criminalistics. 3 Hours.
Examination of advanced methods for the analysis of trace and pattern evidence.
Prerequisites: FS 671 [Min Grade: C]

FS 673. Forensic Drug Analysis. 3 Hours.
Exploration of the isolation, identification, and quantification of commonly abused drugs and common poisons; interpretation of findings and correlation with legal applications.

FS 674. Molecular Biology in Forensic Science. 3 Hours.
DNA replication, transcription, and translation. Polymerase chain reaction (PCR) techniques used to amplify human DNA for identification of biological evidence. Methods for identifying and collecting blood and semen stains. DNA extraction. Short tandem repeat typing using capillary electrophoresis.
Prerequisites: FS 572 [Min Grade: C]

FS 675. Advanced Biological Methods in Forensic Science. 3 Hours.
Discussion of relevant analyses conducted for drugs and poisons occurring in biological evidence; examination of the pharmacokinetic and pharmacodynamic properties of detected substances.
Prerequisites: FS 674 [Min Grade: C]

FS 676. Advanced Drug Chem. & Toxicology. 3 Hours.
Discussion of current issues and trends in forensic DNA analysis, including advanced analysis of biological evidence samples.
Prerequisites: FS 674 [Min Grade: C]

FS 677. Advanced Drug Chem. & Toxicology. 3 Hours.
Discussion of current issues and trends in forensic DNA analysis, including advanced analysis of biological evidence samples.
Prerequisites: FS 674 [Min Grade: C]

FS 678. Forensic DNA Analysis. 3 Hours.
In-depth review of 3-4 topics in forensic science presented by practitioners in the field.

FS 679. Seminar in Forensic Science. 3 Hours.
Review of forensic science in the literature. Review, discussion, and presentation of forensic science student research.

FS 680. Graduate Internship in Forensic Science. 1-3 Hour.
Field experience in a forensic science laboratory.
Prerequisites: FS 698 [Min Grade: C] or FS 699 [Min Grade: C]

FS 686. Special Topics in Forensic Science. 3 Hours.
In-depth review of 3-4 topics in forensic science presented by practitioners in the field.

Independent study in a student's substantive area of interest under the direction of a faculty member.
Prerequisites: FS 679 [Min Grade: C]

Independent study in a student's substantive area of interest under the direction of a faculty member. Admission to candidacy and successful defense of thesis proposal.
Prerequisites: GAC M

FS 703. Laboratory Rotation III: Drug Analysis. 3 Hours.
Lab Rotation III Drug Analysis.

FS 704. Laboratory Rotation II: Biological Methods. 3 Hours.
Lab Rotation II Biol Methods.

Criminal Justice

Degree Offered: M.S.C.J.
Director: Tara D. Warner, Ph.D.
Phone: (205) 934-2069
E-mail: twarner2@uab.edu
Website: http://www.uab.edu/cas/criminaljustice/
Program Information

The criminal justice graduate program requires study in the overall discipline, with intensive focus on the areas of criminal justice policy, criminal justice administration, research methods and statistics, and criminological theory. Beyond a core set of required courses, the program features a Thesis Track (Plan I) designed for students interested in pursuing a doctorate in criminal justice or criminology, and a Non-Thesis Track (Plan II) designed for students interested in pursuing entry- or advanced-level positions in a criminal justice or related agency setting. Students selecting the Plan I option are required to complete a thesis project under the supervision of a faculty committee.

Each year, students are admitted to the MSCJ program for the fall and spring terms. The application deadline for receipt of Fall admission materials by the Graduate School is July 1. The application deadline for receipt of Spring admission materials by the Graduate School is November 1. Students admitted to the MSCJ program “in good standing” provided they meet all minimum admission criteria established by the Graduate School and the program, which include having taken an introductory-level statistics course and an introductory-level research methods course in which a grade of “B” or better was earned. Most students admitted to the program have earned a cumulative undergraduate grade point of average (GPA) of 3.0 or higher. Students who otherwise meet minimum admission criteria but who have not taken both the statistics and the research methods courses may be admitted to the MSCJ program on a “contingency” basis. Students so admitted will not be allowed to register for graduate coursework until the contingencies are removed. Students meeting the minimum requirements for admission including taking the statistics and research methods courses but who lack a substantive background in criminal justice may be admitted to the MSCJ program on a “contingency” basis, but will be required to take remedial coursework before they will be allowed to register for any graduate courses.

MSCJ Online

Students who wish to take courses online may complete all or part of the MSCJ completely on line. There is no “online degree,” it is the same degree regardless of how the courses are taken. Students may take some courses in class and some online, or may complete the MSCJ completely online.

The Online MSCJ Degree is designed to mirror the in-class Plan II degree. Students enrolled in the online degree are required to take the same courses as the Plan II degree — but the courses may be taken 100% online. The degree is structured so that students can graduate in 4 semesters (fall, spring, summer, fall) by taking 9 hours each semester.

Under special circumstances, and with permission from the Program Director, students may be allowed to complete a thesis through the online MSCJ program.

Financial Aid

Students who are admitted to the M.S.C.J. program “in good standing” are eligible to receive department-based financial aid in the form of graduate assistantships or scholarships that are awarded on a competitive basis. Students are typically notified of such awards in early June of each year for the following fall.

Additional Information

Deadline for Entry Term(s):	Fall and Spring
Deadline for All Application Materials to be in the Graduate School Office:	July 1 for Fall and November 1 for Spring
Number of Evaluation Forms Required:	Three
Entrance Tests	TOEFL and TWE required for international applicants whose native language is not English.

Contact Information

For more information, contact Dr. Tara D. Warner, Department of Criminal Justice, University of Alabama at Birmingham, 1201 University Boulevard Office Building, Suite 210, Birmingham, Alabama 35294-4562. Telephone: 205-934-2069 E-mail: twarner2@uab.edu Website: http://www.uab.edu/cas/criminaljustice/

Master of Science in Criminal Justice

Plan I - Thesis - 30 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ 583 Patterns in Crime</td>
<td>3</td>
</tr>
<tr>
<td>CJ 600 Pro-Seminar in Criminal Justice</td>
<td>3</td>
</tr>
<tr>
<td>CJ 601 Seminar in Criminological Theory</td>
<td>3</td>
</tr>
<tr>
<td>CJ 604 Seminar in Criminal Justice Policy</td>
<td>3</td>
</tr>
<tr>
<td>CJ 605 Seminar in Research Design</td>
<td>3</td>
</tr>
<tr>
<td>CJ 606 Seminar in Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Thesis Research</td>
<td>6</td>
</tr>
<tr>
<td>CJ 699 Thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>CJ Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 30

Notes:
1. Students can take up to 6 hours of independent study (CJ 695) and/or up to 9 hours of directed non-thesis research (CJ 698)
3. CJ 500+ level courses or substitute approved by a graduate program director

Plan II - Non-Thesis - 33 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ 583 Patterns in Crime</td>
<td>3</td>
</tr>
<tr>
<td>CJ 600 Pro-Seminar in Criminal Justice</td>
<td>3</td>
</tr>
<tr>
<td>CJ 601 Seminar in Criminological Theory</td>
<td>3</td>
</tr>
<tr>
<td>CJ 603 Seminar in Criminal Justice Administration</td>
<td>3</td>
</tr>
<tr>
<td>CJ 604 Seminar in Criminal Justice Policy</td>
<td>3</td>
</tr>
<tr>
<td>CJ 605 Seminar in Research Design</td>
<td>3</td>
</tr>
<tr>
<td>CJ 606 Seminar in Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>
Requirements for a Dual Degree - Master of Science in Criminal Justice and Master of Public Administration

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CJ 583 Patterns in Crime</td>
<td>3</td>
</tr>
<tr>
<td>CJ 600 Pro-Seminar in Criminal Justice</td>
<td>3</td>
</tr>
<tr>
<td>CJ 601 Seminar in Criminological Theory</td>
<td>3</td>
</tr>
<tr>
<td>CJ 604 Seminar in Criminal Justice Policy</td>
<td>3</td>
</tr>
<tr>
<td>CJ 605 Seminar in Research Design</td>
<td>3</td>
</tr>
<tr>
<td>CJ 606 Seminar in Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Electives 1</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

1. Other courses at 500 level or above may apply with CJ Grad Director approval, except courses in MPA that are required for the MPA.

2. 500 level or above.

Courses

CJ 500. Drugs and Society. 3 Hours.
This course teaches students the pharmacological effects and different categories of drugs. Different theories of drug use are discussed as well as the historical development of drug laws including different methods of regulating drug use. Various harms associated with drug use are discussed as well as the consequences of drug prohibition.

CJ 501. Foundations of Digital Forensics. 3 Hours.
This course provides those who do not have a strong background in digital forensics the foundational information and programs used in countering cybercrime. You will become familiar with common programming languages and tools used in digital forensic investigations. You will also be required to learn an industry-focused writing style.

CJ 502. Computer Forensics. 3 Hours.
Use of analytical and investigative techniques in criminal or civil litigation to identify, collect, examine and preserve evidence/information magnetically stored or encoded.

CJ 503. Restorative Justice. 3 Hours.
Introduction to, and analysis of, movement in criminal justice to institutionalize peaceful approaches to harm, problem-solving and violations of legal and human rights. Includes discussion of specific programs, critical evaluation of these programs, and analysis of future directions of the movement.

CJ 504. Serial Killers. 3 Hours.
Examination of the psychology and sociology of serial killers; case studies and agency responses to these offenders.

CJ 507. Special Topics in Criminal Justice. 3 Hours.
In-depth analysis of substantive topic in criminal justice or criminology including contemporary issues, ethics, historical review, or related topics. Varies by semester and by Instructor. May be repeated twice for credit.

CJ 508. Juvenile Delinquency. 3 Hours.
Introduction to the nature, scope, and causes of illegal behavior by juveniles, and societal responses to that behavior.

CJ 511. Juvenile Justice System. 3 Hours.
Introduction to the evolution and operation of specialized agencies and procedures to address juvenile law-breaking, including emerging problems and solutions.

CJ 512. Juvenile Law. 3 Hours.
Review and analysis of emerging statutory and case law in American juvenile justice.

CJ 519. Investigating Online Crimes. 3 Hours.
Study of cyber investigative techniques, involving focused analysis of email and websites; examination of legal process and preparing evidence in cyber crime cases.

CJ 530. Ethics and Computer Forensics. 3 Hours.
Overview of different systems of ethics; the role of ethics in computer forensics, cybercrime investigation, and information security; examination of ethical issues facing professionals involved in computer forensics, cybercrime investigation, and information security.

CJ 537. Digital Media Forensics. 3 Hours.
Digital media forensics addresses all stored digital evidence types faced by cyber security professionals and computer forensics examiners. Students will learn to analyze character encoding, file formats, and digital media, including hard drives, smartphones and other portable devices, and cloud-hosted evidence, as well as disk acquisition, duplication and evidence preservation techniques and how to apply these techniques in typical criminal investigation scenarios.

CJ 537L. Digital Media Forensics Lab. 0 Hours.
Laboratory to accompany CJ 537.

CJ 538. Investigation of Malicious Attacks. 3 Hours.
An advanced examination of analysis of malicious attacks from a criminal justice perspective. Topics include investigative techniques and practices, static and dynamic analysis, and technique and tools of investigations of malicious attacks. The structure of a malicious attack investigations from the perspectives of both an incident responder and law enforcement investigators targeting a cyber criminal through a series of case studies. Counts toward the MSCJ and Computer Forensic certificate.

Prerequisites: CJ 502 [Min Grade: C]

CJ 540. White Collar and Corporate Crime. 3 Hours.
Introduction to, and analysis of, illegal/deviant behavior occurring in organizational settings, including crimes committed by and against complex organizations.

CJ 542. Race, Crime, Gender and Social Policy. 3 Hours.
Examination of how the subordinate status of minority groups (African Americans, Hispanics, Native Americans, and Women) affects interaction with the justice system as offenders, victims, and professionals.

CJ 543. Women and the Criminal Justice System. 3 Hours.
Evaluation of the changing role of women in the justice system as victims, offenders and professionals.

CJ 550. Questioned Death Investigation. 3 Hours.
Examination of forensic pathology as used in local medical examiners’ offices.

CJ 554. Financial Crimes and Investigations. 3 Hours.
Survey of the field of financial crime and its investigation, including review of various financial crimes (fraud, money laundering, cybercrime, etc.), investigative techniques, resources specific to the investigation of these crimes, and the role of financial institutions in combating these crimes.
CJ 560. Violence: An American Tradition. 3 Hours.
The course examines violence as an American tradition. Although the class examines historical acts of violence as catalysts for social change, the emphasis will be on destructive or negative violence, -- criminal violence. The class examines many different acts of violence in society as well as policies and prevention strategies.

CJ 563. Urban Structures. 3 Hours.
One of the oldest explanations of criminal behavior is that crime is concentrated in particular areas of the city. This class examines the structure of cities, how they grow, and particularly how they decline. It addresses how this decline can produce high levels of crime. It also addresses how cities can be revitalized, and how the justice system can work to reduce crime in these areas.

CJ 564. Crime and Place. 3 Hours.
One of the oldest explanations of criminal behavior is that crime is concentrated in particular areas of the city. But why is that? Is it something about the people, the place, or both? This class will look at the structure of cities, how they grow, and particularly how they decline. We will talk about how this decline can produce high levels of crime. We will also talk about how cities can be revitalized, and how the justice system can work to reduce crime in these areas.

CJ 566. Spatial Analysis. 3 Hours.
This skills-based class will introduce students to the application of geographic information systems (GIS) to crime-related topics and issues.

CJ 583. Patterns in Crime. 3 Hours.
Examination of the major correlates of crime and criminality, including age, race, sex, and socio-economic status, examination of major sources of information from which data on crime correlates are gathered.

CJ 592. Study Away in Criminal Justice. 3 Hours.
Affords students the opportunity engage in academic study outside of the U.S. to examine substantive topics in crime and justice. Students spend time at a destination point, where they engage with students and faculty members in classroom and research settings at partner post-secondary institutions, experience immersion in foreign culture, and engage in comparative analysis of policies and programs relating to crime and justice.

CJ 600. Pro-Seminar in Criminal Justice. 3 Hours.
Critical analysis of formal and informal processing of offenders by criminal justice agencies, including police, courts, and corrections; effectiveness and future directions.

CJ 601. Seminar in Criminological Theory. 3 Hours.
Classic and contemporary theoretical explanations of crime and criminality.

CJ 603. Seminar in Criminal Justice Administration. 3 Hours.
Theories of organizational structure, motivation, and management applied to criminal justice agencies.

CJ 604. Seminar in Criminal Justice Policy. 3 Hours.
Origins, formulation, implementation, and evaluation of criminal justice policy; classic and contemporary examples of policy innovations.

CJ 605. Seminar in Research Design. 3 Hours.
Quantitative methods of empirical research emphasizing criminal justice/criminological applications; current research methodologies relating to analysis of issues involving crime and criminal justice.

CJ 606. Seminar in Data Analysis. 3 Hours.
Bivariate and multivariate analyses and interpretation of results from substantive research.

CJ 675. Law Evidence and Procedure. 3 Hours.
Overview and examination of the legal aspects of physical evidence, including rules of evidence, procedural rules, and the role of expert witnesses.

CJ 688. Special Topics in Criminal Justice. 3 Hours.
Special Topics in Criminal Justice.

CJ 693. Graduate Practitioner Internship in Criminal Justice. 3 Hours.
Internship specifically arranged for practitioners internship credit for the criminal justice major.

CJ 695. Graduate Independent Study (Non-Thesis). 3 Hours.
Independent study in a substantive area of interest under the direction of a faculty member.

CJ 696. Graduate Internship in Criminal Justice. 3 Hours.
Field experience in criminal justice agency setting. May be repeated for a maximum of 6 hours credit.

CJ 697. Graduate Plan II Research Project. 3 Hours.
Optional independent study in a student's substantive area of interest under the direction of a faculty member.

Independent study in a student's substantive area of interest under the direction of a faculty member.

Admission to candidacy and successful defense of thesis proposal.

Prerequisites: GAC M

Forensic Science

Degree Offered
M.S.F.S.

Director
Elizabeth Gardner, Ph.D.

Phone
(205) 934-2069

E-mail
eagard@uab.edu

Website
http://www.uab.edu/cas/justice-sciences/graduate-programs/master-of-science-in-forensic-science-msfs

Program Information

The Master of Science in Forensic Science program is designed to prepare individuals for careers in various forensic science and conventional analytical laboratories, emphasizing the application of scientific methods and technologies to legal proceedings. With thoughtful planning, many students have found the program helpful in building a strong foundation to pursue doctoral studies.

The program support includes many UAB faculty members from other departments, personnel from the Alabama Department of Forensic Sciences’ Birmingham laboratory, the Jefferson County Medical Examiner’s Office, and local forensic science-related private institutions. In addition, the program maintains a close working relationship with the CODIS, Drug Chemistry, and Toxicology disciplines of the Alabama Department of Forensic Sciences and hosts the editorial offices of the Forensic Science Review (the only review journal in forensic science).
Faculty research and practice focus especially on forensic aspects of drug chemistry and DNA-based identification.

Minimum admission requirements include a B.S. degree from accredited programs in Chemistry, Biology, or Forensic Science. Coursework is designed for qualified students to begin in fall and complete the program in 21 months. Admission is granted for the fall term only.

According to the National Institute of Justice, students wishing to pursue a career in forensic science should be aware that positions in these fields usually require extensive background checks similar to those required for law enforcement personnel, and are likely a condition of employment. (National Institute of Justice, 2004. Education and Training in Forensic Science: A Guide for Forensic Science Laboratories, Educational Institutions, and Students. NCJ Report 203099. Washington, DC: United States Department of Justice, pp. 7-10).

Graduates from the UAB Master of Science in Forensic Science program are very successful in gaining employment within a year of graduating. Graduates from the MSFS are working in a laboratory or continuing their education (e.g., pursuing a doctorate, professional degree, or second master's degree). Many of the graduates are employed in forensic science laboratories ranging from those operated by the Alabama Department of Forensic Sciences to the Greensboro N.C. Police Department.

Additional Information

<table>
<thead>
<tr>
<th>Deadline for Entry Term(s)</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office</td>
<td>January 31. Later applications will be considered before July 30th if vacancies are available</td>
</tr>
<tr>
<td>Number of Evaluation Forms Required</td>
<td>Three</td>
</tr>
<tr>
<td>Entrance Tests</td>
<td>GRE (TOEFL and TWE also required for international applicants whose native language is not English.)</td>
</tr>
</tbody>
</table>

For detailed information, contact Dr. Elizabeth Gardner, UAB Department of Justice Sciences, 1201 University Blvd., Suite 210, Birmingham, Alabama 35294-4562.

Master of Science in Forensic Science

Must earn a minimum of 3.0 in required courses. An overall minimum GPA of 3.0 is required to remain in good standing.

Plan I - 40 hours with Thesis

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 708 Writing Successfully</td>
<td>1</td>
</tr>
<tr>
<td>FS 567 Forensic Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>FS 670 Elements of Forensic Science</td>
<td>3</td>
</tr>
<tr>
<td>FS 671 Conventional Criminalistics</td>
<td>3</td>
</tr>
<tr>
<td>FS 673 Forensic Drug Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FS 674 Molecular Biology in Forensic Science</td>
<td>3</td>
</tr>
<tr>
<td>CJ 675 Law Evidence and Procedure</td>
<td>3</td>
</tr>
<tr>
<td>Forensic Seminar</td>
<td>6</td>
</tr>
<tr>
<td>FS 679 Seminar in Forensic Science (Course should be taken twice for a total of six hours.)</td>
<td></td>
</tr>
</tbody>
</table>

Directed Research

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 699 Thesis Research in Forensic Science</td>
</tr>
</tbody>
</table>

Leveling Courses (requirements vary by undergraduate background)

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 550 Instrumental Analysis</td>
</tr>
<tr>
<td>CH 560 Fundamentals of Biochemistry</td>
</tr>
<tr>
<td>CH 555 Quantitative Analysis for Graduate Study & 555L and Quantitative Analysis I for Graduate Study Lab</td>
</tr>
<tr>
<td>BY 511 Molecular Genetics</td>
</tr>
<tr>
<td>FS 686 Special Topics in Forensic Science</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 672 Advanced Conventional Criminalistics</td>
</tr>
<tr>
<td>FS 676 Advanced Biological Methods in Forensic Science</td>
</tr>
<tr>
<td>FS 677 Advanced Drug Chem. & Toxicology</td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
</tr>
<tr>
<td>BST 601 Biostatistics</td>
</tr>
<tr>
<td>FS 680 Graduate Internship in Forensic Science</td>
</tr>
</tbody>
</table>

Plan II - 40 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 708 Writing Successfully</td>
<td>1</td>
</tr>
<tr>
<td>FS 567 Forensic Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>FS 670 Elements of Forensic Science</td>
<td>3</td>
</tr>
<tr>
<td>FS 671 Conventional Criminalistics</td>
<td>3</td>
</tr>
<tr>
<td>FS 674 Molecular Biology in Forensic Science</td>
<td>3</td>
</tr>
<tr>
<td>FS 673 Forensic Drug Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CJ 675 Law Evidence and Procedure</td>
<td>3</td>
</tr>
</tbody>
</table>

Directed Research (6 hours)

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 679 Seminar in Forensic Science</td>
</tr>
<tr>
<td>FS 679 Directed Research (Non-Thesis)</td>
</tr>
</tbody>
</table>

Forensic Seminar (taken twice)

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 679 Seminar in Forensic Science</td>
</tr>
</tbody>
</table>

Leveling Courses (requirements vary by undergraduate background)

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 550 Instrumental Analysis</td>
</tr>
<tr>
<td>CH 560 Fundamentals of Biochemistry</td>
</tr>
<tr>
<td>CH 555 Quantitative Analysis for Graduate Study & 555L and Quantitative Analysis I for Graduate Study Lab</td>
</tr>
<tr>
<td>BY 511 Molecular Genetics</td>
</tr>
<tr>
<td>FS 686 Special Topics in Forensic Science</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 672 Advanced Conventional Criminalistics</td>
</tr>
<tr>
<td>FS 676 Advanced Biological Methods in Forensic Science</td>
</tr>
<tr>
<td>FS 677 Advanced Drug Chem. & Toxicology</td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
</tr>
<tr>
<td>BST 601 Biostatistics</td>
</tr>
<tr>
<td>FS 680 Graduate Internship in Forensic Science</td>
</tr>
</tbody>
</table>

Total Hours

| 40 |
Courses

FS 550. Instrumental Analysis. 3 Hours.
This course concerns the theory and practice of instrumental methods for the separation, identification and quantitative analysis of chemical substances. Upon completion of this course, students will have a working knowledge of analytical instrumentation typically employed in chemical/biochemical research and industry laboratories.

FS 565. Cold Case Analysis. 3 Hours.
Introduction to the methods used in analyzing unsolved cases, including innovative uses of technology, 3rd party investigators, and teams.

FS 567. Forensic Toxicology. 3 Hours.
Discussion of drugs and poisons found in biological evidence, including the pharmacokinetic and pharmacodynamic properties of drugs and poisons, evidence collection and handling, selection of the most appropriate evidence, and analytical methods of detection.

FS 572. Molecular Genetics for Forensic Scientists. 3 Hours.
Gene structure, function, and regulation. Chromosome structure and inheritance. An overview of the human genome.

FS 650. Advanced Questioned-Death Investigation. 3 Hours.
Examination of forensic pathology as used in local medical examiners’ offices.

FS 653. Advanced Investigation of Fires and Explosions. 3 Hours.
Introduction to arson investigation including overview of specific techniques used in case investigation.

FS 670. Elements of Forensic Science. 3 Hours.
Introduction to philosophical considerations and historic landmarks in the discipline; overview of major sub-disciplines in forensic science: examination of the ethics and expert witnesses and their role in forensic science.

FS 671. Conventional Criminalistics. 3 Hours.
Exploration of basic methodologies and approaches for identifying, collecting, and analyzing trace and pattern evidence, including an overview of microscopy.

FS 672. Advanced Conventional Criminalistics. 3 Hours.
Examination of advanced methods for the analysis of trace and pattern evidence.
Prerequisites: FS 671 [Min Grade: C]

FS 673. Forensic Drug Analysis. 3 Hours.
Exploration of the isolation, identification, and quantification of commonly abused drugs and common poisons; interpretation of findings and correlation with legal applications.

FS 674. Molecular Biology in Forensic Science. 3 Hours.
DNA replication, transcription, and translation. Polymerase chain reaction (PCR) techniques used to amplify human DNA for identification of biological evidence. Methods for identifying and collecting blood and semen stains. DNA extraction. Short tandem repeat typing using capillary electrophoresis.
Prerequisites: FS 572 [Min Grade: C]

FS 676. Advanced Biological Methods in Forensic Science. 3 Hours.
Discussion of current issues and trends in forensic DNA analysis, including advanced analysis of biological evidence samples.
Prerequisites: FS 674 [Min Grade: C]

FS 677. Advanced Drug Chem. & Toxicology. 3 Hours.
Discussion of relevant analyses conducted for drugs and poisons occurring in biological evidence; examination of the pharmacokinetic and pharmacodynamic properties of detected substances.
Prerequisites: FS 567 [Min Grade: C]

FS 679. Seminar in Forensic Science. 3 Hours.
Review of forensic science in the literature. Review, discussion, and presentation of forensic science student research.

FS 680. Graduate Internship in Forensic Science. 1-3 Hour.
Field experience in a forensic science laboratory.
Prerequisites: FS 698 [Min Grade: C] or FS 699 [Min Grade: C]

FS 686. Special Topics in Forensic Science. 3 Hours.
In-depth review of 3-4 topics in forensic science presented by practitioners in the field.

Independent study in a student’s substantive area of interest under the direction of a faculty member.
Prerequisites: FS 679 [Min Grade: C]

Independent study in a student’s substantive area of interest under the direction of a faculty member. Admission to candidacy and successful defense of thesis proposal.
Prerequisites: GAC M

FS 703. Laboratory Rotation III: Drug Analysis. 3 Hours.
Lab Rotation III Drug Analysis.

FS 704. Laboratory Rotation II: Biological Methods. 3 Hours.
Lab Rotation II Biol Methods.

English

Degree Offered: M.A.
Director: Rebecca Bach, Ph.D.
Phone: (205) 934-4250
Email: rbach@uab.edu
Website: www.uab.edu/cas/english

Admission Requirements

For admission in good standing, applicants must meet the Graduate School's requirements for scholarship. The applicant should normally have finished the requirements for an undergraduate degree in English with at least a 3.0 GPA. A generally well-prepared applicant who is lacking in some part of the undergraduate preparation may be admitted with the provision that any deficiencies be removed by a time specified by the graduate program director.

Program Description

Students in the graduate program are required to take a total of 31 hours of coursework including one hour of EH 605 (“Introduction to Graduate Studies in English”) and at least nine hours of literature classes. In addition, Plan I students must take six hours of EH 699 (“Thesis Research”) and must complete and successfully defend a masters thesis. All students must take at least 15 hours of coursework at the 600-level, including no more than three hours of EH 698 or EH 699. More detailed coursework options are presented on the English Department website.
Additional Information

Deadline for Entry Term(s): Each semester
Deadline for All Application Materials to be in the Graduate School Office: Six weeks before term begins
Number of Evaluation Forms Required: Three

For detailed information, contact Dr. Rebecca Bach, Graduate Program Director, Department of English, UH 5065, 1402 10th Avenue South, Birmingham, AL 35294-1260.

Telephone 205-934-4250
E-mail rbach@uab.edu
Web https://www.uab.edu/cas/english/graduate

Master of Arts in English

Students in the graduate program are required to take a total of 31 hours of coursework including one hour of EH 605 (“Introduction to Graduate Studies in English”) and at least nine hours of literature classes. In addition, Plan I students must take six hours of EH 699 (“Thesis Research”) and must complete and successfully defend a masters thesis; Plan II students must take three hours of EH 697 (“30-Books Semester”) and must propose and then pass a “30-books” examination. All students must take at least 15 hours of coursework at the 600-level, including no more than three hours of EH 698 or EH 699. More detailed coursework options are presented on the English Department website.

Plan I - 31 hours with Thesis

Requirements Hours
EH 605 Introduction to Graduate Studies in English 1
Select three Literature courses 1 9
Select any five English graduate courses. 15
EH 699 Thesis Research 6

Total Hours 31

Plan II - 31 hours with 30-Books Exam

Requirements Hours
EH 605 Introduction to Graduate Studies in English 1
Select three Literature courses 1 9
Select any six English graduate courses. 18
EH 697 30-Books Semester 3

Total Hours 31

1 Literature courses: EH 511, EH 512, EH 513, EH 514, EH 515, EH 516, EH 519, EH 520, EH 521, EH 522, EH 523, EH 524, EH 526, EH 527, EH 531 EH 543, EH 544, EH 546, EH 547, EH 548, EH 560, EH 561, EH 562, EH 563, EH 564, EH 565, EH 566, EH 567, EH 568, EH 569, EH 570, EH 571, EH 572, EH 573, EH 574, EH 575, EH 576, EH 578, EH 580, EH 581, EH 582, EH 583, EH 585, EH 586, EH 587, EH 588, EH 589, EH 591, EH 677, EH 690, EH 693

Courses

EH 501. Tutoring Writing. 3 Hours.
Designed to improve writing skills through understanding theories of tutoring and to prepare future teachers for tutor training and writing center development.

EH 502. Writing in Popular Periodicals. 3 Hours.
An exploration of current theory regarding the production, distribution, and consumption of popular periodicals and practice contributing to these sources.

EH 503. Business Writing. 3 Hours.
Advanced writing concentration on letters, resumes, and professional reports.

EH 504. Technical Writing. 3 Hours.
Advanced writing concentrating on short informal and long formal reports.

EH 505. Poetry Writing Workshop. 3 Hours.
Advanced work in poetry through critique of student writing. This course may be taken twice for a maximum 6 semester hours of credit.

EH 507. Creative Nonfiction Writing Workshop. 3 Hours.
Advanced work in creative nonfiction through critique of student writing. This course may be taken twice for a maximum 6 semester hours of credit.

EH 509. Fiction Writing Workshop. 3 Hours.
Advanced work in prose fiction through critique of student writing. This course may be taken twice for a maximum 6 semester hours of credit.

EH 510. Fiction Writing Workshop. 3 Hours.
Advanced work in prose fiction through critique of student writing. May be taken twice for credit.

EH 512. Forms of Poetry. 3 Hours.
Songs, sonnets, elegies, odes, and dramatic monologues.

EH 515. Forms of Fiction. 3 Hours.
Intensive study of one or more aspects of fiction. Includes writing and critique in a workshop setting.

EH 519. Young Adult Literature. 3 Hours.
Close reading of young adult literature; its form and history, its assumptions about adolescent psychology, and its literary relationship to the traditional canon.

EH 522. African Literature. 3 Hours.
Selected novels, short stories, autobiographies, folk tales, drama, essays, films, songs from pre-colonial Africa to the present, including works by Emecheta, wa Thiong o, Head, Achebe, Ba, Armah, Laye, Saith, Soyinka, and Abrahams.

EH 523. African Women’s Literature. 3 Hours.
Works by African women from pre-colonial Africa to present.

EH 524. African-American Special Topics. 3 Hours.
See Class Schedule for topic. May be repeated.

EH 526. Pre-1800 Literature: Special Topics. 3 Hours.
See Class Schedule for topic. May be repeated.

EH 527. Post-1800 Literature: Special Topics. 3 Hours.
See Class Schedule for topic. May be repeated.

EH 529. Creative Writing: Special Topics. 3 Hours.
See Class Schedule for topic. May be repeated.

EH 530. Professional Writing: Special Topics. 3 Hours.
See Class Schedule for topic. May be repeated.
EH 531. Special Topics in Film. 3 Hours.
In-depth study of a specialized topic in film. The course may focus on a particular national cinema (American, Italian, Japanese, etc.); one or more directors (Welles, Hitchcock, Kubrick, etc.); a development in film history or genre (the studio system, the French New Wave, the musical, etc.); or issues in visual representation (film theory; adaptation; sexuality in film, etc.).

EH 533. Academic Writing. 3 Hours.
Introduction, for students in all disciplines, to the process of scholarly inquiry and the most common genres of academic writing, including critiques, bibliographies, proposals, conference presentations, and articles.

EH 536. Workshop Writing for Young Ppl. 3 Hours.
Workshop in writing for young people through critique of student writing.

EH 541. Literary Theory and Criticism I: Ancients to 19 ce. 3 Hours.
Introduction to theories of art and literary production in the contexts of aesthetics and culture from Plato to the end of the nineteenth century.

EH 542. Literary Theory and Criticism II: 20th Cent-Present. 3 Hours.
Introduction to theories of art and literary production in the contexts of aesthetics and culture from Russian formalism to the present.

EH 544. Women's Literature and Theory. 3 Hours.
Literary works and theoretical perspectives of Angelou, Chopin, Hong, Kingston, Hurston, Walker, Woolf, Plath, and others.

EH 546. African-American Autobiography. 3 Hours.
Personal narrative by African Americans, including texts by Wheatley, Douglass, Jacobs, Wilson, Dubois, Johnson, Hurston, Hughes, Wright, Baldwin, Angelou, and Moody. 3 hours.

EH 547. African-American Dramatic Tradition. 3 Hours.
Development of African American Dramatic Tradition from the nineteenth century through the Harlem Renaissance and Black Arts Movement to Contemporary Postmodernism, including Brown, Hurston, Baraka, and Wilson. 3 hours.

EH 548. African-American Poetry Tradition. 3 Hours.
Development of African American Poetry from its early works to the present, including Wheatley, Dunbar, Hughes, Brooks, and Angelou. 3 hours.

EH 550. Advanced Grammar. 3 Hours.
Present-day English grammar.

EH 551. Generative Grammar. 3 Hours.
Advanced analysis of English grammar with emphasis on Chomskyan generative grammar.

EH 552. Grammar and Usage for English Teachers. 3 Hours.
Intensive review of structure of English; usage, punctuation, and style as these relate to grammar.

EH 553. Advanced History of the English Language. 3 Hours.
Advanced topics.

EH 554. The Biology of Language. 3 Hours.
Vocal tract and neuroanatomical specializations for language, language acquisition, genetic language disorders, language and other primates, and evolution of language.

EH 555. Digital Publishing. 3 Hours.
Introduces students to new technologies for digital communication and the ways in which these technologies influence how people read, write, interact with, and share information.

EH 557. Writing and Medicine. 3 Hours.
Intensive examination of public discourse focusing on health, illness, and medical practice and production of texts as health consumers and health practitioners.

EH 558. Science Writing. 3 Hours.
Instruction in the research methods and writing genres characteristic of science writing. Emphasis on understanding scientific language and composing documents about science in multiple formats and for multiple audiences.

EH 559. Discourse Analysis. 3 Hours.
Intensive studies in public discourse, with particular emphasis on the social politics of linguistic choices.

EH 561. American Literature 1620-1820. 3 Hours.
Representative American literature from colonial period to Washington Irving.

EH 562. American Literature 1820-1870. 3 Hours.
Representative writers such as Alcott, Cooper, Poe, Hawthorne, Melville, Emerson, Fuller, Fern, Harper, Thoreau, Jacobs, Whitman, Stowe, and Dickinson.

EH 563. American Literature 1870-1914. 3 Hours.
Realism and naturalism: Twain, James, Howell, Crane, Jewett, Wharton, Dreiser, Norris, and Chopin, among others.

EH 564. American Literature 1914-1945. 3 Hours.
Selected fiction, poetry, and drama of major American writers such as Eliot, Faulkner, Hemingway, Hurston, o Neill, and Wright.

EH 566. The Slave Narrative and Its Literary Expressions. 3 Hours.

EH 567. Black Women Writers. 3 Hours.
Evolution of Afrocentric feminist consciousness through early and contemporary writings.

EH 568. The Harlem Renaissance. 3 Hours.
Black writers during Harlem Renaissance movement. Includes Johnson, Toomer, Murray, Larsen, McKay, Thurman, Reed, and Morrison.

EH 569. Medieval Culture: Literature and Society. 3 Hours.
Exploration through art, literature, and history of dominant themes of Middle Ages, from Germans to Dante and Chaucer.

EH 570. Arthurian Legend. 3 Hours.
King Arthur and his knights in literature from sixth-century history and formulation of legend in Middle Ages to its use in twentieth century.

EH 571. Beowulf in Context. 3 Hours.
An interdisciplinary course in Anglo-Saxon art and culture bearing upon Beowulf, close study of the Norse analogues of the Old English epic. 3 hours.

EH 572. Introduction to Old English. 3 Hours.
An introduction to the language and literature of early medieval England (pre-1100), culminating in analyses of The Dream of the Rood and The Battle of Maldon in the original alliterative verse.

EH 574. English Renaissance Drama (Excluding Shakespeare). 3 Hours.
Plays by Marlowe, Kyd, Jonson, Tourneur, Webster, Middleton, and Ford.

EH 575. English Renaissance Poetry and Prose. 3 Hours.
Topics vary. Broad survey of period or close analysis of genre, theme, or author.
EH 576. Shakespeare. 3 Hours.
King Lear, Othello, and three other plays. Required for English majors.

EH 578. Milton. 3 Hours.
Selected prose and poetry, including Paradise Lost. 3 hours.

EH 581. The Eighteenth Century: Literature and Culture. 3 Hours.
Interdisciplinary exploration of texts that focuses on social, economic, and political backgrounds. Topics and authors vary.

EH 582. The Eighteenth Century: Theory and Interpretation. 3 Hours.
Formal and philosophical implications of selected texts. Authors and topics vary.

EH 583. British Romanticism. 3 Hours.
Blake, Wordsworth, Coleridge, Byron, Shelley, Keats, Hazlitt, Lamb, and DeQuincy.

EH 585. British Victorian Poetry. 3 Hours.
Tennyson, Browning, Arnold, and others.

EH 588. British Novel: The Modern Age. 3 Hours.
Conrad, Lawrence, Joyce, Woolf, Ford, and others. 3 hours.

EH 589. James Joyce. 3 Hours.
Study of James Joyce’s fiction through Ulysses.

EH 591. Major Writers. 3 Hours.
See class schedule for topic. May be repeated.

EH 592. Special Topics. 3 Hours.
See class schedule for topic. May be repeated for total of 9 hours.

EH 593. Special Topics in Linguistics. 3 Hours.
See course schedule for topic.
Prerequisites: EH 250 [Min Grade: C] or EH 251 [Min Grade: C]

Non-Thesis Research. See Graduate Director for procedure to apply for this course.

EH 599. Film Thesis. 3 Hours.
Thesis on an independently designed topic within film history or film aesthetics, allowing the completion of the interdisciplinary film minor.
Prerequisites: EH 210 [Min Grade: C]

EH 600. Seminar: Engineering Communication. 3 Hours.
Strengthens engineering students understanding of and application of effective communication practices in the workplace. Subjects covered included techniques of audience analysis; production of problem/solution formats; analysis and creation of reports, journal articles, and proposals; and presentation of ideas in written and oral formats.

EH 601. Seminar: Classical Rhetorical Theory. 3 Hours.
Review of Rhetoric from Classical period through Renaissance with emphasis on the works of Plato and Aristotle.

EH 602. Seminar: Modern Rhetorical Theory. 3 Hours.
Advanced studies in twentieth-century theories of rhetoric; themes include Marxism, feminism, philosophy, semantics, and ideology.

EH 604. Research Methods in Composition and Rhetoric. 3 Hours.
Examination of traditional and current methods of research in composition and rhetoric with practice designing and implementing research tied to students interests.

EH 605. Introduction to Graduate Studies in English. 1 Hour.
An introduction to the UAB Graduate Program in English and to the discipline of English. Topics covered will include the discussion of the role of graduate students and graduate assistants, effective use of the university libraries, responsible conduct of research, genres of scholarly publication, conferences and professional societies, the academic job market, etc.

EH 615. Graduate Poetry Writing Workshop. 3 Hours.
Extensive work in poetry resulting in a manuscript of publishable quality.

EH 617. Graduate Creative Nonfiction Writing Workshop. 3 Hours.
Extensive work in creative nonfiction resulting in a manuscript of publishable quality.

EH 619. Graduate Fiction Writing Workshop. 3 Hours.
Extensive work in fiction resulting in a manuscript of publishable quality.

EH 644. Practicum in Teaching Lit.. 3 Hours.
This course focuses on the methods and pedagogical philosophy of teaching English and American literature at the early post-secondary level. Required admission to the MA program in English or registration as a non-degree graduate student.

EH 646. Seminar: Practicum in Teaching Writing. 3 Hours.
Theory and practice of teaching writing at the postsecondary level.

EH 647. Practicum in Tutoring Seminar. 1 Hour.
English grammar review and effective tutoring strategies. Prerequisites: students must have been awarded an assistantship and be scheduled to tutor in the Writing Center. 1 hour.

EH 655. Seminar: History of the English Language. 3 Hours.

EH 677. Seminar: Shakespeare: The Body Gender and Sexuality. 3 Hours.
Investigates languages of the body, sexuality, and gender in seven plays, as well as historical materials and current criticism and theories of the body.

EH 690. Major Writers Seminar. 3 Hours.
See class schedule for announcement of subjects. May be repeated for total of 9 hours credit if focus is on different subjects.

EH 691. Special Topics Seminar in Rhetoric and Composition. 3 Hours.
See class schedule for announcement of subjects. May be repeated for total of 9 hours credit if focus is on different subjects.

EH 693. Special Topics Seminar. 3,6 Hours.
See class schedule for announcement of subjects. May be repeated for total of 9 hours credit if focus is on different subjects.

EH 697. 30-Books Semester. 3 Hours.
The English Graduate Program, Plan II, requires that students prepare a reading list of 30 books, spend a semester reading & studying those books, and then sitting for both written and oral exams. The principal objective of EH 697 is to allow students time to work with their individual mentors to complete this exercise.

EH 698. Directed Studies Seminar. 1-6 Hour.
See departmental description of the M.A. program for special restrictions on this course. Prerequisite: Permission of Associate Chair. 1-3 hours.

EH 699. Thesis Research. 1-6 Hour.
Prerequisites: GAC M
History

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page: https://www.uab.edu/cas/history/graduate-program

Degree Offered: M.A.
Director: Stephen Miller, Ph.D.
Phone: (205) 975-6531
Email: sjmiller@uab.edu
Website: www.uab.edu/history

Students interested in Teaching Certification for Public Schools should contact the School of Education.

Accelerated Learning Opportunities

History offers an accelerated Bachelor’s/ Master’s (ABM) option for high-achieving undergraduate students pursuing a BA degree in History at UAB. The following courses are approved for shared credit for students pursuing an ABM in History. A successful graduate of ABM will earn both a bachelor’s degree and a master’s degree in History from the University of Alabama at Birmingham in an accelerated time period compared to the independent completion of the two degrees.

Graduate courses allowed for credit sharing are: HY 601, HY 602, HY 612, HY 614, HY 615, HY 621, HY 622, HY 631, HY 632, HY 634, HY 635, HY 637, HY 638, HY 639, HY 641, HY 650, HY 651, HY 653, HY 654, HY 655, HY 656, HY 670, HY 671, HY 672, HY 673, HY 674, HY 675, HY 681, HY 682, HY 683, HY 693, HY 694

https://www.uab.edu/cas/history/graduate/program-basics

Additional Information

Deadline for Entry Term(s): Each semester
Deadline for All Application Materials to be in the Graduate School Office: Fall: August 1; Spring: December 1; Summer: May 1.
Number of Evaluation Forms Required: Two
Entrance Tests: TOEFL and TWE also required for international applicants whose native language is not English.
Comments: Additional application for financial aid (fellowship or assistantship) is required by program.

For detailed information, contact Dr. Stephen Miller, History Graduate Program Director, Department of History, HHB 360Q, 1720 2nd Avenue South, Birmingham, Alabama 35294-1152.

Telephone: (205) 975-6531
E-mail: sjmiller@uab.edu

Master of Arts in History

The history graduate program provides opportunities for students to learn the techniques of research and broaden their knowledge of historical literature. Students may choose Plan I, which includes writing a thesis based on original research using primary sources, or Plan II, which requires the completion of MA exams in three historical topics. All students are required to enroll in HY 601 Historiography and HY 602 Historical Research and Writing and must take at least 30 hours of their course work in graduate seminars. Each student must take a minimum of 9 hours of course work in U.S. history and 9 hours in non-U.S. history (e.g., European, Asian, Latin America, World).

Plan I - 36 hours with Thesis

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 601</td>
<td>3</td>
</tr>
<tr>
<td>HY 602</td>
<td>3</td>
</tr>
<tr>
<td>US History 1</td>
<td></td>
</tr>
<tr>
<td>Three (3) seminars at the 600+ level</td>
<td>9</td>
</tr>
<tr>
<td>Non-US History 2</td>
<td></td>
</tr>
<tr>
<td>Three (3) Seminars at the 600+ level</td>
<td>9</td>
</tr>
<tr>
<td>Electives 3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 36

Plan II - 36 hours (non-thesis option)

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 601</td>
<td>3</td>
</tr>
<tr>
<td>HY 602</td>
<td>3</td>
</tr>
<tr>
<td>US History 1</td>
<td></td>
</tr>
<tr>
<td>Three (3) seminars at the 600+ level</td>
<td>9</td>
</tr>
<tr>
<td>Non-US History 2</td>
<td></td>
</tr>
<tr>
<td>Three (3) seminars at the 600+ level</td>
<td>9</td>
</tr>
<tr>
<td>Electives 3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 36

1. Choose from the following: HY 612, HY 613, HY 614, HY 621, HY 622, HY 623, HY 631, HY 632, HY 633, HY 634, HY 635, HY 637, HY 638
2. Choose from the following: HY 639, HY 641, HY 650, HY 651, HY 652, HY 653, HY 654, HY 655, HY 656, HY 670, HY 671, HY 672, HY 673, HY 674, HY 675, HY 676, HY 683, HY 693, HY 694
3. Up to two (2) equivalent graduate 600+ level courses in another discipline, i.e., English, Art History, Anthropology, or Government

Courses

HY 601. Historiography. 3 Hours.
Seminar on various theoretical perspectives and methodologies of professional historians. What historians do, how they do it, and why.

HY 602. Historical Research and Writing. 3 Hours.
Methods of historical research, including research in primary sources, and the distinctive characteristics of historical writing.

HY 612. Seminar in Early America. 3 Hours.
Topics and issues in the history and historiography of Colonial North America, circa 1500-1775.

HY 614. Seminar in Recent American History. 3 Hours.
Topics in the politics of modern America.

HY 615. Seminar in American Myths American Values. 3 Hours.
Recommended for students teaching at the secondary-education level and for traditional history students alike. Examines the major myths that inform, and that are informed by, traditional American values and how both shape social relationships.
HY 621. Seminar in Old South History. 3 Hours.
Subjects pertaining to the Old South era to Reconstruction.

HY 622. Seminar in New South History. 3 Hours.
Subjects pertaining to the New South era since Reconstruction.

HY 631. Seminar: Topics in American History. 3 Hours.
Historical topics of American History, (e.g. Conservatism, Crime and Punishment).

HY 632. Seminar in U.S. Urban History. 3 Hours.
Topics in Urban History.

HY 634. Seminar in African American History. 3 Hours.
Selected topics related to the African-American experience.

HY 635. Seminar in American Social History. 3 Hours.
A reading and research seminar examining the history of the structure and power of social groups in America.

HY 637. Seminar in U.S. Labor History. 3 Hours.
Development of labor force and movements in U.S. 19th and 20th centuries.

HY 638. Seminar in Civil Rights History. 3 Hours.
An analysis of history and historiography of Civil Rights Movement in America since the 19th century.

HY 639. Seminar in Women’s History. 3 Hours.
An analysis of the changing economic, political, and social roles of women from colonial period to the present.

HY 641. Seminar in Latin American History. 3 Hours.
Issues in history of Latin America since the late 18th century; economic development, dependency and popular resistance, role of the Catholic Church, social revolution, and nationalism.

HY 650. Seminar: Topics in European History. 3 Hours.
Seminar in Historical topics in European History.

HY 651. Seminar in Medieval Europe. 3 Hours.
Examine political, economical, and religious interaction in the world prior to 1500.

HY 653. Seminar in Modern Europe. 3 Hours.
Reformation to the present; major topics such as soceity and politics, warfare, religious trends, state-building, and industrialization.

HY 654. Seminar in British History. 3 Hours.
Focuses on a particular period or problem in British history. Reading and discussion of current publications on the topic.

HY 655. Seminar in Russian/Soviet History. 3 Hours.
Analysis of primary sources and secondary works dealing with political and social history of Imperial Russia or Soviet Union and their successor states.

HY 656. Seminar in French History. 3 Hours.
Seminar dealing with various periods and issues in the history of France.

HY 670. Seminar in Pre-Modern History. 3 Hours.
Examine political, economical, and religious interaction in the Mediterranean or Middle Eastern world prior to 1500.

HY 671. Seminar in Asian History. 3 Hours.
Topics in Asian History.

HY 672. Seminar: Topics in World History. 3 Hours.
Seminar in historical topics of world history.

HY 673. Seminar in World Environmental History. 3 Hours.
Comparative examination of cultures and their relationship with the natural environment in a modern world context.

HY 674. Seminar in Comparative History. 3 Hours.
Explores through reading and research varied issues in comparative history; revolution, war, slavery, labor cities, industrialization, and social and cultural topics.

HY 675. Seminar-World Economic History. 3 Hours.
This seminar examines the diverse social, political and ecological contexts in which humans have provided for their material needs.

HY 681. Directed Readings in History. 3-6 Hours.
Individually designed course of readings in various fields. May be repeated. Only two directed reading courses will count toward degree requirements for history majors.

HY 682. Internship in Public Hist/SL. 3 Hours.
Individually designed program that places students in local historical museums and sites to gain professional experience in public history.

HY 683. Seminar in Public History. 3 Hours.
Explores the diverse approaches and methods of presenting history to public audiences, museums, historic sites, architectural preservation, documentary editing, and archival preservation.

HY 693. Special Topics in History. 3 Hours.
Seminar exploring the historiography of a specialized topic in history.

HY 694. Special Topics in History. 3 Hours.
Seminar exploring the historiography of a specialized topic in history.

HY 698. Non-Thesis Research. 3-6 Hours.
Individual research project.

HY 699. Thesis Research. 1-6 Hour.
Research culminating in master's thesis in history.

Prerequisites: GAC M

HY 771. Special Projects in History. 1-3 Hour.
Open only to those who hold the M.A. degree.

Mathematics

The Department of Mathematics offers graduate programs of study leading to the M.S. degree in Mathematics or the Ph.D. in Applied Mathematics.

The master’s program aims to give students the background to use mathematics in a variety of ways. We train students in mathematical rigor. This provides training in the ability to analyze and solve problems in all walks of life. We also emphasize the development of communication skills of our students (in the classes they take as well as in the classes they teach). Therefore the M.S. program prepares students not only for a career in secondary or junior college level teaching but provides also a very good preparation for students who go into business, industry, or government. In the past our students have been very successful in obtaining employment. Of course, the M.S. program will also prepare students who wish to pursue a Ph.D. in Mathematics but whose undergraduate education did not provide them with a sufficient background in advanced mathematics to directly enter a Ph.D. program.

The PhD program in Applied Mathematics prepares students interested in an academic career in a college or university as well as students interested in a career in business, industry, or government.

Mathematics

Prospective students that want to apply for admission have to provide academic records, three letters of recommendation, a CV, and an Essay.
There are more requirements for international students. UAB charges an application fee, for details please see the admissions page of the Graduate School. The Graduate School requires that all applications are submitted online here via the TargetX application portal, required recommendation letters must also be submitted using this application portal.

Degree Offered
M.S.

Director
Dr. Ioulia Karpeshina

Phone
205-934-2154

E-mail
karpeshi@uab.edu

Website
http://www.uab.edu/cas/mathematics

Program Information
The MS program in Mathematics requires 30 semester hours and prepares students for various careers in teaching, academia, industry, and government.

Tracks
Students take the required courses during the first two semesters, after which they select to continue in one of the two tracks - traditional track or applied track. Both tracks have a thesis or a non-thesis option - Plan I or Plan II.

Deadline for Entry Term(s)
Each semester

Deadline for All Application Materials to be in the Graduate School Office
Six weeks before term begins

Number of Evaluation Forms Required
Three

Entrance Tests
English proficiency test is required for international applicants whose native language is not English.

Additional Information
For detailed information, contact Dr. Ioulia Karpechina, Mathematics Graduate Program Director, UAB Department of Mathematics, UH 4005, 1402 10th Avenue South, Birmingham, Alabama 35294-1241.

Telephone 205-934-2154

E-mail karpeshi@uab.edu

Web http://www.uab.edu/cas/mathematics/

Master of Science in Mathematics
The program requires a total of 30 semester hours. All students in their first and second semester are required to take 5 courses (15 credit hours) as indicated below. Based on their chosen track (traditional/pure or applied mathematics), students must select 5 more courses at 500-level or above (15 credit hours). The traditional track is for students who are interested in pure mathematics. The applied mathematics track is focused on preparing students for careers in data science and data analytics, actuarial science and other industrial mathematics applications. Students planning to continue in the Ph.D. program should take the 600-level versions of the required courses.

Plan I - 30 hours Applied Mathematics

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses:</td>
<td></td>
</tr>
<tr>
<td>MA 540 Advanced Calculus I</td>
<td>15</td>
</tr>
<tr>
<td>or MA 640 MATHEMATICAL ANALYSIS I</td>
<td></td>
</tr>
<tr>
<td>MA 541 Advanced Calculus II</td>
<td></td>
</tr>
<tr>
<td>or MA 641 MATHEMATICAL ANALYSIS II</td>
<td></td>
</tr>
<tr>
<td>MA 534 Algebra I: Linear</td>
<td></td>
</tr>
<tr>
<td>or MA 631 Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MA 568 Numerical Analysis I</td>
<td></td>
</tr>
<tr>
<td>or MA 660 Numerical Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MA 585 Intro to Probability</td>
<td></td>
</tr>
</tbody>
</table>

Elective courses (choose 3)
9

Algebra
MA 631 Linear Algebra
MA 637 Graph Theory and Combinatorics
MA 660 Numerical Linear Algebra

Analysis
MA 544 Vector Analysis
MA 545 Complex Analysis
MA 553 Fourier Analysis
MA 554 Intermediate Differential Equations
MA 555 Partial Differential Equations I
MA 556 Partial Differential Equations II
MA 561 Modeling with Partial Differential Equations
MA 562 Intro to Stochastic Differential Equations
MA 566 Introduction to Optimization
MA 642 Calculus of Several Variables
MA 650 Differential Equations
MA 655 Partial Differential Equations
MA 661 Modeling With PDE

Numerical Analysis
MA 560 Scientific Programming
MA 567 Gas Dynamics
MA 569 Numerical Analysis II
MA 660 Numerical Linear Algebra
MA 665 Partial Differential Equations: Finite Differential Methods
MA 668 Numerical Analysis I
MA 669 Numerical Analysis II

Probability/Statistics
MA 562 Intro to Stochastic Differential Equations
MA 584 Mathematical Finance
MA 586 Mathematical Statistics
MA 587 Advanced Probability
MA 588 Advanced Statistics
MA 687 Advanced Probability
MA 688 Advanced Statistics
MA 699 Research for Thesis 6

Total Hours 30

Plan II - 30 hours Applied Mathematics

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses:</td>
<td></td>
</tr>
<tr>
<td>MA 540 Advanced Calculus I</td>
<td>15</td>
</tr>
<tr>
<td>or MA 640 MATHEMATICAL ANALYSIS I</td>
<td></td>
</tr>
</tbody>
</table>
Plan I - 30 hours Traditional/Pure Mathematics

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 540</td>
<td>Advanced Calculus I</td>
</tr>
<tr>
<td>or MA 640</td>
<td>MATHEMATICAL ANALYSIS I</td>
</tr>
<tr>
<td>MA 541</td>
<td>Advanced Calculus II</td>
</tr>
<tr>
<td>or MA 641</td>
<td>MATHEMATICAL ANALYSIS II</td>
</tr>
<tr>
<td>MA 534</td>
<td>Algebra I: Linear</td>
</tr>
<tr>
<td>or MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 568</td>
<td>Numerical Analysis I</td>
</tr>
</tbody>
</table>

Elective Courses (choose 5)

Algebra

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 535</td>
<td>Algebra II: Modern</td>
</tr>
<tr>
<td>MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 632</td>
<td>Abstract Algebra</td>
</tr>
<tr>
<td>MA 637</td>
<td>Graph Theory and Combinatorics</td>
</tr>
</tbody>
</table>

Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 544</td>
<td>Vector Analysis</td>
</tr>
<tr>
<td>MA 545</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 554</td>
<td>Intermediate Differential Equations</td>
</tr>
<tr>
<td>MA 555</td>
<td>Partial Differential Equations I</td>
</tr>
<tr>
<td>MA 556</td>
<td>Partial Differential Equations II</td>
</tr>
<tr>
<td>MA 642</td>
<td>Calculus of Several Variables</td>
</tr>
<tr>
<td>MA 645</td>
<td>Real Analysis I</td>
</tr>
<tr>
<td>MA 646</td>
<td>Real Analysis II</td>
</tr>
<tr>
<td>MA 648</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 650</td>
<td>Differential Equations</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 570</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>MA 572</td>
<td>Geometry I</td>
</tr>
<tr>
<td>MA 573</td>
<td>Geometry II</td>
</tr>
<tr>
<td>MA 675</td>
<td>Differential Geometry</td>
</tr>
</tbody>
</table>

Probability/Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 586</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td>MA 587</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 588</td>
<td>Advanced Statistics</td>
</tr>
<tr>
<td>MA 687</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 688</td>
<td>Advanced Statistics</td>
</tr>
</tbody>
</table>

Topology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 574</td>
<td>Intro to Topology I</td>
</tr>
<tr>
<td>MA 575</td>
<td>Intro to Topology II</td>
</tr>
<tr>
<td>MA 670</td>
<td>Topology I</td>
</tr>
<tr>
<td>MA 671</td>
<td>Topology II</td>
</tr>
<tr>
<td>MA 699</td>
<td>Research for Thesis</td>
</tr>
</tbody>
</table>

Total Hours

| Hours | 30 |

Plan II - 30 hours Traditional/Pure Mathematics

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 540</td>
<td>Advanced Calculus I</td>
</tr>
<tr>
<td>or MA 640</td>
<td>MATHEMATICAL ANALYSIS I</td>
</tr>
<tr>
<td>MA 541</td>
<td>Advanced Calculus II</td>
</tr>
<tr>
<td>or MA 641</td>
<td>MATHEMATICAL ANALYSIS II</td>
</tr>
<tr>
<td>MA 534</td>
<td>Algebra I: Linear</td>
</tr>
<tr>
<td>or MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 568</td>
<td>Numerical Analysis I</td>
</tr>
</tbody>
</table>

Elective Courses (choose 15)

Algebra

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 535</td>
<td>Algebra II: Modern</td>
</tr>
<tr>
<td>MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 632</td>
<td>Abstract Algebra</td>
</tr>
</tbody>
</table>

Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 556</td>
<td>Partial Differential Equations II</td>
</tr>
<tr>
<td>MA 642</td>
<td>Calculus of Several Variables</td>
</tr>
<tr>
<td>MA 645</td>
<td>Real Analysis I</td>
</tr>
<tr>
<td>MA 646</td>
<td>Real Analysis II</td>
</tr>
<tr>
<td>MA 648</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 650</td>
<td>Differential Equations</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 569</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>MA 573</td>
<td>Geometry II</td>
</tr>
<tr>
<td>MA 675</td>
<td>Differential Geometry</td>
</tr>
</tbody>
</table>

Probability/Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 586</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td>MA 587</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 588</td>
<td>Advanced Statistics</td>
</tr>
<tr>
<td>MA 687</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 688</td>
<td>Advanced Statistics</td>
</tr>
</tbody>
</table>

Topology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 574</td>
<td>Intro to Topology I</td>
</tr>
<tr>
<td>MA 575</td>
<td>Intro to Topology II</td>
</tr>
<tr>
<td>MA 670</td>
<td>Topology I</td>
</tr>
<tr>
<td>MA 671</td>
<td>Topology II</td>
</tr>
</tbody>
</table>

Total Hours

| Hours | 30 |

Plan I - 30 hours Traditional/Pure Mathematics

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 541</td>
<td>Advanced Calculus II</td>
</tr>
<tr>
<td>or MA 641</td>
<td>MATHEMATICAL ANALYSIS II</td>
</tr>
<tr>
<td>MA 534</td>
<td>Algebra I: Linear</td>
</tr>
<tr>
<td>or MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 568</td>
<td>Numerical Analysis I</td>
</tr>
</tbody>
</table>

Elective Courses (choose 3)

Algebra

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 535</td>
<td>Algebra II: Modern</td>
</tr>
<tr>
<td>MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 632</td>
<td>Abstract Algebra</td>
</tr>
<tr>
<td>MA 637</td>
<td>Graph Theory and Combinatorics</td>
</tr>
</tbody>
</table>

Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 544</td>
<td>Vector Analysis</td>
</tr>
<tr>
<td>MA 545</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 554</td>
<td>Intermediate Differential Equations</td>
</tr>
<tr>
<td>MA 555</td>
<td>Partial Differential Equations I</td>
</tr>
<tr>
<td>MA 556</td>
<td>Partial Differential Equations II</td>
</tr>
<tr>
<td>MA 642</td>
<td>Calculus of Several Variables</td>
</tr>
<tr>
<td>MA 645</td>
<td>Real Analysis I</td>
</tr>
<tr>
<td>MA 646</td>
<td>Real Analysis II</td>
</tr>
<tr>
<td>MA 648</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 650</td>
<td>Differential Equations</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 570</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>MA 572</td>
<td>Geometry I</td>
</tr>
<tr>
<td>MA 573</td>
<td>Geometry II</td>
</tr>
<tr>
<td>MA 675</td>
<td>Differential Geometry</td>
</tr>
</tbody>
</table>

Probability/Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 586</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td>MA 587</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 588</td>
<td>Advanced Statistics</td>
</tr>
<tr>
<td>MA 687</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 688</td>
<td>Advanced Statistics</td>
</tr>
</tbody>
</table>

Topology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 574</td>
<td>Intro to Topology I</td>
</tr>
<tr>
<td>MA 575</td>
<td>Intro to Topology II</td>
</tr>
<tr>
<td>MA 670</td>
<td>Topology I</td>
</tr>
<tr>
<td>MA 671</td>
<td>Topology II</td>
</tr>
<tr>
<td>MA 699</td>
<td>Research for Thesis</td>
</tr>
</tbody>
</table>

Total Hours

| Hours | 30 |

Plan II - 30 hours Traditional/Pure Mathematics

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 540</td>
<td>Advanced Calculus I</td>
</tr>
<tr>
<td>or MA 640</td>
<td>MATHEMATICAL ANALYSIS I</td>
</tr>
<tr>
<td>MA 541</td>
<td>Advanced Calculus II</td>
</tr>
<tr>
<td>or MA 641</td>
<td>MATHEMATICAL ANALYSIS II</td>
</tr>
<tr>
<td>MA 534</td>
<td>Algebra I: Linear</td>
</tr>
<tr>
<td>or MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 568</td>
<td>Numerical Analysis I</td>
</tr>
</tbody>
</table>

Elective Courses (choose 15)

Algebra

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 535</td>
<td>Algebra II: Modern</td>
</tr>
<tr>
<td>MA 631</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MA 632</td>
<td>Abstract Algebra</td>
</tr>
</tbody>
</table>

Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 556</td>
<td>Partial Differential Equations II</td>
</tr>
<tr>
<td>MA 642</td>
<td>Calculus of Several Variables</td>
</tr>
<tr>
<td>MA 645</td>
<td>Real Analysis I</td>
</tr>
<tr>
<td>MA 646</td>
<td>Real Analysis II</td>
</tr>
<tr>
<td>MA 648</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 650</td>
<td>Differential Equations</td>
</tr>
</tbody>
</table>

Geometry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 570</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>MA 573</td>
<td>Geometry II</td>
</tr>
<tr>
<td>MA 675</td>
<td>Differential Geometry</td>
</tr>
</tbody>
</table>

Probability/Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 586</td>
<td>Mathematical Statistics</td>
</tr>
<tr>
<td>MA 587</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 588</td>
<td>Advanced Statistics</td>
</tr>
<tr>
<td>MA 687</td>
<td>Advanced Probability</td>
</tr>
<tr>
<td>MA 688</td>
<td>Advanced Statistics</td>
</tr>
</tbody>
</table>

Topology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 574</td>
<td>Intro to Topology I</td>
</tr>
<tr>
<td>MA 575</td>
<td>Intro to Topology II</td>
</tr>
<tr>
<td>MA 670</td>
<td>Topology I</td>
</tr>
<tr>
<td>MA 671</td>
<td>Topology II</td>
</tr>
<tr>
<td>MA 699</td>
<td>Research for Thesis</td>
</tr>
</tbody>
</table>

Total Hours

| Hours | 30 |
Graduate Catalog 2023-2024

Program of Study

Each student in the Ph.D. program has to take the following steps:

- Passing the Joint Program Exam (JPE), also called the Qualifying Exam. The Joint Program Examinations in Real Analysis and Linear Algebra are given during two periods each year (one in May and one in September). During each period a student may take one or both of the exams but subject to the following restrictions: (1) either exam may be attempted at most twice and (2) a student may participate in exams during no more than three periods.
- Completing 54 semester hours of graduate courses. The grade of each course has to be at least a B. The student's supervisory committee and the Joint Program Committee must approve the selection of courses. At least 18 hours must be in a major area of concentration, selected so that the student will be prepared to conduct research in an area of applied mathematics, while at least 12 hours have to be in a minor area of study, which is a subject outside mathematics. No courses counted towards an MS degree can be used. There are additional requirements by the UAB Graduate School, see "Minimum Course Requirements" in the Graduate Catalog.
- Passing a language or tool of research exam.
- Passing the Comprehensive Exam, which consists of a written part and an oral part.
- Preparing a dissertation, which must be a genuine contribution to mathematics.
- Passing the Final Examination (thesis defense).

Additional Information

For detailed information, contact Dr. Ioulia Karpechina, Mathematics Graduate Program Director, UAB Department of Mathematics, UH 4005, 1402 10th Avenue South, Birmingham, Alabama 35294-1241.

Telephone: 205-934-2154

Web http://www.uab.edu/cas/mathematics/

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 501</td>
<td>History of Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>MA 502</td>
<td>History of Mathematics II</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisites: MA 125 [Min Grade: C] or MA 225 [Min Grade: C]

MA 502. History of Mathematics II. 3 Hours.
Development of mathematical principles and ideas from a historical viewpoint, and their cultural, educational and social significance; Newton and Leibnitz through early 20th century.

Prerequisites: MA 501 [Min Grade: B] or MA 311 [Min Grade: B]

MA 511. Integrating Mathematical Ideas. 3 Hours.
This course will integrate ideas from algebra, geometry, probability, and statistics. Emphasis will be on using functions as mathematical models, becoming fluent with multiple representations of functions, and choosing the most appropriate representations for solving a specific problem. Students will be expected to communicate mathematics verbally and in writing through small group, whole group, and individual interactions.
MA 513. Mathematics for Elementary and Middle School Teachers. 3 Hours.
Problem solving experiences, inductive and deductive reasoning, patterns and functions, some concepts and applications of geometry for elementary and middle school teachers. Topics include linear and quadratic relations and functions and some cubic and exponential functions. Number sense with the rational number system including fractions, decimals and percents will be developed in problem contexts. An emphasis will be on developing algebraic thinking and reasoning.

MA 514. Mathematics for Elementary and Middle School Teachers. 3 Hours.
Problem solving experiences, inductive reasoning, concepts and applications of geometry and proportional reasoning for elementary and middle school teachers. Topics include analysis of one, two and three dimensional feature of real objects, ratio and proportionality, similarity and congruence, linear, area, and volume measurement, and the development of mathematically convincing arguments. An emphasis will be on developing thinking and reasoning.

Prerequisites: MA 313 [Min Grade: C] or MA 513 [Min Grade: C]

MA 515. Probabilistic & Stat Reasoning. 3 Hours.
Descriptive and inferential statistics, probability, estimation, hypothesis testing. Reasoning with probability and statistics is emphasized.

Prerequisites: MA 313 [Min Grade: C] or MA 513 [Min Grade: C]

MA 516. Numerical Reasoning. 3 Hours.
Develop understanding of number and improve numerical reasoning skills specifically with regard to place value, number relationship that build fluency with basis facts, and computational proficiency; developing a deep understanding of numerous diverse computational algorithms; mathematical models to represent fractions, decimals and percents, equivalencies and operations with fractions, decimals and percents; number theory including order of operations, counting as a big idea, properties of number, primes and composites, perfect, abundant and significant numbers, and figurate numbers; inductive and deductive reasoning with number.

Prerequisites: MA 313 [Min Grade: C] or MA 513 [Min Grade: C]

MA 517. Extending Algebraic Reasoning. 3 Hours.
Extending Algebraic Reasoning. Extending algebraic and functional reasoning to polynomials, rational, exponential, and logarithmic functions; problem-solving involving transfer among representations (equation, graph, table); proof via symbolic reasoning, contradiction, and algorithm; interpretation of key points on graphs (intercepts, slope, extrema); develop facility and efficiency in manipulating symbolic representations with understanding; appropriate use of technology and approximate versus exact solutions; functions as models.

Prerequisites: MA 313 [Min Grade: C] or MA 513 [Min Grade: C]

MA 519. Special Topics for Teachers. 1-4 Hour.
With permission of instructor, may be used as continuation of any of MA 513 through 518. May be repeated for credit when topics vary.

Prerequisites: MA 125 [Min Grade: C] or MA 225 [Min Grade: C]

MA 534. Algebra I: Linear. 3 Hours.
Abstract vector spaces, subspaces, dimension, bases, linear transformation, matrix algebra, matrix representations of linear transformations, determinants.

Prerequisites: MA 124 [Min Grade: C] or MA 126 [Min Grade: C] or MA 226 [Min Grade: C]

MA 535. Algebra II: Modern. 3 Hours.
Rings, including the rings of integers and of polynomials, integral domains, fields and groups. Homomorphism, isomorphism. As time permits, Galois theory, semi-groups, quotient groups, models, or other areas of algebra may be included. Students present proofs from a list of pre-assigned theorems to the class. Logical correctness and proper mathematical proof-writing style are assessed.

Prerequisites: MA 434 [Min Grade: C] or MA 534 [Min Grade: C]

MA 540. Advanced Calculus I. 3 Hours.
This class covers sequences and series of real numbers, supremum and infimum limits for subsets of the real numbers, the theorem of Bolzano-Weierstrass, Cauchy sequences, continuous functions, intermediate value theorem, uniform continuity, monotone functions. In addition, derivatives - mean value theorem, Taylor's theorem for real functions on a real interval, Riemann integration for functions on a real interval, improper integrals.

Prerequisites: MA 540 [Min Grade: C]

MA 544. Vector Analysis. 3 Hours.
Review and applications of multiple integrals, Jacobians and change of variables in multiple integrals; line and surface integrals; theorems of Green, Gauss, and Stokes with application to the physical sciences; computation in spherical and cylindrical coordinates.

Prerequisites: MA 227 [Min Grade: C]

MA 545. Complex Analysis. 3 Hours.
Analytic functions, complex integration and Cauchy's theorem, Taylor and Laurent series, calculus of residues and applications, conformal mappings.

Prerequisites: MA 227 [Min Grade: C]

MA 553. Fourier Analysis. 3 Hours.
Fourier series, including odd/even functions expansions, complex power series, generalized Fourier series. Convergence, applications to partial differential equations. Fourier transform: basic properties, inversion of the FT, windowing, relation to the Laplace transform. Applications to partial differential equations. Wavelets and signal processing basic functions, transforming wavelets, short time Fourier transform.

Prerequisites: MA 252 [Min Grade: C]

MA 554. Intermediate Differential Equations. 3 Hours.
Topics from among Frobenius series solutions, Sturm-Liouville systems, nonlinear equations, and stability theory.

Prerequisites: MA 252 [Min Grade: C]

MA 555. Partial Differential Equations I. 3 Hours.
Classification of second order partial differential equations; background on eigenfunction expansions and Fourier series; integrals and transforms; solution of the wave equation, reflection of waves; solution of the heat equation in bounded and unbounded media; Laplace s equations, Dirichlet and Neumann problems.

Prerequisites: MA 252 [Min Grade: C]
MA 556. Partial Differential Equations II. 3 Hours.
Classification of second order partial differential equations; background on eigenfunction expansions and Fourier series; integrals and transforms; solutions of the wave equations, reflection of waves; solution of heat equation in bounded and unbounded media; Laplace's equations, Dirichlet and Neumann problems.
Prerequisites: MA 252 [Min Grade: C]

MA 560. Scientific Programming. 3 Hours.
Programming and mathematical problem solving using Matlab, Python, FORTRAN or C++. Emphasizes the systematic development of algorithms and numerical methods. Topics include computers, floating point arithmetic, iteration, functions, arrays, Matlab graphics, image processing, robotics, GNU/Linux operating system, solving linear systems and differential equation arising from practical situations, use of debuggers and other debugging techniques, and profiling; use of callable subroutine packages like LAPACK and differential equation routines; parallel programming. Assignments and projects are designed to give students a computational sense through complexity, dimension, inexact arithmetic, randomness, simulation and the role of approximation.
Prerequisites: MA 126 [Min Grade: C] or MA 226 [Min Grade: C]

MA 561. Modeling with Partial Differential Equations. 3 Hours.
Practical examples of partial differential equations; derivation of partial differential equations from physical laws; introduction to MATLAB and its PDE Tool-box, and COMSOL using practical examples; an overview of finite difference and finite element solution methods; specialized modeling projects in topics such as groundwater modeling, scattering of waves, medical and industrial imaging, continuum mechanics and deformation of solids, Fluid mechanics including the class boat race, financial derivative modeling, and acoustic and electromagnetic wave applications. Written project reports required for all homework assignments. Quantitative Literacy and Writing are significant components of this course.
Prerequisites: MA 252 [Min Grade: C]

MA 562. Intro to Stochastic Differential Equations. 3 Hours.
Stochastic differential equations arise when random effects are introduced into the modeling of physical systems. Topics include Brownian motion and Wiener processes, stochastic integrals and the Ito calculus, stochastic differential equations, and applications to financial modeling, including option pricing.
Prerequisites: MA 485 [Min Grade: C] or MA 585 [Min Grade: C]

MA 566. Introduction to Optimization. 3 Hours.
Optimization is important in many decision making problems in various areas like engineering, economics and machine learning. Optimization theory deals with finding the best solution(s) or variables of a given objective function. Recently, the area of optimization has received much attention due to the development of highly efficient computational methods for data analysis. The scope of this course covers linear algebra, unconstrained optimization, linear programming, and nonlinear constrained optimization. The topics include linear algebra, linear program, duality, network flows, simplex method, non-simplex method, gradient and conjugate methods, neural network, genetic algorithm and convex optimization. The course will also introduce optimization algorithms and codes via python and matlab.
Prerequisites: MA 126 [Min Grade: C] or MA 226 [Min Grade: C]

MA 567. Gas Dynamics. 3 Hours.
Euler's equations for inviscid flows, rotation and vorticity, Navier-Stokes.
Prerequisites: MA 252 [Min Grade: C] and (MA 360 [Min Grade: C] or MA 560 [Min Grade: C])
MA 585. Intro to Probability. 3 Hours.
Probability spaces, combinatorics, conditional probabilities and independence, Bayes rule, discrete and continuous distributions, mean value and variance, moment generation function, joint distributions, correlation, Central Limit Theorem, Law of Large Numbers, random walks, Poisson process.
Prerequisites: MA 227 [Min Grade: C] and MA 260 [Min Grade: C]

MA 586. Mathematical Statistics. 3 Hours.
Confidence intervals, hypothesis testing, analysis of variance and covariance, maximum likelihood estimates, linear regression, tests of fit, robust estimates and tests.
Prerequisites: MA 485 [Min Grade: C] or MA 585 [Min Grade: C]

MA 587. Advanced Probability. 3 Hours.
Foundation of probability, conditional probabilities, and independence, Bayes theorem, discrete and continuous distributions, joint distributions, conditional and marginal distributions, convolution, moments and moment generation function, multivariable normal distribution and sums of normal random variables, Markov chains.
Prerequisites: MA 485 [Min Grade: B] or MA 585 [Min Grade: B]

MA 588. Advanced Statistics. 3 Hours.
Parameter estimations, maximum likelihood estimation, sufficient statistic, hypothesis testing, Neyman-Pearson Lemma, p-value, Kolmogorov-Smirnov test, Anderson-Darling test, P-P plot, Q-Q plot, testing for distribution type, location and scale parameters, mean squared error.
Prerequisites: MA 485 [Min Grade: B] or MA 585 [Min Grade: B] or MA 587 [Min Grade: B] or MA 687 [Min Grade: B]

MA 589. STATISTICAL TECHNIQUES FOR MACHINE LEARNING AND BIG DATA. 3 Hours.
Topics of statistical learning and how to implement these methods by using R/Python. The course will cover major statistical learning methods and concepts for both supervised and unsupervised learning, such as sampling algorithms; nonparametric tests; model assessment and selection; classification, clustering; and big data analysis.
Prerequisites: MA 486 [Min Grade: B] or MA 586 [Min Grade: B]

MA 590. Mathematics Seminar. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 591. Mathematics Seminar. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 592. Special Topics in Mathematics. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 593. Special Topics in Mathematics. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 594. Special Topics in Mathematics. 1-6 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 595. Special Topics in Mathematics. 1-6 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 596. Special Topics in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 597. Special Topics in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 598. Research in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 599. Research in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 610. Intro to Set Theory. 3 Hours.
Set theory, products, relations, orders and functions, cardinal and ordinal numbers, transfinite induction, axiom of choice, equivalent statements.

MA 631. Linear Algebra. 3 Hours.
Vector spaces and their bases; linear transformations; eigenvalues and eigenvectors: Jordan canonical form; multilinear algebra and determinants; norms and inner products.

MA 632. Abstract Algebra. 3 Hours.
Propositional and predicate logic; set, relations, and functions; the induction principle; Groups, in particular symmetry groups, permutations, groups, and cyclic groups; cosets and quotient groups; group homomorphisms; rings, integral domains, and fields; ideals and rings homomorphisms; factorization; polynomial rings.
Prerequisites: MA 534 [Min Grade: B] or MA 631 [Min Grade: B]

MA 637. Graph Theory and Combinatorics. 3 Hours.
Topics covered include specialized terminology and notation; eulerian and hamiltonian graphs; matrices of graphs and information about graphs obtained from matrices; topological graph theory, including planarity theorems of Kuratowski, Whitney and MacLane and also embeddings of graphs in surfaces of higher genus and in nonorientable surfaces; Menger's theorem and network flows; the graph reconstruction problem; counting techniques, including the Pigeonhole Principle and the use of generating functions; Dilworth's theorem; Spener's lemma; finite and infinite Ramsey theory; matching theory and the classical theorem of Philip Hall; and, if time permits, the Polya/Redfield theory of enumerations.

MA 640. MATHEMATICAL ANALYSIS I. 3 Hours.
The course introduces basic objects in analysis, such as the structure of the real numbers, the rationals, sequences of real numbers, the concepts of lim, lim inf; lim inf Further on, the Bolzano-Weierstrass theorem and the Cauchy sequences are discussed in detail. The relevant material is in Sections 2.1, 2.2, 2.3, 2.4, [1]. Next, another basic object, continuous functions is introduced and analyzed. In particular, the min-max theorem, the intermediate value theorem, uniform continuity for continuous functions and its relation with continuity, Sections 3.2, 3.3, 3.4, 3.5, 3.6 [1]. Another classical object, the derivative of a function of one variable is introduced. Classical results such as the mean value theorem, the Taylor's theorem for real functions on a real interval are covered along with applications, Sections 4.1, 4.2, 4.3 [1]. Finally, the theory of the Riemann integration for functions on a real interval is build. The relevant material is contained in Sections 5.1, 5.2, 5.3, 5.5, [1].
MA 641. MATHEMATICAL ANALYSIS II. 3 Hours.
The course is a continuation of MA 640 and provides a necessary prerequisite to a number of standard higher Ph.D. level courses, such as Topology, Measure theory, Numerical Analysis, Functional Analysis etc. Specifically, sequences of functions are introduced, and of particular interest will be pointwise and uniform convergence, interchange of limits to name a few. This is mostly a prerequisite to-ward an important object in the theory, namely series of functions. Various convergence tests are discussed and analyzed: comparison test, M - test, Dirichlet test, integral test. Finally, the theory of differentiation and integration for series is developed, including properties of power series/real analytic functions. The course #ishes with a short introduction to some basic topological objects. Specifically, metric spaces are introduced. Important concepts in this context include open and closed sets, completeness and compactness, Cauchy sequences. Continuous functions between metric spaces and uniform continuity of such functions are discussed, together with various applications. Finally, the Heine-Borel and related theorems, the contraction mapping theorem, and the Arzela-Ascoli theorem are proved in detail, together with relevant applications.
Prerequisites: MA 640 [Min Grade: B]

MA 642. Calculus of Several Variables. 3 Hours.
Functions of several variables; total and partial derivatives; the Implicit Function Theorem; integration of differential forms; Stokes's Theorem.
Prerequisites: MA 541 [Min Grade: B]

MA 645. Real Analysis I. 3 Hours.
Abstract measures and integration; positive Borel measures; Lp-spaces.
Prerequisites: MA 642 [Min Grade: B] and MA 670 [Min Grade: B]

MA 646. Real Analysis II. 3 Hours.
Complex measures and the Radon-Nikodym theorem; differentiation; integration on product spaces and Fubini's theorem.
Prerequisites: MA 645 [Min Grade: B]

MA 648. Complex Analysis. 3 Hours.
The algebraic and topological structure of the complex plane; analytic functions; Cauchy's integral theorem and integral formula; power series; elementary functions; and their Riemann surfaces; isolated singularities and residues; the Laurent expansion; the Riemann mapping theorem.
Prerequisites: MA 642 [Min Grade: B]

MA 650. Differential Equations. 3 Hours.
Separable, linear, and exact first order equations; existence and uniqueness theorems; continuous dependence of solutions on data and initial conditions; first order systems and higher order equations; stability for two-dimensional linear systems; higher order linear systems; boundary value problems; stability theory.
Prerequisites: MA 642 [Min Grade: B]

MA 655. Partial Differential Equations. 3 Hours.
This course covers first order partial differential equations, elliptic equations, parabolic equations, and hyperbolic equations.
Prerequisites: MA 642 [Min Grade: C] or MA 650 [Min Grade: C]

MA 660. Numerical Linear Algebra. 3 Hours.
Vector and matrix norms; the singular value decomposition; stability, condition numbers, and error analysis; QR factorization; least squares problems; computation of eigenvalues and eigenvectors; iterative methods.
Prerequisites: MA 631 [Min Grade: B]

MA 661. Modeling With PDE. 3 Hours.
Practical examples of partial differential equations; derivation of partial differential equations from physical laws; introduction to MATLAB and its PDE Toolbox, and other PDE packages such as FEMLAB using practical examples; brief discussion of finite difference and finite element solution methods; introduction to continuum mechanics and classical electrodynamics; parallel programming using MPI and the mathematics department Beowulf system; specialized modeling projects in topics such as groundwater modeling, scattering of waves, medical and industrial imaging, fluid mechanics, and acoustic and electromagnetic applications.
Prerequisites: MA 360 [Min Grade: C] or MA 560 [Min Grade: C] or MA 455 [Min Grade: C] or MA 555 [Min Grade: C]

MA 668. Numerical Analysis I. 3 Hours.
Prerequisites: MA 670 [Min Grade: B]

MA 669. Numerical Analysis II. 3 Hours.
Prerequisites: MA 668 [Min Grade: B]

MA 670. Topology I. 3 Hours.
Definition of topologies; closure; continuity; finite product topology; metric spaces; connectedness; completeness and compactness (in particular, in metric spaces).
Prerequisites: MA 631 [Min Grade: B] or MA 540 [Min Grade: B] or MA 440 [Min Grade: B]

MA 671. Topology II. 3 Hours.
Product topology; quotient spaces; countability and separation axioms; Tychonoff's theorem; homotopy; manifolds; partitions of unity.
Prerequisites: MA 670 [Min Grade: B]

MA 675. Differential Geometry. 3 Hours.
Local and global theory of curves and surfaces; Fenchel's theorem; the first and second fundamental forms; surface area; Bernstein's theorem; Gauss theorem egregium; local intrinsic geometry of surfaces; Riemannian surfaces; Lie derivatives; covariant differentiation; geodesics; the Reimmann curvature tensor; the second variation of arc length; selected topics in the global theory of surfaces.
Prerequisites: MA 642 [Min Grade: C]

MA 687. Advanced Probability. 3 Hours.
Foundation of probability, conditional probabilities, and independence, Bayes theorem, discrete and continuous distributions, joint distributions, conditional and marginal distributions, convolution, moments and moment generation function, multivariable normal distribution and sums of normal random variables. Markov chains.
Prerequisites: MA 485 [Min Grade: B] or MA 585 [Min Grade: B]
MA 688. Advanced Statistics. 3 Hours.
Parameter estimations, maximum likelihood estimation, sufficient statistic, hypothesis testing, Neyman-Pearson Lemma, p-value, Kolmogorov-Smirnov test, Anderson-Darling test, P-P plot, Q-Q plot, testing for distribution type, location and scale parameters, mean squared error.
Prerequisites: MA 585 [Min Grade: B] or MA 587 [Min Grade: B] or MA 687 [Min Grade: B]

MA 690. Mathematics Seminar. 1-3 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 691. Mathematics Seminar. 1-3 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 692. Special Topics in Mathematics. 1-3 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 693. Special Topics in Mathematics. 1-3 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 694. Special Topics in Mathematics. 1-6 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 695. Special Topics in Mathematics. 1-6 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 696. Special Topics in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 697. Special Topics in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 698. M Lev Non-Thesis Res. 1-12 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.
Prerequisites: GAC M

MA 740. Advanced Complex Analysis. 3 Hours.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites: Having passed the Qualifying Exam or permission of instructor.

MA 745. Functional Analysis I. 3 Hours.
Normed and Banach spaces; inner product and Hilbert spaces; linear functionals and dual spaces; operators in Hilbert spaces; theory of unbounded sesquilinear forms; Hahn-Banach, open mapping and closed graph theorems; spectral theory.
Prerequisites: MA 646 [Min Grade: B]

MA 746. Functional Analysis II. 3 Hours.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 747. Linear Operators in Hilbert Space. 3 Hours.
Hilbert space; Bessel's inequality; Parseval's formula; bounded and un-bounded linear operators; representation theorems; the Friedrichs extension; the spectral theorem for self-adjoint operators; spectral theory for Schrodinger operators.
Prerequisites: MA 646 [Min Grade: B]

MA 748. Fourier Transforms. 3 Hours.
Fourier transform and inverse transform to tempered distributions; applications to partial differential equations.
Prerequisites: MA 645 [Min Grade: B] and MA 655 [Min Grade: B]

MA 749. Theory of Distribution. 3 Hours.
Prerequisites: MA 645 [Min Grade: B]

MA 750. Advanced Ordinary Differential Equations. 3 Hours.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 753. Nonlinear Analysis. 3 Hours.
Selected topics including degree theory, bifurcation theory, and topological methods.

MA 755. Advanced Partial Differential Equations. 3 Hours.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.
Prerequisites: MA 645 [Min Grade: B]

MA 760. Dynamical Systems I. 3 Hours.
Continuous dynamical systems; limit sets; centers of attraction; recurrence; stable and wandering points; flow boxes, and monotone sequences in planar dynamical systems; Poincare-Bendixson theorem.

MA 761. Dynamical Systems II. 3 Hours.
Discrete dynamical systems; hyperbolicity; symbolic dynamics; chaos; homoclinic orbits; bifurcations; attractors (theory and examples).

MA 770. Continuum Theory. 3 Hours.
Pathology of compact connected metric spaces; inverse limits; boundary bumping theorem; Hahn-Mazukiewicz theorem; composites; chainable and circle-like continua; irreducibility; separation; unicoherence; indecomposability.
MA 772. Complex Analytic Dynamics. 3 Hours.
Riemann surfaces; polynomial dynamics, rational functions and entire functions; fixed point theory; Mandelbrot set; Julia sets; prime ends; conformal mappings.

MA 774. Algebraic Topology. 3 Hours.
Covering spaces; introduction to homotopy theory; singular homology, cohomology.

MA 776. Advanced Differential Geometry. 3 Hours.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 781. Differential Topology I. 3 Hours.
A study of differentiable structures on manifolds, primarily from a global viewpoint: smooth mappings including diffeomorphisms, immersions and submersions; submanifolds and transversality.
Prerequisites: MA 645 [Min Grade: B] and MA 675 [Min Grade: B]

MA 782. Differential Topology II. 3 Hours.
A continuation of MA 781, with further applications such as Morse Theory.

MA 790. Mathematics Seminar. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 791. Mathematics Seminar. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 792. Special Topics in Mathematics. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 793. Special Topics in Mathematics. 1-3 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 794. Special Topics in Mathematics. 1-6 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 795. Special Topics in Mathematics. 1-6 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 796. Special Topics in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 797. Special Topics in Mathematics. 1-12 Hour.
This course covers special topics in mathematics and the applications of mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

MA 798. Non-Dissertation Research and Preparation for Comp. 1-12 Hour.
This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.

This course covers special topics in mathematics and the applications of the mathematics. May be repeated for credit when topics vary. Prerequisites vary with topics.
Prerequisites: GAC Z

Physics

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page: https://www.uab.edu/cas/physics/graduate

Degree Offered: Ph.D., M.S.
Director: Aaron Catledge, Ph.D.
Phone: (205) 934-3693
E-mail: catledge@uab.edu
Website: http://www.uab.edu/cas/physics/graduate

Program Information

Students in the M.S. and Ph.D. programs may specialize in any of the areas of interest to the faculty, including experimental physics and theoretical and computational physics.

Admission

Admission into the physics graduate program is by recommendation of the graduate admission committee of the Department of Physics. The committee takes into consideration GRE General Test scores, prior academic performance, personal statement, prior research experiences, and the letters of evaluation, usually from former instructors and research supervisors.

Beginning the Program

All students must take a placement examination on basic physics concepts before registering for any courses. Upon arrival at UAB, international students may be required to take English as a Second Language course or Scientific Communication courses at UAB during their first year of study.

Web http://www.uab.edu/cas/physics/graduate

M.S. Program

Plan I

The student must successfully complete at least 30 semester hours of coursework, including at least four core courses selected from PH 635, PH 650, PH 660, and PH 671 and 6 semester hours of Thesis Research PH 699. Equivalent directed reading course or courses may be substituted if approved by the graduate faculty. In addition, all students must complete the appropriate Responsible Conduct in Research Training before being admitted to candidacy. The student must also write and complete a successful oral defense of a thesis under the direction of a graduate faculty member. Additional coursework should be selected with the advice of the student’s graduate study committee to meet the particular needs of the student.

A detailed timeline for admission to candidacy and the appropriate forms for Plan I students may be found at the Graduate School website.
Deadlines for the Application for Degree and appropriate forms may be found here.

Additional general information about the steps to a degree and graduate school requirements may be found here.

Plan II

With approval of the physics graduate program director, a nonthesis option (Plan II) is available for all tracks in the Masters program. In this case, the graduate study committee requires the same total credit hours as for Plan I, but does not require 6 semester hours of Thesis Research (PH 699). The committee gives the student an M.S.-degree exit examination upon successful completion of the coursework.

Deadlines for Application for Degree and appropriate forms may be found at the Graduate School website.

Ph.D. Program

All students are required to take the following core courses:

- PH 760 Methods of Mathematical Physics I (3 CH, 1 semester)
- PH 715 Advanced Statistical Mechanics (3 CH, 1 semester)
- PH 750 Classical Electrodynamics I (3 CH, 1 semester)
- PH 771 Quantum Mechanics I (3 CH, 1 semester)
- PH 793-PH 794 Scientific Communications I, II 2 credit hours

In addition, GRD717, Responsible Conduct in Research, must be taken prior to admission to candidacy. Students are encouraged to take the course during their first summer semester in the PhD program.

A qualifying examination is given to test a student’s competency in fundamental areas of Physics. This examination is divided into three sections; statistical mechanics, electromagnetic theory, and quantum physics. Each exam must be taken at the first offering following the completion of the related core course, PH 715, PH 750, and PH 771. PH 760 should be passed before any of the qualifying exams. The examination may not be taken more than twice. Scientific communications, PH 793 and PH 794, must be taken at the first offering following the completion of the qualifying examinations.

Following satisfactory completion of the core qualifying examinations and consultation with individual faculty members, the student selects a specific area for dissertation research under the supervision of an appropriate graduate faculty member. The student's Graduate Study Committee, chaired by the major advisor, will outline a program of study including graduate courses and appropriate tools of research, such as computer and/or foreign language competency. Also, the Graduate Study Committee will administer an oral selected topic examination to test the student's knowledge in the area of research. The student must pass this oral examination in no more than two attempts. Then, with direction from the major advisor, the student should focus on formulating and writing a formal research proposal that must be presented and defended before the Graduate Study Committee; this should lead to a recommendation from the committee for admission to candidacy. Dissertation research culminates in the successful oral defense of the dissertation.

A detailed timeline for admission to candidacy and the appropriate forms for Plan I students may be found at the Graduate School website.
The following doctoral fellowships are available to the graduate students enrolled in the PhD program in physics at UAB.

Blazer Graduate Research Fellowship in Physics

Applicants to the PhD program in Physics, who have demonstrated exceptional promise in research and scholarship, will be considered for the UAB Blazer Fellowship. Fellowship recipients will receive a fellowship stipend as well as tuition and health insurance. Furthermore, they will be able to engage in research at the beginning of their first year with no teaching duties. It is expected that the Blazer Fellow will be able to commence PhD research and choose a research mentor by the end of their first year.

For information about the application, contact the Physics Graduate Program director at catledge@uab.edu.

NASA-Alabama Space Grant Consortium Fellowships

Awards are up to $37,000 ($24K in student stipend, up to $12K for tuition/insurance and $1K for student travel allowance) and are made initially for one 12-month period and may be renewed annually for a maximum total award of 36 months (3 years) support. Must be a U.S. citizen, enrolled full-time in good academic standing with a GPA of at least 3.0 on a 4.0 scale at an Alabama Space Grant member university pursing any space-related field of graduate study (Masters or Doctoral level). Must conduct a specific faculty-mentored research project that has a NASA or aerospace relevance. Cannot receive funds from any source for work other than that defined by the student’s approved proposed research and plan of study for which the award is made (supplements to the student’s award may be made by the home university using funds from any source, provided the amount and source are disclosed in advance - see information booklet for more details). Awardees must also complete an extramural NASA experience sometime during the fellowship year. The details are to be worked out with the faculty advisor and NASA lab facility where the student plans to participate in a research activity. It is advisable that a NASA contact be found prior to submission of the fellowship proposal. Fellows are also expected to be involved in ASGC outreach activities and submit a final report at the end of the award period.

The online Graduate Fellowship Application is available through the department website.

Graduate Research Scholars Program

Graduate students working toward their PhD may compete for a research fellowship based on the quality of their present research and promise of future success through the the Graduate Research Scholars Program (GRSP). The GRSP is designed to strengthen and enhance the research capacity of member institutions of the Alabama Experimental Program to Stimulate Competitive Research (EPSCoR). Students submit a complete research proposal package to the UAB EPSCoR Coordinator in Spring each year, and successful recipients are announced in early Summer.

For up-to-date information about additional fellowships, please contact the Physics Graduate Program Director, catledge@uab.edu.

Additional Information

<table>
<thead>
<tr>
<th>Deadline for Entry Term(s):</th>
<th>Each Fall semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office:</td>
<td>Six weeks before term begins</td>
</tr>
<tr>
<td>Number of Evaluation Forms Required:</td>
<td>Three</td>
</tr>
<tr>
<td>Entrance Tests:</td>
<td>GRE (TOEFL and TWE also required for international applicants whose native language is not English.)</td>
</tr>
<tr>
<td>Comments:</td>
<td>GRE General Test is required; in addition, subject test is recommended</td>
</tr>
</tbody>
</table>

Courses

PH 502. Instructional Physical Science. 4 Hours.
Modern Physics for Teachers.

PH 502L. Instructional Physical Science Laboratory. 0 Hours.
Design of Physical Science Labs and Detailed Instructional Plans.

PH 505. Studies in Physics Teaching II. 3 Hours.
Development of new curricula, apparatus, and techniques of presentation of concepts in physics. Prerequisite: Permission of instructor.

PH 507. Physical Science for Teachers I. 3 Hours.
Concepts of physical science. Laboratory includes evaluation of experiments and equipment for lecture demonstrations. Prerequisite: Permission of instructor.

PH 508. Physical Science for Teachers II. 3 Hours.
Concepts of physical science. Laboratory includes evaluation of experiments and equipment for lecture demonstrations. Prerequisite: Permission of instructor.

PH 510. Physics of Fluids and Polymer Solutions. 3 Hours.
This course provides an overview of fluid mechanics and polymer physics appropriate for physics, engineering, chemistry, and biology majors. Topics include the concept of a fluid, the fluid as a continuum, properties of the velocity field, thermodynamic properties of a fluid, viscosity, pressure distribution in a fluid, basic physical laws of fluid mechanics, the Reynolds transport theorem, differential relations for a fluid particle, viscous flow, polymer solutions and thermodynamics, Brownian motion, diffusion equation, Fick’s law, Stokes-Einstein equation and hydrodynamic radius of a polymer chain, and viscosity of polymer solutions.
Prerequisites: PH 221 [Min Grade: C] and MA 252 [Min Grade: C]

PH 518. Computational Solid State Physics. 3 Hours.
This course covers interdisciplinary topics in material physics, computer science, and data science, with a focus on introducing first-principles software based on density-functional theory and data-driven machine-learning discoveries for applications in materials science and other physics domains.

PH 520. Introduction to Methods in Theoretical Physics I. 3 Hours.
Vector calculus. Curvilinear coordinate systems; commonly encountered ordinary differential equations and special functions; complex variables and contour integration partial differential equations, including solutions by Green function methods. Prerequisite: Permission of instructor.
Prerequisites: PH 222 [Min Grade: C] and MA 252 [Min Grade: C]
PH 524. Biomedical Optics. 3 Hours.
The objective of this class is to present an overview of applied optics, with an emphasis on biomedical optics.
Prerequisites: PH 222 [Min Grade: C]

PH 525. Applications of Contemporary Optics I. 3 Hours.
Applied geometrical optics. Refraction and reflection, paraxial optics, thick lens, matrix theory, optical aberrations, optical systems, and optical design using computer simulations.
Prerequisites: PH 222 [Min Grade: C]

PH 526. Applications of Contemporary Optics II. 3 Hours.
Applied wave optics. Fresnel equations, optical interference, optical interferometry, coherence, diffraction, lasers, and Gaussian beam propagation.
Prerequisites: PH 525 [Min Grade: C]

PH 527. Geometrical Optics. 4 Hours.
Properties of optical systems. Lenses, mirrors, and stops; aberrations; rays and wave fronts, optical instruments; aspheric components.
Prerequisites: PH 222 [Min Grade: C]

PH 527L. Geometrical Optics Lab. 0 Hours.
Geometrical Optics Lab.

PH 528. Physical Optics. 4 Hours.
Interference and diffraction phenomena; emission, propagation, and absorption of radiation; polarization and dispersion; stimulated emission.
Prerequisites: PH 527 [Min Grade: C]

PH 528L. Physical Optics Lab. 0 Hours.
Physical Optics Lab.

PH 529. Applications of Contemporary Optics III. 3 Hours.
Applied optical interactions with materials linear and nonlinear polarization phenomena, optical properties of materials, anisotropic optics, electro-optics, and nonlinear optics.
Prerequisites: PH 526 [Min Grade: C]

PH 532. Statistical Thermodynamics I. 3 Hours.
Statistical basis of laws of thermodynamics; ensembles and partition functions; quantum statistics of ideal gases, including photons and electrons; applications to solids, real gases, liquids, and magnetic systems; transport theory.
Prerequisites: PH 351 [Min Grade: C]

PH 533. Statistical Thermodynamics II. 3 Hours.
Statistical basis of laws of thermodynamics; ensembles and partition functions; quantum statistics of ideal gases, including photons and electrons; applications to solids, real gases, liquids, and magnetic systems; transport theory.
Prerequisites: PH 532 [Min Grade: C]

PH 545. Electromagnetic Theory I. 3 Hours.
Electromagnetic theory approached from standpoint of fields and using Maxwell’s equations.
Prerequisites: PH 420 [Min Grade: C] or MA 444 [Min Grade: C]

PH 546. Electromagnetic Theory II. 3 Hours.
Electromagnetic theory approached from standpoint of fields and using Maxwell’s equations.
Prerequisites: PH 545 [Min Grade: C]

PH 550. Introduction to Quantum Mechanics I. 3 Hours.
Principles of quantum mechanics; their application to particle waves, angular momentum, tunneling, radiation, and selection rules; perturbation and variational methods.
Prerequisites: PH 351 [Min Grade: C] and PH 562 [Min Grade: C]

PH 551. Introductory Quantum Mechanics II. 3 Hours.
Principles of quantum mechanics; their application to particle waves, angular momentum, tunneling, radiation, and selection rules; perturbation and variational methods.
Prerequisites: PH 550 [Min Grade: C]

PH 552. Introduction to Quantum Mechanics III. 2 Hours.
PH 553. Solid State Physics I. 3 Hours.
Properties of crystal lattices, lattice dynamics, lattice imperfections, and bonding energies; electronic properties of dielectrics, semiconductors, and metals; ferroelectric, magnetic, and optical properties of solids.
Prerequisites: PH 551 [Min Grade: C]

PH 554. Solid State Physics II. 3 Hours.
Properties of crystal lattices, lattice dynamics, lattice imperfections, and bonding energies; electronic properties of dielectrics, semiconductors, and metals; ferroelectric, magnetic, and optical properties of solids.
Prerequisites: PH 553 [Min Grade: C]

PH 557. Directed Reading in Quantum Physics. 3 Hours.
Tutorial studies in quantum physics offered by special arrangement.
Prerequisites: PH 351 [Min Grade: C] and PH 562 [Min Grade: C]

PH 558. Directed Reading in Physics. 3 Hours.
Directed Reading in Physics I. Tutorial studies in physics offered by special arrangement.

PH 561. Classical Mechanics I. 3 Hours.
Kinematics and dynamics, including central forces, rotating coordinate systems, and generalized coordinates; Lagrangian and Hamiltonian.
Prerequisites: PH 222 [Min Grade: C] and MA 252 [Min Grade: C]

PH 562. Classical Mechanics II. 3 Hours.
Kinematics and dynamics, including central forces, rotating coordinate systems, and generalized coordinates; Lagrangian and Hamiltonian.
Prerequisites: PH 561 [Min Grade: C]

PH 571. Atomic and Molecular Physics. 3 Hours.
Applications of quantum mechanics to structure and spectra of atoms and small molecules; use of symmetry in understanding and describing molecular vibrations and bonding.
Prerequisites: PH 551 [Min Grade: C]

PH 575. Intro to Biophysics I. 3 Hours.
Application of physical techniques and analytical methods of selected biological problems. Permission of instructor.
Prerequisites: PH 352 [Min Grade: C]

PH 576. Intro to Biophysics II. 3 Hours.
Application of physical techniques and analytical methods of selected biological problems. Permission of instructor.
Prerequisites: PH 575 [Min Grade: C]

PH 580. Directed Reading in Classical Physics. 3 Hours.
Tutorial studies in classical physics offered by special arrangement.
Prerequisites: PH 222 [Min Grade: C] and MA 252 [Min Grade: C]

PH 581. Laser Physics I. 3 Hours.
Physical principles of laser operation and design. Spontaneous and stimulated emission, population inversion, light amplification, laser resonators, Q-switching, mode-locking, pulse shortening techniques, spectral narrowing, and tunable lasers. Individual types of lasers will be considered. Practical applications of lasers will be treated in detail.
Prerequisites: PH 222 [Min Grade: C]
PH 582. Laser Physics II. 3 Hours.
Physical principles of laser operation and design. Spontaneous and stimulated emission, population inversion, light amplification, laser resonators, Q-switching, mode-locking, pulse shortening techniques, spectral narrowing, and tunable lasers. Individual types of lasers will be considered. Practical applications of lasers will be treated in detail.
Prerequisites: PH 581 [Min Grade: C]

PH 583. Atomic and Nuclear Physics. 3 Hours.
Prerequisites: PH 352 [Min Grade: C]

PH 584. Atomic and Nuclear Physics. 3 Hours.
Prerequisites: PH 583 [Min Grade: C]

PH 585. Laser Spectroscopy. 3 Hours.
Practical applications of lasers and modern techniques and instrumentation in laser spectroscopy.
Prerequisites: PH 222 [Min Grade: D]

PH 586. Semiconductor Materials in Modern Technology. 3 Hours.
Brief review of electronic materials with emphasis on traditional and cutting edge Si technology. Competing and complementary semiconductors covered in standard lecture and seminar style. Materials: compound and tertiary semiconductors, organic semiconductors, wide bandgap semiconductors. Applications: optical and chemical sensors, microwave electronics, high power electronics, lasers. Specific applications/ materials determined by student interest.
Prerequisites: PH 352 [Min Grade: C] or EE 351 [Min Grade: C] or CH 326 [Min Grade: C]

PH 587. Nanoscale Science and Applications. 3 Hours.
Nanoscale Science and Applications. Physics of electronic, mechanical, and biological properties of materials at the nanoscale level approaching one billionth of a meter. The applications of nanoscale materials in electronic, mechanical, and biomedical systems will be emphasized. Special tools in synthesis and characterization of nanomaterials will be discussed.

PH 589. Applications of Modern Physics. 3 Hours.

PH 590. Preparations for Teaching. 1-3 Hour.
This class is intended to help teaching assistants prepare for successful teaching experiences. The course will emphasize a foundation of practical knowledge related to expectations and duties shared by teachers in higher education, as well as an opportunity to read, reflect, and discuss current research related to teaching and learning at the university level.

PH 591. Advanced Physics Laboratory I. 1-4 Hour.
Laboratory investigation of topics of modern physics. Permission of instructor.

PH 592. Advanced Physics Laboratory II. 1-4 Hour.
Laboratory investigation of topics of modern physics. Permission of instructor.

PH 593. Advanced Physics Laboratory III. 1-4 Hour.
Laboratory investigation of topics of modern physics. Permission of instructor.

PH 594. Computers in Physics. 3 Hours.

PH 595. Computers in Physics. 3 Hours.

PH 597. Special Topics in Physics. 1-3 Hour.

PH 610. Classical Mechanics I. 3 Hours.
Applications of methods of LaGrange, Hamilton, Poisson, and Hamilton-Jacobi to such classical problems as central force, small oscillation, and rigid body motions.
Prerequisites: PH 562 [Min Grade: C]

PH 618. Computational Solid State Physics. 3 Hours.
This course covers interdisciplinary topics in material physics, computer science, and data science, with a focus on introducing first-principles software based on density-functional theory and data-driven machine-learning discoveries for applications in materials science and other physics domains.

PH 635. Advanced Statistical Mechanics. 3 Hours.
Applications of statistical laws to modern topics such as quantum fluids, critical phenomena, and nonequilibrium systems.
Prerequisites: PH 551 [Min Grade: B]

PH 650. Electromagnetic Theory I. 3 Hours.
Boundary value and Green function methods for solving potential problems; fields in dielectric, magnetic media, and radiation fields.
Prerequisites: PH 546 [Min Grade: B]

PH 651. Electromagnetic Theory II. 3 Hours.
Boundary value and Green function methods for solving potential problems; fields in dielectric, magnetic media, and radiation fields.
Prerequisites: PH 650 [Min Grade: C]

PH 652. Electromagnetic Theory III. 3 Hours.
Electromagnetic Theory.

PH 653. Solid State Physics I. 3 Hours.
Structure and dynamics of solids; optical, magnetic, and transport properties.
Prerequisites: PH 551 [Min Grade: C]

PH 654. Solid State Physics II. 3 Hours.
Structure and dynamics of solids; optical, magnetic, and transport properties.
Prerequisites: PH 653 [Min Grade: C]

PH 655. Advanced Solid State Laboratory. 1-3 Hour.
Thin film X-ray diffraction, Raman spectroscopy in materials characterization, electron paramagnetic resonance, and thin film deposition.
Prerequisites: PH 653 [Min Grade: C] and PH 654 [Min Grade: C]

PH 660. Methods of Mathematical Physics. 3 Hours.
Vector and tensor analysis; differential and integral equations; Green functions; variational techniques; linear operator theory; Fourier and Laplace transforms.
Prerequisites: PH 520 [Min Grade: B]

PH 671. Quantum Mechanics I. 3 Hours.
Discrete and continuous spectra; central force problems; angular momentum and spin; systems of identical particles; perturbation theory; scattering theory.
Prerequisites: PH 546 [Min Grade: B] and PH 551 [Min Grade: B]

PH 672. Quantum Mechanics II. 3 Hours.
Discrete and continuous spectra; central force problems; angular momentum and spin; systems of identical particles; perturbation theory; scattering theory.
Prerequisites: PH 671 [Min Grade: C]
PH 673. Applications of Quantum Mechanics. 3 Hours.
Scattering theory, density matrix, and polarization; applications to atomic
and nuclear reactions.
Prerequisites: PH 671 [Min Grade: C] and PH 672 [Min Grade: C]
PH 695. Directed Reading. 2-3 Hours.
Tutorial studies in physics offered by special arrangement. Permission of
instructor.
PH 696. Directed Reading in Classical Physics. 3 Hours.
Tutorial studies in classical physics offered by special arrangement.
Prerequisites: PH 562 [Min Grade: C]
PH 697. Special Topics in Physics. 1-12 Hour.
Topics of current interest, such as theoretical physics, computational
physics, experimental techniques. May be repeated for credit. 1-12 hours.
PH 698. Nonthesis Research. 1-12 Hour.
May be repeated for credit.
May be repeated for credit. Prerequisite: Admission to candidacy. 1-12
hours.
Prerequisites: GAC M
PH 710. Advanced Classical Mechanics I. 3 Hours.
Analysis of dynamics, including rigid body motion, featuring the LaGrange
formulation, introduction to the Hamiltonian, formulation, Poisson
brackets, analyses in nonrelativistic applications.
Prerequisites: PH 562 [Min Grade: C]
PH 711. Advanced Classical Mechanics II. 3 Hours.
Analysis of dynamics, including rigid body motion, featuring the LaGrange
formulation, introduction to the Hamiltonian, formulation, Poisson
brackets, analyses in nonrelativistic applications.
Prerequisites: PH 710 [Min Grade: C]
PH 715. Advanced Statistical Mechanics. 3 Hours.
Applications of statistical laws to modern topics such as quantum fluids,
critical phenomena, and nonequilibrium systems.
Prerequisites: PH 532 [Min Grade: B] and PH 551 [Min Grade: B]
PH 716. Advanced Statistical Mechanics. 3 Hours.
Applications of statistical laws to modern topics such as quantum fluids,
critical phenomena, and nonequilibrium systems.
Prerequisites: PH 715 [Min Grade: C]
PH 718. Computational Solid State Physics. 3 Hours.
This course covers interdisciplinary topics in material physics, computer
science, and data science, with a focus on introducing first-principles
software based on density-functional theory and data-driven machine-
learning discoveries for applications in materials science and other
physics domains.
PH 732. Growth and Characterization of Thin Films I. 3 Hours.
Basics of vacuum science. Methods of thin film deposition. Nucleation,
evolution of microstructure and surface morphology of thin films.
Simulation of growth processes. Thin film characterization techniques
(SEM/SIM, TEM, SPM, SPS/AES, XRD, optical and mechanical
measurements). Demonstrations on thin-film deposition and basic
characterization of film microstructure and properties. Prerequisites: PH 553/653 and PH554/654 or permission of instructor. Lecture and
demonstration. 3 semester hours.
Prerequisites: (PH 453 [Min Grade: C] or PH 553 [Min Grade: C]) and
(PH 454 [Min Grade: C] or PH 554 [Min Grade: C])
PH 733. Growth and Characterization of Thin Films II. 3 Hours.
Basics of vacuum science. Methods of thin film deposition. Nucleation,
evolution of microstructure and surface morphology of thin films.
Simulation of growth processes. Thin film characterization techniques
(SEM/SIM, TEM, SPM, SPS/AES, XRD, optical and mechanical
measurements). Demonstrations on thin-film deposition and basic
characterization of film microstructure and properties. Prerequisites: PH553/653 and PH554/654 or permission of instructor. Lecture and
demonstrations. 3 semester hours.
Prerequisites: (PH 453 [Min Grade: C] or PH 553 [Min Grade: C]) and
(PH 454 [Min Grade: C] or PH 554 [Min Grade: C])
PH 745. Molecular Spectroscopy. 3 Hours.
Infrared, Raman, and ultraviolet techniques applied to study of molecular
properties, including rotation-vibration spectra and spectra of crystalline
solids.
PH 746. Applied Physics Internship. 3 Hours.
Practical research outside UAB or, upon approval of the graduate
program director, at a UAB laboratory other than that of the student’s
advisor. The internship is intended to supplement proposed or ongoing
dissertation research.
PH 747. Theoretical Nuclear Physics. 3 Hours.
PH 750. Classical Electrodynamics I. 3 Hours.
Static and time-varying fields in vacuum and in matter, radiation fields,
solutions and implications of Maxwell’s equation utilizing advanced
mathematical methods.
Prerequisites: PH 546 [Min Grade: B] and PH 760 [Min Grade: B]
PH 751. Classical Electrodynamics II. 3 Hours.
Static and time-varying fields in vacuum and in matter, radiation fields,
solutions and implications of Maxwell’s equation utilizing advanced
mathematical methods.
Prerequisites: PH 750 [Min Grade: C]
PH 752. Light-Matter Interactions. 3 Hours.
Quantized Electromagnetic Fields; Photons; Quantum Optics;
Coherence; Nonlinear optics; Quantum excitations in solids.
Prerequisites: PH 750 [Min Grade: B] and PH 771 [Min Grade: B]
PH 753. Solid State Physics I. 3 Hours.
Properties of electrons and photons in crystal lattices; electromagnetic
interactions with solids; lattice defects.
PH 754. Solid State Physics II. 3 Hours.
Properties of electrons and photons in crystal lattices; electromagnetic
interactions with solids; lattice defects.
Prerequisites: PH 753 [Min Grade: C]
Advanced Solid State Physics II.
Prerequisites: PH 753 [Min Grade: C] and PH 754 [Min Grade: C]
PH 760. Methods of Mathematical Physics I. 3 Hours.
Vector and tensor analysis; differential and integral equations; Green
functions; variational techniques; linear operator theory; Fourier and
Laplace transforms.
Prerequisites: PH 520 [Min Grade: B]
PH 761. Methods of Mathematical Physics II. 3 Hours.
Vector and tensor analysis; differential and integral equations; Green
functions; variational techniques; linear operator theory; Fourier and
Laplace transforms.
PH 762. Computational Physics I. 3 Hours.
Numerical techniques for solution of differential, integral, and matrix equations of physics; computer simulations of physical phenomena; optimization problems.
Prerequisites: PH 545 [Min Grade: C] and PH 551 [Min Grade: C] and PH 561 [Min Grade: C]

PH 771. Quantum Mechanics I. 3 Hours.
Discrete and continuous spectra; central force problems; angular momentum and spin; systems of identical particles; perturbation theory; scattering theory.
Prerequisites: PH 546 [Min Grade: B] and PH 551 [Min Grade: B]

PH 772. Quantum Mechanics II. 3 Hours.
Discrete and continuous spectra; central force problems; angular momentum and spin; systems of identical particles; perturbation theory; scattering theory.
Prerequisites: PH 771 [Min Grade: C]

PH 773. Applications of Quantum Mechanics. 3 Hours.
Scattering theory, density matrix, and polarization; applications to atomic and nuclear reactions.
Prerequisites: PH 771 [Min Grade: C] and PH 772 [Min Grade: C]

PH 791. Physics Seminar I. 1 Hour.
Topics of current interest in physics, presented by graduate students, faculty, and visitors. Required each term of all full-time graduate students.

PH 792. Physics Seminar II. 1 Hour.
Topics of current interest in physics, presented by graduate students, faculty, and visitors. Required each term of all full-time graduate students.

PH 793. Scientific Communications I. 1 Hour.
Scientific writing exercises and recent topics in physics presented by graduate students in order to provide experience in written and oral scientific communication.

PH 794. Scientific Communications II. 1 Hour.
Scientific writing exercises and recent topics in physics presented by graduate students in order to provide experience in written and oral scientific communication.
Prerequisites: PH 793 [Min Grade: C]

PH 795. Directed Reading. 2-3 Hours.
Tutorial studies in physics offered by special arrangement. Permission of instructor.

PH 797. Special Topics in Physics. 1-12 Hour.
Topics of current interest, such as group theory, medical physics, computational methods, biological physics, materials physics, optics, and space physics. May be repeated for credit.

PH 798. Non-Dissertation Research. 1-12 Hour.
Permission of instructor.

PH 799. Research for Dissertation. 1-12 Hour.
Admission to candidacy.
Prerequisites: GAC Z

Political Science and Public Administration

Chair: Robert Blanton, Ph.D.

The Department of Political Science and Public Administration offers a graduate program of study leading to the Master of Public Administration (MPA) degree.

UAB’s nationally ranked MPA Program is accredited by the Network of Schools of Public Policy, Affairs, and Administration (NASPAA). Our MPA Program prepares students for successful careers in public service where they can serve the greater good. We have graduates locally and across the country who have become successful leaders and managers in local, state, and federal government positions, and in nonprofit organizations.

Degree Offered: MPA

Director: Erin L. Borry, Ph.D.

Phone: (205) 996-2159

E-mail: borry@uab.edu

Website: http://www.uab.edu/mpa

MPA Program

The MPA Program prepares individuals for positions of leadership in the public and nonprofit sectors. It is a professional graduate degree for both pre-career students and in-service administrators. The Program is designed to develop the insights and skills needed to plan and formulate policy, and to organize, manage, and implement programs and operations. The MPA Program is accredited by the Network of Schools of Public Policy, Affairs, and Administration (NASPAA). Its Board of Advisors consists of internal and external stakeholders comprised of community members, alumni and students.

The MPA curriculum is designed to ensure that students achieve competency in five domains:

- to lead and manage in the public interest;
- to participate in, and contribute to, the policy process;
- to analyze, synthesize, think critically, solve problems and make evidence-informed decisions in a complex and dynamic environment;
- to articulate, apply, and advance a public service perspective;
- to communicate and interact productively and in culturally responsive ways with a diverse and changing workforce and society at large.

MPA Program Mission

The UAB MPA Program is committed to excellence in graduate education through teaching, research, service, and practice. Through a knowledge- and skills-based curriculum informed by public values, the Program focuses on building the next generation of ethical, inclusive, and responsive decisionmakers who advance the public interest.

Degree Requirements

The MPA Degree requires a total of 39 semester hours; pre-career students must complete an additional three (3) hours of internship (20 hours/week), for a total of 42 hours. Students must maintain a minimum 3.0 grade point average (GPA) and in accordance with the MPA Program Grade Policy. Students without professional public service experience are required to do a three-hour internship in addition to required coursework. Previous graduate work at UAB or another NASPAA-accredited MPA Program may be credited toward the degree if it is directly applicable. Students may select the thesis option or the non-thesis option.

Grade Policies

Graduate School Policy

Students must maintain a 3.0 grade point average (GPA) throughout the duration of the Program in accordance with Graduate School policies. If students fail to maintain a cumulative GPA of 3.0 for any semester, they...
will receive a warning letter via email from the Graduate School. If the GPA remains below 3.0 for two (2) consecutive semesters, the student will receive a notification email from the Graduate School and be placed on academic probation. Students on probation must then make a 3.0 or better semester average for each succeeding semester that their overall cumulative average is below 3.0. Students are removed from probation when their cumulative average is 3.0 or above. If they make below a 3.0 average while on probation, they are dismissed. When students repeat a course, the last grade will be utilized to calculate their cumulative GPA.

Program Policy

In addition to complying with the Graduate School policy, students must earn B or better in at least seven (7) of the eight (8) core MPA courses. Upon receiving the first grade of a C in any core course, a student will be placed on probation in the Program. A student who makes a second grade of C or below in any core course is subject to dismissal from the Program, regardless of the overall GPA. After receiving a second C, a student may retake either of those two courses, in accordance with Graduate School guidelines, and must do so the next semester. If the student earns a grade of B or better during the retaken course, they must file a grade replacement application with the Graduate School. If that application is approved, they will be allowed to continue their coursework and remain in the Program. Please note: a grade of F given for academic misconduct is not eligible for replacement.

Admission Requirements

Because of its multidisciplinary nature, persons from all undergraduate majors are considered for admission to the MPA Program. The MPA Program accepts applications for fall, spring, and summer admissions. All applications must be made online by visiting the UAB Graduate School website.

Applications for the MPA Program must include:

- Undergraduate transcripts (and, if applicable, graduate transcripts);
- Statement of interest that addresses this prompt:
 - In 1-2 single-spaced pages (300-600 words), please share why the MPA degree at UAB is right for you. Address your public service values and motivations, ways you want to make change, and vision for your career after obtaining your MPA degree. If you have prior academic deficiencies, please also address those in this statement; and
- Two (2) letters of recommendation that meet the below criteria:
 - If possible, both letters should come from academic references (which may include professors and faculty advisors) and account for your academic performance and commitment. If one or both letters are not from academic references, they must be professional references. These letters must come from someone who was in a supervisory position in which you were their subordinate in either a work or volunteer capacity. They need to list in what capacity they know you (employee, subordinate, volunteer, etc.). Letters from peers, co-workers, friends, etc. are not acceptable.

An ideal candidate for the MPA Program has an undergraduate and/or graduate GPA of around 3.0, strong letters of reference, and a statement of interest that strongly reflects a desire to serve the public interest.

<table>
<thead>
<tr>
<th>Deadline for Entry Term(s):</th>
<th>Each semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office:</td>
<td>Fall: August 1, Spring: December 1; Summer: April 1</td>
</tr>
<tr>
<td>Number of Reference Letters Required:</td>
<td>Two</td>
</tr>
</tbody>
</table>

Financial Aid

The Department of Political Science and Public Administration has a limited number of graduate assistantships awarded on a competitive basis, which can be awarded during any semester as vacancies occur. The Department has two scholarships which are awarded on a competitive basis each spring. Other financial resources are available through the Office of Student Financial Aid.

Internships and Placement

Students may apply for an internship placement at any time. A few paid opportunities do arise, although the majority of internships are non-paid. Typical placements are in city and county government, planning departments, public health agencies, social service agencies, state government agencies, and various nonprofit organizations. The Department has placed several students in the prestigious Presidential Management Fellowship (PMF) Program, which provides an excellent opportunity for eventual employment in the federal government. Students are also encouraged to seek assistance with UAB Student Career and Professional Services in Hill Student Center for career planning and placement. MPA faculty and the Program Manager also assist students in job placement. Please click here to see what some of our graduates are doing now.

Accelerated Learning Opportunities

Early Acceptance Program

The MPA Program participates in UAB’s Early Acceptance (EA) Program. The EA Program is designed for academically superior high-school students and allows these students to be conditionally admitted into the MPA Program at the same time they are admitted to an undergraduate program. EA students must maintain a 3.5 undergraduate GPA at UAB to gain admission to the MPA Program. EA students are required to take PSC 101: Foundations of American Government and recommended to take PSC 310: American Public Policy and PSC 323: Public Administration and Policy.

Accelerated Bachelor’s/Master’s (ABM) Program

The MPA Program participates in UAB’s Accelerated Bachelor’s/Master’s (ABM) Program. The ABM Program allows for undergraduate students to take up to four (4) courses (12 credit hours) that count toward both their Bachelor’s and MPA degrees. Undergraduate students seeking admission to the MPA ABM Program must have an undergraduate GPA of at least 3.5 with 60 hours of undergraduate work completed (a minimum of 36 hours must be completed at UAB). In addition, ABM students must maintain a minimum 3.0 GPA while in the ABM Program.

MPA courses approved for shared credit include: MPA 600, MPA 601, MPA 602, MPA 603, MPA 604, MPA 605, MPA 606, and MPA 607.
Joint Degree Programs

Coordinated MPA/MPH Program
The MPA/Master of Public Health (MPH) is designed to train individuals for administrative positions in public health and related health organizations. The Master of Public Administration degree prepares students for careers as administrators in public and nonprofit agencies, and the Master of Public Health provides a background in public health principles and programs. Students must apply and be accepted into both Programs, meeting each Program's entry requirements. Students are required to complete a total of 64-65 semester hours for the coordinated degree. Students complete 10 courses (30 credit hours) in the MPA Program. These courses consist of seven (7) core MPA courses, two (2) MPA electives, and MPA 697 Graduate Learning Portfolio. The remaining credit hours are completed in the MPH Program. Full-time students should be able to complete all degree requirements within three (3) years.

Coordinated MPA/JD Program
The MPA Program at UAB and the Cumberland School of Law at Samford University offer a coordinated MPA/JD Program. The offering of this dual degree reflects recognition of the complex interrelationship between the legal system, public policy analysis, and public management. It is particularly applicable for those pursuing careers in government and/or public interest law. Students must apply and be admitted to the MPA and JD Programs separately. MPA/JD students complete 10 courses (30 credit hours) in the MPA Program. These courses consist of eight (8) core MPA courses, one (1) MPA elective, and MPA 697 Graduate Learning Portfolio. Close communication with both Programs is required. Depending on prior experience, a field placement/internship may be required.

Coordinated MPA/MSCJ Program
The MPA/Master of Science in Criminal Justice (MSCJ) is targeted toward individuals who wish to gain competencies in public management and the theory/practice of criminal justice. Students must apply and be accepted into both Programs, meeting each Program's entry requirements. Students are required to complete a total of 60 semester hours for the coordinated degree. MPA/MSCJ students complete 10 courses (30 credit hours) in the MPA Program. These courses consist of six (6) core MPA courses, three (3) MPA electives, and MPA 697 Graduate Learning Portfolio. Full-time students should be able to complete all degree requirements within three (3) years.

Certificate Programs

Graduate Certificate in Nonprofit Management
For students interested in managing nonprofit organizations, the Program offers a Graduate Certificate in Nonprofit Management. Students seeking admission into the Graduate Certificate in Nonprofit Management must apply to the UAB Graduate School by visiting [link]. Contact the MPA Program Manager [email] for additional information regarding the Graduate Certificate in Nonprofit Management.

Graduate Certificate in Public Management
For students interested in managing public organizations, the Program offers a Graduate Certificate in Public Management. Students seeking admission into the Graduate Certificate in Public Management must apply to the Graduate School by visiting [link].
Plan II: Non-Thesis

Requirements	Hours
Core
MPA 600 Administrative Ethics | 3
MPA 601 The Public Policymaking Process | 3
MPA 602 Scope of Public Administration | 3
MPA 603 Public & Nonprofit Budgeting | 3
MPA 604 Human Resources Management | 3
MPA 605 Information Management for Government | 3
MPA 606 Foundations of PA Research | 3
MPA 607 Quantitative Methods for PA | 3
MPA 608 Internship in Public Administration | 3
Portfolio
MPA 697 Graduate Learning Portfolio 1 | 3
Electives | 12
MPA 621 Open Government | 4
MPA 662 State and Local Government Administration | 3
MPA 664 Women in Public Administration | 3
MPA 665 Crisis Management | 3
MPA 666 City County Management | 3
MPA 667 Administrative Law | 3
MPA 668 Intergovernmental Relations | 3
MPA 671 Marketing and Fundraising | 3
MPA 672 Nonprofit Management | 3
MPA 673 Nonprofit Health | 3
MPA 674 GIS for Managers | 3
MPA 675 Equity and Diversity in Public Policy | 3
MPA 678 Strategic Planning | 3
MPA 681 Local Government Planning | 3
MPA 682 Economic Development | 3
MPA 683 Public Managerial Economics | 3
MPA 684 Grants Management | 3
MPA 686 Data Management | 3
MPA 687 Resource Management | 3
MPA 688 Global Public Administration | 3
MPA 689 Program Evaluation | 3
MPA 695 Special Topics in Public Administration | 3
Total Hours | 42

1 Students taking the thesis option (Plan I) must take 3 hours of Independent Study under the guidance of the thesis chair prior to taking the 6 thesis hours (total 9 hours for thesis).

Graduate Certificate in Public Management

The Graduate Certificate in Public Management provides skills and insights necessary to plan and manage public organizations. The certificate is geared towards professionals who are seeking upward mobility within their organizations, and students seeking to enter the workforce at the local, city, state and federal level. This program is designed to serve those who wish to gain specialized knowledge in the field of public management without committing to a full graduate program. Such specialized knowledge may include, but is not limited to: resource management, intergovernmental relations, administrative law, program evaluation, and public finance. Potential employers seek out applicants with these specific skills, making graduates more attractive for higher than entry-level positions in the local, state, or federal government, as well as private industry.

This Certificate participates in the Interdisciplinary Graduate Studies (IGS) Degree.

Application for the Certificate Program

To complete the Graduate Certificate in Public Management, students must apply to the UAB Graduate School. Application must include:

1. Undergraduate transcripts from accredited institutions;
2. A statement of interest that addresses this prompt:
 a. In 1-2 single-spaced pages (200-500 words), please share why the Graduate Certificate in Public Management at UAB is right for you. Address motivations, ways you want to make change, and vision for your career after obtaining the Certificate. If you have prior academic deficiencies, please also address those in this statement; and
3. One (1) letter of recommendation that meets the below criteria:
 a. This letter must be an academic or professional reference. Academic examples include those from professors or faculty advisors; professional examples include those from supervisors in either a work or volunteer position. Letters from peers, co-workers, friends, etc. are not acceptable.

Students admitted into the MPA program may earn the Graduate Certificate in Public Management alongside their MPA degree. To do this, students are required to contact the MPA Program Manager, Carin Mayo (ccmayo@uab.edu), before they start taking elective courses.

Courses

Students must complete five (5) courses—one required course and four (4) elective courses—totaling 15 credit hours.

Requirements	Hours
MPA 682 State and Local Government Administration | 3
Electives (Choose 4) | 12
 MPA 621 Open Government | 4
 MPA 664 Women in Public Administration | 3
 MPA 666 City County Management | 3
 MPA 667 Administrative Law | 3
 MPA 668 Intergovernmental Relations | 3
 MPA 674 GIS for Managers | 3
 MPA 675 Equity in Public Administration | 3
 MPA 678 Strategic Planning | 3
 MPA 681 Local Government Planning | 3

1 During the last semester of study, students opting for the non-thesis (Plan II) must register for MPA 697, Graduate Learning Portfolio (GLP), and complete a comprehensive portfolio based on the course work, mission/vision, and career plans.
Grades

Students are expected to produce graduate-level work and maintain a cumulative GPA of 3.0 or higher to continue in the program. They are also expected to abide by UAB Graduate School conduct and grade policies.

Registration and Payment

Students are expected to register for at least one course each semester. Payments of tuition and fees are handled through UAB Financial Affairs. All payment problems or inquiries should be directed to that office.

Future Graduate Degree Work

Certificate students who want to apply to the MPA program after completing the public management certification requirements must complete all application requirements as outlined in the Graduate School guidelines. A maximum of four (4) courses (12 hours) with a grade of B or better may be applied toward the MPA degree if the student is accepted in the program.

Successful completion of the Graduate Certificate in Public Management does not automatically admit a student into the MPA program. All application materials must be completed. Students who pursue the MPA degree following certification must complete all course work within seven (7) years of the first course taken in the certificate program.

Questions?

Please contact the MPA Program Manager at ccmayo@uab.edu.

Graduate Certificate in Nonprofit Management

The Graduate Certificate in Nonprofit Management provides practitioners with an opportunity to enhance their skills and improve their capacity to effectively run nonprofit organizations. This Certificate program is designed to serve those who wish to gain specialized knowledge in the field of nonprofit management without committing to a full graduate program. Both on-campus and online courses are offered.

This Certificate participates in the Interdisciplinary Graduate Studies (IGS) Degree.

Application for the Certificate Program

To complete the Graduate Certificate in Nonprofit Management, students must apply to the UAB Graduate School. Application must include:

1. Undergraduate transcripts from accredited institutions;
2. A statement of interest that addresses this prompt:
 a. In 1-2 single-spaced pages (200-500 words), please share why the Graduate Certificate in Nonprofit Management at UAB is right for you. Address motivations, ways you want to make change, and vision for your career after obtaining the Certificate. If you have prior academic deficiencies, please also address those in this statement; and
3. One (1) letter of recommendation that meets the below criteria:
 a. This letter must be an academic or professional reference. Academic examples include those from professors or faculty advisors; professional examples include those from supervisors in either a work or volunteer position. Letters from peers, co-workers, friends, etc. are not acceptable.

Students admitted into the MPA program may earn the Graduate Certificate in Nonprofit Management alongside their MPA degree. To do this, students are required to contact the MPA Program Manager, Carin Mayo (ccmayo@uab.edu), before they start taking elective courses.

Curriculum

Students must complete five (5) courses—one required course and four (4) elective courses—totaling 15 credit hours.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPA 672 Nonprofit Management</td>
<td>3</td>
</tr>
<tr>
<td>Electives (Choose 4)</td>
<td>12</td>
</tr>
<tr>
<td>MPA 665 Crisis Management</td>
<td></td>
</tr>
<tr>
<td>MPA 671 Marketing and Fundraising</td>
<td></td>
</tr>
<tr>
<td>MPA 673 Nonprofit Health</td>
<td></td>
</tr>
<tr>
<td>MPA 674 GIS for Managers</td>
<td></td>
</tr>
<tr>
<td>MPA 675 Equity in Public Administration</td>
<td></td>
</tr>
<tr>
<td>MPA 678 Strategic Planning</td>
<td></td>
</tr>
<tr>
<td>MPA 684 Grants Management</td>
<td></td>
</tr>
<tr>
<td>MPA 686 Data Management</td>
<td></td>
</tr>
<tr>
<td>MPA 687 Resource Management</td>
<td></td>
</tr>
<tr>
<td>MPA 689 Program Evaluation</td>
<td></td>
</tr>
<tr>
<td>MPA 695 Special Topics in Public Administration</td>
<td></td>
</tr>
</tbody>
</table>

Grades

Students are expected to produce graduate-level work and maintain a cumulative GPA of 3.0 or higher to continue in the program. They are also expected to abide by UAB Graduate School conduct and grade policies.

Registration and Payment

Students are expected to register for at least one course each semester. Payments of tuition and fees are handled through UAB Financial Affairs. All payment problems or inquiries should be directed to that office.

Future Graduate Degree Work

Certificate students who want to apply to the MPA program after completing the Graduate Certificate in Nonprofit Management must complete all application requirements as outlined in the Graduate School guidelines. A maximum of four (4) courses (12 hours) with a grade of B or better may be applied toward the MPA degree if the student is accepted in the program.

Successful completion of the Graduate Certificate in Nonprofit Management does not automatically admit a student into the MPA program. All application materials must be completed. Students who pursue the MPA degree following certification must complete all course work within seven (7) years of the first course taken in the certificate program.
Questions?

Please contact the MPA Program Manager, Carin Mayo, at ccmayo@uab.edu.

Courses

MPA 600. Administrative Ethics. 3 Hours.
Theories and principles of ethics. Understanding ethical issues and use of ethical principles in resolving ethical dilemma in public organizations.

MPA 601. The Public Policymaking Process. 3 Hours.
Public Policy as a decision-making process. Examines environmental and organizational factors, the choice of alternatives, and the implementation and evaluation of public policy, with applied references to specific functional areas e.g. housing, pollution, energy and transportation.

MPA 602. Scope of Public Administration. 3 Hours.
Explores differences between public and private sector organizations. Examines both institutional and behavioral elements as they apply to public agencies. Covers topics such as budgeting, personnel, ethics, federalism and other fundamentals of public administration.

MPA 603. Public & Nonprofit Budgeting. 3 Hours.
MPA 603 examines the institutions and actors involved in the collection, custody, and expenditure of public revenues. The course combines theory and practical application to teach the principles and techniques used in government and nonprofit budgeting, including the budgeting process and financial management.

MPA 604. Human Resources Management. 3 Hours.
Examines the major concepts, theories, procedures and themes needed for effective management of human resources in the public and nonprofit sectors. Topics include merit and civil service systems, organized public labor, recruitment, classification, performance appraisal, disciplinary and grievance procedures, training and staff development, diversity and anti-discrimination policy and strategies, ethics/morality and personnel law.

MPA 605. Information Management for Government. 3 Hours.
The course is designed to introduce information and related technologies and how it affects people and government in a democracy. Students are exposed to information theory and modern day information technology tools to understand, interpret and manage governmental operations.

MPA 606. Foundations of PA Research. 3 Hours.
An introduction to research methodology presenting quasi-experimental and experimental research designs, exposition of qualitative and basic survey methods, and basic data analysis.

MPA 607. Quantitative Methods for PA. 3 Hours.
MPA 607 introduces basic statistical techniques used by social scientists and public administrators. Designed to provide students with the tools to produce and consume quantitative information, MPA 607 combines theory and application of both descriptive and inferential statistical methods. With real world examples from various policy areas, MPA 607 should make students aware of the many uses of statistics for public and nonprofit leaders and give them the means to employ those practices effectively and efficiently.

MPA 617. Science Policy. 3 Hours.
Science and technology intersect with multiple areas of public policy. Think of the growing concerns over technological surveillance, the debates over policy for climate change mitigation, the challenges posed due to global health crises, or the fear that American research and development competitiveness is eroding in a globalized economy. These issues reflect important questions about the relationship between science, technology, and public policy. Are scientific and technological developments governable, and if so, how and by whom? Is more and better science always better for policymaking? Who is the best judge of the value of scientific research programs and the validity of scientific findings? Are scientific and technological innovations generally socially beneficial, and who decides? What role should policymakers play in regulating science?

MPA 621. Open Government. 3 Hours.
The course will explore transparency and how governments operate in the context of transparency as well as how they, as consumers, can utilize their right to a transparent government.

MPA 647. Contemporary Political Issues in Science. 3 Hours.
Our rapidly changing world faces significant, multi-faceted problems at the nexus of technology and society. The response to these socio-scientific issues will impact the future of the human condition. The scientific process has a role to play in finding timely, effective, and evidence-based solutions. This course showcases science as a dynamic and iterative process that includes collecting and connecting observations, making hypotheses based on the current understanding, and constructing models that are revised as new knowledge is acquired. It emphasizes the role of dialogue and communication in shaping responses to socio-scientific issues.

MPA 662. State and Local Government Administration. 3 Hours.
This course is designed to introduce students to the study of state and local government administration. Introduces key concepts related to state and local government political structures and institutions; regional, state and county economic performance and state/local government finance.

MPA 664. Women in Public Administration. 3 Hours.
Studies in the leadership of women in public service. Focus on theoretical and professional development of women in government and nonprofit administration.

MPA 665. Crisis Management. 3 Hours.
Management and coordination of institutions to respond, plan, and mitigate crises. Focus on the role of managers in managing short and long term crises.

MPA 666. City County Management. 3 Hours.
Study of the typical nature of local government and the importance of local-state-federal relations, regional cooperation, and the nonprofit and public-private partnership in providing local government services.

MPA 667. Administrative Law. 3 Hours.
Explanation of law in society and the legal setting of public administration. Examination of substantive areas of the study of law including regulatory process, administrative adjudication, the administrative procedures acts, administrative due process, judicial review, liability and citizen's rights.

MPA 668. Intergovernmental Relations. 3 Hours.
The various relations among governments in the U.S. system. Focus on understanding the interactions, attitudes, and behavior of elected officials and bureaucrats of two or more units of government functioning in their public capacities.
MPA 671. Marketing and Fundraising. 3 Hours.
The use of marketing and fundraising strategies for nonprofits. Incorporates both theory and practice as students learn the fundamentals of marketing and resource development and apply them to hands-on projects in local nonprofit agencies.

MPA 672. Nonprofit Management. 3 Hours.
The day-to-day challenges faced by managers of nonprofit agencies, including the challenge of fund raising, balancing competing values as related to efficiency, effectiveness and equity.

MPA 673. Nonprofit Health. 3 Hours.
This course provides a comprehensive overview of role of the Nonprofit Sector and its important contribution to mission and success of our health system and social enterprise in the United States. The course examines various aspects of nonprofit health organizations including history of these agencies, sources of revenue, fund raising and marketing practices, accomplishments and achievements, criticisms and controversies, and the role of volunteer leadership and best management practices.

MPA 674. GIS for Managers. 3 Hours.
Examines the use of Geographic Information Systems (GIS) using GIS software. It integrates theory and socioeconomic applications of GIS in the public and nonprofit sector.

MPA 675. Equity in Public Administration. 3 Hours.
Public administration has four pillars: efficiency, economy, effectiveness, and equity. That last one—equity—joined the other three in the 21st century and does not receive the same attention or stature as the others. This course is designed to provide students with an understanding of social equity by exploring what it means, what equity (or inequity) looks like in policy and practice, and how to ensure equitable policies and institutions.

MPA 676. Strategic Planning. 3 Hours.
Presents the strategic planning process as it is utilized in contemporary settings. Focuses on how the strategic planning process is applied in the public and nonprofit sectors.

MPA 681. Local Government Planning. 3 Hours.
This course examines the historical roots of modern land use planning and explores contemporary issues in planning such as sprawl and smart growth.

MPA 682. Economic Development. 3 Hours.
The course is devoted to understanding economic development practices in the United States. It focuses on how market forces combine with non-economic variables to influence the economic development process. Theories and case studies drawn from various disciplines, particularly economics and public finance, will be used to understand the economic development process.

MPA 683. Public Managerial Economics. 3 Hours.
Application of microeconomic theory to real life problems faced by managers. Emphasis on understanding the complex real life social and economic challenges using economic principles and applying economic decision criteria in solving problems.

MPA 684. Grants Management. 3 Hours.
Covers the essentials of grant-writing and the management of grants.

MPA 685. Equity in Public Administration. 3 Hours.
Focus on concepts and skills essential to managing public organization resources.

MPA 686. Global Public Administration. 3 Hours.
Focus on concepts and skills essential to administering national and global organizations.

MPA 687. Resource Management. 3 Hours.
Focus on concepts and skills essential to managing public organization resources.

MPA 688. Nonprofit Management. 3 Hours.
Supervised field placement in government or a nonprofit agency for directed work experience arranged by the internship coordinator and as per the guidelines in the internship manual. Permission of Graduate Program Director required.

MPA 689. Program Evaluation. 3 Hours.
Explores special topics in public administration.

MPA 690. Seminar in Public Services Issues. 3 Hours.
Examines starting and maintaining a faith-based service organization (FBSO). Topics include role of faith/spirituality, mission, governance, setting, staffing, funding, church/FBSO issues, state/federal involvement, cooperative ventures with other FBSOs, networking.

MPA 691. Thesis Research. 3-6 Hours.
Research and writing of thesis. Permission of MPA Director required.

MPA 692. Independent Study in Public Administration. 1-3 Hour.
Explores special topics in public administration.

MPA 693. Local Government Planning. 3 Hours.
May be taken only in the last semester of the program; Permission of MPA Director required.

MPA 694. Grants Management. 3 Hours.
Explores special topics in public administration.

MPA 695. Thesis Research. 3-6 Hours.
Research and writing of thesis. Permission of MPA Director required. Prerequisites: GAC M

Psychology
Graduate Program

The Doctoral Program in the Department of Psychology offers three concentrations: Behavioral Neuroscience (p. 133), Developmental Psychology (p. 134), and Medical/Clinical Psychology (p. 135). Upon completion of any of these concentrations the student receives a Ph.D. in Psychology. A terminal master's degree is not offered.

Behavioral Neuroscience (p. 133)

Training in Behavioral Neuroscience is designed to prepare students for independent research and teaching in the neurobiology of behavior. Research training is provided by faculty in the Department of Psychology and in the UAB Schools of Medicine and Optometry, who share an interest in the biological basis of behavior. The course of study includes a core curriculum in neuroscience and recognizes the interdisciplinary nature of this field. Students obtain strong backgrounds in behavioral
science and in neuroscience and gain expertise in the content and techniques of selected areas of neuroscience as they apply to the study of behavior.

Faculty laboratories are equipped for research in behavior, neuroanatomy, neurochemistry, neuroimaging, neuropharmacology, neurophysiology, and molecular biology. The research interests of the faculty include neuroanatomy and neurophysiology of the visual system; interactions between the central nervous system and the periphery in the control of feeding and energy balance; neural underpinnings of obesity and plasticity in participants in a weight loss program; autism; emotional substrates of conditioned fear; neurophysiology and neuropharmacology of pain.

Developmental Psychology (p. 134)

Training in Developmental Psychology prepares students to discover and apply basic principles of development across the lifespan in an interdisciplinary research context. Our premise is that the application of psychological principles of development can contribute in important ways to solving problems encountered throughout the lifespan. Graduates are capable of taking positions in institutions of higher learning, medical schools, research institutions, government agencies, nonprofit organizations, and other research and teaching positions.

Research training is provided by the faculty of the Department of Psychology and may occur in collaboration with faculty across campus including the Civitan International Research Center, the Center for Aging, the Center for Applied Gerontology, the Department of Pediatrics, The School of Public Health, and other centers and departments.

The research programs of faculty with interests in lifespan developmental psychology include a wide variety of topics from infancy to the elderly. Much of this research is funded by federal research grants. Research subareas include: injury prevention, developmental disabilities (with special interests in Autism Spectrum Disorders, prenatal development and exposure to toxic substances, early intervention, adolescent psychosocial development and mental health); adolescence (with special interest in longitudinal studies, interactions between health and development, alcohol and drug use, predictors of depression and suicide, family and peer relations, those with special health care or education needs); and aging (with special interest in visual-perceptual problems of older adults with low vision, memory skills training with elderly populations, the psychological aspects of chronic illness in the elderly, chronically ill individuals, care giving in families of elderly persons, human factor issues in vision and aging).

Developmental Psychology students must complete a master's thesis. Admission to candidacy for the doctoral degree is based on satisfactory completion of coursework and completion of an area review in the form of a Psychological Bulletin or Psychological Review article. The doctoral degree is awarded upon successful defense of the dissertation.

Medical/Clinical Psychology (p. 135)

Training in Medical / Clinical Psychology prepares students to become leaders in health promotion, disease prevention, risk reduction, and symptom assessment and amelioration in interdisciplinary and medical settings. Research, course work and clinical training emphasize behavioral and psychological factors associated with medical illness and injury as well as neurobehavioral and psychological disorders across the lifespan. The Medical/Clinical Psychology concentration is accredited as a clinical psychology doctoral program by the American Psychological Association (https://www.apa.org/ed/accreditation/programs/index.aspx).

The Medical/Clinical Psychology concentration is co-sponsored by the Department of Psychology (College of Arts and Sciences) and the UAB School of Medicine. Faculty are distributed across multiple academic departments and divisions, including but not limited to Psychology, Psychiatry, Pediatrics, Neurology, Preventive Medicine, Clinical Immunology and Rheumatology, and Physical Medicine and Rehabilitation. Clinical psychologists and researchers in UAB-affiliated clinics and research centers, the Children’s of Alabama Hospital, the Birmingham VA Medical Center and throughout the community also play active roles in teaching as well as research mentoring and clinical supervision.

Research programs in which faculty and students are currently involved include: accidental injury and child abuse risk prevention; adolescence, aging, autism spectrum and other neurodevelopmental disorders and developmental disabilities; chronic pain; coping with medical illness, dementia, eating disorders and obesity; epilepsy; minority health issues and health disparities; neural plasticity; neuroimaging; pediatric oncology; response to stress and psychological trauma; rehabilitation following traumatic brain and spinal cord injury, stroke and neurobehavioral disease; sleep and feeding problems of childhood; and substance abuse.

With appropriate approvals it is possible to complete the Master of Science in Public Health program and the Medical/Clinical Psychology concentration concurrently.

Application and Admissions

Applications are invited both from students with bachelor’s degrees and from those who may have already completed some graduate study. Admission to the Psychology graduate program is highly selective. Applications are evaluated as a whole without minimum criteria on any single indicators. Transcripts are evaluated for the content and difficulty of courses completed as well as grades received. All programs follow an affirmative action/equal opportunity process to ensure that all applicants are evaluated fairly and on the basis of their individual merit. Brief information regarding admission to the three Psychology concentrations appears below. For up-to-date details, including deadlines and specific requirements, prospective applicants should consult the Psychology Graduate Program website (https://www.uab.edu/cas/psychology/graduate).

Because of the interdisciplinary nature of Behavioral Neuroscience, students with diverse backgrounds in psychology, biology, and physical science are encouraged to apply. All students are expected to have undergraduate training in psychology, biology, physics, chemistry, and mathematics. Students not trained in one or more of these areas may be required to make up deficits after enrollment.

Developmental Psychology admission requires a solid background in psychology as well as some courses in the life sciences. Research experience is essential. Excellent grades in statistics and mathematics are also valued.

Medical/Clinical Psychology requires a strong background in psychology (including statistics and research design; cognitive, biological, and affective bases of behavior; abnormal psychology and personality). Advanced course work in mathematics and natural science (especially anatomy and physiology) is also recommended. Relevant research experience is considered an important indication of the applicant's motivation and commitment to program goals, and prior experience...
with clinical populations is also advantageous. The relevance of the applicant's goals and interests to ongoing activities of our faculty is weighed heavily in admissions decisions.

Advisement

Behavioral Neuroscience students are advised by the Behavioral Neuroscience Director in consultation with a program steering committee and by their research preceptors until the dissertation committee is appointed, usually early in the third year of study.

Students accepted into the Developmental Psychology specialization are matched with a faculty member who agrees to mentor that student. Therefore, applicants will need to identify faculty members with whom they share research interest and would like to study.

Medical/Clinical Psychology students are advised by their research mentor, an individually-tailored advisory committee, and the Director of Medical/Clinical Psychology.

Financial Aid

All students in the Psychology Doctoral Program receive financial aid, including a stipend, tuition and health insurance for at least 5 years. Sources of support include fellowships, traineeships, assistantships, and tuition scholarships.

Additional Information

For further information please visit the websites listed below. Questions may be directed to the appropriate Director or to the Psychology Graduate Program Manager, Ms. Terri Roberson, at 205-934-8723 or trobe@uab.edu.

Behavioral Neuroscience

Website: http://www.uab.edu/cas/psychology/graduate/behavioral-neuroscience

Dr. David C. Knight, Director
Email knightdc@uab.edu (amthorfr@uab.edu)

Developmental Psychology

Website: http://www.uab.edu/cas/psychology/graduate/developmental

Dr. Despina Stavrinos, Director
Email dstavrin@uab.edu (fbiasini@uab.edu)

Medical/Clinical Psychology

Website: https://www.uab.edu/cas/psychology/graduate/medical-clinical

Dr. Edwin W. Cook III, Director
Email: eccook@uab.edu

Graduate Certificate in Social & Behavioral Statistics

The Graduate Certificate in Social & Behavioral Statistics is available to students currently enrolled in a Graduate Program who have a 3.0 GPA or higher.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 707 Statistical Programming for Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Statistics Courses ¹</td>
<td>12</td>
</tr>
</tbody>
</table>

PY 719 Multivariate Statistical Methods
or PY 719L Lab for Multivariate Statistical Methods

PY 727 Longitudinal Data Analysis Laboratory
or SOC 77 Advanced Longitudinal and Multi-level Data Analysis

PY 746 Structural Equation Modeling

SOC 704 Categorical Data Analysis

Total Hours 15

¹ Other advanced statistics electives may be approved by the Program Director

Contact

Program Director Sylvie Mrug, Ph.D.
E-mail smrug@uab.edu

Courses

PY 520. Special Topics in Psychology. 1-3 Hour.
This course will provide introductory, graduate level training in topics within the fields of behavioral neuroscience, developmental psychology, medical/clinical psychology, and research methods.

PY 619. Diversity, Equity and Inclusion in Research and the Workplace. 1 Hour.
Definitions of the terms diversity, equity, and inclusion continue to evolve in our society and it is essential that individuals have clear understandings of these terms that are shaped by interactions with individuals from a variety of cultures and differing levels of social status. Additionally, research studies can contain selection bias as the individuals who agree to participate may not be representative of the larger populations the studies are targeted to assess. This course will enable students to: (1) receive perspectives on diversity, equity and inclusion from the instructor, experts in the areas, and members of subgroups who have experienced a lack of resources and/or discrimination, (2) learn strategies that can be utilized to provide outreach efforts to the communities they are interested in studying, (3) recruit more representative samples, and (4) foster work environments that are inclusive and not offensive to any team members.

PY 620. Special Topics in Psychology. 1-3 Hour.
This course will provide training in advanced topics in the fields of behavioral neuroscience, developmental psychology, medical/clinical psychology, and research methods.

PY 652. Biofeedback, Meditation and Self-Regulation. 3 Hours.
History and current applications of biofeedback, meditation, and relaxation techniques.

PY 653. Foundations of Behavioral Neuroscience. 4 Hours.
Neural systems which control behavior will be studied, incorporating knowledge gained from neurobiological and psychological research. Topics will include synaptic communication, sensation and perception, movement, genetic influences on behavior, motivation, emotions, psychopathology, brain plasticity, and an extended module on learning.

PY 683. Developmental Disabilities. 3 Hours.
History, causes, treatment/education, interventions, and family issues related to developmental disabilities and other neuro-differences. Psychologist as member of interdisciplinary treatment team. There will be a focus on identifying patterns of strengths and weaknesses in various disorders.
PY 687. The Dynamics of Pain. 3 Hours.
This course provides a comprehensive study of pain, from basic anatomy through clinical treatment and measurement.

PY 693. Cognitive Neuroscience. 3 Hours.
How cognitive processing originates from brains. Focus on synthetic approaches to sensory-input guided behavior implemented in a biologically realistic manner; neurobiological wetware underlying cognition; study and construction of synthetic approaches that emulate biological behavior and psychological processes.

PY 698. Premaster's Degree Graduate Research. 1-12 Hour.
Premaster's Degree Graduate Research.

PY 699. Master's Level Thesis Research. 1-12 Hour.
Master's Level Thesis Research.
Prerequisites: GAC M

PY 701. Professional Issues and Ethics in Psychology. 1 Hour.
Ethics, professionalism, diversity, licensure, and legal issues in health service and academic psychology. Human research ethics in biobehavioral and clinical science.

PY 704. Social Psychology. 3 Hours.
Interpersonal relationships and effects of social environment on social perception and human behavior.

PY 707. Brain and Cognition. 3 Hours.
Integration of cognitive, behavioral, biological, and computational perspectives on perception, attention, learning and memory, language, problem-solving and creativity, and judgment and decision-making.

PY 708. Developmental Psychology. 3 Hours.
Human development from prenatal period to old age. Genetic and environmental determinants of behavior; linguistic, cognitive, intellectual, personality, social, and emotional development.

PY 710. Seminar in Lifespan Developmental Psychology. 1 Hour.
Discussion of scientific and professional development issues related to developmental psychology.

PY 711. Seminar in Cognitive Development. 3 Hours.
Seminar in the development of and changes in memory, perception, learning, and thinking throughout the lifespan.

PY 712. Seminar in Social Development. 3 Hours.
Theory and research related to attachment, origins of the self and self-esteem, family relationships, peer relationships, morality, and aggression.

PY 713. Seminar in Language Development. 3 Hours.
Research and theory related to normal and deviant language development.

PY 716. Introduction to Statistics and Measurement. 3 Hours.
Probability, measurement, descriptive statistics, sampling distributions, null hypothesis significance testing, means comparisons, correlation, regression, reliability, validity, categorical data analysis, and nonparametric methods.

PY 716L. Lab for Introduction to Statistics and Measurement. 1 Hour.
Computer laboratory for PY 716 Introduction to Statistics and Measurement.

PY 717. Applied Statistical Methods. 3 Hours.
Statistical hypothesis testing in the context of the univariate general linear model: 1-way and factorial analysis of variance, multiple comparison procedures, multiple regression and repeated measures.
Prerequisites: PY 716 [Min Grade: C]

PY 717L. Lab for Applied Statistical Methods. 1 Hour.
Computer laboratory for PY 717 Applied Statistical Methods.
Prerequisites: PY 716L [Min Grade: C]

PY 718. Advanced Research Design. 3 Hours.
Presentation and discussion of advanced topics in research design, such as statistical and experimental control, adaptive and other between-groups experimental designs, and program evaluation. The class culminates in preparation of a research grant application.

PY 719. Multivariate Statistical Methods. 3 Hours.
Multiple regression, mediation and moderation, multivariate analysis of variance, logistic regression, principal components and factor analysis, and introduction to structural equation modeling.
Prerequisites: PY 717 [Min Grade: C]

PY 719L. Lab for Multivariate Statistical Methods. 1 Hour.
Laboratory for PY 719 Multivariate Statistical Methods.
Prerequisites: PY 717L [Min Grade: C]

PY 720. Human Neuropsychology. 3 Hours.
Structure and function of human brain; effects of neurological impairment on cognitive, affective, and personality functions.
Prerequisites: PY 707 [Min Grade: C] (Can be taken Concurrently) or PY 653 [Min Grade: C] (Can be taken Concurrently) or PY 693 [Min Grade: C] (Can be taken Concurrently)

PY 721. Neuropsychological Assessment. 3 Hours.
Assessment of various types of neuropsychological disorders, including interpretation of test results and communication of findings via oral presentations and written reports. Emphasis is on analytical thinking, ethical considerations, practical applications of neuroscientific research and incorporating knowledge of ethnic and cultural factors.
Prerequisites: PY 720 [Min Grade: C]

PY 727. Longitudinal Data Analysis Laboratory. 3 Hours.
Hands-on advanced statistics class focusing on analyses of longitudinal data. Topics include multilevel (hierarchical) models, latent growth curve models, Generalized Estimating Equations, and group-based longitudinal models.
Prerequisites: PY 719 [Min Grade: C]

PY 729. Seminar in Adolescent Development. 3 Hours.
Seminar in Adolescent Development. Theoretical models and empirical findings related to biological, psychological, and socio-historical changes in adolescent development.
Prerequisites: PY 719 [Min Grade: C]

PY 731. Health Psychology. 3 Hours.
Prevention, health enhancement and intervention. Environmental, interpersonal and marketplace factors in health and disease. Basic concepts, methods and instruments in health psychology assessment.

PY 734. Applied Developmental Psychology. 3 Hours.
Creating programs and policies to apply developmental science in order to improve human development. Establishing partnerships for developing and sustaining the applied scientific research on which such programs and policies are based.

PY 737. Psychology of Eating Disorders & Obesity. 3 Hours.
History, epidemiology, genetic, environmental, and behavioral correlates and prevention and treatment strategies of eating disorders and obesity; mechanisms of normal feeding and weight control and research methods used to understand other psychiatric disorders.
PY 740. Adult Personality and Psychopathology. 3 Hours.
Fundamental theories, concepts, issues, and methodologies of adult psychopathology and its relationship to normal personality and personality disorders. Focuses on the major syndromes of mental disorder from both biological and psychosocial perspectives.

PY 741. Child and Adolescent Psychopathology and Treatment. 3 Hours.
Development, etiology, diagnosis and treatment of emotional and behavioral disorders affecting children and adolescents. Incorporates historical and contemporary issues pertaining to their phenomenology, comorbidity, and epidemiology along with cultural, ethical, and professional issues germane to clinical care.
Prerequisites: PY 708 [Min Grade: C]

PY 742. Sport Psychology. 3 Hours.
Psychological factors in athletic performance. Psychological characteristics of successful athletes; anxiety arousal, motivation, attention, concentration, attribution, cognition, and imagery.

PY 746. Structural Equation Modeling. 3 Hours.
Basic steps in structural equation modeling - model identification, estimation, evaluation and modification - as well as advanced topics such as confirmatory factor analysis, latent variables, multi-group modeling, analysis of non-normally-distributed and categorical data, missing data, and sample size estimation.
Prerequisites: PY 719 [Min Grade: C]

PY 749. Social Psychophysiology. 3 Hours.
Current research on the effects of the social world on hormonal responses (cortisol, testosterone etc.). Several research articles will be discussed every week in a seminar format.

PY 751. Human Psychopharmacology. 2 Hours.
Neurophysiological underpinnings and clinical use of drugs for the treatment of mental disorders and pain.

PY 754. Advanced Topics in Behavioral Neuroscience. 3 Hours.
Methods and discoveries in the neuroscience of behavior, such as brain imaging, human and animal learning, perception, neurophysiology, neuropharmacology and psychiatric disorders. Most students will have taken 753/453 as a prerequisite, but other high level neuroscience courses may also suffice with permission of the instructor.
Prerequisites: PY 753 [Min Grade: C]

PY 756. Research Seminar in Behavioral Neuroscience. 1 Hour.
Scientific and professional development including scientific writing and communication skills, discussion of current literature, and presentation of ongoing research from students in the Behavioral Neuroscience doctoral program.

PY 760. Interviewing and Behavioral Observation. 2 Hours.
Theory and practice of interviewing and behavioral assessment with adult and child populations.

PY 764. Cognitive Assessment: Child and Adult. 3 Hours.
Cognitive assessment of children and adults focusing on issues related to assessment, Bayley Scales of Infant/Toddler Assessment, Differential Ability Scales, Wechsler scales and additional cognitive, academic, memory, and learning tests.

PY 765. Personality Assessment. 2 Hours.
Objective personality assessment, primarily focusing on Minnesota Multiphasic Personality Inventory.

PY 769. Cognitive Behavior Therapy. 3 Hours.
Review of cognitive behavioral theory and methods with emphasis on empirically validated individual and group, including brief, interventions.

PY 770. Survey of Psychotherapeutic Methods. 3 Hours.
Procedures for changing maladaptive behavior. Research and methodological issues, factors common to most therapy, and major therapeutic techniques.

PY 777. Psychotherapy Practice Shadowing. 1 Hour.
Introduction to psychotherapy practice by sitting in on therapy (consented) with a practicing psychologists.

PY 779. Foundations of Clinical Supervision and Consultation. 1 Hour.
Methods, models, and ethical considerations related to clinical supervision and interprofessional consultation in diverse cultural and professional contexts.

PY 785. Psychology of Aging. 3 Hours.
The relationship between aging and health, cognitive function, intelligence, personality, relationships, and psychopathology. Other topics covered in this course include assessment and treatment of psychological disorders in older adults, end-of-life issues, caregiving and dementia.

PY 786. Pediatric Psychology. 2 Hours.
Behavioral influences on health and illness; impact of health problems and illness on behavior and development of children and adolescents; family issues related to these interactions.

PY 790. Internship in Clinical Psychology. 9 Hours.
Completion of an APA-accredited internship in clinical psychology.

PY 791. Special Topics in Psychology. 1-3 Hour.
Topics and prerequisites vary.

PY 792. Introduction to Neurobiology. 6 Hours.
Introduction to the neurobiological bases of neuronal communication and behavior. Topics include invertebrate and vertebrate neuroanatomy, neurons and glia, resting potentials, action potentials, synaptic transmission, neurotransmitters and receptors, sensory transduction, and sensorimotor integration. The course is taught at Dauphin Island Sea Lab Facilities, Dauphin Island, Alabama.

PY 795. Community Practicum in Psychology. 1-3 Hour.
This course will provide academic credit for training and supervised experiences in selected community service agencies. Service learning is a significant component of this course.

PY 796. Practicum in the Teaching of Psychology. 1-9 Hour.
Practicum in the teaching of psychology.

PY 797. Clinical Practicum in Medical Psychology. 1-4 Hour.
Practicum training in clinical and medical psychology, supervised by a licensed mental health professional.

PY 798. Predoctoral Degree Graduate Research. 1-12 Hour.
Predoctoral degree graduate research.

PY 799. Doctoral Dissertation Research. 1-12 Hour.
Doctoral dissertation research.
Prerequisites: GAC Z

Behavioral Neuroscience

To obtain specific instructions for how to apply to the graduate concentration in Behavioral Neuroscience, prospective students should visit this page: https://www.uab.edu/cas/psychology/graduate-programs/behavioral-neuroscience

The curriculum in Behavioral Neuroscience provides a student with advanced training that is broadly based in neuroscience. All students have a plan of coursework that includes Overview of Behavioral
Neuroscience, a two-semester statistics sequence (PY 716-PY 717), and an ongoing seminar in current research (PY 756). Advanced academic coursework is determined by the student and mentor. The student initially rotates among faculty and laboratories during the first year to obtain breadth in points of view and experimental techniques. Student then chooses a mentor with whom they normally complete the remainder of their research training. Before admission to candidacy, each student must complete a 2nd Year research requirement and pass the qualifying examination. Following acceptance of a proposal for dissertation research, the student is admitted to candidacy. The Ph.D. degree is awarded upon successful defense of the dissertation.

If entering with a baccalaureate degree:

- Completion of 48 credit hours of course work prior to candidacy.
- Up to 16 credits of the 48 can be as non-dissertation research credits.
- Up to 10 credits of the 48 can be as lab rotation, seminar, or directed study credits.
- Must complete at least two semesters in candidacy and accumulate at least 24 credit hours in 799 research OR
 - must complete at least two semesters in candidacy and have accumulated at least 12 credit hours in 799 research AND, either during or before candidacy, 12 credit hours in other appropriate research-based coursework that has been approved by the graduate student’s program.

If entering with a previous Masters degree appropriate to the Ph.D degree field:

- Completion of 27 credit hours of course work prior to candidacy.
- Up to 6 credits of the 27 can be as non-dissertation research credits.
- Up to 6 credits of the 27 can be as lab rotation, seminar, or directed study credits.
- Must complete at least two semesters in candidacy and accumulate at least 24 credits in 799 research OR
 - must complete at least two semesters in candidacy and have accumulated at least 12 credit hours in 799 research AND, either during or before candidacy, 12 credit hours in other appropriate research-based coursework, which has been approved by the graduate student’s program.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 792</td>
<td>Introduction to Neurobiology (Summer before Year 1)</td>
<td>6</td>
</tr>
<tr>
<td>PY 619</td>
<td>Diversity, Equity and Inclusion in Research and the Workplace</td>
<td>1</td>
</tr>
<tr>
<td>PY 653</td>
<td>Foundations of Behavioral Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>PY 716</td>
<td>Introduction to Statistics and Measurement</td>
<td>3</td>
</tr>
<tr>
<td>PY 716L</td>
<td>Lab for Introduction to Statistics and Measurement</td>
<td>1</td>
</tr>
<tr>
<td>PY 717</td>
<td>Applied Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>PY 717L</td>
<td>Lab for Applied Statistical Methods</td>
<td>1</td>
</tr>
<tr>
<td>PY 756</td>
<td>Research Seminar in Behavioral Neuroscience (Take Twice in Year 1)</td>
<td>1</td>
</tr>
<tr>
<td>PY 756</td>
<td>Research Seminar in Behavioral Neuroscience</td>
<td>1</td>
</tr>
<tr>
<td>PY 798</td>
<td>Predoctoral Degree Graduate Research</td>
<td>1</td>
</tr>
<tr>
<td>PY 798</td>
<td>Predoctoral Degree Graduate Research (Summer of Year 1)</td>
<td>3-5</td>
</tr>
<tr>
<td>PY 798</td>
<td>Predoctoral Degree Graduate Research (Summer of Year 2)</td>
<td>3-5</td>
</tr>
<tr>
<td>PY 798</td>
<td>Predoctoral Degree Graduate Research (Summer of Year 3)</td>
<td>3-5</td>
</tr>
<tr>
<td>Year Four</td>
<td>Research Seminar in Behavioral Neuroscience (Take Twice in Year Four)</td>
<td>1</td>
</tr>
<tr>
<td>PY 799</td>
<td>Doctoral Dissertation Research</td>
<td>4</td>
</tr>
<tr>
<td>PY 799</td>
<td>Doctoral Dissertation Research</td>
<td>12</td>
</tr>
<tr>
<td>PY 799</td>
<td>Doctoral Dissertation Research (Summer of Year 4)</td>
<td>3-5</td>
</tr>
<tr>
<td>Year Five</td>
<td>Research Seminar in Behavioral Neuroscience (Take Twice in Year Five)</td>
<td>1</td>
</tr>
<tr>
<td>PY 799</td>
<td>Doctoral Dissertation Research</td>
<td>12</td>
</tr>
<tr>
<td>PY 799</td>
<td>Doctoral Dissertation Research</td>
<td>4</td>
</tr>
<tr>
<td>PY 799</td>
<td>Doctoral Dissertation Research (Summer of Year 5)</td>
<td>3-5</td>
</tr>
</tbody>
</table>

Total Hours: 112-122

1. PY 792 is completed during the summer, mid July to August, prior to the first semester in the Behavioral Neuroscience program.
2. Elective Classes: PY 520, PY 620, PY 687, PY 693, PY 719, PY 720, PY 727, PY 746, PY 751 PY 791, BY 511, BY 616, BY 648, BME 664, BME 764, BME 665, BME 765, CH 461, CH 561, CH 562, CS 665, NBL 729, NBL 730, NBL 755, NTR 718, PHR 701

Dauphin Island

Prior to starting the first semester of courses, students attend a three week course held at the Dauphin Island Research Facility. This course introduces students to many of the basic techniques and issues in the field of neuroscience and is paid for by the department.

Developmental Psychology

To obtain specific instructions for how to apply to the graduate concentration in Developmental Psychology, prospective students should visit this page: https://www.uab.edu/cas/psychology/graduate/developmental

Each student in the Developmental Psychology specialization is encouraged to develop a systematic line of research that complements that of his or her advisor. With intense exposure to an important aspect of developmental research, the student acquires skills that can be generalized to a variety of problems. Students are required to complete a core curriculum which includes 21 hours of developmental psychology classes, 15 hours of research design and statistics, 9 hours of general psychology and related discipline classes; 6 hours of teaching practicum and teaching; and at least 48 credit hours of research.
Developmental Psychology students must complete a master's thesis. Admission to candidacy for the doctoral degree is based on satisfactory completion of coursework and completion of an area review in the form of a Psychological Bulletin or Psychological Review article. The doctoral degree is awarded upon successful defense of the dissertation.

Master's Degree

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Coursework</td>
<td>25</td>
</tr>
<tr>
<td>PY 619 Diversity, Equity and Inclusion in Research and the Workplace</td>
<td></td>
</tr>
<tr>
<td>PY 708 Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 710 Seminar in Lifespan Developmental Psychology (Required fall and spring semesters every year)</td>
<td></td>
</tr>
<tr>
<td>PY 716 Introduction to Statistics and Measurement</td>
<td></td>
</tr>
<tr>
<td>PY 716L Lab for Introduction to Statistics and Measurement</td>
<td></td>
</tr>
<tr>
<td>PY 717 Applied Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>PY 717L Lab for Applied Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>PY 719 Multivariate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>PY 719L Lab for Multivariate Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Thesis Research

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 699 Master's Level Thesis Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Elective Options in Developmental Psychology

Select three courses from the list below

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 683 Developmental Disabilities</td>
<td></td>
</tr>
<tr>
<td>PY 711 Seminar in Cognitive Development</td>
<td></td>
</tr>
<tr>
<td>PY 712 Seminar in Social Development</td>
<td></td>
</tr>
<tr>
<td>PY 713 Seminar in Language Development</td>
<td></td>
</tr>
<tr>
<td>PY 734 Applied Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 764 Cognitive Assessment: Child and Adult</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours - Minimum Required for Master's Degree

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

1. Individual course requirements may be waived based on evaluation of coursework completed prior to matriculation, either at UAB or elsewhere. If a course requirement is waived, then the credit hours must be replaced by approved electives or by coursework required for the doctoral degree in Developmental Psychology. Course waivers may not exceed half of the required credit hours across the master's and doctoral degrees; research and teaching practicum hours are not included in this computation. No course may satisfy requirements for both the doctorate and another degree, whether completed at UAB or elsewhere.

2. Other courses may be considered with Program Director approval.

Doctoral Degree

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Coursework</td>
<td>27</td>
</tr>
<tr>
<td>PY 653 Foundations of Behavioral Neuroscience</td>
<td></td>
</tr>
<tr>
<td>or PY 707 Brain and Cognition</td>
<td></td>
</tr>
<tr>
<td>PY 710 Seminar in Lifespan Developmental Psychology (Required fall and spring semesters every year)</td>
<td></td>
</tr>
<tr>
<td>PY 718 Advanced Research Design</td>
<td></td>
</tr>
<tr>
<td>PY 729 Seminar in Adolescent Development</td>
<td></td>
</tr>
<tr>
<td>PY 785 Psychology of Aging</td>
<td></td>
</tr>
</tbody>
</table>

Electives in Research Design & Statistics

Select one course from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 727 Longitudinal Data Analysis Laboratory</td>
<td></td>
</tr>
<tr>
<td>PY 746 Structural Equation Modeling</td>
<td></td>
</tr>
</tbody>
</table>

General Psychology & Related Disciplines

Select two courses from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 704 Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 720 Human Neuropsychology</td>
<td></td>
</tr>
<tr>
<td>PY 731 Health Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 742 Sport Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 788 Pediatric Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 791 Special Topics in Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 795 Community Practicum in Psychology</td>
<td></td>
</tr>
</tbody>
</table>

Teaching

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 796 Practicum in the Teaching of Psychology</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
</tr>
</tbody>
</table>

1. Individual course requirements may be waived based on evaluation of coursework completed prior to matriculation, either at UAB or elsewhere. If a course requirement is waived, then the credit hours must be replaced by approved electives. Course waivers may not exceed half of the required credit hours across the master's and doctoral degrees; research and teaching practicum hours are not included in this computation. No course may satisfy requirements for both the doctorate and another degree, whether completed at UAB or elsewhere.

2. At least 24 hours must be completed prior to admission to candidacy. Remaining hours must include at least 15 hours of graduate-level Psychology coursework. PY 798 does not count towards this 15 hour coursework minimum.

3. Other electives may be considered with Program Director approval.

4. Students who do not meet the 24-hour minimum in this category due to course waivers can make up the deficit with any combination of the following:
 - Other elective courses approved by the program for this purpose.
 - Up to 3 additional hours of non-dissertation research credits (PY 698, 699, and 798) that were not used to satisfy requirements for the master's degree.

Medical/Clinical Psychology

To obtain specific instructions for how to apply to the graduate concentration in Medical/Clinical Psychology, prospective students should visit this page: https://www.uab.edu/cas/psychology/graduate-programs/medical-clinical-psychology

The Medical/Clinical Psychology specialization places strong emphasis on integration of biological and behavioral sciences. Thus, the research and clinical training that the program provides assumes an undergraduate background in both psychology and life science. The program engages students in continued pursuit of knowledge and skill fundamental to research and clinical practice. In addition, students focus their research and a clinical training in one or more of the several areas of clinical and health psychology that the program emphasizes, and pursue advanced scientific and applied coursework, clinical practica, and directed research activities that culminate in the doctoral dissertation.
Course requirements for the Medical/Clinical Psychology specialization include:

1. General Psychology and Neuroscience – cognitive, biological, social, emotional and developmental bases of behavior, as well as the history of the discipline
2. Statistics and Research Design – statistical methods, research design, and the responsible conduct of research. The statistics courses have associated computer labs.
3. Foundations of Clinical and Health Psychology – personality, psychopathology, an overview of psychotherapeutic methods, health psychology and the ethics of professional practice
4. Psychological Assessment and Intervention – interviewing; behavioral, cognitive and personality assessment; and an introduction to cognitive-behavior therapy.

Additional courses and/or seminars may be taken as electives and may be required depending on the student’s area(s) of emphasis.

Students in Medical/Clinical Psychology are actively engaged in research throughout the time that they are enrolled in the program and typically complete a master’s thesis project during their second or third year. Clinical practicum experiences begin in the summer of the first year, and in their final year students complete an APA-accredited clinical psychology internship, typically in a medical facility. The doctoral degree is awarded upon successful defense of the dissertation and completion of the internship.

Master’s Degree

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Graduate Coursework</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 701 Professional Issues and Ethics in Psychology</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>PY 619 Diversity, Equity and Inclusion in Research and the Workplace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 716 Introduction to Statistics and Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 716L Lab for Introduction to Statistics and Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 717 Applied Statistical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 717L Lab for Applied Statistical Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 740 Adult Personality and Psychopathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 760 Interviewing and Behavioral Observation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 764 Cognitive Assessment: Child and Adult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 765 Personality Assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 770 Survey of Psychotherapeutic Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY 777 Psychotherapy Practice Shadowing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Research</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PY 699 Master’s Level Thesis Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

1 Individual course requirements may be waived based on evaluation of coursework completed prior to matriculation, either at UAB or elsewhere. If a course requirement is waived, then the credit hours must be replaced by approved electives or by coursework required for the doctoral degree in Medical/Clinical Psychology. Course waivers may not exceed half of the required credit hours across the master’s and doctoral degrees in Medical/Clinical Psychology; research, clinical practicum and internship hours are not included in this computation. No course may satisfy requirements for both the master’s in Medical/Clinical Psychology and another degree, whether completed at UAB or elsewhere.

Doctoral Degree

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Coursework</td>
<td>28</td>
</tr>
<tr>
<td>PY 704 Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 707 Brain and Cognition</td>
<td></td>
</tr>
<tr>
<td>PY 708 Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 718 Advanced Research Design</td>
<td></td>
</tr>
<tr>
<td>PY 719 Multivariate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>PY 719L Lab for Multivariate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>PY 720 Human Neuropsychology or PY 731 Health Psychology or PY 741 Child and Adolescent Psychopathology and Treatment</td>
<td></td>
</tr>
<tr>
<td>PY 769 Cognitive Behavior Therapy</td>
<td></td>
</tr>
<tr>
<td>PY 779 Foundations of Clinical Supervision and Consultation</td>
<td></td>
</tr>
<tr>
<td>PY 797 Clinical Practicum in Medical Psychology (1 credit hour)</td>
<td></td>
</tr>
<tr>
<td>PY 798 Predoctoral Degree Graduate Research (1 credit hour)</td>
<td></td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Wavier Deficit</td>
<td>3</td>
</tr>
<tr>
<td>Doctoral Dissertation</td>
<td>12</td>
</tr>
<tr>
<td>PY 799 Doctoral Dissertation Research</td>
<td></td>
</tr>
<tr>
<td>Internship</td>
<td>27</td>
</tr>
<tr>
<td>PY 790 Internship in Clinical Psychology</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>67</td>
</tr>
</tbody>
</table>

1 Individual course requirements may be waived based on evaluation of coursework completed prior to matriculation, either at UAB or elsewhere. If a course requirement is waived, then the credit hours must be replaced by approved electives. Course waivers may not exceed half of the required credit hours across the master’s and doctoral degrees in Medical/Clinical Psychology; research, clinical practicum and internship hours are not included in this computation. No course may satisfy requirements for both the doctorate in Medical/Clinical Psychology and another degree, whether completed at UAB or elsewhere.

2 At least 28 hours (including 3 hours of GRD 717) must be completed prior to admission to candidacy. Remaining hours must include at least 15 hours of graduate-level Psychology coursework. PY 797 and PY 798 do not count towards this 15 hour coursework minimum.

3 Students who do not meet the 28-hour minimum in this category due to course waivers can make up the deficit with any combination of the following:

 • Other elective courses approved by the program for this purpose.
 • Up to 3 additional hours of non-dissertation research credits (PY 698, 699, and 798) that were not used to satisfy requirements for the master’s degree.

4 Includes 12 hours that satisfy the Graduate School’s requirement for “appropriate research-based coursework which has been approved by the graduate student’s program.”

Social Work

Department of Social Work MSW Program

Training the finest professionals in the areas of clinical/medical social work requires settings that provide the best opportunities for students to develop the complex skills needed to provide services.
Students in the UAB Master of Social Work program will receive advanced training using an innovative model of evidence-based education in the resource-rich environment provided by UAB, including world-class Schools of Medicine and Public Health.

The MSW program will prepare students for clinical and community practice, including specific focus on interventions demonstrated to be effective for specific populations. Combining extensive internships in health and mental health settings with coordinated classroom learning, students will be uniquely trained in clinical and community practice.

The MSW is a terminal professional degree, focusing on developing advanced practice competencies. The majority of non-academic Social Work jobs are at this level, and an MSW degree is required to achieve licensure for independent clinical practice.

The program is accredited by the Council on Social Work Education.

Program Requirements

We offer four curricular pathways to obtain the MSW including full-time and new part-time program options (beginning Fall 2021).

Regular Program (Full-Time)

This MSW curriculum consists of 60 credit hours, divided into foundation level (12 hours) and concentration level (48 hours). Courses are sequenced so that students will graduate in four semesters. Foundation courses are compressed into a single semester, allowing students three semesters to gain advanced clinical skills. The concentration sequence is three semesters of coursework with specific focus on courses aimed at developing specific practice competencies, and courses on the specific populations who will be the recipients of behavioral health and health interventions. Regular Program students have field experiences over four semesters consisting of 900 total contact hours.

Advanced Standing (Full-Time)

Students holding a Bachelor of Social Work degree from a program accredited by the Council on Social Work Education (CSWE) may be admitted to the MSW program with advanced-standing status. The Advanced Standing curriculum consists of 42 credit hours and is completed over three semesters (Fall/Spring/Fall). Advanced Standing students have field experiences over three semesters consisting of 600 total contact hours.

Regular Program (Part-Time)

The part-time version of the Regular Program curriculum consists of 61 credit hours, divided into foundation level (12 hours) and concentration level (49 hours). Courses are sequenced so that students will graduate in four years (11 semesters, including summers).

Advanced Standing (Part-Time)

Students holding a Bachelor of Social Work degree from a CSWE-accredited BSW program may be admitted to the MSW program with advanced-standing status. The part-time version of the Advanced Standing curriculum consists of 42 credit hours and is completed over 2.5 years (7 semesters, including summers).

Field Practicum

In the Field Practicum, students are prepared for post-graduate employment through a series of experiences in community agencies. Students are paired with Field Supervisors who are professionals with at least two years of post-graduate experience.

Activities in the field are sequenced to lead to independent practice, beginning in the initial setting with practice simulations and service learning in community agencies, continuing on with shadowing and supervised direct practice. The field experience is integrated across the curriculum, including conducting a research project as part of field practicum experience, and assignments paired to practice courses.

The field experience uses closely monitored experiences in community settings to allow students more direct experience. This approach is designed to increase student readiness for the more specialized upper level practice associated the clinical social work.

Admissions Requirements

An admissions packet will consist of:

- Academic transcripts with GPAs (note: please have transcripts mailed directly to the UAB Graduate School — transcripts will not be accepted in the Department)
- Two recommendation letters, ideally one academic and one professional (note: please ask individuals to upload formal letters of recommendation to the Graduate School application — recommendation letters will not be accepted in the Department). Letters must be signed by the recommendation writer to be accepted.
- A professional resume
- A personal statement about your path to social work and professional goals (writing prompt found in application)
- A formal academic writing sample (writing prompt found in application)
- International students will be required to submit scores from the TOEFL

Additional admissions requirements established by the UAB Graduate School include: completion of a Bachelor's degree (or higher) with a minimum GPA of 3.0 (on a four-point scale) in junior and senior level course work. The GRE is not required.

Master of Social Work in Clinical/Medical Social Work

Students who have a non-social work undergraduate degree from an accredited College or University may be admitted as a student to 2-year (4 semesters/60 credits) curriculum (Regular admission). Students who hold a BSW from a social work program accredited by the Council on Social Work Education may apply for Advanced Standing admission. Students entering the program as Advanced Standing are not required to complete Foundation courses and begin with the advanced curriculum (3 semesters/42 credits).

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 510 Social Work Practice with Individuals, Groups & Organizations</td>
<td>3</td>
</tr>
<tr>
<td>SW 520 Social Work Policy</td>
<td>3</td>
</tr>
<tr>
<td>SW 530 Research I</td>
<td>3</td>
</tr>
<tr>
<td>SW 610 Diagnosis and Assessment for Health and Behavioral Health</td>
<td>3</td>
</tr>
<tr>
<td>SW 640 Human Behavior in the Social Environment for Health and Behavioral Health</td>
<td>3</td>
</tr>
<tr>
<td>SW 630 Research with Health and Behavioral Health Populations I</td>
<td>3</td>
</tr>
</tbody>
</table>
This course provides the foundation for social welfare policy and policy practice for social workers. It helps understand what social welfare is, its historical background, and values and beliefs that have shaped social welfare policy and analysis of social welfare policies. Issues around poverty and economic inequality, key social welfare policies and programs, and policy making processes will be discussed to help evaluate status-quo policies and advocate for vulnerable populations.

SW 520. Social Work Policy. 3 Hours.

The primary goal of this course is to introduce students to the profession's change process that facilitates change and improves social functioning. Students will learn about the advanced generalist model application of social work practice with individuals, families, groups, communities, and organizations. Students will be introduced to the principles of evidence-based practice. The course also explores theories, concepts, and knowledge about human development and behavior. In addition, content includes discussion of how factors such as social class, sexual orientation, gender, physical ability, age, race, ethnicity, and culture influence human development and behavior. The course also focuses on adherence to NASW Code of Ethics and ethical practice.

SW 510. Social Work Practice with Individuals, Groups & Organizations. 3 Hours.

The primary goal of this course is to introduce students to the profession's change process that facilitates change and improves social functioning. Students will learn about the advanced generalist model application of social work practice with individuals, families, groups, communities, and organizations. Students will be introduced to the principles of evidence-based practice. The course also explores theories, concepts, and knowledge about human development and behavior. In addition, content includes discussion of how factors such as social class, sexual orientation, gender, physical ability, age, race, ethnicity, and culture influence human development and behavior. The course also focuses on adherence to NASW Code of Ethics and ethical practice.

SW 610. Diagnosis and Assessment for Health and Behavioral Health. 3 Hours.

The purpose of this course is to educate the student in formal assessment processes using standardized diagnostic tools. Specifically, students will learn to conduct multidimensional assessments using the Diagnostic and Statistical Manual (DSM) and International Statistical Classification of Diseases and Related Health Problems (ICD). Students will learn differential diagnosis for both mental disorders and specific health conditions, including HIV/AIDS. Training in assessment of diagnosis will include interview skills engaging the client or family system to elicit accurate information around specific symptoms and diagnostic rule-outs, explore the effect of culture and diversity on reporting symptoms, understand how socioeconomic factors can impact on both the reporting and severity of specific symptoms, conduct assessments in a professional and ethical manner, and how to write up diagnostic statements for both mental health and health conditions. Students will be trained on how to use this information as Social Workers on a multidisciplinary team to advocate for appropriate use of the diagnosis in designing interventions.
SW 615. Evidence-informed Interventions in Health and Behavioral Health I. 3 Hours.
The purpose of this course is to train students on providing evidence-based interventions for children and families addressing health and behavioral health conditions. Students will be trained in skills in identifying appropriate evidence-based practices, then translating and implementing these practices at appropriate individual and families. Identifying appropriate evidence-based practices will include the ability to ask answerable questions, identify relevant available material, assess the evidence-supporting material, and make evidence-driven decisions based on available information. Translating and implementing practices includes awareness of individual-level information as well as available resources in the various practice settings. In translating and implementing practices, particular attention is paid to diversity and culture, including race, ethnicity and culture, gender, sexual orientation, age and family structure. Students will receive information and training relative to advanced intervention processes, including engagement, assessment, conducting the specific intervention and evaluation. As part of training in the evidence-based intervention process, students will learn about practice ethics related to working with children and families (e.g., mandated reporting of abuse).
This course will focus primarily on conditions that occur first in childhood, including both acute and chronic conditions, and interventions with children and families.

SW 616. Evidence-informed Interventions in Health and Behavioral Health II (Groups, Organizations, Comm). 3 Hours.
The purpose of this course is to train students on providing evidence-based interventions for adults addressing health and behavioral health conditions. Students will be trained in skills in identifying appropriate evidence-based practices, then translating and implementing these practices at appropriate individual, group, family, organization and community levels. Identifying appropriate evidence-based practices will include the ability to ask answerable questions, identify relevant available material, assess the evidence-supporting material, and make evidence-driven decisions based on available information. Translating and implementing practices includes awareness of individual-level information as well as available resources in the various practice settings.
In translating and implementing practices, particular attention is paid to diversity and culture, including race, ethnicity and culture, gender, sexual orientation, age and family structure. Students will receive information and training relative to advanced intervention processes, including engagement, assessment, conducting the specific intervention and evaluation. This course will focus primarily on chronic conditions, often with onset in early adulthood (e.g., severe mental illness, substance use disorders, diabetes, HIV) and severe health conditions (e.g., cancer).
As part of training in the evidence-based intervention process, students will learn about practice ethics related to working with adults, specifically concentrating on ethics related to older populations (e.g., mandated reporting of abuse). The course will pay considerable attention to interventions with older populations including illnesses associated with aging populations (e.g., Alzheimer’s disease) and those associated with normative aging processes (e.g., mourning).

SW 620. Policy Analysis and Advocacy Practice for Health and Behavioral Health. 3 Hours.
This course provides students with necessary knowledge and skills to identify policies at the local, state and federal level relevant to health and behavioral health settings and to analyze the impact of policy on clients and constituent groups. Policy issues are examined in the context of their impact on diverse populations and, particularly, socioeconomic oppression. This course teaches advanced advocacy skills and policy formulation.

SW 630. Research with Health and Behavioral Health Populations I. 3 Hours.
This course provides students with necessary skills to begin to assess, generate, evaluate, translate and implement evidence in clinical and policy practice. Students will become familiar with the evidence-based practice and learn how to implement EBP in health and behavioral health settings. This course introduces students to evaluation methodologies such as single system designs, quasi-experimental and experimental group designs, as well as protection of human subjects and research ethics. Students will also learn how to generate and interpret descriptive and inferential statistics applicable to those designs.

SW 631. Research with Health and Behavioral Health Populations II. 3 Hours.
This course introduces students to evaluation methodologies that include qualitative and mixed-methods designs for implementing and testing clinical and policy practice. Students will learn how to generate and evaluate data including qualitative and quantitative analysis, as well as protection of human subjects and research ethics for these methodologies. This course teaches students how to apply such evaluation to clinical practice in health and behavioral health settings.

SW 640. Human Behavior in the Social Environment for Health and Behavioral Health. 3 Hours.
Students will learn conceptualizations of health and mental health, including historical constructs and current conceptualizations. Students will learn human biology, including brain functions and genetics and epigenetics. Students will be introduced to pharmacology related to health and mental health conditions. Students will be exposed to various constructs of types of diversity, and how they relate to both health and behavioral health. Students will learn about social, economic and environmental justice, and how it relates to both practice and policy.
This course will examine how human behavior in the social environment effects the intervention process, including engagement, assessment, intervention and evaluation.

SW 650. Evidence-Based Practice in Mental Health. 3 Hours.
This course will provide students with skills for working with populations coping with mental illness. The course teaches students to move from specific diagnoses, to identifying and implementing evidence-based practices at a variety of levels—including individual, groups, families and organizations. As part of the implementation process, students will learn about the interaction of multiple psychiatric and medical diagnoses, as well as how diversity effects treatment. The course will teach specific skills related to evidence-based practices, such as cognitive behavioral therapy and dialectical behavior therapy.

SW 651. Evidence-Based Practice in Addictions. 3 Hours.
The purpose of this course is to provide advanced skills in treatment of addictions. Evidence-based models will be presented, including motivational interviewing, cognitive behavioral therapy, and psychopharmacologic approaches. Students will receive in-depth training in implementation of evidence-based models, including a specific focus on the skills necessary to identifying and translating the approach for individual clients. Specific attention will be paid to issues around working with diverse populations.
SW 653. Social Work Practice along the HIV Continuum of Care. 3 Hours.
This course is designed to examine the field of HIV/AIDS and will acquaint students with the basic and most advanced facts about HIV/AIDS. It will take different approaches of the impact of HIV infection and AIDS on the individual, family, society, and institutions that provide care and will sensitize students to the challenges that HIV/AIDS has generated in public health, social policy, and social service delivery. The course is especially framed by the HIV Continuum of Care which illustrates related social work HIV practice from prevention and testing to linkage to primary medical care, retention in care, and viral suppression. Social work students will have an opportunity to explore their own beliefs, values and approaches to the issues regarding HIV/AIDS, in addition to the cultural, political, social, legal, ethical, spiritual, and public health issues and the perspectives of people living with HIV infection and AIDS that are needed to inform practice and policy.

This course uses a social work lens to explore the health and well-being of Black Americans. Course content will examine the historical context of institutional, structural and systemic racism and its impact on education, criminal justice, healthcare, economic, and social systems. Students will engage in experiential learning activities to inform the development of anti-oppressive, social justice informed practices that address systemic inequalities.

This course aims to provide students with knowledge and skills for social work practice with people who are disadvantaged and oppressed, and for taking an active stance against bigotry, intolerance, discrimination, and oppression. People who are oppressed in the U.S. typically include ethnic people of color; women; people with physical and mental disabilities; gay, lesbian, bisexual and transgender people; people with particular religious beliefs; and people who are poor. This course will examine the adaptive capabilities and strengths of people who are disadvantaged and oppressed and how such capabilities and strengths can be used for effective social work practice. Students will explore how their own personal values, beliefs, and behavior may affect their ability to practice social work effectively and ethically with people of diverse backgrounds, particularly with people who are disadvantaged and oppressed. Students should leave this course with a better understanding of themselves, of diverse groups they will be working with in practice, and of strategies for advancing social and economic justice.

SW 690. Field Practicum II. 4-6 Hours.
The first experience of a 900-hour field practicum experience over three semesters in approved social service agencies under the supervision of an MSW with three or more years of experience. As the students’ progress through Practicum II-IV they will be expected to function at increasing levels of difficulty, independence, autonomy, initiative, resourcefulness and diligence in the performance of assigned tasks. This course has a weekly one-hour seminar/lab. Students will participate in activities in approved agencies that will allow them to develop advanced generalist practice skills with populations coping with health and behavior health issues. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans, and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels. Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.

SW 691. Field Practicum III. 4-6 Hours.
SW 691 Field Practicum (4-6 hours) and Seminar III (1 hour) is the second experience of a 900-hour field practicum experience over three semesters in approved social service agencies under the supervision of an MSW with three or more years of experience. The practicum experience provides the opportunity for social work majors to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. This course has a weekly one-hour seminar/lab. Students will participate in activities in approved agencies that will allow them to develop advanced generalist practice skills with populations coping with health and behavior health issues. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels. Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.
SW 692. Field Practicum IV. 4-6 Hours.
SW 692 Field Practicum (4-6 hours) and Seminar IV (1 hour) is the last experience of a 900-hour field practicum experience over three semesters in an approved social service agencies under the supervision of an MSW with three or more years of experience. Each field practicum experience will include a concurrent integrative seminar/lab. The course also provides the opportunity for students to examine the principles of social work practice and to develop critical thinking skills. The practicum experience provides the opportunity for social work majors to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. This course has a weekly one-hour seminar/lab. Students will participate in activities in approved agencies that will allow them to develop advanced generalist practice skills with populations coping with health and behavior health issues. As students progress through Practicum II-IV, they will be expected to function at increasing levels of difficulty, independence, autonomy, initiative, resourcefulness and diligence in the performance of assigned tasks. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans, and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels. Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.

SW 693. Field Practicum Seminar II. 1 Hour.
The first experience of a 1080-hour field practicum experience over three semesters in approved social service agencies under the supervision of an MSW with three or more years of experience. The practicum experience provides the opportunity for social work majors to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. This course has a weekly one-hour seminar/lab. Students will participate in activities in approved agencies that will allow them to develop advanced generalist practice skills with populations coping with health and behavior health issues. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans, and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels. Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.

SW 694. Field Practicum Seminar III. 1 Hour.
SW 691 Field Practicum (6 hours) and Seminar III (1 hour) is the second experience of a 1080-hour field practicum experience over three semesters in approved social service agencies under the supervision of an MSW with three or more years of experience. The practicum experience provides the opportunity for social work majors to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. This course has a weekly one-hour seminar/lab. Students will participate in activities in approved agencies that will allow them to develop advanced generalist practice skills with populations coping with health and behavior health issues. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels. Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.

SW 695. Field Practicum Seminar IV. 1 Hour.
SW 692 Field Practicum (7 hours) and Seminar IV (1 hour) is the last experience of a 1080-hour field practicum experience over three semesters in approved social service agencies under the supervision of an MSW with three or more years of experience. Each field practicum experience will include a concurrent integrative seminar/lab. The course also provides the opportunity for students to examine the principles of social work practice and to develop critical thinking skills. The practicum experience provides the opportunity for social work majors to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. This course has a weekly one-hour seminar/lab. Students will participate in activities in approved agencies that will allow them to develop advanced generalist practice skills with populations coping with health and behavior health issues. As students progress through Practicum II-IV, they will be expected to function at increasing levels of difficulty, independence, autonomy, initiative, resourcefulness and diligence in the performance of assigned tasks. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans, and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels. Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.
SW 696. Field Practicum V. 4 Hours.
SW 696 Field Practicum (4 hours) and SW 697 Seminar V (1 hour) represents the conclusion of a field practicum experience carried out over four semesters for part-time MSW students. Practica are carried out in approved social service agencies under the supervision of an MSW with three or more years of experience, and the field practicum and integrative seminar/lab must be registered for concurrently. The courses provide the opportunity for students to examine the principles of social work practice and to develop critical thinking skills. The practicum experience provides the opportunity for students to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. As part-time students progress through Practicum II-IV-V, they will be expected to function at increasing levels of difficulty, independence, autonomy, initiative, resourcefulness and diligence in the performance of assigned tasks. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans, and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels.
Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.

SW 697. Field Practicum Seminar V. 1 Hour.
SW 696 Field Practicum (4 hours) and SW 697 Seminar V (1 hour) represents the conclusion of a field practicum experience carried out over four semesters for part-time MSW students. Practica are carried out in approved social service agencies under the supervision of an MSW with three or more years of experience, and the field practicum and integrative seminar/lab must be registered for concurrently. The courses provide the opportunity for students to examine the principles of social work practice and to develop critical thinking skills. The practicum experience provides the opportunity for students to strengthen and augment knowledge, values and skill bases acquired in the classroom through applying evidence-based theory and other theory-based methods to situations found in actual professional practice. As part-time students progress through Practicum II-IV-V, they will be expected to function at increasing levels of difficulty, independence, autonomy, initiative, resourcefulness and diligence in the performance of assigned tasks. Students will demonstrate knowledge in evidence-based interventions for individuals addressing health and behavioral health conditions and apply that knowledge in conducting interviews and assessments, development of treatment plans, and evaluating their practice. Students will manage personal and professional values and use their understanding of human behavior and diversity to advocate for clients at all systems levels.
Course assignments are designed to encourage students to utilize critical thinking to analyze data and formulate plans that will improve practice, policy and service delivery. Seminar/lab sessions will utilize lectures, focused discussion questions and interactive activities to help students integrate classroom knowledge and practice experience.

Sociology

To obtain specific admissions requirements on how to apply to Graduate School, prospective students should visit this page:

http://www.uab.edu/cas/sociology/graduate-programs

Sociology M.A. Program

Prospective students should use website below to obtain specific admissions requirements on how to apply to Graduate School:

http://www.uab.edu/cas/sociology/graduate-programs/online-professional-ma/online-ma-admissions

The Department of Sociology offers two plans (Plan I and Plan II) for the M.A. Degree

Master of Arts in Sociology

The online Applied Sociology M.A. degree (Plan II) provides strong disciplinary training, along with professional and research experience, to prepare students for careers in business, non-profits, government agencies and the continued professional development of teaching careers. It also offers courses that enable students to apply a sociological perspective to data analytics. To be admitted in good standing, candidates must meet all Graduate School admission requirements.

The Plan II degree is not a step toward obtaining a PhD in Medical Sociology. Students deciding to move into the Medical Sociology Ph.D. Program will need to meet the core requirements from Plan I (refer to Medical Sociology PhD requirements.)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 613 Intro to Applied Sociology Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOC 623 Applied Sociological Theory</td>
<td>3</td>
</tr>
<tr>
<td>SOC 626 Applied Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOC 627 Applied Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>SOC 676 Capstone Project</td>
<td>6</td>
</tr>
<tr>
<td>Electives (12 hours):</td>
<td></td>
</tr>
<tr>
<td>SOC 620 Public Sociology</td>
<td></td>
</tr>
<tr>
<td>SOC 628 Teaching Sociology</td>
<td></td>
</tr>
<tr>
<td>SOC 629 Sociology of the South</td>
<td></td>
</tr>
<tr>
<td>SOC 637 Practicum in Innovation, Creativity, and Applied Sociology</td>
<td></td>
</tr>
<tr>
<td>SOC 645 Sociological Practice</td>
<td></td>
</tr>
<tr>
<td>SOC 698 MR Level Non-Thesis Research</td>
<td></td>
</tr>
<tr>
<td>SOC 714 Survey Research Methods</td>
<td></td>
</tr>
<tr>
<td>SOC 715 Program Evaluation</td>
<td></td>
</tr>
<tr>
<td>SOC 716 Social Stratification</td>
<td></td>
</tr>
<tr>
<td>SOC 718 Social Capital and Social Networks</td>
<td></td>
</tr>
<tr>
<td>SOC 729 Consumer Culture</td>
<td></td>
</tr>
<tr>
<td>SOC 730 Sociology of Education</td>
<td></td>
</tr>
<tr>
<td>SOC 740 Deviant Behavior</td>
<td></td>
</tr>
<tr>
<td>SOC 760 Sociology of Death and Dying</td>
<td></td>
</tr>
<tr>
<td>SOC 783 Health Care Delivery Systems</td>
<td></td>
</tr>
<tr>
<td>SOC 786 Health Disparities</td>
<td></td>
</tr>
</tbody>
</table>
Medical Sociology Ph.D. Program

Prospective students should use website below to obtain specific admissions requirements on how to apply to Graduate School:

http://www.uab.edu/cas/sociology/graduate-programs

Medical Sociology Ph.D. Program

This program is designed to provide students with the coursework and research experiences to become leading researchers, professors and practitioners in medical sociology. Doctoral training in medical sociology exposes students to the central issues of the field through a variety of methodological techniques encompassing both qualitative and quantitative approaches. Graduate students study the social and cultural bases of health beliefs and behaviors, organizational structures of health care delivery, and health disparities, to name just a few examples. Students acquire expertise in theory formulation and data analysis.

There are abundant opportunities for graduate students to work with faculty on research projects in medical settings across the campus.

Admission

Admission to the Ph.D. program in medical sociology generally requires a minimum overall score of 290. Scores should range from 150-162 verbal and 140-157 Quantitative. Minimum GPA of 3.0 (A = 4.0), or a 3.2 GPA for the last 60 semester hours in a B.A. or B.S. program; and minimum GPA of 3.5 in all previous graduate coursework. Students should have completed at least 18 hours in social science courses, including social theory, statistics, and research methods. Students entering the program with a master's degree can waive 16 hours of courses, of which 6 credits are thesis research credits. Please see the sociology website for more information coming in with a masters. Because of the interdisciplinary nature of the Medical Sociology Ph.D. program, students with diverse backgrounds in social science and health-related fields are encouraged to apply. Students lacking adequate backgrounds in theory, research methods, or statistics may be required to make up deficits after enrollment.

Advising

The Graduate Director and/or the student's faculty mentor will provide continuous advisement on academic progress during the student's graduate study, including assistance with course selection and recommendations for research experiences that are consistent with the student's developing interests and abilities. In addition, each year the student will be formally evaluated by the Graduate Committee and will be provided with performance feedback.

Research supervision is provided by faculty whom students select to chair the master's thesis and doctoral dissertation committees. Typically, the student will select persons with whom a close, supportive relationship develops.

The placement of Ph.D. students in research sites within the Department and/or in areas across campus is an important part of the Medical Sociology Program. Such placements usually involve assisting faculty on research grants. Such experiences provide students with invaluable real-life exposure to medical sociology "in action." As such, they are important accompaniments to the coursework of the Ph.D. program. Teaching and research positions are offered to students based on department needs, funding available and student merit.

Financial Aid

All students admitted to the Ph.D. program will be considered for financial aid. Sources include graduate fellowships and assistantships.

Additional Information

<table>
<thead>
<tr>
<th>Deadline for Entry Term(s):</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office:</td>
<td>August 1</td>
</tr>
<tr>
<td>Number of Evaluation/recommendation Forms Required:</td>
<td>Three</td>
</tr>
<tr>
<td>Entrance Tests:</td>
<td>GRE (TOEFL, IELTS and TWE also required for international applicants whose native language is not English.)</td>
</tr>
</tbody>
</table>

Ph.D. Program in Medical Sociology http://www.uab.edu/sociology

For detailed information, contact Dr. Magdalena Szaflarski, UAB Department of Sociology, HNB 460A, 1401 University Boulevard, Birmingham, Alabama 35294-1152.

Telephone 205-934-0825

E-mail szaflam@uab.edu

Curriculum

The components of the Ph.D. program are as follows:

1. Required Coursework

Medical Sociology Core (9 hr)

Required:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 780 Advanced Medical Sociology</td>
<td>3</td>
</tr>
</tbody>
</table>

2 of the following Required Electives:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 724 Body and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOC 734 Global Health</td>
<td>3</td>
</tr>
<tr>
<td>SOC 755 Race/Ethnicity and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOC 756 Gender and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOC 775 Place and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOC 781 Sociology of Health and Illness</td>
<td>3</td>
</tr>
<tr>
<td>SOC 783 Health Care Delivery Systems</td>
<td>3</td>
</tr>
<tr>
<td>SOC 785 Family and Health</td>
<td>3</td>
</tr>
<tr>
<td>SOC 786 Health Disparities</td>
<td>3</td>
</tr>
<tr>
<td>SOC 787 Sociology of Mental Health</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Theory Core (6 hr)

Required:
The Master's Thesis

Students pursuing the doctoral degree must follow Plan I (Thesis Plan) of the existing master's degree program by producing a research-based thesis, but two types of documents will be acceptable. The first is a traditional thesis organized in the form of an extensive book monograph. This option is especially appropriate for qualitatively based research.

The second acceptable type of document is a manuscript in the standard form of a journal article with appended materials. Specifically, this journal article thesis will consist of:

1. A forward which places the research in context, specifying the journal to which the article is to be submitted, delineating the rationale for co-authorship (if appropriate), and making acknowledgments;
2. A journal article manuscript with a text no longer than the page limitations of a journal selected by the committee, plus footnotes, references, tables, and figures;
3. An appendix with an annotated bibliography of relevant literature;
4. An appendix that details, in full, the methodological procedures;
5. An appendix of measurement instrumentation (e.g., survey instruments, in-depth interview schedules, observational logs, etc.);
6. An appendix of additional tables and/or samples of observational notes;
7. An appendix of other research documentation such as survey cover letters, human subject review approval forms, and letters of support and approval from facilities at which the research was conducted.

The master's thesis process involves:

1. Formation of the thesis committee;
2. Oral defense of a written thesis research proposal;
3. Oral defense of the completed thesis;
4. Submission of the completed manuscript to the Graduate School;
5. Submission of the journal article for publication.

The thesis committee consists of a minimum of three full-time faculty members, including one from outside the Department of Sociology. This committee will be responsible for guiding the research process, evaluating the final draft of the thesis, presiding over the oral defenses of the thesis proposal and the completed manuscript, and approving the journal article for submission for publication. In addition to meeting general M.A. degree requirements, before being admitted to candidacy for the M.A. degree, a student in the Ph.D. program in Medical Sociology must have completed the master's level core course in theory (SOC 722 and the core methods courses (including SOC 601 or SOC 703 and SOC 704 and SOC 705 or SOC 711), completed two of the five courses in the medical sociology core, and made a successful oral defense of the thesis proposal.

For those students entering with a master's degree, the graduate director will review the student's transcript, evaluate course transfers (if any), and devise a course plan. This student's doctoral advisory committee also will handle the student's admission to candidacy and the requirement of submitting a journal article for review. The student with the master's degree will not be required to make oral defenses of his/her thesis work from another institution.

4. Comprehensive Examination Policy

Exam Description

The comprehensive exam is a take-home exam that requires you to answer 4 out of 5 questions related to major theoretical, methodological, and substantive issues in medical sociology and a chosen specialty area. Your specialty area must be a combination of health and one substantive area reflecting the specialties of our department (e.g., health disparities, aging and health, health behaviors, health and demography, etc.). There is no oral examination.

Developing a Readings List

The comprehensive exam committee will use your reading list to create exam questions related to your chosen specialty area and medical
sociology more broadly. This means that successfully completing your comprehensive exams will require you to work with your faculty advisor and the exam committee to develop a readings list. You should aim to have your list approved by your committee and advisor (if not in the committee) by the 2nd week of the semester preceding the one when you wish to take your exam.

Readings lists range between 100 to 125 published papers, including peer-reviewed articles, literature reviews, and books. Your list must draw from your coursework, major works in medical sociology, the department’s required readings list, and key scholarship from your chosen specialty area. Ideally, your readings list should include one or more sections directly related to your dissertation. Reading lists are public and can be shared in the department.

The Comprehensive Exam Committee returns their first set of revisions for the list or their approval within 2 weeks of receiving the list. Faculty and student work together until the list is accepted. However, faculty can NOT approve student work during the summer.

Exam Preparation

Preparation is absolutely critical to passing your exams. We expect all students to take initiative and use the resources provided by the department to prepare for the exam. The main office has a file with old lists and test questions. Students are encouraged to use these lists and exam questions/answers to prepare. The best exams are written by students who have organized their notes and spent time writing answers to common exam questions.

Taking the Exam

The student will answer four of five questions as a take-home exam. The exam is distributed at 4:00 p.m. on Friday and is due the following Monday at 9:00 a.m. While taking your exam, you may not discuss it with anyone other than the comprehensive exam committee. You are encouraged to use any notes or practice answers you have prepared.

Comprehensive Exam Committee

The comprehensive exam committee will consist of three faculty members selected on a rotating basis by the Graduate Committee. One faculty will head the committee and make sure the questions are distributed and answers received. They will also notify the Graduate Director of the outcome. The Graduate Director is not a member of the Comprehensive Exam Committee.

5. The Doctoral Dissertation

The dissertation process is as follows:

1. Formation of the dissertation committee;
2. Oral defense of a written dissertation research proposal;
3. Oral defense of the completed dissertation;
4. Submission of the completed manuscript to the Graduate School.

In consultation with faculty, and near the completion of all substantive coursework, a student forms a dissertation committee consisting of at least five members, with two from outside the Department of Sociology. This committee will be responsible for guiding the research process, evaluating the final draft of the dissertation, and presiding over the oral defenses of the dissertation proposal and the completed manuscript. A student is admitted to candidacy after successful oral defense of the dissertation proposal and no earlier than the term in which the required substantive coursework is completed.

Graduate Certificate in Social & Behavioral Statistics

The Graduate Certificate in Social & Behavioral Statistics is available to students currently enrolled in a Graduate Program who have a 3.0 GPA or higher.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 707</td>
<td>Statistical Programming for Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>SOC 706</td>
<td>Multivariate Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>PY 719</td>
<td>Multivariate Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>PY 727</td>
<td>Longitudinal Data Analysis Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>SOC 704</td>
<td>Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Courses

SOC 503. Regression Analysis. 3 Hours.
Multivariate Statistical Analysis.
Prerequisites: SOC 410 [Min Grade: A]

SOC 601. Data Management and Analysis. 3 Hours.
An introduction to statistical theory and univariate and bivariate statistics.

SOC 613. Intro to Applied Sociology Research Methods. 3 Hours.
Overview of methodologies used in applied social science research; major emphasis includes components of the research process, problem conceptualization, research design, measurement, sampling, questionnaire development, modes of data collection, and ethical issues in both quantitative and qualitative research.

SOC 620. Public Sociology. 3 Hours.
Explores the role and potential of sociologists and social research as instruments of social change and policy; examines techniques for communicating with the public about concepts and advances in sociology as well as the importance of doing so.

SOC 623. Applied Sociological Theory. 3 Hours.
Overview of classical and selected contemporary social theorists with an emphasis on the relevance of their work to applied sociology.

SOC 626. Applied Sociology. 3 Hours.
An overview of the field of applied sociology with special attention to current trends and issues in the application of social science in both for-profit- and not-for-profit sectors.

SOC 627. Applied Social Psychology. 3 Hours.
Examination of how social psychological theory and evidence are applied to understanding and addressing social and practical problems on such topics as health, education, criminal justice, community, environment, and diversity.
SOC 628. Teaching Sociology. 3 Hours.
Development of practical strategies and skills to improve classroom
techniques for teaching sociology in a way that awakens the sociological
imagination of students.

SOC 629. Sociology of the South. 3 Hours.
The contemporary American South is a region of fascinating contrasts.
This course examines different facets of the Southern experience
from a sociological perspective, exploring the social forces that have
shaped the region. This course makes extensive use of digital resources
and experiential learning as well as conventional texts and reading
assignments.

SOC 637. Practicum in Innovation, Creativity, and Applied
Sociology. 3 Hours.
Directed activities that emphasize research is a creative endeavor and
allow students to develop innovative ways to apply social sciences to
challenges faced by society, business, and government. Prerequisites:
SOC 613 [Min Grade: C] or SOC 714 [Min Grade: C] or permission of
instructor.
Prerequisites: SOC 613 [Min Grade: C] or SOC 713 [Min Grade: C] or
SOC 714 [Min Grade: C]

SOC 645. Sociological Practice. 3 Hours.
Advancing sociologically-informed research and practice, to further public
discussion of sociological issues and promote the use of sociology to
inform public policy.
Prerequisites: SOC 623 [Min Grade: C] or SOC 626 [Min Grade: C]

SOC 676. Capstone Project. 6 Hours.
A faculty-directed research project, undertaken at the conclusion of the
online M.A. in Applied Sociology program that provides an opportunity to
synthesize all previous course materials.

SOC 698. MR Level Non-Thesis Research. 1-12 Hour.
Integration of theory and research methods: synthesis of data into well-
written report derived from research activities.
Prerequisites: GAC M

Thesis Research.
Prerequisites: GAC M

SOC 702. Proseminar: The Profession of Sociology. 1 Hour.
The culture and organization of sociology; norms and values of the
graduated student culture and the profession; the sociological imagination;
sociological careers; the practice of sociology; thesis development.
Designed to orient the student to the perspective and practice of
sociology. Required of all beginning graduate students.

SOC 703. Regression Analysis. 3 Hours.
Bivariate and multivariate statistical analysis.
Prerequisites: SOC 601 [Min Grade: C]

SOC 704. Categorical Data Analysis. 3 Hours.
Introduction to the most fundamental regression models for binary,
ordinal, nominal, and count outcomes with an emphasis on post-
estimation strategies.
Prerequisites: SOC 703 [Min Grade: C]

SOC 705. Advanced Research Methods. 3 Hours.
Developing sociologically important research questions and identifying
appropriate strategies to answer these questions in ways that are
scientifically valid.
Prerequisites: SOC 703 [Min Grade: C]

SOC 706. Advanced Longitudinal and Multi-level Data Analysis. 3 Hours.
Applied approaches to the study of longitudinal change and events using
panel data. Topics include fixed effects models, growth curve/ multilevel
models, and event history analysis. Techniques for handling missing
data. Proficiency in Stata required.
Prerequisites: (SOC 703 [Min Grade: C] or PY 719 [Min Grade: C]) and
SOC 704 [Min Grade: C]

SOC 707. Statistical Programming for Social Sciences. 3 Hours.
Introduction to statistical programming for quantitative researchers
interested in developing a workflow that ensures reproducible results.

SOC 711. Qualitative Methods. 3 Hours.
Benefits of a qualitative research approach. Designing a qualitative
research project. Ethical issues in qualitative research. Strategies for in-
depth interview and ethnographic studies, content analysis, and visual
methods. Coding and analyzing qualitative data. Writing and publishing
qualitative research.

SOC 714. Survey Research Methods. 3 Hours.
Survey design, sampling, instrumentation, data collection and analysis,
and report writing.
Prerequisites: SOC 613 [Min Grade: C] or SOC 713 [Min Grade: C]

SOC 715. Program Evaluation. 3 Hours.
Topics associated with the use of social sciences to evaluate programs,
including appropriate measures of quality; selection of evaluation
methodology; accuracy, reliability, and validity of measures.

SOC 716. Social Stratification. 3 Hours.
Theories of inequality; race and ethnic inequality, gender inequality, and
international inequality.

SOC 718. Social Capital and Social Networks. 3 Hours.
Interrelationship between social capital and social networks; how
social structure arises from interdependence of actors and then affects
individual actors; important research findings; research methods used
to study social networks and social capital; and critiques of social capital
theory.

SOC 720. Classical Theory. 3 Hours.
An examination of sociological theory from its philosophical roots to post-
modern theories of self and society.

SOC 722. Contemporary Sociological Theory. 3 Hours.
Review of late 20th century and 21st century sociological theories and
issues.

SOC 724. Body and Health. 3 Hours.
Seminar focused on examining how the body is socially constructed and
understood within medical sociology.

SOC 729. Consumer Culture. 3 Hours.
An exploration of theoretical understandings of consumer culture from
Georg Simmel to Jean Baudrillard and their application to consumer
research.

SOC 730. Sociology of Education. 3 Hours.
Survey of sociological insights into - and influences upon - education,
including topics such as social historical development of education;
theories on how education reproduces or changes one's social status;
evidence of inequality in educational outcomes; debates on contemporary
education policy; and effects of education over the life course.
SOC 731. Health Disparities among Children and Adolescents. 3 Hours.
Seminar focusing on socioeconomic and race/ethnic differentials in the health and well-being of infants, children, and adolescents, as well as the policies and programs aimed at improving children’s health and reducing disparities. This class will draw on the scholarly literature in the interrelated fields of demography, public health, health policy, and sociology.

SOC 734. Global Health. 3 Hours.
Sociological perspectives on global health issues; global health disparities.

SOC 740. Deviant Behavior. 3 Hours.
Contemporary sociopsychological theories of deviant behavior; recent empirical findings.

SOC 743. Religion and Health. 3 Hours.
The effects of religion, spirituality and religious life on mental and physical health.

SOC 755. Race/Ethnicity and Health. 3 Hours.
Seminar focusing on social and behavioral aspects of physical and mental health that center on the intersection of race-ethnicity and other social determinants of health in the United States.

SOC 756. Gender and Health. 3 Hours.
Review of changes in gender research over time. Theories of gender from earlier work on essentialism and gender stratification, to the social construction of genders, gender identity and queer theory. Research on gender and health.

SOC 759. Aging and the Life Course. 3 Hours.
The study of aging and older adulthood, life expectancy and health, inequalities in aging, caregiving, and how early life experiences affect later life outcomes.

SOC 760. Sociology of Death and Dying. 3 Hours.
Sociological, social psychological and existential perspectives on death and dying; recent trends in definition, distribution, and practices surrounding death and dying.

SOC 761. Sociology and Neuroscience. 3 Hours.
Sociological perspectives on neurosciences; neuroscience as culture; social neuroscience: brain, mind, and society.

SOC 770. Techniques of Population Analysis. 3 Hours.
Composition of population; constructing life tables; population estimation and projection; migration.

SOC 772. Medical Demography. 3 Hours.
Quantitative assessment of health status of populations in clinical, epidemiological, and sociological studies; interrelationships of health with population structure and dynamics. Modeling preventive health strategies.

SOC 775. Place and Health. 3 Hours.
Spatial patterns of health across urban and rural places and their effects on behavior and social structure.

SOC 777. Demography of Health and Aging. 3 Hours.
Focus on demographic processes, such as mortality, morbidity, migration, and fertility; how each influences number and proportion of older adults; how such processes shape age/sex structure; other demographic characteristics of older people.

SOC 778. Demography. 3 Hours.
Effect of population processes such as birth, death, migration, and marriage on growth, decline, composition, and distribution of population.

SOC 780. Advanced Medical Sociology. 3 Hours.
Theory and research in medical sociology; systematic overview of relevant literature.

SOC 781. Sociology of Health and Illness. 3 Hours.
Focuses on theories, research methods, and empirical examples in the sociological study of health and illness.

SOC 783. Health Care Delivery Systems. 3 Hours.
Sociological study of the ways that healthcare is organized and delivered in the U.S. and around the world.

SOC 785. Family and Health. 3 Hours.
How family structures and family processes affect health outcomes. Family theories are introduced and applied to current family and health research. Examination of families and inequality.

SOC 786. Health Disparities. 3 Hours.
Prevalence, causes, and consequences of health and mental health problems for special populations, such as homeless, poor, African-Americans, and others; service delivery systems.

SOC 787. Sociology of Mental Health. 3 Hours.
Foundational review of the theoretical, methodological, and substantive issues that shape research in the sociology of mental health. Biomedical, psychological, and sociological perspectives on mental health are examined from a critical lens.

SOC 788. Sociology in Medicine. 3 Hours.
Application of sociological theory and methods in medicine and other health fields. Critical review of current medical and public health research that engages sociological perspectives and methods.

SOC 789. Patient Care Relations/Ethics. 3 Hours.
Issues shaping content and quality of patient care; special significance of practitioner-patient-family triad; broad sociocultural and political economic forces affecting medical practice, and creating moral dilemmas.

SOC 791. Seminar in Substantive Sociological Areas. 1-3 Hour.

SOC 792. Seminar in Substantive Sociological Areas. 1-3 Hour.

SOC 793. Seminar in Substantive Sociological Areas. 1-3 Hour.

SOC 794. Special Topics. 3 Hours.
Special Topics.

SOC 798. Non-Dissertation Research. 1-12 Hour.

SOC 799. Dissertation Research. 1-12 Hour.
Research for Graduate Student.

Prerequisites: GAC Z

World Languages and Literatures

http://www.uab.edu/languages

Chair: Julian Arribas

The Department of World Languages and Literatures offers multifaceted French and Spanish graduate-level courses which, in tandem with the offerings in the School of Education, address the diverse global and intellectual challenges facing future educators and citizens of the 21st century.

Whether at the undergraduate or at the graduate level, our programs are rooted in diversity within and across cultures. We foster the international exchange of knowledge and information between humanities scholars, teachers and other professionals. Our instructional methods are aligned with national standards. The foreign language experience at UAB includes classroom learning, scholarship and research, experiential
learning, and extracurricular opportunities. We offer graduate students a unique opportunity to interact with scholars and engage as well with faculty dedicated to serving their profession. Our UAB World Languages and Literatures faculty are engaged in their state and/or national professional teaching associations, serving on boards, organizing professional workshops, working every day to build connections and to enhance foreign language education opportunities in our state and beyond.

At the graduate level the UAB Department of World Languages and Literatures offers courses in culture, civilization, cinema and culture studies, linguistics, and literature.

For more information, visit the Department of World Languages and Literatures web site at http://www.uab.edu/cas/languages/.

World Language Graduate Studies

M.A. in Education (French/Spanish)

At UAB, the Master of Arts in Education (MAEd) program for the teaching of World Languages (French and Spanish) consists of two tracks—traditional and alternative. The traditional track is for prospective students who completed an undergraduate degree in French or Spanish education, who already hold certification for teaching French or Spanish, and who wish to earn advanced certification. The alternative track is for prospective students who have an undergraduate degree with a 2.75+ GPA from a regionally accredited college, have passed the ETS Core Academic Skills Exam and the Praxis in French or Spanish, and who wish to earn initial certification for teaching French or Spanish in grades PK-12.

Information sessions are offered on a weekly basis. Confirm your attendance by contacting Dr. Susan Spezzini (spezzini@uab.edu), Program Director for Secondary and K-12 programs. These information sessions take place as follows:

- Alternative Master’s: Mondays at 5:00 in EB 100
- Traditional Master’s: Thursdays at 4:00 in EB 100

For advising in World Language Education, contact:
Dr. Krista Chambless (kristachambless@uab.edu), Advisor for World Language Education

FR-French Courses

FR 501. Histoires de France: French History Through Stories. 3 Hours.

Literature, culture, and civilization of seventeenth and/or eighteenth-century France reflecting the historical and literary ambience in which Ancient Regime writers, philosophies, and artists worked. Selected works of representative authors. Conducted in French.

FR 502. Aux Armes! Revolutions in the French-speaking World. 3 Hours.

This course reflects on the major revolutions that occurred in the 18th and 19th century, illustrating the impact of the French Revolution on the history and thought of Europe and the Americas. Conducted in French.

FR 503. Fin-de-Siecle France (1895-1940). 3 Hours.

Major authors and art movements of fin-de-siecle France from La Belle Epoque period through World War I. Selected works of representative authors. Conducted in French.

FR 504. French Literature since 1940. 3 Hours.

Cultural trends and literary movements from World War II to the present, including existentialism and the nouveau roman. Selected works of representative authors. Conducted in French.

FR 505. Race, Gender, and Transnationalism in Francophone Literature and Thought. 3 Hours.

French-speaking literature outside France that developed through colonization, decolonization, independence, sexuality, marriage, exile and emigration. Representative writers from Francophone countries with emphasis on Africa and the Caribbean. Selected works of representative authors. Selections will vary according to instructor. Conducted in French.

FR 510. Special Topics in French. 3 Hours.

Seminar on individual authors, specific genres, important literary movements, or literary discourse/theory. Selections will vary according to instructor. May be repeated for credit. Conducted in French.

FR 512. French Civilization: Pre-Revolutionary. 3 Hours.

Historical and cultural foundation of France from the conquest of Julius Caesar to the French Revolution. Conducted in French.

FR 513. French Civilization: Post-Revolutionary. 3 Hours.

The history and myths of France after the French Revolution that produced French civilization.

FR 521. Literature and the Environment in the French-Speaking World. 3 Hours.

This course examines the poetics of the environment, known as ecopoetics, in the 20th- and 21st-century literary and cultural productions of the Francophone world, notably France, the Caribbean and Africa. It explores how francophone poets, fiction writers and philosophers write and think about the environment in relation to tradition, memory, sexuality, law, poverty and global capitalism. This course pays particular attention to the role of the environment as a space to discuss historical and cultural events, ranging from colonization to the Anthropocene. Students will discuss French-language theories of ecocriticism and examine the many voices of French-language literature that incorporate the environment in their works. Conducted in French.

FR 590. Study Abroad. 1-6 Hour.

Approved program in a French-speaking country.

FR 599. Individual Studies. 3 Hours.

Individual studies.

SPA-Spanish Courses

SPA 501. Voices of Imperial Spain. 3 Hours.

Culture and civilization of Imperial Spain from the age of the Catholic Monarchs to the close of the Hapsburg Dynasty (1469-1716). Includes a study of the art, historical documents and literature from both the center and periphery of the Empire. Selected works by representative authors will vary according to instructor. Conducted in Spanish.

SPA 502. Voices of Colonial Latin America. 3 Hours.

Culture and civilization of Colonial Latin America from the advent of European dominance to the decades following the Spanish American War (1492-1920). Emphasis on the blending of Spanish, Amerindian, and African cultural forms and their diverse literary expressions. Selected works by representative authors will vary according to instructor. Conducted in Spanish.

SPA 503. Contemporary Spanish Literature and Film. 3 Hours.

Cultural and literary trends of Spain from the transformation of Spanish Society in the late-nineteenth century to the post-Franco era. Focus on impact of the Spanish Civil War.
SPA 504. Medicine and Literature in the Spanish-Speaking World. 3 Hours.
How does literature help us to understand the relationship between medicine, culture, and politics? This class, which seeks answers and related questions, focuses on the role of medical science in literary and cultural texts from Latin American countries, Spain, and the United States. Students will read short stories, poems, novel excerpts, and essays, and they will interpret films and visual art to discuss how science and the humanities supplement one another to create a richer understanding of the human body and its role in the historical development of Europe and the Americas. Graduate Students will have assignments beyond undergraduates and projects tailored to high school teaching. Offered in Spanish.

SPA 505. US Latino Writers. 3 Hours.
Literary trends of Spanish-speaking cultures within the borders of the United States. Focuses on discourse of exile, migration, bilingualism, and hybridity.

SPA 507. Indigenous and Indigenist Latin America. 3 Hours.
Cultural and literary forms of Amerindian, Hispanic or mixed decent writers of Latin America. Focus on the concepts of hybridity, syncretism and mestizaje.

SPA 509. Spanish-Speaking Nobel Laureates. 3 Hours.
This course offers a survey of the Hispanic authors who have been awarded the Nobel Prize in Literature since the award’s founding in 1901, including Gabriela Mistral (1945), Pablo Neruda (1971), Gabriel García Márquez (1982), Camilo José Cela (1989), and Octavio Paz (1990). The panorama includes critical discussions and reflections on the writing of these authors. Conducted in Spanish.

SPA 511. Cervantes and the Quixote. 3 Hours.
This course will review the major episodes of Don Quixote de La Mancha, one of the most influential works of Spanish and World literature, as well as other selected works written by Cervantes. Emphasis will be given to the author’s unique contribution to the birth of the modern novel and his ingenuity to create stories that transformed all literary genres. These readings will be analyzed within the civilization of the Golden Age of Spain, while exploring a diverse array of topics, such as: love and marriage, religion, race, class, magic, madness, and honor. Conducted in Spanish.

SPA 512. Voices of Contemporary Latin America, 1920-Present. 3 Hours.
Cultural and literary trends of Latin America from la nueva narrativa through the Boom and post-Boom periods. Focus on Mexico, Northern Latin America, and the Southern Cone.

SPA 514. Afro-Latin American Literature and Culture. 3 Hours.
The diverse cultures of many Latin American nations will be discussed with a focus on the descendants of Africa in the Americas. Slavery will be discussed during the colonial and independence periods. Black identity and cultural forms will be discussed through the writers, musicians, and filmmakers of the twentieth and twenty-first centuries. Parallels and connections will be drawn to race and history in the United States. Conducted in Spanish.

SPA 516. Special Topics in Spanish. 3 Hours.
Seminars on specific Spanish-speaking regions, individual authors, specific genres, literary movements, music, films, the arts, or transatlantic cultural studies. May be repeated for credit. Course conducted in Spanish.

SPA 520. Introduction to Hispanic Linguistics. 3 Hours.
This advanced Spanish linguistics course is intended to analyze, clarify and expand upon critical aspects of the Spanish language. The course will provide a general understanding of the Spanish sound system (phonetics and phonology), morphology and syntax, as well as an introduction of relevant topics within the field of Hispanic linguistics.

SPA 530. Spanish Sociolinguistics. 3 Hours.
This advanced Spanish linguistics course provides a general overview of sociolinguistics and the pragmatics of oral communication in Spanish. This course studies the Spanish language in its social context. In addition to specific regional linguistic features, social factors such as geography, social class, politics, race, gender, economics, education and history are discussed as determiners of the linguistic landscape.

SPA 540. History of Spanish Language. 3 Hours.
This advanced Spanish linguistics course provides a general overview of the evolution of Spanish language, while relating it to relevant historical events. It pays special attention to diachronic change in order to understand the phenomenon of language variation in a multicultural society.

SPA 550. Spanish Second Language Acquisition. 3 Hours.
This course describes the cognitive, developmental and linguistic processes involved in the acquisition of Spanish as a second language while exploring the basic research techniques used in the field.

SPA 555. Pop Culture in Translation. 3 Hours.
This course aims at further developing students’ proficiency in the language as well as an understanding of the process of translation through translation from English into Spanish and vice versa. Students will develop their translation skills through a number of activities translating cartoons, popular songs, professional documents, and slam poetry. Students will also increase their theoretical understanding of the translation process from a linguistic point of view. This course involves a translation project originated and connected with the professional needs of the Birmingham area and beyond. Offered in Spanish.

SPA 560. Globalization in the Hispanic World. 3 Hours.
This graduate-level course develops a constructivist framework for the study of contemporary globalization issues in the Hispanic world by engaging students in higher-level discussions and critical thinking. Through films, music and literature, and guided research, course explores history, politics, economics and sociocultural issues of the recent Spanish-speaking world. Conducted in Spanish.

SPA 561. Contemporary Spain. 3 Hours.
This graduate-level course develops a constructivist framework for the study of contemporary Spain by engaging students in higher-level discussions and critical thinking. Through films, music and literature, and guided research, course explores recent Spanish history, politics, economics and sociocultural issues. Conducted in Spanish.

SPA 562. Contemporary Latin America. 3 Hours.
This course develops a constructivist framework for the study of contemporary Latin America by engaging students in higher-level discussions, critical thinking, and active learning. Through films, music and literature, and guided research, course explores recent Latin American history (late 20th and 21st centuries), politics, economics and sociocultural issues and their global impact. Course conducted in Spanish.
SPA 580. Applied Spanish and Medical Interpreting. 3 Hours.
This graduate course blends an academic curriculum on Spanish for healthcare and medical interpreting with a semester-long service-learning project where students will work with a community partner and apply course materials to real-life situations pertaining the health of Latinos. Upon successful completion of this course, students will have satisfied the medical interpreting training required to take the medical interpreting examinations offered by the two certification organizations in the area (CCHI and NBCMI). Conducted in Spanish.

SPA 585. Spanish for Leadership at the Workplace. 3 Hours.
SPA 585 Spanish for Leadership at the Workplace is a graduate-level Spanish course which provides an opportunity for applied professional Spanish through experiential learning by requiring a practical experience locally or abroad. The main goal is to explore and transform the community’s linguistic landscape in order to make public spaces more accessible, inclusive and welcoming to the Spanish-speaking community. Students may: (1) work with assigned Community Partners; or (2) complete their project at their own workplace whenever possible. Course conducted in Spanish.

SPA 590. Study Abroad. 1-6 Hour.
Fifth-year level of approved program in a Spanish speaking country.

SPA 599. Independent Studies. 3 Hours.
Individual studies in Spanish.
Joint Health Sciences

Joint Health Sciences offers interdisciplinary M.S. and Ph.D. programs including:

- M.S. in Anatomical Science (p. 162)
- Ph.D. programs in Graduate Biomedical Sciences (p. 163)
- M.S. in Multidisciplinary Biomedical Science
- Ph.D. program in Neuroengineering (p. 184)

ANSC-Anatomical Science Courses

ANSC 601. Human Gross Anatomy. 4 Hours.
Course provides a comprehensive survey of the gross anatomy of the human along with functional and applied anatomy as it relates to common clinical findings.

ANSC 601L. Human Gross Anatomy Lab. 1 Hour.
Lab component of Human Gross Anatomy.

ANSC 602. Gross Anatomy Supplement. 1 Hour.
This course will provide students with detailed dissections of head, neck, pelvis and perineum anatomy that are not otherwise covered in existing courses.

ANSC 618. Histology of Mammalian Organ Systems. 3 Hours.
This course will cover the specialized cell biology and microscopic anatomy for each of the mammalian organ systems, as well as consider current research with regards to each system. The objective is to understand how cells organize into tissues and organ systems and how these systems function in the body, as well as appreciate the microscopic appearance of cells, tissues and organs.

ANSC 655. Neuroscience. 3 Hours.
Have you ever wanted to know where the amygdala sits in the brain, or how the brainstem connects to the thalamus and basal ganglia? Would you like to know about processing in the spinal cord, and how this information is sent to and from the cortex? This course will show you how to find any structure in the nervous system, and how these regions interact to control body movements, give rise to sensory perception, generate emotions and experiences, make decisions, and create personality. Each week will use interactive didactic sessions, anatomical drawing exercises, real brain lab experiences, radiographic imaging, and small group medical case discussions, to break down the brain into manageable components, to see how its outer coverings, blood supply, gray and white matter are structurally and functionally organized to make you who you are. This course may be beneficial for students considering careers in the medical, dental or optometry fields, along with those wanting to pursue graduate research in neuroscience. Students without a general neuroscience background may consider taking NBL 230 or PY 253 (recommended but not required).

ANSC 656. Human Embryology. 2 Hours.
This course uses didactic lectures, lab exercises and student presentations to help students gain an understanding of the major events in human development from gastrulation to birth. Individual units focus on the developmental processes of specific organ systems, the course uses an anatomical focus to describe the morphological characteristics of the developing embryo/fetus. The biochemical and molecular biology of development are only briefly discussed. morphology and anatomy are also related to clinical presentation of birth defects. Offered summer terms.

ANSC 657. Medical Imaging. 1 Hour.
Students will learn to obtain and interpret ultrasound images by practicing techniques on classmates and reading existing ultrasound images. Other radiograph images (X-ray, MRI) will also be used to help students understand planar anatomy and its relationship to 3D anatomy. Students will learn the basics of the technology behind the different medical techniques to provide a fuller understanding of image interpretation.

ANSC 695. Teaching Practicum. 3 Hours.
Students will act as supplemental instructors in a variety of anatomy lab courses, complete their own (or in teams) whole-body prosection, and prepare and present 2-3 hours of new lecture content for anatomy.

ANSC 696. Research Project. 1-6 Hour.
Students will develop an original research project in medical education, clinical anatomy, or other anatomy research. Students will be evaluated on their ability to formulate an anatomically relevant research question, review the existing literature, and communicate their findings via a poster or oral presentation to department.

GGSC - Genetics Genomic Sci Courses

GGSC 610. Genetic Basis of Human Disease. 3 Hours.
This course will focus on the medical applications of genetics and genomic technologies. Topics covered include, but are not limited to major forms of chromosomal abnormalities, mutations and genetic disorders, genetic risk assessment and population genetics, and genomic approaches to diagnosis.

GGSC 615. Aquatic Animal Models of Human Disease. 3 Hours.
This course will cover the basic anatomy, biology, life history, husbandry, and research applications for a variety of aquatic organisms used as animal models of human disease in biomedical research. Species discussed will include zebrafish, Medaka, Xiphorous, Onchorynchus, Xenopus, and Axolotl.

GGSC 620. Applications of Bioinformatics. 3 Hours.
Introduction to computational tools and bioinformatics databases used in the fields of genetics and genomic sciences. This course will cover a wide variety of different bioinformatics applications, which will be taught through use of available on-line bioinformatics resources. Topics covered include large-scale genomic databases, sequence analysis systems, protein sequence analysis, structural bioinformatics, protein folding, and homology modeling.

GGSC 635. Zebrafish as a Model for Biomedical Research. 3 Hours.
This course will focus on the biology, husbandry, and management of zebrafish used as an animal model of human disease in biomedical research. The course is suitable for undergraduate and graduate students. Topics will include anatomy, physiology, systems design, water quality management, behavior and enrichment, spawning and larviculture, nutrition and live feeds, diseases, quarantine, biosecurity, and regulatory compliance.

GGSC 665. Research Techniques for Aquatic Animals of Human Diseases. 4 Hours.
This course will focus on the techniques and procedures used for research with aquatic animal models of human disease. Lecture and lab approaches are used.
INFO 601. Introduction to Bioinformatics. 3 Hours.
Introduction to bioinformatics and computational biology, with emphasis on concepts and application of informatics tools to molecular biology. It covers biological sequence analysis, gene prediction, genome annotation, gene expression analysis, protein structure prediction, evolutionary biology and comparative genomics, bioinformatics databases, cloud computing, basic R-based data analysis, simple programming skills using Perl, Linux/Unix environment and command lines, visual analytics, and social/legal aspects of open science. It will have a class research project component.

INFO 602. Algorithms in Bioinformatics. 3 Hours.
This course introduces various fundamental algorithms and computational concepts for solving questions in bioinformatics and functional genomics. These include graph algorithms, dynamic programming, combinatorial algorithms, randomized algorithms, pattern matching, classification and clustering algorithms, hidden Markov models and more. Each concept will be introduced in the context of a concrete biological or genomic application. A broad range of topics will be covered, ranging from genome annotation, genome reconstruction, microarray data analysis, phylogeny reconstruction, sequence alignments, to variant detection.

Prerequisites: INFO 601 [Min Grade: C]

INFO 603. Biological Data Management. 3 Hours.
The introduction of biological data management concepts, theories, and applications. Basic concepts such as relational data representation, relational database modeling, and relational database queries will be introduced in the context of SQL and relational algebra. Advanced concepts including ontology representation and database development workflow will be introduced. Emerging big data concepts and tools, including Hadoop and NoSQL, will be introduced in the context of managing semi-structured and unstructured data. Application of biological data management in biology will be covered using case studies of high-impact widely used biological databases. A class project will be required of all participants.

Prerequisites: INFO 601 [Min Grade: C]

INFO 604. Next-generation Sequencing Data Analysis. 3 Hours.
This course is aimed to equip participants with the essential knowledge and skills required to begin analyzing next-generation sequencing data and carry out some of the most common types of analysis. The topics covered in-depth during this course are the analysis of RNA-Seq, ChIP-Seq data, ATACseq data, and Single-cell data, with an optional Variant Calling session. The sessions will also include Introduction to next-generation sequencing (NGS) technologies, common NGS data analysis issues, applications of sequencing technologies, introduction to bioinformatics file formats (e.g. FASTQ, bam, bed) and bioinformatics toolkits. At the end of this course, participants will have the expertise to perform these data analysis independently.

Prerequisites: INFO 601 [Min Grade: C]

INFO 610. Programming with Biological Data. 3 Hours.
Course is a 4-week session, class meets 4 days a week from 9:00am-11:30am (in person). This course provides students necessary bioinformatics data and programming skills using Linux, high-performance computing, data-wrangling, MySQL (weeks 1 and 2) and R or Python programming (week 3 and 4). Emphasis will be placed on best practices for conduct of reproducible research. The focus will be on practical computing, programming and data management concepts that can be applied to bioinformatics and data analysis problems.
INFO 611. Intermediate Statistical Analysis I. 3 Hours.
Students will gain a thorough understanding of basic analysis methods, elementary concepts, statistical models and applications of probability, commonly used sampling distributions, parametric and non-parametric one and two sample tests, confidence intervals, applications of analysis of two-way contingency table data, simple linear regression, and simple analysis of variance. Students are taught to conduct the relevant analysis using current software such as the Statistical Analysis System (SAS).

INFO 612. Visual Analytics for Bioinformatics. 3 Hours.
In this course, we will explore the use of visualization techniques as a concise and effective way to help analyze, understand, interpret and communicate complex biological data. Principles of design, visual rhetoric/communication, and appropriate usage will be introduced. We will cover representation of different data types, concentrating on those generated by data-rich platforms such as next-generation sequencing applications, flow/mass cytometry, and proteomics, and will discuss the use of visualization techniques applied to assessing data quality and troubleshooting. Various topics including dimension reduction, hierarchical visualizations, unsupervised learning, graph theory, networks/layouts and interactivity will be discussed. We will review the algorithmic underpinnings of various methods that lead to their appropriate and effective use. Finally, we will review a variety of genomics/bioinformatics-related visualization tools that are available. We will use Matlab throughout the course to create beautiful and effective visualizations.
Prerequisites: INFO 603 [Min Grade: C]

INFO 651. Systems Biomedicine of Human Microbiota. 3 Hours.
The human microbiota is the collection of microorganisms (bacteria, archaea, fungi and viruses) that reside within human tissues and biofluids. Such resident microorganisms compose the majority of cells in human bodies and are key contributors to human development, health, and disease. However, most studies focus on genomics and microbiome statistical representations alone, while spatial-temporal analysis, multi-source data integration and modeling are necessary to predict and understand interactions between microorganisms, human hosts, and the environment. This course will highlight state-of-the-art microbiome/microbiota research and provide essential training in mathematical, computational and systems biology to derive integrative and predictive models of microbiota-host interactions in the context of human health and disease.
Prerequisites: INFO 601 [Min Grade: C] and (MA 560 [Min Grade: C] or BME 670 [Min Grade: C])

INFO 662. Biomedical Applications of Natural Language Processing. 3 Hours.
Students will be introduced to Natural Language Processing (NLP) including core linguistic tasks such as tokenization, lemmatization/stemming, POS tagging, parsing and chunking. Applications will focus on Deep Learning methods using pytorch with a focus in information extraction including Named Entity Recognition, semantic role labeling, word sense disambiguation, normalization, summarization, question answering and text classification. Applications and data will have a biomedical focus, but no biology or medical background is required.

INFO 671. Clinical Informatics Seminar I. 1 Hour.
For master’s student only. Students will learn how to prepare, present, and critique research presentations in clinical informatics by attending seminar presentations made by presenters. Seminars are presented by graduate students, faculty, visitors, or online speakers. Students must show evidence of prior preparation, active participation, and documented comprehension of the topics.
Prerequisites: INFO 501 [Min Grade: C]

INFO 672. Clinical Informatics Seminar II. 1 Hour.
For master’s student only. Students will learn how to prepare, present, and critique research presentations in clinical informatics by attending seminar presentations made by presenters. Seminars are presented by graduate students, faculty, visitors, or online speakers. Students must show evidence of prior preparation, active participation, and documented comprehension of the topics.
Prerequisites: INFO 671 [Min Grade: C]

INFO 673. Clinical Informatics Journal Club. 0-1 Hours.
Students will learn how to read, present, and critique primary research publications in clinical informatics. Journal club participants will present high-impact recent journal publications selected by course instructors and learn how to read the paper, write critiques, and organize analysis insights into review papers. Students must show evidence of prior preparation prior to journal clubs and write critiques to show comprehension of the topics throughout the semester.

INFO 680. Implementation and Evaluation of Clinical Systems. 3 Hours.
Health information technology (HIT) tools such as Electronic Health Records (EHRs) are used to facilitate management of patient care data, to computerize clinical workflows, and to support health professionals in their medical decision making process. As a result of the U.S. Federal Government incentive program known as Meaningful Use, EHRs have been adopted on a national scale and are now used in almost every health care organization across the country. Although the literature exploring the impact of HIT adoption and use has also increased, previous studies have produced mixed results, leaving unanswered questions as to the impact of HIT on quality of care, patient safety, and health care providers’ productivity. In this course, students will be introduced to project management tools and techniques commonly used for managing implementation of HIT systems as well as research approaches to conduct systematic evaluations of the impact of these systems on health care outcomes and organizations. This foundational course is intended for informatics majors and students in allied fields (e.g., health, biological, or computer sciences) who are interested in exploring implementation methods applicable to HIT systems such as EHRs and their components, as well as quantitative, qualitative, and mixed-methods approaches to conduct evaluations of HIT adoption and use. It is primarily intended for students who will pursue research careers in biomedical informatics and is the third course in a three-part series.
Prerequisites: INFO 697 [Min Grade: C]

INFO 690. Data Mining & Statistical Learning. 3 Hours.
Students will learn to discover and implement meaningful insights and knowledge from data. This course covers major concepts and algorithms of data mining. The course will be taught using the SAS Enterprise Miner program. The final project will demonstrate all the data mining techniques covered in the course and furthermore expose students working with real data. At the end of the course students will be proficient in utilizing data mining techniques to exploit data patterns and behavior, gain insider understanding of the data, and produce new knowledge that healthcare decision-makers can act upon. Furthermore, SAS Certified Predictive Modeler certification exam will be offered at the end of the course. Instructor permission is required.
INFO 691. Bioinformatics Seminar I. 1 Hour.
For master’s student only. Students will learn how to prepare, present, and critique research presentations in bioinformatics by attending seminar presentations made by presenters. Seminars are presented by graduate students, faculty, visitors, or online speakers. Students must show evidence of prior preparation, active participation, and documented comprehension of the topics.
Prerequisites: INFO 601 [Min Grade: C]

INFO 692. Bioinformatics Seminar II. 1 Hour.
For master’s student only. Students will learn how to prepare, present, and critique research presentations in bioinformatics by attending seminar presentations made by presenters. Seminars are presented by graduate students, faculty, visitors, or online speakers. Students must show evidence of prior preparation, active participation, and documented comprehension of the topics.
Prerequisites: INFO 691 [Min Grade: C]

INFO 693. Bioinformatics Journal Club. 2 Hours.
Students will learn how to read, present, and critique primary research publications in bioinformatics. Journal club participants will present high-impact recent journal publications selected by course instructors and learn how to read the paper, write critiques, and organize analysis insights into review papers. Students must show evidence of prior preparation prior to journal clubs and write critiques to show comprehension of the topics throughout the semester.

INFO 695. Special Topics in Bioinformatics. 3 Hours.
Topics of current research interest, such as metagenomics, microbiome, computational medicine, complex systems, deep learning in biology, artificial intelligence in biomedical, and translational bioinformatics applications. May be repeated as different sections taught by different instructors for credit. Permission of instructor is required.

INFO 696. Introduction to Biomedical Informatics Research. 3 Hours.
Biomedical informatics is the art and science of collecting, representing and analyzing patient and biomedical information and translating insights from the information into better health and new medical discoveries. The spectrum of informatics applications ranges from molecules (bioinformatics) to individuals and populations (clinical and public health informatics). We will examine the scientific field and research methods that form the foundation for biomedical informatics research. The course will include didactics, readings, hands-on tool explorations, and a summative work product. This foundational course is intended for informatics majors and students in allied fields (e.g., health, biological, or computer sciences) who are interested in exploring the field of informatics.

INFO 697. Biomedical Informatics Methods. 3 Hours.
Biomedical informatics is the art and science of collecting, representing and analyzing patient and biomedical information and translating insights from the information into better health and new medical discoveries. The spectrum of informatics applications ranges from molecules (bioinformatics) to individuals and populations (clinical and public health informatics). We will examine the scientific field and research methods that form the foundation for biomedical informatics research. The course will include didactics, readings, and applications in applying research methods, culminating in a research plan in grant proposal format and review by a mock panel. This foundational course is intended for informatics majors and students in allied fields (e.g., health, biological, or computer sciences) who are interested in exploring the field of informatics. It is primarily intended for students who will pursue research careers in biomedical informatics and is the second course in a two-part series.
Prerequisites: INFO 696 [Min Grade: C]

INFO 698. Bioinformatics Master’s Projects. 1-6 Hour.
Admission to bioinformatics master’s program (Plan B: "Project Option") is required. Independent study to conduct bioinformatics research projects, guided by the instructor as the mentor. Permission of instructor and graduate program director is required.

INFO 699. Bioinformatics Master’s Thesis Research. 1-6 Hour.
Admission to bioinformatics master’s program (Plan A: “Thesis Option”) is required.

INFO 701. Introduction to Bioinformatics. 3 Hours.
Introduction to bioinformatics and computational biology, with emphasis on concepts and application of informatics tools to molecular biology. It covers biological sequence analysis, gene prediction, genome annotation, gene expression analysis, protein structure prediction, evolutionary biology and comparative genomics, bioinformatics databases, cloud computing, basic R-based data analysis, simple programming skills using Perl, Linux/Unix environment and command lines, visual analytics, and social/legal aspects of open science. It will have a class research project component.

INFO 702. Algorithms in Bioinformatics. 3 Hours.
This course introduces various fundamental algorithms and computational concepts for solving questions in bioinformatics and functional genomics. These include graph algorithms, dynamic programming, combinatorial algorithms, randomized algorithms, pattern matching, classification and clustering algorithms, hidden Markov models and more. Each concept will be introduced in the context of a concrete biological or genomic application. A broad range of topics will be covered, ranging from genome annotation, genome reconstruction, microarray data analysis, phylogeny reconstruction, sequence alignments, to variant detection.
Prerequisites: INFO 701 [Min Grade: C]

INFO 703. Biological Data Management. 3 Hours.
The introduction of biological data management concepts, theories, and applications. Basic concepts such as relational data representation, relational database modeling, and relational database queries will be introduced in the context of SQL and relational algebra. Advanced concepts including ontology representation and database development workflow will be introduced. Emerging big data concepts and tools, including Hadoop and NoSQL, will be introduced in the context of managing semi-structured and unstructured data. Application of biological data management in biology will be covered using case studies of high-impact widely used biological databases. A class project will be required of all participants.
Prerequisites: INFO 701 [Min Grade: C]

INFO 704. Next-generation Sequencing Data Analysis. 3 Hours.
This course is aimed to equip participants with the essential knowledge and skills required to begin analyzing next-generation sequencing data and carry out some of the most common types of analysis. The topics covered in-depth during this course are the analysis of RNA-Seq, ChIP-Seq data, ATAC-seq data, and Single-cell data, with an optional Variant Calling session. The sessions will also include Introduction to next-generation sequencing (NGS) technologies, common NGS data analysis issues, applications of sequencing technologies, introduction to bioinformatics file formats (e.g. FASTQ, bam, bed) and bioinformatics toolkits. At the end of this course, participants will have the expertise to perform these data analysis independently.
Prerequisites: INFO 701 [Min Grade: C]
INFO 710. Programming with Biological Data. 3 Hours.
Course is a 4-week session, class meets 4 days a week from
9:00am-11:30am (in person). This course provides students necessary
bioinformatics data and programming skills using Linux, high-
performance computing, data-wrangling, MySQL (weeks 1 and 2) and
R or Python programming (week 3 and 4). Emphasis will be placed on
best practices for conduct of reproducible research. The focus will be on
practical computing, programming and data management concepts that
can be applied to bioinformatics and data analysis problems.

INFO 711. Intermediate Statistical Analysis I. 3 Hours.
Students will gain a thorough understanding of basic analysis methods,
elementary concepts, statistical models and applications of probability,
commonly used sampling distributions, parametric and non-parametric
one and two sample tests, confidence intervals, applications of analysis
of two-way contingency table data, simple linear regression, and simple
analysis of variance. Students are taught to conduct the relevant analysis
using current software such as the Statistical Analysis System (SAS).

INFO 712. Visual Analytics for Bioinformatics. 3 Hours.
In this course, we will explore the use of visualization techniques as
a concise and effective way to help analyze, understand, interpret
and communicate complex biological data. Principles of design, visual
rhetoric/communication, and appropriate usage will be introduced.
We will cover representation of different data types, concentrating
on those generated by data-rich platforms such as next-generation
sequencing applications, flow/mass cytometry, and proteomics, and
will discuss the use of visualization techniques applied to assessing
data quality and troubleshooting. Various topics including dimension
reduction, hierarchical visualizations, unsupervised learning, graph
theory, networks/layouts and interactivity will be discussed. We will
review the algorithmic underpinnings of various methods that lead to
their appropriate and effective use. Finally, we will review a variety of
genomics/bioinformatics-related visualization tools that are available.
We will use Matlab throughout the course to create beautiful and effective visualizations.

INFO 751. Systems Biomedicine of Human Microbiota. 3 Hours.
The human microbiota is the collection of microorganisms (bacteria,
archaea, fungi and viruses) that reside within human tissues and
biofluids. Such resident microorganisms compose the majority of cells in
human bodies and are key contributors to human development, health,
and disease. However, most studies focus on genomics and microbiome
statistical representations alone, while spatial-temporal analysis, multi-
source data integration and modeling are necessary to predict and
understand interactions between microorganisms, human hosts, and
the environment. This course will highlight state-of-the-art microbiome/
microbiota research and provide essential training in mathematical,
computational and systems biology to derive integrative and predictive
models of microbiota-host interactions in the context of human health and
disease.

Prerequisites: INFO 701 [Min Grade: C] and (MA 560 [Min Grade: C] or
BME 670 [Min Grade: C])

INFO 762. Biomedical Applications of Natural Language Processing.
3 Hours.
Students will be introduced to Natural Language Processing (NLP)
including core linguistic tasks such as tokenization, lemmatization/
stemming, POS tagging, parsing and chunking. Applications will focus on
Deep Learning methods using pytorch with a focus in information
extraction including Named Entity Recognition, semantic role labeling,
word sense disambiguation, normalization, summarization, question
answering and text classification. Applications and data will have a
biomedical focus, but no biology or medical background is required.

INFO 773. Clinical Informatics Journal Club. 1 Hour.
Students will learn how to read, present, and critique research
publications in clinical informatics. Journal Club participants will
present high-impact recent journal publications selected by course
instructors and learn how to read the paper, write critiques, and organize
analysis insights into review papers. Students must show evidence of
prior preparation prior to journal clubs and write critiques to show
comprehension of the topics throughout the semester.

INFO 780. Implementation and Evaluation of Clinical Systems. 3
Hours.
Health information technology (HIT) tools such as Electronic Health
Records (EHRs) are used to facilitate management of patient care data,
to computerize clinical workflows, and to support health professionals in
their medical decision making process. As a result of the U.S. Federal
Government incentive program known as Meaningful Use, EHRs have
been adopted on a national scale and are now used in almost every
health care organization across the country. Although the literature
exploring the impact of HIT adoption and use has also increased,
previous studies have produced mixed results, leaving unanswered
questions as to the impact of HIT on quality of care, patient safety,
and health care providers’ productivity. In this course, students will be
introduced to project management tools and techniques commonly
used for managing implementation of HIT systems as well as research
approaches to conduct systematic evaluations of the impact of these
systems on health care outcomes and organizations. This foundational
course is intended for informatics majors and students in allied fields
(e.g., health, biological, or computer sciences) who are interested in
exploring implementation methods applicable to HIT systems such as
EHRs and their components, as well as quantitative, qualitative, and
mixed-methods approaches to conduct evaluations of HIT adoption and
use. It is primarily intended for students who will pursue research careers
in biomedical informatics and is the third course in a three-part series.

Prerequisites: INFO 797 [Min Grade: C]

INFO 790. Data Mining & Statistical Learning. 3 Hours.
Students will learn to discover and implement meaningful insights and
knowledge from data. This course covers major concepts and algorithms
data mining. The course will be taught using the SAS Enterprise Miner
program. The final project will demonstrate all the data mining techniques
covered in the course and furthermore expose students working with
real data. At the end of the course students will be proficient in utilizing
data mining techniques to exploit data patterns and behavior, gain insider
understanding of the data, and produce new knowledge that healthcare
decision-makers can act upon. Furthermore, SAS Certified Predictive
Modeler certification exam will be offered at the end of the course.
Instructor permission is required.

INFO 791. Bioinformatics Seminar I. 1 Hour.
For doctoral student only. Students will learn how to prepare, present,
and critique research presentations in bioinformatics by attending
seminar presentations made by presenters. Seminars are presented by
graduate students, faculty, visitors, or online speakers. Students must
show evidence of prior preparation, active participation, and documented
comprehension of the topics.

Prerequisites: INFO 701 [Min Grade: C]
INFO 792. Bioinformatics Seminar II. 1 Hour.
For doctoral student only. Students will learn how to prepare, present, and critique research presentations in bioinformatics by attending seminar presentations made by presenters. Seminars are presented by graduate students, faculty, visitors, or online speakers. Students must show evidence of prior preparation, active participation, and documented comprehension of the topics.
Prerequisites: INFO 791 [Min Grade: P]

INFO 793. Bioinformatics Journal Club. 2 Hours.
Students will learn how to read, present, and critique primary research publications in bioinformatics. Journal club participants will present high-impact recent journal publications selected by course instructors and learn how to read the paper, write critiques, and organize analysis insights into review papers. Students must show evidence of prior preparation prior to journal clubs and write critiques to show comprehension of the topics throughout the semester.

INFO 794. Advanced Bioinformatics Journal Club. 2 Hours.
Students will learn how to read, present, and critique primary research publications in bioinformatics. Journal club participants will present high-impact recent journal publications selected by course instructors and learn how to read the paper, write critiques, and organize analysis insights into review papers. Students must show evidence of prior preparation prior to journal clubs and write critiques to show comprehension of the topics throughout the semester.
Prerequisites: INFO 793 [Min Grade: P]

INFO 795. Special Topics in Bioinformatics. 3 Hours.
Topics of current research interest, such as metagenomics, microbiome, computational medicine, complex systems, deep learning in biology, artificial intelligence in biomedical, and translational bioinformatics applications. May be repeated as different sections taught by different instructors for credit. Permission of instructor is required.

INFO 796. Introduction to Biomedical Informatics Research. 3 Hours.
Biomedical informatics is the art and science of collecting, representing and analyzing patient and biomedical information and translating insights from the information into better health and new medical discoveries. The spectrum of informatics applications ranges from molecules (bioinformatics) to individuals and populations (clinical and public health informatics). We will examine the scientific field and research methods that form the foundation for biomedical informatics research. The course will include didactics, readings, and applications in applying research methods, culminating in a research plan in grant proposal format and review by a mock panel. This foundational course is intended for informatics majors and students in allied fields (e.g., health, biological, or computer sciences) who are interested in exploring the field of informatics. It is primarily intended for students who will pursue research careers in biomedical informatics and is the second course in a two-part series.
Prerequisites: INFO 796 [Min Grade: C]

INFO 797. Biomedical Informatics Methods. 3 Hours.
Biomedical informatics is the art and science of collecting, representing and analyzing patient and biomedical information and translating insights from the information into better health and new medical discoveries. The spectrum of informatics applications ranges from molecules (bioinformatics) to individuals and populations (clinical and public health informatics). We will examine the scientific field and research methods that form the foundation for biomedical informatics research. The course will include didactics, readings, and applications in applying research methods, culminating in a research plan in grant proposal format and review by a mock panel. This foundational course is intended for informatics majors and students in allied fields (e.g., health, biological, or computer sciences) who are interested in exploring the field of informatics. It is primarily intended for students who will pursue research careers in biomedical informatics and is the second course in a two-part series.
Prerequisites: INFO 796 [Min Grade: C]

Admission to candidacy is required.

MIC-Microbiology Courses

MIC 600. The Microbiome in Health and Immunity. 3 Hours.
This course will review the functions of the immune system and discuss the role of the microbiome in health and disease. This course will use a personal microbiome analysis project to develop information literacy, critical thinking, and communication skills while investigating the interplay between the microbiota and immune system components. Additional topics including the role of the microbiome in maintaining gut health, influencing the gut-brain axis, and nutrient synthesis will also be discussed.
Prerequisites: MIC 275 [Min Grade: C]

MIC 601. Foundations in Immunology: The Innate Immune System. 3 Hours.
This course will introduce the cells, receptors, signaling pathways and soluble mediators associated with the innate immune response. The basic components of the innate immune system will then be discussed in the context of their role in the physical, physiological, phagocytic and inflammatory barriers that comprise the innate immune system. Importantly, emphasis will be placed on the molecular and cellular mechanisms that are used by the innate immune system to detect and respond to microbial pathogens to provide the first line of defense.
Prerequisites: MIC 275 [Min Grade: C]

MIC 602. Foundations in Immunology: The Adaptive Immune System. 3 Hours.
This course will provide an in-depth analysis of the cells (T, B and antigen presenting cells), tissues (primary and secondary) and soluble factors (cytokines and chemokines) that comprise the adaptive humoral immune response. The course will examine how cells of the adaptive immune system discriminate self from non-self, including the nature of antigen receptors, the types of antigens recognized and the signals involved in the generation of effector cells that mediate the response.
Prerequisites: MIC 275 [Min Grade: C]
MIC 603. Foundations in Immunology: Microbial Pathogen-Immune System Interaction. 3 Hours.
This course will provide an overview of major concepts related to virulence mechanisms utilized by microbial pathogens and their effect on the host immune response. Emphasis will be placed on important virulence factors/mechanisms associated with bacterial, viral and fungal pathogens and how these alter various components of the innate and adaptive immune responses to allow escape of the pathogen and its survival. This course will introduce the concept of emerging infectious diseases and how their spread is related to their ability to escape detection by the immune system.
Prerequisites: MIC 401 [Min Grade: C] and MIC 402 [Min Grade: C]

MIC 604. Foundations in Immunology: Immunologically-Mediated Diseases. 3 Hours.
This course will focus on the role of the immune system, including the molecular and cellular processes, that contribute to morbidity and mortality associated with immunodeficiency (congenital and acquired), asthma/allergy, autoimmunity (systemic and organ-specific), transplantation and inflammatory syndromes associated with heart disease, cancer, chronic neurological disease and diabetes.
Prerequisites: MIC 401 [Min Grade: C] and MIC 402 [Min Grade: C] or MIC 601 [Min Grade: C] and MIC 602 [Min Grade: C]

MIC 660. Introduction to the Immune System. 3 Hours.
The objective of this Course is to provide a concise overview of the immune system, its cellular and molecular components, and their function in relation to host protection against pathogens. Students will follow clear principles by which these different components of the immune system interact with each other to ensure an effective immune response. Students will learn how the immune system is capable of such enormous diversity in terms of the foreign antigens that it can specifically recognize and react against, while at the same time avoiding similar responses against our own cells, tissues and organs. By describing paradigmatic examples of these immune response mechanisms in the context of exposure to typical bacteria and viruses, a solid basic foundation for subsequent immunology courses will be provided, including those courses that are focused on immune-mediated diseases, immune protection against cancer and its evolution during tumor progression, vaccines, and immune-based therapeutics in immune-mediated and other diseases. Throughout the course, Students will be encouraged to consider the concept of immune balance in in terms of how over-reactivity of the immune mechanisms they will be learning about can lead to excessive (or chronic) inflammation or autoimmunity, and why certain key physiological and life-style factors can adversely affect this balance and are therefore recognized as urgent topics in biomedical research and medicine. Undergraduate-level Biochemistry or Cell Biology must be taken before registering for this course.

MIC 661. Immune-mediated Diseases. 3 Hours.
The objective of this Course is to condense knowledge of the cellular and molecular components of the immune system and their function in relation to host protection against pathogens (covered in the previous Masters Immunology Program course MBS 696 ST: Introduction to the Immune system) into clear paradigmatic principles by which these different branches of the immune system interact with each other and other biological systems such as the microbiome to maintain normal immune balance. Students will learn how modifications of immune cell development or function associated with genetic, pathogenic and environmental factors affect this balance, promoting immune dysregulation, causing immune deficiency, or predisposing to the development of autoimmune diseases. Systemic Lupus Erythematosus and Multiple Sclerosis will be used as prototypical examples of systemic and organ-specific autoimmunity respectively to exemplify key aspects related to the pathogenic mechanisms, clinical features, therapeutics, and potential future curative approaches built from basic immunological research utilizing animal models.
Prerequisites: MIC 660 [Min Grade: C]

MIC 665. Current Topics in Immunology. 3 Hours.
The current topics courses will in general cover current topics related to immunology, host defense, and immune-based therapeutics. This specific course will examine the factors influencing the disease course of COVID-19 and current treatment and prevention options with an emphasis on discussing the appropriate immune response that leads to milder symptoms and clearance of SARS-CoV-2 and the immune dysregulation that contributes to severe COVID-19. Topics in viral infection with an emphasis on coronavirus and the concept of spillover will be discussed. Additionally, anti-viral responses of the innate and adaptive immune responses, concepts in immune regulation, and their application in developing vaccines and therapeutics to prevent and treat COVID-19 will be covered.
Prerequisites: MIC 660 [Min Grade: C]

MSTP-Med Science Training Prog Courses

MSTP 793. Basic Research Forum. 1 Hour.
This course is for entering MD-PHD students to meet the GBS Core-Course requirements. The following list consists of desirable competencies for enrolled MD-PHD students to achieve while in this course: (a) Learn fundamental topics in biomedical research that will not be covered in SOM courses; (b) Fill gaps in curriculum between GBS7707/709; and (c) Introduce topics that may be of interest for future lab rotations.

MSTP 794. Translational Research Seminar. 1 Hour.
The CAMS Translational Research Seminar series, required fall, spring and summer semesters, invites UAB faculty (PhD, MD, MD-PhD or MPH) who are conducting translational research to present their work to students in the MSTP. The goal of the presentation is three fold: (a) to inform students about the career path of the investigator, (b) to provide them with information regarding the initiation and conduct of translational research, and (c) to expose students to current developments in basic and clinical research. There are two to three sessions each year in which panels or round tables discuss topics, including mentor selection, preparation for residency, residency selection, and the overall UAB MSTP experience. Lecturers give a 45-minute presentation followed by a 15-minute question and answer session. This course is open only to MD-PhD students.
MSTP 795. Continuing Clinical Education. 1 Hour.
This course is designed to maintain clinical skills and knowledge during students' dissertation research years. MSTP students will take the course every fall semester and spring semester during their PhD dissertation phase. Each semester, students will be required to complete seven course components. Some components serve to maintain clinical skills and includes students conducting a resident-supervised clinical encounter as well as completing one half day of shadowing. Other components serve to maintain or bolster clinical knowledge and include students attending case conferences and/or participating in simulation sessions. This course is open only to MD-PhD students.

MSTP 796. Anatomy Lab TA Opportunity. 1 Hour.
From 23 TOTAL dissections between the MS1 and MS2 years, students choose any 6 dissections to teach depending on their availability. Overview: MS4 students will serve as Anatomy Teaching Associates for MS1 and MS2 students during scheduled lab times to make preclinical training more robust and clinically relevant. Course benefits for MS4 students: - Small-group anatomy training aimed to improve knowledge of anatomy & dissection skills. - Teaching & mentoring experience of students with less clinical experience. - Flexible schedule: Preferred dissections may be changed up to 1 week before the preclinical scheduled lab time. Format: - Students will attend a 1-hour orientation session addressing effective teaching techniques in August of the entering year (accommodation for absence can be made on a case-by-case basis). - The week prior to their chosen dissections, students will receive 2 hours of small group training in SOM lab under the directions of trained UAB Anatomist and Course Director Dr. Resuehr. During this training, students will perform the relevant cadaveric dissection which will be saved for demonstration during the preclinical lab. - TAs will be assigned to a group of preclinical students during their scheduled lab time to help answer questions. Particular emphasis will be placed on providing preclinical students with clinical correlates. Learning Objectives: - Dissect and identify all associated structures of their chosen dissections emphasizing the relation of structures to each other and common pathologies. - Understand common anatomical variations (if applicable). - Understand anatomically relevant information pertaining to clinical procedures. - Understand geriatric changes. - Mentor and teach students with less experience.

MSTP 798. MSTP Non-Dissertation Hours. 1-8 Hour.
Laboratory research pre-qualification. Only open to MSTP students.

MSTP 799. MSTP Dissertation Hours. 1-8 Hour.
Dissertation research. Only open to MSTP students.
Prerequisites: GAC Z

NBL-Neurobiology Courses

NBL 601. College of Basic Cognition & Clinical Neuroscience. 3 Hours.
The Colloquium in Basic, Cognitive and Clinical Neuroscience is a faculty seminar. The Colloquium will expose students to cutting edge research programs and technologies from approximately 25 faculty each year who serve as mentors for the Undergraduate Neuroscience Major and Graduate Neuroscience Program. Faculty will also discuss strategies for development of careers in medicine and research. Students will prepare by reading an assigned research article authored by the speaker and be prepared for a group discussion. Class meets for one and a half hours a week.

NBL 610. Synapses, Neurons and Brains. 3 Hours.
Molecular Neuroscience will provide students an advanced understanding of how the brain works with a focus on protein function. Everything the brain does is built upon the actions of proteins, many of which are completely unique to the brain. Together we will work to thoroughly understand the exact molecular mechanisms utilized by the brain to support the complex function of our most fascinating organ. Topics covered will include brain morphogenesis, axonal outgrowth, synapse formation, neurotransmitter biosynthesis, intracellular signaling, and the blood brain barrier. This lecture course is designed to fulfill a neuroscience major’s requirement for an advanced course. Non-neuroscience majors should seek course master approval before enrolling and must have a significant background in biology and/or chemistry. Students will be required to purchase a text. Grades will be assigned based on points accumulated through weekly quizzes, cumulative exams, and written reports. It is strongly recommended that students have undergraduate coursework in biology and chemistry prior to taking this class.

NBL 620. No Self Control. 3 Hours.
Survival of self and species has been evolutionarily wired into the brain. Largely, involving sub-cortical networks, animals are strongly rewarded through beneficial outcomes and driven away from aversive situations. Overseeing these opposing subconscious determinants of motivated behavior is a pre-frontal cortical command center, which along with additional systems that provide for experiential memory and emotional significance, guide the choices we make. This course will provide the participant with an introduction to the neuronal pathways that underlie normal decision making, with a major focus on how this circuitry becomes compromised during addiction. These topics should be relevant to students interested in biomedicine, health professions or counseling. NBL 355 or NBL 610 recommended but not required.

NBL 625. Methods in Human Neuroimaging. 3 Hours.
The ability to perform neuroimaging studies on awake human individuals has produced a conceptual revolution in the study of human cognition. This course will examine the methods and techniques in human neuroimaging with the primary goal of building basic understanding of how these tools work. The course will explore techniques, such as single cell recordings, deep brain stimulation, electroencephalography, magnetoencephalography, and diffusion weighted imaging, and focuses on functional magnetic resonance imaging. By the end of the course, students will have gained basic knowledge in the field and will be able to read and critically assess scientific journal articles that make use of a variety of neuroimaging methods. The secondary and implicit goal of this course is to create and nurture, in students, a genuine interest in neuroscience and neuroimaging.
Prerequisites: NBL 356 [Min Grade: C] or NBL 655 [Min Grade: C] or NBL 656 [Min Grade: C]

NBL 633. Diseases of the Nervous System. 3 Hours.
Molecular mechanisms and treatments for neurological, psychiatric, and injury based disorders and diseases of the nervous system. Topics include neurodevelopmental disorders (including intellectual disability and autism spectrum disorders), neurological disorders (including neurodegenerative and demyelinating disease), neuropsychiatric disorders (including depression disorders and schizophrenia), and injury to the nervous system (including stroke and traumatic brain and spinal cord injury).
Prerequisites: NBL 356 [Min Grade: C] or NBL 655 [Min Grade: C] or NBL 656 [Min Grade: C]
NBL 634. Mechanisms of Memory. 3 Hours.
Molecular, cellular, systems and medical components of neuroscience, with an emphasis on cognition and cognitive disorders. Covers topics ranging from genes and molecules to human behavior, using cognitive function and clinical cognitive disorders as the unifying theme, with a focus on learning and memory and disorders of these processes.

NBL 644. Memento Mori: neurodegeneration from cradle to coffin and bench to bedside. 3 Hours.
We all die. We live in a wealthy enough country that many of us will survive long enough to die with a neurodegenerative disease. As the population ages, neurodegenerative diseases are becoming more and more common, so it’s important to understand them and figure out how to treat them. This course will cover multiple neurodegenerative diseases, from ones that begin in childhood to slow-progressing diseases that occur late in life. We will discuss approaches to treat the diseases, the basics of the therapeutic pipeline, basic disease mechanisms, and common themes across neurodegeneration.

Prerequisites: NBL 230 [Min Grade: C] and NBL 433 [Min Grade: C]

NBL 655. Synapses, Neurons and Brains. 3 Hours.
Introduction to the cellular and molecular biology, biochemistry, biophysics, genetics and function of the mammalian nervous system. This course will emphasize the development, anatomy, cellular and molecular biology and biochemistry of neurons and glial cells, and introduce electrical, biophysical and chemical signaling within and across neurons.

NBL 656. From Systems to Cog Neuro. 3 Hours.
Introduction to the cellular and molecular biology, biochemistry, biophysics, genetics and function of the mammalian nervous system. This course will emphasize mechanisms of synaptic transmission, sensory systems, neuropharmacology, and synaptic plasticity; and introduce the molecular basis of diseases and disorders of the central and peripheral nervous systems.

NBL 698. Research Practice in Neurobiology. 1-6 Hour.
Project or research activity supervised by faculty.

NBL 700. Introduction to Cellular and Molecular Neurobiology. 3 Hours.
Topics in Neurobiology.

NBL 703. Neurobiology Seminar Series. 1 Hour.
Current research topics in neurobiology presented by visiting scholars and campus faculty.

NBL 707. Cognition & Cognitive Disorder. 1 Hour.

NBL 711. Medical Neuroscience. 5 Hours.

NBL 720. Membrane Excitability Biophysics. 3 Hours.
The course will consist of 7 topics covered over 8 weeks (including course orientation): Properties of lipid bilayers, Ions in solution, Ion channel permeability and selectivity, Ligand-dependent channel gating, G-protein-coupled receptor kinetics, Transporters and Pumps, and Voltage-dependent channel gating. For each topic a faculty member will present an overview lecture and students will present a single mini-lecture on a more focused concept within the topic. The mini-lecture will be based on published literature and should be discussed before presentation with the topic leader. It should be a formal PowerPoint lecture lasting a maximum of 20 min.

NBL 723. Experimental Design. 1 Hour.
In depth and specialized training for our Roadmap Scholars in hypothesis development, experimental design and scientific writing. During this course, Roadmap Scholars will develop an NRSA, or similar, grant proposal.

NBL 725. Seminar Practice in Cellular and Molecular Neuroscience. 1 Hour.
The course will provide guidance and practice in the presentation of research seminars. It will also provide a forum for students to become actively involved in listening to seminar presentations and participating in speaker questioning. Once during the course each student will present a 50 minute seminar describing his/her current research, during which the other students and participating faculty will ask questions and provide comments and suggestions. Following the presentation the student will receive a constructive critique from the faculty.

NBL 729. Mechanisms of Signal Transduction. 1-3 Hour.

NBL 730. Neurobiology of Disease. 3 Hours.
Major advances have been made in understanding diseases of the nervous system at a cellular and molecular level. Several new findings have had therapeutic implications and have resulted in the development of novel drugs or new disease management strategies. This course intends to review the most common brain and CNS disorders. It will offer a brief clinical introduction to the disease, but will emphasize reviewing current knowledge of the disease at a cellular and molecular level. The course will be taught by several UAB professors who have active research programs directed at studying nervous system diseases. The course is designed for advanced graduate and medical students who have a good neurobiology background with NEUR702/NBL750/NBL7.

NBL 735. Statistics for Biomedical Science. 3 Hours.

NBL 740. Mechanisms of Memory. 4 Hours.
This course integrates the molecular, cellular, systems, and medical components of the core curriculum with an emphasis on cognition and cognitive disorders. Thus, the course covers topics ranging from genes and molecules to human behavior, using cognitive function and clinical cognitive disorders as the unifying theme, with a focus on learning and memory and disorders of these processes.

NBL 741. Writing and Presenting. 1 Hour.
Roadmap Scholars will be expected to attend and present posters or talks describing their research at international meetings, such as the Society for Neuroscience annual meeting. We will develop a course to assist the students in writing their abstracts, as well as designing their presentation for the meeting. This course will assist the Neuroscience Roadmap Scholars in developing their presentation skills as neuroscientists.

NBL 743. Methods in Neuroimaging. 3 Hours.
Cognitive neuroscience research has provided valuable insights into the workings of the human brain. The techniques used in cognitive neuroscience span from postmortem brain studies to neuroimaging studies. The ability to perform neuroimaging studies on awake human individuals engaged in cognitive, social, sensory, and motor tasks has produced a conceptual revolution in the study of human cognition. This course will comprehensively examine the methods and techniques in neuroimaging with the primary goal of building fundamental knowledge in the concepts and techniques of neuroimaging. By the end of the course, students will have gained basic knowledge in the field and will be able to read and critically assess scientific journal articles that make use of a variety of neuroimaging methods. The secondary and implicit goal of this course is to create and nurture, in students, a genuine interest in neuroscience and neuroimaging. The course will explore techniques, such as single and multi cell recordings, deep brain stimulation, electroencephalography, functional magnetic resonance imaging, and diffusion tensor imaging. This course will be an apt venue for graduate students interested in neuroscience research to build a platform for continuing studies.
NBL 745. Professional Development Course. 1 Hour.
Today’s researchers, scientists, and academics face an increasingly competitive world. We will create a professional development course for our UAB Neuroscience Roadmap Scholars to provide support for their aspiration to become independent and successful neuroscientists.

NBL 752. Developmental Neuroscience. 3 Hours.
The course will utilize the scientific literature and faculty lectures to cover a broad range of topics related to the mechanisms of building a brain. The topics covered range from neural induction in early development, to axonal guidance and synapse formation, to neuro-gial interactions in the adult nervous system. Grades will be based on two exams and student participation in class discussions.

NBL 755. Mind/Brain. 3 Hours.

NBL 758. Synaptic Dynamics. 3 Hours.
A student-driven discussion of the molecular and physiological properties of synapses, this course explores the molecular physiology underlying the control of neurotransmitter release and the postsynaptic response. Quantal theories of synaptic transmission will be discussed with respect to anatomical and physiological differences between central synapses and the neuromuscular junction. Synaptic plasticity mechanisms will also be discussed.

NBL 770. Glial Biology in Medicine. 3 Hours.
This course will cover the role of astrocytes, oligo-dentrocytes and microglia in both the normal development and function of the nervous system, and also their role in injury and disease. Presentations will be student led, with the assistance of the faculty.
Prerequisites: NBL 700 [Min Grade: C] or CMB 754 [Min Grade: C] or NBL 712 [Min Grade: C]

NBL 771. Innovative Techniques, Methods and Models in Neuroscience. 1 Hour.
This is a Journal Club style course that will consist of topics related to innovative methods in neuroscience. Students will read and discuss papers on groundbreaking techniques, such as CRISPR/Cas9 systems, optogenetics, CLARITY, flow cytometry and DREADDs. Each week one student will be responsible for presenting the seminal paper discussing the novel technique, providing advantages, disadvantages and limitations of the technique. The class as a whole will then discuss a paper in which the novel technique was applied. The goal of this course is to equip the next generation of neuroscientists to understand the next generation of neuroscience techniques. Class Assignments and Preparation: All students are required to read the assigned manuscript and be prepared to discuss the method and data presented in the manuscript, as well as potential limitations/pitfalls of the approach considered.

NBL 772. Special Topics in Neurobiology II. 1-3 Hour.
This course will draw on the cutting edge knowledge, expertise and information provided by the spring Neurobiology Seminar program. There will be two one-hour meetings per week. Prior to each seminar, students will discuss a review article pertinent to the seminar topic, and a recent research paper from the speaker's lab. Following the seminar, new findings presented will be discussed. Students will also have the opportunity (optional) of meeting the speaker at lunch prior to the seminar or at a post-presentation reception.

NBL 773. Molecular Brain Aging JC. 1 Hour.
Across the body, age-related protein expression changes underlie the aging process. This journal club focuses on understanding normal brain aging at the cell and molecular level. We will discuss papers that show how both central and peripheral protein expression differences effect cellular function of brain to promote age-related change.

NBL 775. Special Topics in Neurobiology III. 1 Hour.
The aging process is amazing. One person could choose to not exercise, eat fatty foods with abandon, and engage in other risky behaviors but still live to 100 relatively disease free. Meanwhile another develops dementia in their 70s after living a life doing all the “right” things for their body. Often in our desire to prevent and treat disease, we do not spend time studying normal aging process, and thus we don’t understand the system we are working within. To effectively target disease requires a thorough understanding not only of disease mechanism but also of how the brain changes during aging. Even when the cognitive aging process does not directly result in development of disease, the changes that occur effect quality of life and could be targeted for intervention. This journal club will focus on exploring papers investigating how the aging process impacts the brain.

NBL 779. Journal Club Topics. 1 Hour.
Journal Club Topics.

NBL 780. Selected Topics in Neurobiology I. 3 Hours.
This course covers different topics that have to do with Neurobiology.

NBL 781. Selected Topics in Neurobiology II. 1 Hour.
This course covers different topics that have to do with Neurobiology.

The Neuroimaging Journal Club was created to encourage the discussion of papers and research related to brain imaging. Modalities discussed including but not limited to magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG).

NBL 784. Synaptic Transmission and Ion Channel Journal Club. 1 Hour.
The Synaptic Transmission & Ion Channels Journal Club provides a forum for discussion and analysis of papers related to electrophysiology of neurons and astrocytes at the level of synapses and circuits. It is focused primarily on electrophysiological methods.

NBL 785. Neurobiology Journal Club-Synaptic Plasticity. 1 Hour.

NBL 786. Cell Death Mech Journal Club. 1 Hour.
Discussion and critical evaluation of seminal or current papers on a broad topic of cell death mechanisms in health and diseases, with special emphasis on autophagic mechanisms impact on cell death.

NBL 788. Biology of Glial Cells Journal Club. 1 Hour.
This journal club covers contemporary primary articles on the biology of glial support cells, their role in normal brain function and Neurological disease.

NBL 789. Neurobiology Journal Club. 1 Hour.

NBL 791. Developing Critical Thinking and Analytical Skills. 1 Hour.
One of the key skills that every graduate student needs is the ability to think critically and to analyze data. Many graduate students have not been instructed in how to read the scientific literature, so NBL791 will include sessions for the Neuroscience Roadmap Scholars on how to read and critique a scientific paper. We will select examples of well-constructed journal articles and help the students to learn how to understand, interpret, and evaluate the findings.
This course is about preparing students in work pertaining to the preparation of PhD candidates in the neurosciences for collecting data from the nervous system: 3 credits. No prerequisites required. It is expected that the student has access to and familiarity with computers. Books: Lab Math, A handbook of Measurements, Calculations, and other Quantification Skills for Use at the Bench by Dany Spencer Adams.

NBL 799. Dissertation Research in Neurobiology. 1-12 Hour. Research hours in the lab. Prerequisites: GAC Z

PHR-Pharmacology Courses

PHR 611. Physiological Principles of Pharmacology & Toxicology. 3 Hours.
This course will provide a broad but rigorous overview of physiological principles of pharmacology & toxicology. The course includes five separate “modules”, each taught by faculty of UAB Dept. Pharmacology & Toxicology. Each module has separate review session(s) and exams. In addition, each module will have small group problem-based learning (PBL) sessions (see below). There will be one exam specific for each module. At the end of the course, students will be assigned a drug from a pre-assigned list and discuss its pharmacology and toxicology, in the form of a PPT presentation. Students will be graded for their performance on exams, completing PBL assessments, student presentation, and participation in live PBL sessions.

PHR 612. Systems Physiology and Pharmacology I. 3 Hours.
This course will introduce the student to the use, mechanism of action and physiological properties of major families of drugs that affect the cardiovascular system, autonomic nervous system (ANS) and central nervous system (CNS). Lectures will provide an overview of nervous system / cardiovascular physiology and pathophysiology that results from various diseases, disorders and injuries, the drugs used to treat these conditions and their mechanisms of action. Both classical drugs and newer classes of drugs will be discussed for both their therapeutic value and also their use in different research settings. This course will be taught using a combination of traditional didactic lectures and student participation through discussion of seminal research papers and presentations.

PHR 613. Systems Physiology and Pharmacology II. 3 Hours.
This course will introduce drug use, mechanism of action and physiological properties of major drug families, with a focus on specific organ systems (endocrine, gastrointestinal and renal systems). In addition, this course will also cover specific classes of drugs for cancer treatment specifically related to the organ systems covered in the course. This course is divided into three “modules”. Each module has its own exam. In addition, there are graded student presentations at the end of the semester, topics of discussion to be determined.

PHR 614. Drug Discovery and Development. 3 Hours.
The course will provide an overview of the drug discovery and development process. Topics will include (among others): Target identification and validation, High-Throughput Screening, Hit discovery, Lead optimization, Preclinical testing, Safety requirements, Clinical trials, IND, NDA, Patents, and Federal regulations. The course will highlight multidisciplinary nature of drug discovery and the roles of biologists, medicinal chemists, pharmacologists, regulatory agencies, and investors in the process. Real-life case stories highlighting successful and unsuccessful drug development examples will be introduced for discussions, as well as some current examples of early stage biotech startups.

PHR 615. Pharmacokinetics and Biopharmaceutics. 3 Hours.
Pharmacokinetics is the study of the time-course of drugs in physiological systems. This includes the fate of administered drugs in relation to time starting with absorption, through distribution, and elimination. Pharmacokinetics is fundamental to the understanding of observed drug effects and responses. This course is divided into three sections that are assessed independently. The first section explores the mathematical principles of pharmacokinetics using the compartmental and noncompartmental models of analysis. The second section evaluates the roles of biopharmaceutical factors in the pharmacokinetics of drugs. The last section introduces the students to hands-on pharmacokinetics analysis and modeling using an industry-standard software package.

PHR 616. Cancer Physiology and Pharmacology. 3 Hours.
This course will introduce different types or classes of chemotherapeutic agents currently used in the clinic for the treatment of cancer. These include classic chemotherapeutic agents and newer targeted agents. Students will learn the latest cancer chemotherapy and treatment strategy. Students will also learn historical aspects of cancer treatment and of drug development for this disease. Team projects will prepare students to participate in literature reviews, presentation preparation and skills, and approaches to preparing for scientific discussions and Q&A sessions.

PHR 696. Special Topics. 1-3 Hour. Special Topics in Pharmacology.

PHR 701. Adv Prin Pharm-Sys&Pharmacok 1. 3 Hours.

PHR 702. Adv Prin Pharm-Sys&Pharmacok 2. 3 Hours.

PHR 706. Special Topics in Pharmacology. 3 Hours.

PHR 715. Pharmacokinetics and Biopharmaceutics. 3 Hours.
Pharmacokinetics is the study of the time-course of drugs in physiological systems. This includes the fate of administered drugs in relation to time starting with absorption, through distribution, and elimination. Pharmacokinetics is fundamental to the understanding of observed drug effects and responses. This course is divided into three sections that are assessed independently. The first section explores the principles of pharmacokinetics using the compartmental and noncompartmental models of analysis. The second section evaluates the roles of biopharmaceutical factors in the pharmacokinetics of drugs. The last section introduces the students to hands-on pharmacokinetics analysis and modeling using an industry-standard software package.

PHR 720. Laboratory Rotation in Pharmacology. 1-12 Hour.

PHR 735. Nucleotide Metabolism and Chemotherapy. 3 Hours.
Principles, characteristics and therapeutics of nucleotide metabolism. This course is designed for second year and above graduate students.
PHR 744. Protein Mass Spectrometry. 3 Hours.

PHR 752. Pharmacokinetic Analysis. 1 Hour.
The course will provide a detailed introduction to the analysis of pharmacokinetic data preferably generated as part of the student's research. Descriptions of the use of appropriate analytical programs and the interpretation of pharmacokinetic data will be the major focus of this course.

PHR 754. Model Sys for Drug Discovery. 2 Hours.
This course will focus on the use of different genetically tractable model systems and their roles in drug discovery and drug development. The course will discuss the properties, benefits and deficiencies of major model systems used in drug discovery including yeast, zebrafish, xenographs, and genetically modified mouse strains.

PHR 755. Translational Pharmacology and Drug Development. 2 Hours.
Translational pharmacology covers the principles and practice of drug development from the laboratory (bench) to the patient (bedside). This course provides an overview of the processes involved in drug development. It familiarizes the student with the drug discovery and development process including types of clinical trials, regulatory requirements and results interpretations.

PHR 790. Pharmacology Journal Club. 1 Hour.
Pharmacology Journal Club.

PHR 798. Doctoral Level Non-Dissertation Research. 1-12 Hour.

PHR 799. Doctoral Level Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

PSDO - Physician Scientist Dev Courses

PSDO 630. Physician Experience. 2 Hours.
PSDO 630 will provide practical information and experience for highly qualified students considering medical school or other health-care based professional programs. The course will emphasize real world considerations of the clinical professions including acceptance criteria, expected duration of training, average debt and compensation of various specialties. The students will also be given multiple opportunities to interact with individuals from various levels of training and backgrounds to provide focused and nuanced guidance. Finally, the course will incorporate a shadowing experience, providing students the opportunity to observe and interact with practitioners from across UAB in a variety of specialties and settings. Each student will be required to complete documentation for the UAB and Children’s hospital, as well as receiving clearance from UAB Employee Health, as well as completing an online HIPAA compliance module. Students are not permitted to shadow until each is complete.

Students may perform independent study in a research laboratory setting. This work may contribute toward the concentration credits subject to program director approval.

Students perform independent study in a research laboratory setting. This work contributes directly to the completion of the degree and meets the degree requirements for graduation.

PSDO 700. Pathway to Grant Submission. 2 Hours.
This course is designed to give students a basic background in topics necessary to succeed as a physician scientist in today’s academic medical environment. Topics to be covered include the NIH funding system, how to write a fellowship, record keeping, authorship and publication, conflict of interest, animal and human subjects, and finding a mentor (Open to MD-PhD, ARiSE-MD, and DMD-PhD students).

PSDO 701. Career Development Grant Writing Workshop. 1 Hour.
This course is designed to assist postdocs, residents, fellows, and rising junior faculty with the creation and submission of a K award or equivalent grant application. Topics to be covered include the NIH funding system, how to write a fellowship, how to submit animal protocols, and how to submit IRB forms. Individuals will be given a variety of reading assignments from which they will be expected to participate in group discussions and/or presentations. They will also be expected to prepare a fellowship application that will be submitted to an NIH Funding agency.

PSDO 720. Critical Approaches & Clinical Evaluation of Kidney Disease. 1 Hour.
Enhance knowledge of kidney disease physiology to include expansion of the themes from the Mount Desert Island Biologic Laboratory (MDIBL) course on the “Origins of Renal Physiology” Promote structured critical thinking skills focused on kidney disease. Enhance experimental design skills for the development and testing of new hypotheses. Enhance constructive reviewing skills. Engage in the culture and language of medicine through exposure to a range of clinical experiences. Provide opportunities for PROmoTE scholars and clinical faculty to discuss areas where basic science and clinical medicine intersect and where new information could be beneficial. Expose PROmoTE scholars to clinical problems and a variety of team-based investigation.

PSDO 798. PSDO Non-Dissertation Research. 1-8 Hour.
Non-Dissertation research. Only open to ARiSE-MD students.

PSDO 799. PSDO Dissertation Research. 1-8 Hour.
Dissertation research. Only open to ARiSE-MD students.
Prerequisites: GAC Z

Anatomical Science

Anatomical Sciences M.S. provides specialized education courses to train students to teach at the college level and thereby help to meet a rapidly growing need for anatomists in multiple health-care focused programs. Students will be exposed to some of the latest innovations in anatomical sciences education, including 3D-anatomy via the use of ultrasound with standardized patients, radiologic anatomy, using CT scans of cadavers, platinated specimens, and the use of virtual microscopy in histology education.

Master of Science in Anatomical Science

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 716</td>
<td>Developing a Teaching Portfolio</td>
<td>2</td>
</tr>
<tr>
<td>GRD 750</td>
<td>CIRTL Seminar: How Learning Works</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 695</td>
<td>Teaching Practicum</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 696</td>
<td>Research Project</td>
<td>1-6</td>
</tr>
<tr>
<td>Select one from:</td>
<td></td>
<td>2-3</td>
</tr>
<tr>
<td>GRD 752</td>
<td>Introduction to Evidence-based Teaching</td>
<td></td>
</tr>
<tr>
<td>GRD 754</td>
<td>Advanced Evidence-based Teaching</td>
<td></td>
</tr>
</tbody>
</table>

Education Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 716</td>
<td>Developing a Teaching Portfolio</td>
<td>2</td>
</tr>
<tr>
<td>GRD 750</td>
<td>CIRTL Seminar: How Learning Works</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 695</td>
<td>Teaching Practicum</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 696</td>
<td>Research Project</td>
<td>1-6</td>
</tr>
<tr>
<td>Select one from:</td>
<td></td>
<td>2-3</td>
</tr>
<tr>
<td>GRD 752</td>
<td>Introduction to Evidence-based Teaching</td>
<td></td>
</tr>
<tr>
<td>GRD 754</td>
<td>Advanced Evidence-based Teaching</td>
<td></td>
</tr>
</tbody>
</table>
Grades 756 CIERTL The College Classroom
Grades 705 Teaching at the College Level

Anatomy Core
ANSC 601 Human Gross Anatomy 5
& 601L and Human Gross Anatomy Lab 1
ANSC 602 Gross Anatomy Supplement (Must be taken twice) 2
ANSC 618 Histology of Mammalian Organ Systems 3
ANSC 655 Neuroscience 3
ANSC 656 Human Embryology 2
ANSC 657 Medical Imaging 1

Total Hours 26-32

Courses

ANSC 601. Human Gross Anatomy. 4 Hours.
Course provides a comprehensive survey of the gross anatomy of the human along with functional and applied anatomy as it relates to common clinical findings.

ANSC 601L. Human Gross Anatomy Lab. 1 Hour.
Lab component of Human Gross Anatomy.

ANSC 602. Gross Anatomy Supplement. 1 Hour.
This course will provide students with detailed dissections of head, neck, pelvis and perineum anatomy that are not otherwise covered in existing courses.

ANSC 618. Histology of Mammalian Organ Systems. 3 Hours.
This course will cover the specialized cell biology and microscopic anatomy for each of the mammalian organ systems, as well as consider current research with regards to each system. The objective is to understand how cells organize into tissues and organ systems and how these systems function in the body, as well as appreciate the microscopic appearance of cells, tissues and organs.

ANSC 655. Neuroscience. 3 Hours.
Have you ever wanted to know where the amygdala sits in the brain, or how the brainstem connects to the thalamus and basal ganglia? Would you like to know about processing in the spinal cord, and how this information is sent to and from the cortex? This course will show you how to find any structure in the nervous system, and how these regions interact to control body movements, give rise to sensory perception, generate emotions and experiences, make decisions, and create personality. Each week will use interactive didactic sessions, anatomical drawing exercises, real brain lab experiences, radiographic imaging, and small group medical case discussions, to break down the brain into manageable components, to see how its outer coverings, blood supply, gray and white matter are structurally and functionally organized to make you who you are. This course may be beneficial for students considering careers in the medical, dental or optometry fields, along with those wanting to pursue graduate research in neuroscience. Students without a general neuroscience background may consider taking NBL 230 or PY 253 (recommended but not required).

ANSC 656. Human Embryology. 2 Hours.
This course uses didactic lectures, lab exercises and student presentations to help students gain an understanding of the major events in human development from gastrulation to birth. Individual units focus on the developmental processes of specific organ systems, the course uses an anatomical focus to describe the morphological characteristics of the developing embryo/fetus. The biochemical and molecular biology of development are only briefly discussed, morphology and anatomy are also related to clinical presentation of birth defects. Offered summer terms.

ANSC 657. Medical Imaging. 1 Hour.
Students will learn to obtain and interpret ultrasound images by practicing techniques on classmates and reading existing ultrasound images. Other radiograph images (X-ray, MRI) will also be used to help students understand planar anatomy and its relationship to 3D anatomy. Students will learn the basics of the technology behind the different medical techniques to provide a fuller understanding of image interpretation.

ANSC 695. Teaching Practicum. 3 Hours.
Students will act as supplemental instructors in a variety of anatomy lab courses, complete their own (or in teams) whole-body prossection, and prepare and present 2-3 hours of new lecture content for anatomy.

ANSC 696. Research Project. 1-6 Hour.
Students will develop an original research project in medical education, clinical anatomy, or other anatomy research. Students will be evaluated on their ability to formulate an anatomically relevant research question, review the existing literature, and communicate their findings via a poster or oral presentation to department.

Graduate Biomedical Sciences

The University of Alabama at Birmingham offers a large and diverse community of scientists focused on innovation in modern biomedicine. The thrill of discovery is evident across campus—UAB routinely ranks among the top research-intensive universities for extramural funding and research productivity.

The Graduate Biomedical Sciences (GBS) Doctoral Training Program is designed to provide students with rigorous, interdisciplinary education and mentorship in a wide array of scientific disciplines. GBS trainees can perform doctoral research in more than 350 different labs across campus. Because of the program's scale and the number of affiliated faculty, it is subdivided into eight individual themes that provide discipline-specific training and opportunities for smaller-scale connections within the overall community.

Interdisciplinary Themes:

Biochemistry & Structural Biology (BSB) Theme (p. 173)
Cancer Biology (CANB) Theme (p. 174)
Cell, Molecular, & Developmental Biology (CMDB) Theme (p. 175)
Genetics, Genomics, & Bioinformatics (GGB) Theme (p. 176)
Immunology (IMM) Theme (p. 177)
Microbiology (MIC) Theme (p. 178)
Neuroscience (NESSC) Theme (p. 178)
Pathobiology, Pharmacology, & Physiology (P3) Theme (p. 179)

For a full listing of GBS Faculty, visit here.

Completion of the training requirements in one of the above interdisciplinary themes provides eligibility for conferral of one of the following PhD degrees:

- Biochemistry and Molecular Genetics
- Cell Biology
- Cellular and Molecular Physiology
• Genetics
• Microbiology
• Neurobiology
• Pathology
• Pharmacology and Toxicology

If you have any further questions, please contact the following GBS Office Staff or visit the GBS website.

GBS-Grad Biomedical Sciences Courses

GBS 700. Molecular Neurodegeneration. 3 Hours.
Advanced Course. This course covers several of the most important molecules involved in neurodegenerative disease, including Aβ, tau, apoE, TDP-43, α-synuclein, LRRK2, prion protein (PrP), and Huntington (HTT). The goal is to develop a deeper understanding of each protein's normal structure/function and how these are altered in neurodegenerative disease.

GBS 701. Core Concepts in Research: Critical Thinking & Error Analysis. 1 Hour.
Do you love to “think science”? Would you enjoy looking at scientific questions through an unusual lens? Do you find stories about scientific discoveries fascinating, and would you like to learn more about what they mean to our scientific practice? Then this course is for you! This course examines the natural and philosophical foundations of science using an interdisciplinary approach that emphasizes critical thinking and storytelling; discusses the principles of good scientific practice (rigor, reproducibility and responsibility; the 3R’s) - by exploring revolutionary discoveries in the life, public health and natural sciences; elaborates the relationship between theory, practice and serendipity in scientific discovery, and concludes with a discussion of the role of scientists in society.

GBS 702. You Teach Me. 3 Hours.
Advanced Course. You Teach Me: Autoimmune Effector Mechanisms and Inflammation in Type 1 and 2 Diabetes. This course will begin with a general overview of Type 1 and 2 diabetes, but in later weeks, students are given the opportunity to teach and describe a particular cell type and/or immune effector molecule that pertains to Type 1 or 2 diabetes pathogenesis. The teaching topic is for the presenter to decide, but the course master will provide guidance and input. Does your favorite immune cell or effector molecule have a role in the pathogenesis of Type 1 or 2 diabetes? You will be surprised at what you uncover.

GBS 707. Basic Biochemistry and Metabolism. 2 Hours.
Core course. This course is intended to provide students a rigorous background in the principles of biological chemistry. The principles taught are those we believe student should master and include the application of these principles to research protocols and performance.

GBS 708. Basic Genetics and Molecular Biology. 2 Hours.
Core course. This course is intended to provide students with a strong foundation in basic genetics and basic molecular biology so that students are able to apply and understand fundamentals in their lab research.

GBS 709. Basic Biological Organization. 2 Hours.
Core course. This course is intended to provide students with exposure to the fundamentals of basic cell biology and begin to build a foundation of knowledge that will be needed as the student progress along the scientific path.

GBS 710. Cell Signaling. 2-3 Hours.
Module Course. This course covers major extracellular and intracellular signal transduction cascades that regulate animal development and physiology. Topics include the mitogen activated protein kinase cascade, transforming growth factor beta, insulin, and cytokines.

GBS 712. Cellular and Molecular Aspects of Developmental Biology. 2-3 Hours.
Module Course. The goal of this course is to provide an introduction to the fundamentals of vertebrate developmental biology. The course will consist of faculty lectures and research paper discussion groups covering a broad range of developmental issues from fertilization to organogenesis.

GBS 714. Developmental Neuroscience. 2-3 Hours.
Module Course. The course will utilize the scientific literature and faculty lectures to cover a broad range of topics related to the mechanisms of building a brain. The topics covered range from neural induction in early development, to axonal guidance and synapse formation, to neuro-gial interactions in the adult nervous system.

GBS 715. Skeletal Development and Disease. 3 Hours.
Advanced Course. This class is designed for understanding Cellular and Molecular Signaling essential for the normal development and remodeling of skeleton and for learning genetic mechanisms associated with skeletal diseases and pathology.

GBS 716. Grantsmanship and Scientific Writing. 2-3 Hours.
The objective of the course is to teach students how to effectively write grant proposals. This course will provide hands on training in the preparation of a grant application and demonstrate effective strategies for assembling a successful proposal. With guidance from the faculty, the students will write a NIH style proposal on their dissertation research topic. After the proposal is complete, each grant will be reviewed in a mock NIH study section. Based on the comments from the study section, the student will revise the application and submit the proposal to his/her thesis committee as part of the qualifying examination for admittance into candidacy.

GBS 717. Methods and Scientific Logic. 1 Hour.
Methods and Logic in Science is a literature-based class in which students have to critically analyze primary research publications. The students will be expected to critique the thinking processes that went into the experimental design, interpretation, and presentation of the papers selected. Through this exercise, it is expected the students will learn to critically evaluate the experimental design and data interpretation, to improve their logical reasoning skills, and to understand the peer-review process behind scientific publication.

GBS 718. Histology of Mammalian Organs and Tissues. 3 Hours.
Advanced Courses. This course will cover the specialized cell biology and microscopic anatomy for each of the mammalian organ systems, as well as consider current research with regards to each system. The objective is to understand how cells organize into tissues and organ systems and how these systems function in the body, as well as appreciate the microscopic appearance of cells, tissues and organs.

GBS 720. Genomic Sciences. 2-3 Hours.
Module Course. This course will cover a wide variety of topics related to this topic, including genetic variation and polymorphisms, alternative splicing, microRNAs, and novel sequencing and microarray technologies.
GBS 722. Bioinformatics. 2-3 Hours.
Module Course. This course will cover a wide variety of different bioinformatics applications, which will be taught through using bioinformatics resource websites. The topics covered will include: introductions to large-scale, generic databases at NCBI, European Bioinformatics Institute, SwissProt, PDB, UniProt and Ensembl; Sequence analysis systems such as BLAST; statistical genetics; use of R/Bioconductor in research; super computing; Systems Biology; brief introduction into programming languages; resources that are used in Next Generation Sequencing (NGS) analysis, which includes variant discovery, transcriptomics, ChIP-Seq, epigenetics, micro-RNA, de novo assembly, microbiome and metagenomics.

GBS 723. Model Systems for Genetic Analyses. 2-3 Hours.
Module course. This course is designed to introduce various genetic model systems to students. The model organisms discussed in this course include bacteria, yeast, plants, worm, fly, killifish, zebrafish, chick, frog and mouse. Students will learn about the basic physiology and genetic manipulation tools for each organism. There will be one lecture on the importance of strengthening the research groups in each model organism. The students will also learn how to use induced pluripotent stem (iPS) cells in disease models.

GBS 724. Principles of Human Genetics. 2-3 Hours.
Module Course. This course will cover the general concepts of human genetics, including population genetics, dominant, recessive, X-linked, multifactorial, and mitochondrial inheritance and disease, as well as cytogenetics, chromosomal abnormalities, molecular genetics, and triplet repeat disorders.

GBS 725. Grant Writing- Crafting a Research Proposal. 1-3 Hour.
This course is designed to educate students on the best practices of research proposal preparation and review. Several grant mechanisms will be discussed, but the primary focus will be on preparation of NIH "F30/F31 style" proposals. These are six page research strategies focused on the research project of each student. Each week, the class will meet and discuss individual portions of the proposal (e.g. Aims, Significance, Strategy), and student will draft those sections during the intervening week. By the tenth week of the course, students will submit a complete research portion of an F30/F31 grant. These proposals will be reviewed by peers as well as by faculty members of a "live" study to be held on the last day of class. After completion of the course, students will have substantial critiques of their proposals in hand. It is expected that students will review these proposals and submit them to committee members as the written portion of the student's qualifying exam. Long term benefits of careful, critical grant preparation extend to many future career paths. Near term benefits of this course are to improve students' writing skills and progress into written qualifying exam. Finally, it is expected that these proposals will be submitted to one or more extramural funding agencies to support the students' training.

GBS 726. Advanced Medical Genetics and Genomics. 3 Hours.
Advanced Course. This course will focus on the medical application of advances in genetics and genomics. Topics include chromosome structure and function and major types of chromosomal abnormalities, cancer genetics and cytogenetics, inborn errors of metabolism, current strategies for detection of mutations associated with genetic disorders, genetic risk assessment and population genetics, and genomic approaches to diagnosis and risk stratification.

GBS 727. Advanced Human Genomics. 3 Hours.
Advanced Course. This course will cover the conceptual basis, major discoveries, and unsolved problems in human genomics, with an emphasis on disease applications. The goal is to make students conversant with the structures, functions, and natural histories of human genomes, the computational and experimental methods used to establish that knowledge, the applications of genomics to medical research, and the broader impacts of genomic research on the community. Each topic will be covered by an approximately 90-minute lecture from a subject-specific PI coupled to reading of pieces of primary literature. Students will also participate in 3 student-led journal clubs in which one or more papers are discussed in detail with the help of the teaching faculty. We will also perform 1 interactive sessions to teach basic computational skills in Unix, Perl and R. Grading will be determined by: discussion interaction, computational problem sets due in weeks 4, 6, and 8, and a "final" project in which students perform a small but cohesive set of bioinformatic analyses to address a question of their choosing, subject to approval/discussion with the teaching faculty. Format: Each of the 7 weeks will include two, 90 minute lectures performed at UAB. In weeks 2, 4, and 6, we will convene at HudsonAlpha for four-hour sessions. Each four-hour session will include ~1 hour of paper discussion, ~1 hour of teaching on a relevant computational topic, and ~2 hours of hands-on interactive data manipulation with commonly used data types and computational tools. Course meets both on UAB Campus and at Hudson-Alpha in Huntsville.

GBS 728. JC- Bio-Nano Technology. 1 Hour.
This journal club will focus on the use of biological materials as paradigms, structural scaffolds, and active elements of nanoscale materials.

GBS 729. Translational Approaches in Neurodegeneration. 3 Hours.
Advanced Course. With the current emphasis on "bench to bedside" strategies, successful translational research approaches may be helpful for a productive career in academic and industrial settings. This course uses the field of neurodegeneration as a vehicle for conceptualization to the failures, current challenges, and successes of different translational approaches. This course emphasizes active learning principles by placing students into scenarios of direct relevance to a career in science (e.g., consultation of study section discourse, formal critical debate that happens at international symposia, and informal discussions between colleagues).

GBS 730. Introduction to Neurobiology (Dauphin Island Course). 1-9 Hour.
Hands on experiments and classroom lectures on site at the Dauphin Island Sea Lab. Students live on site the entire course.

GBS 733. Diseases of the Nervous System. 2-3 Hours.
Major advances have been made in understanding diseases of the nervous system at a cellular and molecular level. Several new findings have had direct therapeutic implications and have resulted in the development of novel drugs or new disease management strategies. This course intends to review the most common brain and CNS disorders.

GBS 736. JC- Cognition. 1 Hour.
This seminar series features neuroscience graduate students presenting their research to their peers.
GBS 739. Neuropharmacology. 3 Hours.
Advanced Course. This course which will focus on the mechanisms of action of CNS-active drugs. The first one-third of the course will consist of lectures that emphasize basic principles of neuropharmacology including neurotransmitter and receptor concepts, pharmacokinetics, pharmacodynamics and pharmacogenomics. The next two-thirds of the course will focus on the mechanism of action of different drug classes, including classical behavioral and biochemical studies, as well as genetic and molecular analyses of drug action. In each section, the instructor will give an overview lecture followed by student presentations. Student performance will be evaluated based on homework, oral presentation and written examination.

GBS 740A. Introduction to Immunology Part 1. 2-3 Hours.
Module Course. Introductory Immunology is a team-taught survey course that covers basic concepts of innate and adaptive immunity. These integrated series of lectures provide a firm foundation in immunology, especially for those with minimal immunology background, and serve as an important refresher for the developing immunologist.

GBS 740B. Introduction to Immunology Part 2. 2-3 Hours.
Module Course. Introductory Immunology is a team-taught survey course that covers basic concepts of innate and adaptive immunity. These integrated series of lectures provide a firm foundation in immunology, especially for those with minimal immunology background, and serve as an important refresher for the developing immunologist.

GBS 741. Lymphocyte Biology. 2-3 Hours.
Module Course. The objective of this course is to provide first year immunology students with the opportunity to gain a more in-depth understanding of selected aspects of lymphocyte biology. Possible topics include T cell subsets, B cell biology, lymphocyte activation, and transplantation immunology. The course is literature intense, and students are required to read and present numerous scientific papers.

GBS 742. Dendritic Cell Biology. 3 Hours.
Dendritic cells (DCs) are considered the bridge between the innate and the adaptive immune system. After recognizing pathogens in infected tissues, activated-DCs migrate into the secondary lymphoid organs where they prime pathogen-specific T cell responses. In the absence of DCs, T cell responses are not generated and protective immunity to pathogens, tumors, and vaccines are severely compromised, thus highlighting the importance of DCs in generating effective immune responses. In this course we will provide a comprehensive overview of DC biology, focusing on understanding DC heterogeneity, mechanisms of action and the roles played by the different populations of DCs during viral and allergic responses. The class will also focus on key functional differences between human and mouse DCs and the potential therapeutic use of DCs in immunotherapy.

GBS 744. Mucosal Immunology. 2-3 Hours.
Module Course. The mucosal immune system is essentially the primary site of interaction between invading pathogens and the immune system. Mucosal immunity has always been a strength of the immunology community at UAB and is rarely covered at most other institutions. This class will provide in-depth analysis of the structural features that distinguish the mucosal immune system from the peripheral immune system. Features of innate and adaptive immunity as they relate to mucosal immune responses will also be covered. The course will involve student presentations on selected topics.

GBS 745J. Exercise Medicine Journal Club. 1 Hour.
Exercise training in various forms induces a complex array of coordinated cellular and molecular processes that improve symptoms and co-morbidities associated with numerous chronic conditions including musculoskeletal, cardiorespiratory, metabolic, immunologic, and neurologic disorders—and disease risks associated with chronic physical inactivity are widespread. Understanding the biological mechanisms underlying exercise-induced adaptations and their clinical utility in disease treatment and prevention is therefore a truly interdisciplinary effort. Students will interact with scientists and clinicians from several disciplines, and will present and discuss the latest and most impactful exercise-based research in both human and animal model systems.

GBS 745. Special Topics. 1-6 Hour.
Varying topics offered to advanced graduate students in the GBS program.

GBS 746. GBS Special Topics. 1-4 Hour.
Varying topics offered to advanced graduate students in the GBS program.

GBS 746J. Exercise Medicine Journal Club. 1 Hour.
Exercise training in various forms induces a complex array of coordinated cellular and molecular processes that improve symptoms and co-morbidities associated with numerous chronic conditions including musculoskeletal, cardiorespiratory, metabolic, immunologic, and neurologic disorders—and disease risks associated with chronic physical inactivity are widespread. Understanding the biological mechanisms underlying exercise-induced adaptations and their clinical utility in disease treatment and prevention is therefore a truly interdisciplinary effort. Students will interact with scientists and clinicians from several disciplines, and will present and discuss the latest and most impactful exercise-based research in both human and animal model systems.

GBS 747. Special Topics. 1-6 Hour.
Varying topics offered to advanced graduate students in the GBS program.

GBS 747J. JC- Circadian Rhythms & Sleep Machine. 1 Hour.
In this journal club, we will bring together researchers with diverse perspectives, specialized techniques, and scientific backgrounds in order to develop a take-home message from recent circadian and sleep literature that may be applicable to all of our specific fields. Nearly all organisms possess an endogenous circadian clock that governs a wide array of rhythms, from biosynthetic to behavioral, and synchronizes (entrains) them to the 24-h environmental day-night cycle. The central circadian clock in the suprachiasmatic nucleus of the hypothalamus orchestrates rhythms in many peripheral clocks located throughout the brain and body, resulting in 24-h regulation of many physiological processes (including sleep and reproduction, metabolism, organ function, and seasonal behaviors). This regulation allows for a predictive, rather than purely reactive, homeostatic control. In humans, dysregulation of the circadian system has been implicated in some insomnia, cancers, affective disorders, and in aging and cognitive impairment. The discovery and characterization of oscillating “circadian clock” genes during the last decade has been largely due to cross-talk between researchers working on fruitflly and mice; this approach fueled insights into the likely design principles underlying the intracellular oscillatory machinery. Similar discussion and collaboration at a systems level of analysis may lead to new discoveries and approaches.

GBS 748. Special Topics. 1-4 Hour.
Varying topics offered to advanced graduate students in the GBS program.

GBS 749. Mitochondria in Health, Disease & Toxicology. 3 Hours.
Advanced Course. The course will consist of lectures given by faculty members on specific topics in the field of mitochondrial biology and toxicology. These lectures will be complemented by student presentations of original research articles, which are related to the presented subject matter and that place the discussed topic into the context of human health, disease, and toxicology. This format will allow for students to gain a solid understanding of normal mitochondrial physiology, which they can then use to explore the literature to reveal the importance of mitochondrial dysfunction in human diseases and toxicology responses.

GBS 750. Intro to Physiology. 2-3 Hours.
Module Course. This course will include an overview of basic cellular physiology and the neurological and musculoskeletal systems. Neurologic and neuromuscular diseases such as Parkinson’s, multiple sclerosis, and myasthenia gravis will be discussed, along with primary myopathies (e.g., dystrophinopathies), joint diseases (osteoarthritis, acute arthritis, arthropathies, fibrosing disorders), and bone diseases (osteoporosis, osteopetrosis, osteonecrosis).
GBS 751. Intro to Physiology II. 2-3 Hours.
Module Course. Course will introduce the exquisitely integrated cardiovascular, respiratory, and renal systems. This integration will be reinforced with examination of numerous disease states (acidosis, hypertension, heart failure, atherosclerosis/chronic vascular inflammation, genetic and environmentally-induced pulmonary diseases, chronic kidney disease).

GBS 752. Intro to Pathobiology. 2-3 Hours.
Module Course. This course will examine the physiology and pathobiology of the gastrointestinal tract, followed by sub-modules focused on endocrinology and immunology. Students will learn how the endocrine system integrates homeostasis of multiple organ systems through a comprehensive approach— influencing all systems examined in the previous modules. The mechanisms and consequences of abnormal GI function (e.g., peptic ulcer disease, diarrhea), endocrine dysregulation (type II diabetes mellitus, gigantism, hyperthyroidism, Cushing’s syndrome), and immune dysfunction (HIV, rheumatoid arthritis, type I diabetes mellitus) will be discussed. The course is divided into three blocks (GI, Endocrine, & Immune)—each with a block leader.

GBS 753. Intro to Pharmacology & Toxicology. 2-3 Hours.
Module Course. Students taking this course will be expected to have a thorough understanding of normal and abnormal organ system function as discussed in the three-modules described above. Lectures will build on that foundation to cover recent advances in drug design and development based on approaches of molecular pharmacology and molecular medicine. In addition, drug targeting strategies that take advantage of specificity in cellular structure and cell signaling processes will also be discussed.

GBS 754. Autophagy in Disease and Medicine. 3 Hours.
Advanced Course. This course reviews the pathobiology of autophagy and how it is essential for survival, differentiation, development, and homeostasis and how it serves an adaptive role to protect organisms against diverse pathologies, including infections, cancer, neurodegeneration, aging, and heart disease.

GBS 756. Cardiometabolic Disease Journal Club. 1 Hour.
The review of recently published articles focused on understanding the complex gene-environment interactions that contribute towards common metabolic diseases, such as obesity, diabetes, and cardiovascular disease. Articles most commonly reviewed range from the whole organism (e.g., physiology, energy balance, metabolism, endocrinology, genetics) to individual cells (e.g., cellular metabolism, signal transduction, and transcriptional regulation), in both animal models and humans. In addition, articles investigating novel lifestyle (e.g., diet and/or exercise), pharmacological (e.g., appetite suppressants), and surgical (e.g., gastric by-pass) interventions designed to treat cardiometabolic diseases are routinely discussed.

GBS 757. Biology of Disease. 3 Hours.
Advanced Course. Biology of Disease is a comprehensive course in general pathophysiology designed for graduate students in the GBS program or other science related graduate programs. This course will begin with an overview of general anatomy and histology and then will investigate basic pathophysiologic principles emphasizing pathogenic mechanisms and clinically important diseases where current research areas will be highlighted. The biomedical science students will learn the mechanisms involved in disease processes and will develop an understanding of diseases and clinical medicine to help them converse knowledgeably with medical colleagues and target their research towards clinically relevant issues.

GBS 758. Cardiovascular Biology. 2-3 Hours.
This course will consist of didactic lectures given by faculty members from UAB and guest lecturers from other institutions on a specific topic in the field of cardiovascular biology, which will then be followed up by student presentations of original research articles which are related to the presented subject matter and that place the discussed topic into the context of human health and disease. This format will allow for students to first gain a solid understanding of normal and pathological aspects of cardiovascular physiology, the basic experimental approaches that can be used in bench to bedside studies and the current perspectives on a broad range of current hot topics in the field. In addition, this course has unique components including instruction on how to review a research paper and prepare for an interview for an entry level position (e.g., postdoctoral) in academia and/or industry. These exercises will provide an appreciation of the issues related to a career scientific research. This course will be guided by the Course Director and other faculty members who will assist in the selection of relevant readings and facilitate in-class discussions among the students.

GBS 760. Bacterial Genetics and Physiology. 2-3 Hours.
Module Course. This course is designed to familiarize students with advanced knowledge in recombination, transcription, translation, regulation of gene expression, transport mechanisms and protein export. The students will learn the fundamental principles how structural components of bacterial cells are built and how bacteria-specific metabolic pathways can be exploited by antibiotics. We will also cover state-of-the-art technologies such as whole genome sequencing, microarray experiments, methods to analyze protein-protein interactions and the metabolome of bacteria. In this course, we emphasize the training of critical thinking and foster the ability of the students to design their own experiments to solve scientific problems in bacteriology. The goal of the course is to provide a strong foundation for advanced bacteriology classes and for doing research in any bacteriology lab.

GBS 762. Virology. 2-3 Hours.
Module Course. This course is designed to familiarize students with the general steps involved in viral lifecycles and use this knowledge as a framework for understanding the similarities and differences in the lifecycles of (+) and (-) stranded RNA viruses, DNA viruses, and retroviruses. The course also covers the role of viruses in oncogenesis, the origin and evolution of viruses, the innate immune response to viral infections, and the development of antiviral chemotherapeutics. The goal of the course is to provide a strong foundation for advanced virology classes and to provide students with enough background in virology to be comfortable teaching in a college level microbiology class.

GBS 763. Microbial Pathogenesis. 2-3 Hours.
Module Course. The course in Bacterial Pathogenesis contains introductory lectures that provide an overview of major concepts including virulence factors, and host immune mechanisms. Most of the lectures describe the unique aspects of specific bacterial (and fungal) pathogens. Although many of the most important medical pathogens are covered, the course focuses especially on those bacterial and fungal pathogens studies most intensively at UAB. Each week students will be given a quiz based on the lectures of the preceding week. To answer the questions, an understanding of the lecture material will be needed. The questions are designed to help the students thinking about hypotheses and concepts in Bacterial Pathogenesis.
GBS 764. Introduction to Structural Biology Methods. 2-3 Hours.
Module Course. Structural biology is central to understanding the function of biological macromolecules and is relevant to all fields of modern biological science. This course will provide a basic introduction to the elements of structural biology including the levels of protein structure (primary, secondary, tertiary, quaternary), the basis of structure determination by X-ray crystallography, NMR, and cryo-electron microscopy, and will explore the structure/function relationships in select systems.

GBS 765. Hybrid Structural Techniques as Applied to Cellular & Molecular Biology. 3 Hours.
Advanced Course. This course will focus on the use of X-ray crystallography, Cryo-Electron microscopy, NMR, and Mass Spectrometry to obtain structures of biological macromolecules. Each component will be taught separately. Each module will focus on insuring the student has a basic understanding of the essential principles of the technique and its practical application. Examples will generally be drawn from virology and immunology.

GBS 766. JC- Inflammation. 1 Hour.
Inflammation Journal Club presents the state of the art papers that fall broadly in the area of inflammation, which include aspects of basic cellular and molecular mechanisms, animal models and immunopathology of human diseases including, infectious diseases, cancer and chronic lung diseases.

GBS 768. Communicating Science: Reading, Writing and Presentation. 2-3 Hours.
This course will teach students how to make formal scientific oral presentations and how to write a paper for publication in a scientific journal.

GBS 769. Carcinogenesis. 2-3 Hours.
Module Course. The course is intended to introduce the concepts in carcinogenesis, followed by understanding the etiology, molecular events and signaling pathways involved.

GBS 770. Pathobiology of Cancer. 2-3 Hours.
Students will gain an understanding of the pathology of cancer in general and an appreciation of the gross, histologic and molecular pathology of cancers of multiple organs. The students will learn the basis of the pathologic classification of various cancers, as well as the clinical implications (i.e., prognosis and treatments). Translational research in cancer will also be discussed. Additionally, current controversies and topics of research interest may be introduced.

GBS 774. Cancer Immunology. 2-3 Hours.
Module Course. A summary of key signaling pathways that regulate cancer cell growth, death and behavior will be presented. An intense evaluation of mechanisms involved in pro-and anti-tumor immunology will be presented along with theoretical aspects of cancer immunotherapy.

GBS 775. Cancer Treatment. 3 Hours.
Advanced Course. Students will study current theories regarding chemotherapy, radiation therapy, chemoprevention and imaging. Students will also be exposed to state-of-the-art for each of these treatment/diagnostic modalities. This course uses a combination of textbook and literature readings and classroom discussions to provide students with an understanding of the different classes of drugs used to treat cancer. The course focuses on the mechanisms of drug action, the basis for selectivity and therapeutic applications. Traditional as well as novel approaches to therapeutics will be discussed, as well as the role of drug resistance and strategies for its management.

GBS 776. Cancer Biology Journal Club. 1 Hour.
This journal club focuses on current topics in all areas of Cancer Biology. Each week, a student will present and discuss a recently published paper related to a selected monthly cancer theme. All students are expected to actively participate in the discussion. The goals of this course are to enhance one’s ability to critically read the literature, to stay abreast of current findings, and to improve presentation skills.

GBS 777. Cancer Biology Seminar. 1 Hour.
Required of Cancer Biology Theme students. Seminars on various topics in cancer biology or other biomedical science topics. Students will attend a seminar offered by a Joint Health Sciences department/theme, keeping a journal that includes each seminar date, title and a brief synopsis of the seminar. Journals are to be kept electronically and emailed in on time. Anyone turning in a journal after deadline will receive NP for the course. Students may include no more than 2 student public defenses as a seminar entry each semester.

GBS 778. Cancer Metastasis. 3 Hours.
Advanced Course. The majority of cancer associated deaths are due to complications arising from metastatic disease. The process of metastasis is highly selective and is the result of a tumor cell completing a series of complex interrelated steps. Despite our improved knowledge of this disease, we still do not fully understand the molecular mechanisms regulating tumor progression and metastasis. This advanced course will cover basic mechanisms of how a tumor cell progresses from growth at the primary site to forming an overt lesion in a secondary organ and techniques used to study this disease.

GBS 779. Translational Research in Cancer. 3 Hours.
Advanced Course. This course covers topics on patient-based research efforts that may be important adjunctions to basic science studies. Topics include tissue collection, ex vivo assays, animal models, high-throughput arrays, drug development, epidemiologic studies, basics of clinical trials, and other topics.

GBS 781. Molecular Enzymology. 2-3 Hours.
Module Course. Course intends to touch on the various mechanisms of enzymes in biological systems.

GBS 782. Molecular Genetics. 2-3 Hours.
Module Course. Course studying the structure and function of genes at a molecular level.

GBS 783. Advanced RNA Biology. 3 Hours.
Course exploring the biology, biochemistry, structure and function of RNA at a research level.

GBS 784. Stem Cell Biology. 2-3 Hours.
Module Course. This course will explore the derivation, manipulation, and differentiation of embryonic, fetal, and adult stem cells in both mice and humans. Topics to be discussed include stem cell self-renewal, teratoma formation, hematopoietic stem cells, neural stem cells, trans-differentiation, nuclear transfer, and reproductive and therapeutic cloning. The course will be a mixture of instructor lectures and interactive journal club style presentations from the current stem cell literature by the students.
GBS 786J. Journal Club in Structural Biology. 1 Hour.
The journal club will discuss peer-reviewed scientific articles of interest to the structural biology community. In general, the majority of articles will contain macromolecular structural data determined by one or more of the following methods: X-ray crystallography, cryo-EM, NMR and Mass Spectroscopy. It will help students become familiar with our present understanding of the structure/function for different classes of macromolecules and gain an appreciation of state-of-the-art biophysical techniques available to determine macromolecular structures.

GBS 787. Special Topics. 1-4 Hour.
Varying topics offered to advanced graduate students.

GBS 788. Special Topics. 1-4 Hour.
Varying topics offered to advanced graduate students.

GBS 789. Evolutionary Developmental Biology. 2-3 Hours.
The class is aimed at introducing the concepts of evolution and describing how changes in gene expression and function during embryonic development represent the central molecular mechanism underlying evolution.

GBS 790. Clinical Evaluation of Cognitive Disorders. 2 Hours.
This course will provide clinical exposure to the evaluation and care of patients with cognitive disorders through a combination of didactic sessions and practicum visits, including observation of visits for patients with developmental and age-related cognitive impairment, neuropsychological testing, and functional MRI.

GBS 791. Graduate Neuroscience Journal Discussion. 1 Hour.
Students will participate in journal club style discussion on current topics in neuroscience research and develop presentation skills.

GBS 792. CMDB Seminar. 1 Hour.
Seminars on various topics in cellular and molecular biology or other biomedical science topics. Students will attend a seminar offered by a Joint Health Sciences department/theme, keeping a journal that includes each seminar date, title and a brief synopsis of the seminar.

GBS 793. Alzheimer’s and Frontotemporal Dementia Journal Club. 1 Hour.
Discussion of important current research on Alzheimers disease and frontotemporal dementia, with a focus on basic and translational science.

GBS 794. Lab Rotation 4. 1-9 Hour.
Rotation for students needing a fourth rotation.

GBS 795. Lab Rotation 1. 1-9 Hour.
First rotation for first year GBS Theme students.

GBS 796. Lab Rotation 2. 1-9 Hour.
Second rotation for first year GBS Theme students.

GBS 797. Lab Rotation 3. 1-9 Hour.
Third lab rotation for first year GBS theme students.

Lab hours for students in the GBS Theme who have not entered candidacy.

GBS 799. Dissertation Research. 1-12 Hour.
Lab hours for students in the GBS Theme who have entered candidacy. Prerequisites: GAC Z

GBSC-Grad Biomedical Sciences Courses

GBSC 700. Journal Clubs. 1 Hour.
Journal Clubs.

GBSC 701. Seminars. 1 Hour.
Seminars.

GBSC 703. Bioinformatics Courses. 1-6 Hour.
Various Bioinformatics courses.

GBSC 704. Practical Course in Cryo-Electron Microscopy. 2-3 Hours.
This is a two-week practical course in high resolution electron microscopy (EM) with emphasis on cryo-EM and the preparation and observation of frozen-hydrated particulate samples such as protein complexes, viruses and whole bacterial cells. The first week will cover some theoretical aspects and general EM theory in morning lectures, followed by practicals and demos in the afternoon. The second week will consist of independent, hands-on practical work on the Tecnai F20 cryo-electron microscope. Students have the opportunity to work on their own samples.

GBSC 705. Protein Mass Spectrometry. 3 Hours.
Advanced Course. Students participating in this course become familiar with standard analysis of proteins and protein mixtures by analytical mass spectrometry. This includes the analysis of recombinant and native isolations of proteins including the analysis of post translational modifications. The first month of the course will focus on the fundamentals of mass spectrometry and protein analysis and will be open to first year students. The second and third months of the course is followed by an applications section for students who have completed their first year course requirements. Included topics throughout the course include, sample preparation, mass spectrometry instrumentation, mass spectral interpretation, proteomic experimentation, database searching, analysis of protein modifications, targeted analysis of proteins in complex mixtures, and structural techniques in mass spectrometry.

GBSC 706. NMR Spectroscopy. 3 Hours.
Advanced Course. The main purpose of this course is to provide fundamental understanding (physics) to graduate students who want to utilize NMR spectroscopy as a major tool in their structural biology research. Students with elementary Quantum Mechanics background will gain the optimum benefit from this course. The course is offered every two years. This course covers basic NMR Theory and Concepts (Nuclear Spin-1/2, Bloch Equations, FT-NMR, Rotating Frame, Various Relaxation Mechanisms, Chemical shifts, J couplings, etc.), Density Matrix Theory, Product Operator Description of 2D- and 3D-NMR, Nuclear Overhauser Effect, Conformational Exchange, Solomon-McConnel equations, Residual Dipolar Couplings, NMR spectra of Amino acids, Peptides and Proteins, Solvent Suppression Methods, Random Coil Chemical shifts, 2D-NMR methods for assignments and structure calculations of peptides and small proteins, 3D/4D-NMR methods for assignment and structure studies of large proteins, CYANA Structure-Refinement calculations, NMR of nucleic acids, Protein Dynamics, and study of Protein-Ligand complexes including applications in drug design (STD-NMR, trNOESY, SAR-by-NMR and ILOE).

GBSC 707. Metabolic Regulation of Gene Expression. 3 Hours.
Advanced Course. This course will focus on the impact of various metabolites on gene expression, cell growth, and differentiation in health and disease. The key topics for discussion will include the types of biologically active molecules in mammalian tissues, the mechanisms that regulate their concentrations at different stages of life, and the mechanisms by which these bioactive molecules regulate gene transcription through binding to nuclear receptors/transcription factors. Primary literature applicable to these topics will be the basis for discussion. Each section on a specific type of signaling molecule will start with an introductory lecture, followed by student presentations focusing on various aspects of the topic. The goal of this course is to familiarize students with the mechanisms of action and diversity of bioactive metabolic compounds that directly affect the expression of proteins at the level of gene transcription as well as mRNA translation during development and in adulthood.
GBSC 709. Advanced Stem Cell Biology & Regenerative Medicine. 3 Hours.
Advanced Course. Patient-specific cell therapies promise to transform medicine in the next two decades. In order for these regenerative therapies to be safe and effective, basic mechanisms of stem cell biology must be better understood. The goal of this course is to provide students with the basic science foundation to contribute to this field and to provide examples of translating this information to next generation medical therapies.

GBSC 710. Advanced Chromatin Biology. 3 Hours.
Advanced Course. Chromatin biology may hold the keys for discovery of novel cures for cancer and other chronic genetic diseases. Chromatin state directly influences the development of regenerative medicine. Over the last few years, there has been an explosion of new insights into chromatin biology. This course will focus on four key topics: chromatin structure and gene regulation, chromatin in cancer biology, chromatin in developmental biology, and practical approaches in chromatin research. The format will be 1/3 lecture and 2/3 student presentations. Primary literature related to these topics will be assigned for discussion. The goal of this course is to help students to understand the cutting edge knowledge in chromatin biology and to be able to address questions on chromatin in their own research.

GBSC 712. Evolution of Immunity. 3 Hours.
Advanced Course. Every form of multicellular life on earth has the capacity to carry out host defense. In higher order vertebrates the necessity for immunity against pathogens has given rise to an elaborate and complex system that involves a variety of specialized cell types and effector molecules. How did this complex system evolve? This course will explore immunity across the animal kingdom with a special emphasis on points of convergent and divergent evolution of immune mechanisms and strategies.

GBSC 713. JC- Epigenetics. 1 Hour.
This course provides the student with an exposure to a wide range of basic epigenetics research topics and will promote scientific literacy, discussion skills, and critical thinking skills. In addition, students will gain experience developing lectures and providing constructive criticisms to their peers.

GBSC 714. Applications of Microscopy. 3 Hours.
Advanced Course. Light and fluorescence microscopy are widespread research tools, used in many biological disciplines. This course focuses on technique fundamentals as well as powerful applications in the study of cellular structures, dynamics, and functions. We will examine how different types of microscopy work, sample preparation, and how to select the best technique for your biological question. A microscopy image is much more than a pretty picture; we will cover image processing, quantitative analysis, presentation, and ethics concerning image manipulation. To further explore the theoretical and practical principles of imaging, students will participate in hands-on microscopy projects.

GBSC 715. Molecular Basis of Disease. 3 Hours.
Advanced Course. This course that explores the molecular and cellular mechanisms that underlie the causes, symptoms, and complications of various diseases, including diabetes, autoimmune diseases, atherosclerosis, and cancer. An integrative approach to the clinical, pathologic, biochemical, and molecular perspectives of diseases is introduced. This will help the students to understand how metabolic pathways, cell cycle regulation, signal transduction, transcription factors, and protein glycosylation impacts on our ability to understand and treat human disease.

GBSC 716. Special Topics. 1-9 Hour.
Various topics in Microbiology.

GBSC 717. Protein/DNA Xray Crystallography. 3 Hours.
Advanced Course. X-ray crystallography is an important technique to resolve protein/DNA structures and it requires specialized training. Covered in this will not only be the theoretical aspects, but there will also be hands-on training sessions on each topic. Some topics covered: protein crystalization, data collection and reduction, structure solution, refinement and how to report structures.

GBSC 718. Epigenetics. 2-3 Hours.
This course introduces the fundamentals of epigenetic controls and how epigenetic regulation is being investigated and utilized in basic and translational research. Specifically, students learn about mechanisms of gene expression or cellular phenotype caused by changes in gene expression or changes in the underlying DNA sequence. Students also gain an understanding of the differences between genetic and epigenetic influences on gene expression; epigenetic mechanisms that regulate gene expression; how epigenetic modifications are propagated; and the phenotypic consequences of normal versus abnormal epigenetic regulation in disease, development, and evolution.

GBSC 720. Journal Club 2. 1 Hour.
This will house various journal clubs, differentiated by Section numbers. To be considered like a Special Topics course.

GBSC 721. Brain Tumor Biology. 3 Hours.
Advanced Course. This course will review the types of adult and pediatric brain tumors with a focus on 3 major components: 1-cellular genetics and signaling, 2-pro-tumorigenic cellular biology, and 3-preclinical models and clinical treatments. At the end of the course, the student should have a thorough understanding of the changes in tumor vs. normal tissue that promote cancer initiation and growth. The student should understand how these changes provide the foundation for current and cutting edge treatment strategies. The focus will be on gliomas, but other tumors will be discussed.

GBSC 722. Special Topics. 1-9 Hour.
Courses offered for only 1 semester.

GBSC 723. Career Dev Courses. 1-9 Hour.
Various courses relating to Career Development.

GBSC 724. Metabolomics. 3 Hours.
Advanced Course. The goal of the course is to provide training on (1) the new vision of the chemical composition of the metabolome, (2) its impact on phenotypes in normal health and disease, (3) how to design experiments that (a) reduce systematic variation and (b) deal with the effects of the microbiome, (4) recovery of the metabolome from body fluids/excreta, cells and tissues, (5) analytical methods used in metabolomics, (6) post-acquisition data processing and univariate and multivariate statistical analysis, (7) metabolite confirmation, (8) unknown (new) metabolite identification, (9) pathway analysis, (10) targeted quantitative analysis of specific pathways, (11) use of stable-isotopically labeled precursors to measure pathway dynamics, (12) metabolomics in human and animal models of disease (atherosclerosis, cancer, diabetes, eye diseases, immune diseases and neurodegeneration), (13) metabolomics in situ (imaging mass spectrometry and direct analysis in the clinic and the operating room) and (14) integration of metabolomics with other Omics (genomics, transcriptomics and proteomics).
GBSC 725. Cancer & Micro Environment. 3 Hours.
Advanced Course. The growth and progression of cancer is closely regulated by the tumor microenvironment. Through this course students will gain a comprehensive understanding of the tumor microenvironment by studying topics that include, for example, the cellular and a cellular composition of the microenvironment, mechanisms of communication between tumor and host cells and how the tumor microenvironment promotes tumor growth, metastasis and drug resistance. Students will also learn the in vitro and in vivo models utilized for studying the tumor microenvironment and current approaches for targeting the tumor microenvironment for cancer therapy.

GBSC 726. Science Communication & Review. 2-3 Hours.
This course will familiarize students on four major components of science communication and review: 1) how to read and review scientific manuscripts, 2) how to review scientific proposals, 3) how to give effective poster presentations and elevator summaries, and 4) how to give an oral research presentation. The course will offer the opportunity for students to be fluent and effective communicators and scientific reviewers.

GBSC 727. Neuro Systems. 2-3 Hours.
Module Course. Systems neuroscience studies how neural circuits and systems work together to create behavior. This course is a short overview of systems neuroscience ideas and concepts, from alpha oscillations to zebra-finch song.

GBSC 728. Cancer Genomics, Epigenetics, & Therapeutics. 3 Hours.
Advanced Course. Recent advances in high throughput technologies have enabled researchers to decipher the genomic and epigenetic alterations in cancer in great detail. In this course “Cancer Genomics and Epigenetics”, students will learn the technologies used for investigating the genomic and epigenetic alterations in cancer and effect of these changes on cancer progression and potential application of understanding these changes. The goal of this course is to provide the students with an exposure to a wide range of high throughput technologies used in cancer genomic research, basic and translational genomic and epigenetics research. In addition, the course will highlight the major discoveries in the area of gene mutations and gene fusions as well as therapeutic targeting some of the critical molecular alteration. This course will give exposures to students to state of the art cancer research topics, promotes scientific literacy, discussion skills, and critical research integration skills. In addition, students will also gain experience in presentation and ideas to develop new projects in cancer genomics and epigenetics research areas.

GBSC 729. Cell Neurophysiology. 2-3 Hours.
Module Course. This course presents the fundamental principles of how nerve cells work. Starting with ion channels themselves, it integrates them into the functioning of individual neurons. The way in which voltage-dependent ion channels act in concert to generate action potentials and synaptic potentials is discussed in the framework of basic physical laws. The mechanisms of transmitter release and the postsynaptic actions of transmitter are studied. The overall aim is to provide students with a quantitative understanding of how individual nerve cells communicate with each other.

GBSC 730. Respiratory Tract Pathogens. 3 Hours.
Advanced Course. This course will examine major bacterial, viral, and fungal pathogens that infect the respiratory tract in humans, each using different mechanisms in attempts to evade host defenses. It will also introduce fundamental aspects of respiratory tract anatomy, lung function, and the clinical approach to patients suspected to have pneumonia. Classes will consist of an introduction to each topic provided by the faculty preceptor followed by a critical analysis of the primary literature in the form of presentations by individual students and in-class discussion.

GBSC 732. Advanced Study of Renal Physiology. 3 Hours.
Advanced Course. The objective of this course is to increase familiarity with classic renal physiology terminology, improve understanding of mechanisms for evaluating renal function, and to become familiar with the forefronts in research related to renal physiology and disease.

GBSC 733. Art of Reproducible Science. 2 Hours.
This course is open only to GBS students on a T32 grant. The goal of the Mastering the Art of Reproducible Science course is to advance the visibility and awareness of this critical issue and to equip students to better recognize and eliminate sources of irreproducible data. The course will explore the fundamental causes and consequence of data irreproducibility, discuss best-practice procedures to minimize data irreproducibility, and discuss the responsibility of the scientific community to confront the irreproducibility crisis. The course is structured around 4 month-long modules using a team-based learning strategy.

GBSC 735. Discoveries in Molecular Biology. 3 Hours.
Advanced Course. The aim of the course is to familiarize students with landmark, historical discoveries in biological research. The course will focus on seminal publications in different disciplines, predominantly but not limited to: biochemistry, cell biology and genetics. The course will be organized as student-led discussions of selected papers. In-depth analysis of the presented literature will facilitate gaining broadened knowledge of selected fields and improve capability of critically reading manuscripts. For each publication, special emphasis will be placed on examining the experimental design, interpretation of results, and organization and reporting of the findings. Classes will consist of an instructor-led introduction to the topic and presentation of a historical perspective followed by a group discussion of the paper. An important goal of the course is to help students understand and appreciate principal discoveries.

GBSC 736. Electron Microscopy: Methods & Applications to Cell and Structural Biology. 3 Hours.
Advanced Course. The purpose of this course is to provide an in-depth understanding of electron microscopy (EM) and 3D reconstruction, especially as applied to high-resolution cryo-EM and single-particle reconstruction methods. The course will cover both theoretical and practical aspects of EM, and will incorporate practical use and hands-on training in preparation and imaging on the FEI Tecnai F20 electron microscope and 3D reconstruction with EMAN and Relion.
GBSC 737. Independent Study. 1-3 Hour.
This course is offered to students for special circumstances. See course director for approval.

GBSC 738. HudsonAlpha Courses. 1-3 Hour.
This course is offered to students at HudsonAlpha. See course director for more information.

GBSC 739. Training Grant Course. 1-3 Hour.
This course is offered to students taking training grant initiated courses. See course director for more information.

GBSC 740. Advanced Topics in Bacterial Pathogenesis. 3 Hours.
The Advanced Topics in Bacterial Pathogenesis course provides a detailed examination of major concepts related to host-pathogen interactions. Its primary focus will be the molecular mechanisms responsible for subversion of host defense by pathogenic bacteria. Select topics will be covered in two parts on different dates: 1) a general presentation by expert faculty, 2) student presentations on assigned subtopics in form of a 10-15 minute PowerPoint presentation and handout.

GBSC 741. Fundamentals of Renal Physiology. 3 Hours.
This course objective is to provide detailed understanding of renal physiology through a series of lectures, histology analyses, small group discussion, workshop based study problems, and simulations.

GBSC 742. GBS Student Theme Meeting Course. 1 Hour.
This course will be utilized for GBS theme meeting courses.

GBSC 743. Glycosylation in Health and Disease. 3 Hours.
Glycobiology is the study of the structure, biosynthesis, and biology of glycans. Glycans modulate or mediate a wide variety of cellular functions. Glycoproteins and polysaccharides are also important components of bacterial cells and glycoproteins play important roles in biology of some viruses. The primary aim of this course is to provide a current overview of the fundamental facts, concepts, and methods in Glycobiology with emphasis on aspects relevant to human health and disease. The course will combine faculty lectures, student presentations of selected papers, and discussions. The course will be taught by faculty who have studied different aspects of glycobiology and made seminal discoveries in the field.

GBSC 744. Neuroanatomy. 2-3 Hours.
Module Course. The goal of this course is to familiarize students with the basics of neuroanatomy. The goals are: 1) Understand the anatomy of the cranial nerves, the visual system, the auditory system, the olfactory system, the limbic system, the cerebrovascular system, neural pathways responsible for movement and cognition. In addition: 2) Human nervous system anatomy will be compared to rodents and non-human primates and simpler models systems such as C. elegans and zebrafish. 3) Novel techniques such as optogenetics, functional MRI and MATLAB for data analyses to study brain neuroanatomy and connectivity will be discussed. 4) Sheep brains will be dissected. 5) Students will view human brain slicing.

GBSC 745. Biology of Respiratory Disease. 3 Hours.
Advanced Course. This course consists of a series of clinical, basic science and journal club formatted lectures designed to provide students with a broad and in-depth knowledge of disease states of the respiratory systems. Lecturers may integrate recent advances in their own laboratories into their lectures; others will use a more classical approach. Handouts and slide presentations will be provided.

GBSC 746. Gene Editing. 3 Hours.
Advanced Course. The purpose of this course is to explore the current research and future therapeutic applications of gene editing technologies, including ZFNs, TALENS, and CRISPR. The format of each class will be a combination of didactic lecture and interactive class discussion directed by the Course Director focused on each day’s topic. Reading materials covering each day’s preselected topics will be provided by the Course Director in advance of each class.

GBSC 747. Microbial Genetics and Pathogenesis. 2-3 Hours.
This course is designed to: familiarize students with advanced knowledge in bacterial genetics, mutant analysis, molecular biology techniques, recombinant, and regulation of gene expression; prepare them to be able to better evaluate the literature about microbial pathogenesis; and to help them better investigate microbial pathogenesis and infectious disease outcomes and treatments. In this course, we emphasize the training of critical thinking and foster the ability of students to design their own experiments to solve scientific problems in bacteriology. The goal of the course is to provide a strong foundation for advanced bacteriology and pathogenesis classes, and for doing research in any bacteriology lab.

GBSC 748. Cellular Metabolism in Health Disease. 3 Hours.
The main goal of this course is to help students to understand the major concepts of metabolism and its regulation under normal circumstances, as well as under certain pathological conditions such as obesity, diabetes, or cancer, for example. Course consists of four major blocks covering: metabolism of carbohydrates and its regulation; metabolism of lipids and its regulation; metabolism of proteins and its regulation; and metabolic interrelationships in health and disease. It involves lectures and in-class exercises. Grading is based on the results of in-class exercises and on the results of written exams.

PHR-Pharmacology Courses

PHR 611. Physiological Principles of Pharmacology & Toxicology. 3 Hours.
This course will provide a broad but rigorous overview of physiological principles of pharmacology & toxicology. The course includes five separate “modules”, each taught by faculty of UAB Dept. Pharmacology & Toxicology. Each module has separate review session(s) and exams. In addition, each module will have small group problem-based learning (PBL) sessions (see below). There will be one exam specific for each module. At the end of the course, students will be assigned a drug from a pre-assigned list and discuss its pharmacology and toxicology, in the form of a PPT presentation. Students will be graded for their performance on exams, completing PBL assessments, student presentation, and participation in live PBL sessions.

PHR 612. Systems Physiology and Pharmacology I. 3 Hours.
This course will introduce the student to the use, mechanism of action and physiological properties of major families of drugs that affect the cardiovascular system, autonomic nervous system (ANS) and central nervous system (CNS). Lectures will provide an overview of nervous system / cardiovascular physiology and pathophysiology that results from various diseases, disorders and injuries, the drugs used to treat these conditions and their mechanisms of action. Both classical drugs and newer classes of drugs will be discussed for both their therapeutic value and also their use in different research settings. This course will be taught using a combination of traditional didactic lectures and student participation through discussion of seminal research papers and presentations.
PHR 613. Systems Physiology and Pharmacology II. 3 Hours.
This course will introduce drug use, mechanism of action and physiological properties of major drug families, with a focus on specific organ systems (endocrine, gastrointestinal and renal systems). In addition, this course will also cover specific classes of drugs for cancer treatment specifically related to the organ systems covered in the course. This course is divided into three "modules". Each module has its own exam. In addition, there are graded student presentations at the end of the semester, topics of discussion to be determined.

PHR 614. Drug Discovery and Development. 3 Hours.
The course will provide an overview of the drug discovery and development process. Topics will include (among others): Target identification and validation, High-Throughput Screening, Hit discovery, Lead optimization, Preclinical testing, Safety requirements, Clinical trials, IND, NDA, Patents, and Federal regulations. The course will highlight multidisciplinary nature of drug discovery and the roles of biologists, medicinal chemists, pharmacologists, regulatory agencies, and investors in the process. Real-life case studies highlighting successful and unsuccessful drug development examples will be introduced for discussions, as well as some current examples of early stage biotech startups.

PHR 615. Pharmacokinetics and Biopharmaceutics. 3 Hours.
Pharmacokinetics is the study of the time-course of drugs in physiological systems. This includes the fate of administered drugs in relation to time starting with absorption, through distribution, and elimination. Pharmacokinetics is fundamental to the understanding of observed drug effects and responses. This course is divided into three sections that are assessed independently. The first section explores the mathematical principles of pharmacokinetics using the compartmental and noncompartmental models of analysis. The second section evaluates the roles of biopharmaceutical factors in the pharmacokinetics of drugs. The last section introduces the students to hands-on pharmacokinetics analysis and modeling using an industry-standard software package.

PHR 616. Cancer Physiology and Pharmacology. 3 Hours.
This course will introduce different types or classes of chemotherapeutic agents currently used in the clinic for the treatment of cancer. These include classic chemotherapeutic agents and newer targeted agents. Students will learn the latest cancer chemotherapy and treatment strategy. Students will also learn historical aspects of cancer treatment and of drug development for this disease. Team projects will prepare students to participate in literature reviews, presentation preparation and skills, and approaches to preparing for scientific discussions and Q&A sessions.

PHR 696. Special Topics. 1-3 Hour.
Special Topics in Pharmacology.

PHR 701. Adv Prin Pharm-Sys&Pharmacok 1. 3 Hours.
PHR 702. Adv Prin Pharm-Sys&Pharmacok 2. 3 Hours.
PHR 706. Special Topics in Pharmacology. 3 Hours.
PHR 715. Pharmacokinetics and Biopharmaceutics. 3 Hours.
Pharmacokinetics is the study of the time-course of drugs in physiological systems. This includes the fate of administered drugs in relation to time starting with absorption, through distribution, and elimination. Pharmacokinetics is fundamental to the understanding of observed drug effects and responses. This course is divided into three sections that are assessed independently. The first section explores the principles of pharmacokinetics using the compartmental and noncompartmental models of analysis. The second section evaluates the roles of biopharmaceutical factors in the pharmacokinetics of drugs. The last section introduces the students to hands-on pharmacokinetics analysis and modeling using an industry-standard software package.

PHR 720. Laboratory Rotation in Pharmacology. 1-12 Hour.
PHR 735. Nucleotide Metabolism and Chemotherapy. 3 Hours.
Principles, characteristics and therapeutics of nucleotide metabolism. This course is designed for second year and above graduate students.

PHR 744. Protein Mass Spectrometry. 3 Hours.
PHR 752. Pharmacokinetic Analysis. 1 Hour.
The course will provide a detailed introduction to the analysis of pharmacokinetic data preferably generated as part of the student's research. Descriptions of the use of appropriate analytical programs and the interpretation of pharmacokinetic data will be the major focus of this course.

PHR 754. Model Sys for Drug Discovery. 2 Hours.
This course will focus on the use of different genetically tractable model systems and their roles in drug discovery and drug development. The course will discuss the properties, benefits and deficiencies of major model systems used in drug discovery including yeast, zebrafish, xenographs, and genetically modified mouse strains.

PHR 755. Translational Pharmacology and Drug Development. 2 Hours.
Translational pharmacology covers the principles and practice of drug development from the laboratory (bench) to the patient (bedside). This course provides an overview of the processes involved in drug development. It familiarizes the student with the drug discovery and development process including types of clinical trials, regulatory requirements and results interpretations.

PHR 790. Pharmacology Journal Club. 1 Hour.
Pharmacology Journal Club.

PHR 798. Doctoral Level Non-Dissertation Research. 1-12 Hour.
PHR 799. Doctoral Level Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

Biochemistry & Structural Biology

Theme Information
Biochemistry & Structural Biology (BSB) is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

BSB provides training opportunities in a multitude of contemporary areas of basic and translational research. Our goal is to prepare our students for independent research careers in academic research institutions and
industry. Our students have access to a large pool of mentors from across UAB with expertise in varied research areas, specializing in:

- Understanding the chemistry of life (biochemistry),
- A mechanistic understanding of life at the molecular level (structural biology), and
- The study of self-renewal, differentiation, and regeneration of cells (stem cell biology).

Admissions

Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support

All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>GBS 795</td>
<td>Lab Rotation 1</td>
</tr>
<tr>
<td>GBS 796</td>
<td>Lab Rotation 2</td>
</tr>
<tr>
<td>GBS 797</td>
<td>Lab Rotation 3</td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701</td>
<td>Core Concepts in Research: Critical Thinking & Error Analysis</td>
</tr>
<tr>
<td>GBS 707</td>
<td>Basic Biochemistry and Metabolism</td>
</tr>
<tr>
<td>GBS 708</td>
<td>Basic Genetics and Molecular Biology</td>
</tr>
<tr>
<td>GBS 709</td>
<td>Basic Biological Organization</td>
</tr>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 795</td>
<td>GBS Student Theme Meeting Course 2</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRS 717</td>
<td>Principles of Scientific Integrity</td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Journal Clubs 5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Research 7</td>
<td></td>
</tr>
<tr>
<td>Total Hours 75</td>
<td></td>
</tr>
</tbody>
</table>

1 Four modular courses selected from the following: GBS 710, GBS 712, GBS 714, GBS 720, GBS 723, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 769, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBS 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747
2 Required each fall and spring semester, 2nd year until graduation
3 Course selected from the following: GBS 716, GBS 725, GBS 726, GRS 709
4 Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716
5 Required each fall and spring semester, 2nd year until graduation. Courses selected from the following: GBS 736, GBS 746J, GBS 747J, GBS 756, GBS 766, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
6 Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714 GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 726, GBSC 730, GBSC 732 GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, BME 723, BME 770, BME 772, BME 780, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797 or other approved course
7 Student must complete 24 hours total of dissertation research, GBS 799.

Theme Directors

The theme directors listing for Biochemistry and Structural Biology is located here.

Theme Faculty

The faculty listing for the Biochemistry and Structural Biology theme is located here.

For further information, please reference the GBS website.

Cancer Biology

Theme Information

Cancer Biology is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

The Cancer Biology Theme provides training opportunities in multiple and contemporary areas of cancer research. Outstanding basic and translational research faculty from various schools, departments, and centers participate in training the next generation of basic and translational cancer researchers.

Admissions

Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support

All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.
Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>GBS 795 Lab Rotation 1</td>
<td></td>
</tr>
<tr>
<td>GBS 796 Lab Rotation 2</td>
<td></td>
</tr>
<tr>
<td>GBS 797 Lab Rotation 3</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis</td>
<td></td>
</tr>
<tr>
<td>GBS 707 Basic Biochemistry and Metabolism</td>
<td></td>
</tr>
<tr>
<td>GBS 708 Basic Genetics and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>GBS 709 Basic Biological Organization</td>
<td></td>
</tr>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 710 Cell Signaling</td>
<td></td>
</tr>
<tr>
<td>GBS 769 Carcinogenesis</td>
<td></td>
</tr>
<tr>
<td>GBS 770 Pathobiology of Cancer</td>
<td></td>
</tr>
<tr>
<td>GBS 774 Cancer Immunology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 777 Cancer Biology Seminar</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>2</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>5</td>
</tr>
<tr>
<td>Research</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>75</td>
</tr>
</tbody>
</table>

1. Required each fall and spring semester, 2nd year until graduation
2. Course selected from the following: GBS 716, GBS 725, GBS 726, GRD 709
3. Course selected from the following:
 - GRD 770, BST 611, BST 612, BY 755, PY 716
4. Required each fall and spring semester, 2nd year until graduation. Courses selected from the following: GBS 736, GBS 746J, GBS 747J, GBS 756, GBS 766, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
5. Three advanced courses select from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.
6. Student must complete 24 hours total of dissertation research, GBS 799.

Theme Directors

The theme directors listing for Cancer Biology is located [here](#).

Theme Faculty

The faculty listing for the Cancer Biology theme is located [here](#).

Cell, Molecular and Developmental Biology

Theme Information

Cell, Molecular, and Developmental Biology (CMDB) is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

CMDB is designed to provide maximum flexibility that prepares students to launch into a career in the dynamic field of biomedical science. Our graduates have exciting careers in scientific research in both academic and industrial settings, scientific-related writing, business, law, forensics, administration, and education. Explore the many possible opportunities offered by CMDB at UAB and apply today!

Admissions

Prospective students should visit the [GBS Admissions page](#) for information on admissions requirements, application deadlines, and how to apply.

Financial Support

All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the [GBS Financial Support page](#) for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>GBS 795 Lab Rotation 1</td>
<td></td>
</tr>
<tr>
<td>GBS 796 Lab Rotation 2</td>
<td></td>
</tr>
<tr>
<td>GBS 797 Lab Rotation 3</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis</td>
<td></td>
</tr>
<tr>
<td>GBS 707 Basic Biochemistry and Metabolism</td>
<td></td>
</tr>
<tr>
<td>GBS 708 Basic Genetics and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>GBS 709 Basic Biological Organization</td>
<td></td>
</tr>
<tr>
<td>Module Courses 1</td>
<td>8</td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>9</td>
</tr>
<tr>
<td>GBS 717 Methods and Scientific Logic</td>
<td></td>
</tr>
<tr>
<td>GBS 792 CMDB Seminar 2</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>2</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>5</td>
</tr>
<tr>
<td>Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Curriculum

- **Lab Rotations**
 - GBS 795 Lab Rotation 1
 - GBS 796 Lab Rotation 2
 - GBS 797 Lab Rotation 3

- **Core Courses**
 - GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis
 - GBS 707 Basic Biochemistry and Metabolism
 - GBS 708 Basic Genetics and Molecular Biology
 - GBS 709 Basic Biological Organization

- **Module Courses**
 - GBS 710 Cell Signaling
 - GBS 769 Carcinogenesis
 - GBS 770 Pathobiology of Cancer
 - GBS 774 Cancer Immunology

- **Theme Required Courses**
 - GBS 777 Cancer Biology Seminar

- **GBS Required Courses**
 - GRD 717 Principles of Scientific Integrity
 - Grant-Writing/Scientific Communication
 - Biostatistics
 - Journal Clubs

- **Three Advanced Courses**
 - GBS 700
 - GBS 702
 - GBS 715
 - GBS 718
 - GBS 726
 - GBS 727
 - GBS 729
 - GBS 739
 - GBS 742
 - GBS 749
 - GBS 754
 - GBS 757
 - GBS 758
 - GBS 765
 - GBS 775
 - GBS 778
 - GBS 779
 - GBS 783
 - GBSC 705
 - GBSC 706
 - GBSC 707
 - GBSC 709
 - GBSC 710
 - GBSC 712
 - GBSC 714
 - GBSC 715
 - GBSC 717
 - GBSC 721
 - GBSC 724
 - GBSC 725
 - GBSC 728
 - GBSC 730
 - GBSC 732
 - GBSC 734
 - GBSC 735
 - GBSC 736
 - GBSC 740
 - GBSC 741
 - GBSC 743
 - GBSC 745
 - GBSC 746
 - GBSC 748
 - INFO 701
 - INFO 702
 - INFO 703
 - INFO 704
 - INFO 751
 - INFO 762
 - INFO 796
 - INFO 797
 - BME 723
 - BME 770
 - BME 772
 - BME 780
 - Other approved course.

- **Total Hours**: 75

Theme Faculty

The faculty listing for the Cancer Biology theme is located [here](#).

For further information, please reference the [GBS website](#).

Cell, Molecular and Developmental Biology

Theme Information

Cell, Molecular, and Developmental Biology (CMDB) is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

CMDB is designed to provide maximum flexibility that prepares students to launch into a career in the dynamic field of biomedical science. Our graduates have exciting careers in scientific research in both academic and industrial settings, scientific-related writing, business, law, forensics, administration, and education. Explore the many possible opportunities offered by CMDB at UAB and apply today!

Admissions

Prospective students should visit the [GBS Admissions page](#) for information on admissions requirements, application deadlines, and how to apply.

Financial Support

All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the [GBS Financial Support page](#) for further information.
of those in academic research institutions and industry. To support this broad subject, the academic departments at UAB offer a large pool of mentors with expertise in varied research areas. The research interests of our mentors and students span the fields of genetics, genomics, bioinformatics, cancer biology, biochemistry, cell biology, developmental biology, immunology, and neuroscience. In addition, we teamed up with the UAB Informatics Institute and HudsonAlpha Institute for Biotechnology to accommodate training in their specific areas.

Admissions
Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support
All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>Lab Rotation 1</td>
<td>GBS 795</td>
</tr>
<tr>
<td>Lab Rotation 2</td>
<td>GBS 796</td>
</tr>
<tr>
<td>Lab Rotation 3</td>
<td>GBS 797</td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701</td>
<td>Core Concepts in Research: Critical Thinking & Error Analysis</td>
</tr>
<tr>
<td>GBS 707</td>
<td>Basic Biochemistry and Metabolism</td>
</tr>
<tr>
<td>GBS 708</td>
<td>Basic Genetics and Molecular Biology</td>
</tr>
<tr>
<td>GBS 709</td>
<td>Basic Biological Organization</td>
</tr>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>9</td>
</tr>
<tr>
<td>GBSC 742</td>
<td>GBS Student Theme Meeting Course</td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRD 717</td>
<td>Principles of Scientific Integrity</td>
</tr>
<tr>
<td>Grant-Writing-Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>4</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>5</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>Research</td>
<td>7</td>
</tr>
<tr>
<td>Total Hours</td>
<td>76</td>
</tr>
</tbody>
</table>

1 Four modular courses selected from the following: GBS 710, GBS 712, GBS 714, GBS 720, GBS 722, GBS 722, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 769, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBSC 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747
2 Required each fall and spring semester, 2nd year until graduation.
3 Course selected from the following: GBS 716, GBS 725, GBSC 726, GRD 709
4 Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716
5 Required each fall and spring semester, 2nd year until graduation.

Theme Directors
The theme directors listing for Cell, Molecular, and Developmental Biology is located here.

Theme Faculty
The faculty listing for the Cell, Molecular, and Developmental Biology theme is located here.

For further information, please reference the GBS website.

Genetics, Genomics & Bioinformatics

Theme Information
Genetics, Genomics, & Bioinformatics (GBG) is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

The GGB theme provides flexible, didactic, and integrated training opportunities across the broad disciplines of genetics, genomics, and bioinformatics. Our goal is to prepare students for independent research careers in experimental and computational disciplines, or the combination...
Admissions
Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support
All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>GBS 795 Lab Rotation 1</td>
<td></td>
</tr>
<tr>
<td>GBS 796 Lab Rotation 2</td>
<td></td>
</tr>
<tr>
<td>GBS 797 Lab Rotation 3</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis</td>
<td></td>
</tr>
<tr>
<td>GBS 707 Basic Biochemistry and Metabolism</td>
<td></td>
</tr>
<tr>
<td>GBS 708 Basic Genetics and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>GBS 709 Basic Biological Organization</td>
<td></td>
</tr>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 740A Introduction to Immunology Part 1</td>
<td></td>
</tr>
<tr>
<td>GBS 740B Introduction to Immunology Part 2</td>
<td></td>
</tr>
<tr>
<td>GBS 741 Lymphocyte Biology</td>
<td></td>
</tr>
<tr>
<td>GBS 744 Mucosal Immunology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course 1</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication 2</td>
<td></td>
</tr>
<tr>
<td>Biostatistics 3</td>
<td></td>
</tr>
<tr>
<td>Journal Clubs 4</td>
<td></td>
</tr>
<tr>
<td>Three Advanced Courses 5</td>
<td></td>
</tr>
<tr>
<td>Research 1</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>75</td>
</tr>
</tbody>
</table>

1 Required fall and spring semester, 2nd year until graduation.
2 Course selected from the following: GBS 716, GBS 725, GBSC 726, GRD 709
3 Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716
4 Required each fall and spring, 2nd year until graduation. Courses selected from the following: GBS 736, GBS 746J, GBS 747J, GBS 756, GBS 766, GBS 767, GBS 786J, GBSC 703, GBSC 704, GBSC 713, GBSC 720, INFO 673, INFO 793
5 Three advanced courses selected from the following:
 GBS 700, GBS 702, GBS 715, GBS 716, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780 or approved course.

Immunology

Theme Information

Immunology is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

From the outset, UAB has been recognized as a leading academic research institution in the country and one of the world’s premier centers for immunology research. Over 90 UAB faculty are actively engaged in immunological research, including:

- Studies to understand the basic function of the immune system and the underlying pathophysiological processes that contribute to a range of immune-mediated diseases,
- Translational studies that are focused on the development of vaccines and immunotherapeutics, and
- Clinical studies that test novel therapies designed to mitigate immune-mediated diseases.

Immunology plays such an important role in the ongoing research endeavor at UAB that Inflammation, Infection, and Immunity (I3) was recently named as one of the five pillars of emphasis in the strategic plan for the UAB School of Medicine.
INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or approved course.

Student must complete 24 hours total of dissertation research, GBS 799.

Theme Directors
The theme directors listing for Immunology is located here.

Theme Faculty
The faculty listing for the Immunology theme is located here.

For further information, please reference the GBS website.

Microbiology

Theme Information
Microbiology is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

The Microbiology Theme emphasizes the study of bacteria, viruses, fungi, and parasites. Over 60 faculty members from the Departments of Microbiology, Cell Biology, Biochemistry and Molecular Genetics, Genetics, Pathology, Medicine, Pediatrics, and Dentistry are involved in internationally renowned research and the training of PhD students. UAB has rapidly become a major center for biomedical research and ranks among the most prestigious research institutions in the world.

Admissions
Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support
All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td></td>
</tr>
<tr>
<td>GBS 795</td>
<td>Lab Rotation 1</td>
</tr>
<tr>
<td>GBS 796</td>
<td>Lab Rotation 2</td>
</tr>
<tr>
<td>GBS 797</td>
<td>Lab Rotation 3</td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>GBS 701</td>
<td>Core Concepts in Research: Critical Thinking & Error Analysis</td>
</tr>
<tr>
<td>GBS 707</td>
<td>Basic Biochemistry and Metabolism</td>
</tr>
<tr>
<td>GBS 708</td>
<td>Basic Genetics and Molecular Biology</td>
</tr>
<tr>
<td>GBS 709</td>
<td>Basic Biological Organization</td>
</tr>
</tbody>
</table>

GBS 760 Bacterial Genetics and Physiology
GBS 762 Virology
GBS 764 Introduction to Structural Biology Methods
GBS 763 Microbial Pathogenesis

Theme Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS 768</td>
<td>2</td>
</tr>
<tr>
<td>GBS 770</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Required fall and spring semester, 2nd year until graduation.
2. Course selected from the following: GBS 716, GBS 725, GBS 768, GBS 726, GRD 709
3. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716
4. Required each fall and spring, 2nd year until graduation. Courses selected from the following: GBS 736, GBS 746J, GBS 747J, GBS 756, GBS 766, GBS 776, GBS 786J, GBS 793, GBS 713, GBS 720, INFO 673, INFO 793
5. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 783, GBS 705, GBS 706, GBS 707, GBS 709, GBS 710, GBS 710, GBS 712, GBS 714, GBS 715, GBS 717, GBS 721, GBS 724, GBS 725, GBS 728, GBS 730, GBS 732, GBS 734, GBS 735, GBS 736, GBS 740, GBS 741, GBS 742, GBS 745, GBS 746, GBS 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 797, INFO 796, BME 723, BME 770, BME 773, BME 780, or other approved course.

6. Student must complete 24 hours total of dissertation research, GBS 799.

Theme Directors
The theme directors listing for Microbiology is located here.

Theme Faculty
The faculty listing for the Microbiology theme is located here.

For further information, please reference the GBS website.

Neuroscience

Theme Information
Neuroscience is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.
The Neuroscience Theme provides training opportunities in multiple and contemporary areas of neuroscience research — from fundamental discovery science at the molecular, cellular, systems, and behavioral levels, to translational studies in cellular and animal models of diseases of the nervous system. Outstanding research faculty from various schools, departments, and centers participate in training the next generation of neuroscientists. The Neuroscience Theme seeks to equip and train students to become tomorrow’s innovative neuroscientists by:

- Teaching fundamental neuroscience concepts that are the stepping-stones needed for a deeper understanding of nervous system function.
- Providing unique professional and scientific avenues through which they can develop their presentation skills and learn critical thinking and experimental design.
- Offering the opportunity to choose neuroscience research from multiple options available through laboratories across the UAB campus — not limiting students to a department but, rather, a discipline.
- Providing opportunities for informal interactions with other students to discuss research, scientific writing, and life outside and beyond graduate school.

Admissions
Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support
All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>GBS 795 Lab Rotation 1</td>
<td></td>
</tr>
<tr>
<td>GBS 796 Lab Rotation 2</td>
<td></td>
</tr>
<tr>
<td>GBS 797 Lab Rotation 3</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis</td>
<td></td>
</tr>
<tr>
<td>GBS 707 Basic Biochemistry and Metabolism</td>
<td></td>
</tr>
<tr>
<td>GBS 708 Basic Genetics and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>GBS 709 Basic Biological Organization</td>
<td></td>
</tr>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBSC 744 Neuroanatomy</td>
<td></td>
</tr>
<tr>
<td>GBSC 729 Cell Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>GBS 714 Developmental Neuroscience</td>
<td></td>
</tr>
<tr>
<td>GBSC 727 Neuro Systems</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>18</td>
</tr>
<tr>
<td>GBS 730 Introduction to Neurobiology (Dauphin Island Course)</td>
<td>1</td>
</tr>
<tr>
<td>GBS 737 Neuro Student Summer Seminar Series</td>
<td>2</td>
</tr>
<tr>
<td>NBL 703 Nuerobiology Seminar Series</td>
<td>3</td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>4</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>5</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>6</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>7</td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
<tr>
<td>Total Hours</td>
<td>85</td>
</tr>
</tbody>
</table>

1. Dauphin Island course - required summer before the 1st year
2. Required each summer semester
3. Required fall and spring semester, 2nd year until graduation.
4. Course selected from the following: GBS 716, GBS 725, GBSC 726, GRD 709
5. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716
6. Required each fall and spring semester, 2nd year until graduation.
 Courses selected from the following: GBS 736, GBS 746J, GBS 747J, GBS 756, GBS 766, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
7. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 740, GBSC 741, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.
8. Student must complete 24 hours total of dissertation research, GBS 799.

Theme Directors
The theme directors listing for Neuroscience is located here.

Theme Faculty
The faculty listing for the Neuroscience theme is located here.

For further information, please reference the GBS website.

Pathobiology, Pharmacology & Physiology

Theme Information
Pathobiology, Pharmacology, & Physiology (P³) is one of eight interdisciplinary PhD themes within Graduate Biomedical Sciences (GBS). Students select a theme upon application but have access to faculty and courses from across GBS, allowing for flexibility in both research and academics.

P³ provides our graduate students the broadest training within the emerging and exciting field of molecular medicine. We have a flexible, didactic, integrated educational program directed by faculty with diverse research interests ranging from molecules to whole organisms and disease processes to new therapies.
Admissions
Prospective students should visit the GBS Admissions page for information on admissions requirements, application deadlines, and how to apply.

Financial Support
All students accepted into GBS programs receive a competitive annual stipend and fully paid tuition and fees. Single coverage health insurance is also provided at no cost to the student. Please reference the GBS Financial Support page for further information.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Rotations</td>
<td>3</td>
</tr>
<tr>
<td>GBS 795 Lab Rotation 1</td>
<td></td>
</tr>
<tr>
<td>GBS 796 Lab Rotation 2</td>
<td></td>
</tr>
<tr>
<td>GBS 797 Lab Rotation 3</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis</td>
<td></td>
</tr>
<tr>
<td>GBS 707 Basic Biochemistry and Metabolism</td>
<td></td>
</tr>
<tr>
<td>GBS 708 Basic Genetics and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>GBS 709 Basic Biological Organization</td>
<td></td>
</tr>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 750 Intro to Physiology</td>
<td></td>
</tr>
<tr>
<td>GBS 751 Intro to Physiology II</td>
<td></td>
</tr>
<tr>
<td>GBS 752 Intro to Pathobiology</td>
<td></td>
</tr>
<tr>
<td>GBS 753 Intro to Pharmacology & Toxicology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>49</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific-Writing</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>5</td>
</tr>
<tr>
<td>Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours 75

1 Required each fall and spring semester, 2nd year until graduation.
2 Course selected from the following: GBS 716, GBS 725, GBSC 726, GRD 709
3 Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716
4 Required each fall and spring semester, 2nd year until graduation.

5 Courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 705, INFO 706, INFO 707, INFO 709, BME 723, BME 770, BME 772, BME 780, or other approved course.
6 Student must complete 24 hours total of dissertation research, GBS 799.

Theme Directors
The theme directors listing for Pathobiology, Pharmacology, & Physiology is located here.

Theme Faculty
The faculty listing for the Pathobiology, Pharmacology, & Physiology theme is located here.

For further information, please reference the GBS website.

Multidisciplinary Biomedical Science

The MS Program in Multidisciplinary Biomedical Science (MBS) is intended for both domestic and international students who have some undergraduate STEM background and who wish to expand their foundation of knowledge in the biomedical sciences. MBS offers a 45 hour, research-intensive thesis option (Plan I), and a 30 hour non-thesis option (Plan II).

Why MBS?
If you are on the pre-health track (e.g., pre-med; pre-dental; pre-PA; pre-pharmacy), you are interested in careers in research science, science education, or you are considering alternative careers (e.g., scientific policy, science communication, biomedical sales), MBS may be the right Program for you.

Admission Requirements:

Direct-admittance to MBS requires a 3.0 minimum overall GPA and successful completion of the following pre-requisites: Introductory Biology (BY 123-124 if from UAB or equivalent) and Organic Chemistry (CH 235-238 if from UAB or equivalent). Your pre-requisite GPA and your Biology-Chemistry-Physics-Math (or BCPM) GPAs will also be considered in our administrative review of your application. The GRE is not required. For international applicants, the minimum TOEFL and IELTS scores required for direct entry are 80 and 6.5, respectively.

Students are required to submit their transcripts, a personal statement, and three letters of recommendation. Once these materials are received and the application fee is processed, applications will be reviewed.

Accelerated Learning Opportunities

MBS via the Accelerated Bachelors/Masters (ABM) Program

Multidisciplinary Biomedical Sciences offers an Accelerated Bachelors/Masters (ABM) (p. 10) option for high-achieving undergraduates. Distinct advantages of MBS-ABM include the use of up to 12 hours of shared
credit that is applied to both your BS and MS degrees, taking graduate courses at the undergraduate tuition rate, and additional opportunities for academic advising and mentoring. The vast majority of MBS-ABM students are able to graduate with both their BS and MS degrees in 4 years, thus potentially making you more competitive for the next phase of your career trajectory. To be eligible for ABM, students must have met the following requirements prior to matriculating:

- Junior status (60 credit hours, 36 of these hours at UAB)
- Minimum 3.5 undergraduate GPA
- Completed the following pre-requisite courses: BY 123, BY 124, CH 235, CH 236, CH 237 and CH 238

MBS via Early Acceptance

The UAB Early Acceptance (EA) Program is designed for academically superior high-school students, allowing them to be admitted to MBS at the same time they are admitted to an undergraduate program. EA students may also utilize the ABM Program as a mechanism for admission to MBS.

Deadlines for all Applicants:

- Fall: August 1
- Spring: December 1
- Summer: April 15

For More Information:

Please contact Ms. Jessamine Huffman (Program manager; msmb@uab.edu) or Dr. John Shacka (Program Director; shacka@uab.edu), or visit our website: https://www.uab.edu/graduate/programs/msmb

M.S. in Multidisciplinary Biomedical Science

The MS in Multidisciplinary Biomedical Science (MBS) is intended as a terminal degree for students desiring many different career paths, including but not limited to: research (laboratory jobs in academia or industry), further graduate study (e.g. PhD), professional school (e.g., medical or dental), science education, scientific policy, science communication, or biomedical sales.

Thesis (Plan I)

The Plan I MS in MBS thesis degree at UAB can be completed over the course of five-six semesters if full-time, including at least one summer semester. Plan I students will complete a rigorous mentored research project in addition to a curriculum of required core and elective classes related to the biomedical sciences.

Successful completion of the Plan I MS in MBS degree requires passing 45 credit hours (30 hours = coursework; 15 hours = supervised research) and maintaining a minimum 3.0 GPA.

Coursework

Plan I students must complete the following required classes:

1) core science (MBS 601 (4 hours), MBS 602 (4 hours), MBS 603 (4 hours), 12 hours total)
2) critical thinking (GRD 617, 3 hours)
3) biostatistics (BST 603, 3 hours) or equivalent with permission
4) three semesters of colloquium (MBS 697 (1 hour), 3 hours total)
5) three-four semesters of non-thesis research (MBS 698 (3 hours), 9-12 hours total)
6) one-two semesters of thesis research (MBS 699, 3-6 hours total)
7) electives (9 hours total).

Students have the option of earning a concentration by completing their elective credit hours in a single subject area. Students must obtain a minimum C final grade in all required (non-elective) classes in order to graduate.

Research

Plan I students must complete five separate semesters of research, including three-four semesters of MBS 698 (non-thesis research) and one-two semesters of MBS 699 (thesis research, at least one semester is required). When registered for MBS 698 or MBS 699, students are expected to work on average a minimum of 15 hours/week on their research projects. Students are expected to have chosen a faculty thesis adviser early in the first semester they are registered for MBS 698. Plan I students will form a committee of three faculty that is chaired by their thesis adviser and are required to hold a minimum of three committee meetings (1: introductory; 2: qualifying exam; 3: thesis defense; additional meetings may be needed depending on student progress). The thesis project must be approved by the student's committee. For the qualifying exam, Plan I students are expected to prepare a seven page "NIH-style" grant proposal (not including references) that is adjusted to the scope of their research project, and vet their proposals in front of their committee. Following qualification for thesis candidacy, Plan I students are required to complete a thesis document of their research findings and defend it publicly as a presentation to their committee and others (e.g., students, lab members, family members), which is followed immediately by a private defense with their committee. Plan I students work on their research projects for five semesters, typically semesters 2-6 while in the Program. Before students begin their research they must complete all lab-specific safety training. Students must also complete Responsible Conduct of Research (RCR) training for MS students before the end of their first semester registered for MBS 698.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required MBS Coursework</td>
<td></td>
</tr>
<tr>
<td>MBS 601 Molecular and Cell Biology</td>
<td></td>
</tr>
<tr>
<td>MBS 603 General Human Physiology</td>
<td></td>
</tr>
<tr>
<td>MBS 602 Biochemistry and Cell Biology</td>
<td></td>
</tr>
<tr>
<td>MBS 697 Colloquium for MBS Plan I Thesis Students (Must be repeated twice for a total of 3 Credit Hours)</td>
<td></td>
</tr>
<tr>
<td>GRD 617 Critical Thinking and Scientific Integrity for Masters Students</td>
<td></td>
</tr>
<tr>
<td>BST 603 Introductory Biostatistics for Graduate Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Research 2</td>
<td>15</td>
</tr>
<tr>
<td>MBS 698 Non-Thesis Research</td>
<td></td>
</tr>
<tr>
<td>MBS 699 Thesis Research</td>
<td></td>
</tr>
</tbody>
</table>
Non-Thesis (Plan II) for Traditional MS Students

The Plan II MSBS non-thesis degree at UAB can be completed over the course of three semesters if full-time, including one summer semester. Plan II students will complete a rigorous curriculum of required core and elective classes related to the biomedical sciences.

Successful completion of the Plan II MSBS degree requires passing 30 credit hours of coursework and maintaining a minimum 3.0 GPA.

Coursework

Plan II students must complete the following required classes:

1) Core Science (MBS 601 (4 hours), MBS 602 (4 hours), MBS 603 (4 hours), 12 hours total)

<table>
<thead>
<tr>
<th>Electives 3, 4</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>45</td>
</tr>
</tbody>
</table>

1 In place of BST 603, students may take one of the following statistics courses, with permission of the Course Director and MBS Program Director: BST 601, BST 611.

2 Students may enroll in MBS 698 for 3-4 semesters, and MBS 699 for 1-2 semesters (but a minimum of 1 semester). Total credit hours for MBS 698 and MBS 699 must equal a minimum of 15 hours. Students may take one extra semester of MBS 698 or MBS 699 in lieu of one 3 hour elective course, for a total of 18 research hours.

3 Students may select from the following electives: BY 501, BY 511, BY 512, BY 515, BY 527, BY 530, BY 531, BY 614, BY 620, BY 626, BY 629, BY 633, BY 634, BY 636, BY 637, BY 640, BY 644, BY 662, BY 674, BY 675, BY 696, BY 697, CNBY 610, CNBY 620, CNBY 630, CNBY 640, CNBY 660, CNBY 670, EPI 600, GGSC 610, GGSC 615, GGSC 620, GGSC 635, GGSC 665, GGSC 670, GGSC 690, GGSC 691, GRD 701, GRD 703, GRD 705, GRD 707, GRD 722, GRD 727, GRD 735, INFO 601, INFO 602, INFO 603, INFO 604, INFO 610, INFO 625, LEAD 500, LEAD 501, LEAD 502, LEAD 503, LEAD 505, LEAD 506, LEAD 520, LEAD 521, LEAD 522, LEAD 523, LEAD 524, LEAD 525, LEAD 540, LEAD 542, LEAD 543, LEAD 544, LEAD 560, LEAD 570, LEAD 590, MBS 696, MIC 600, MIC 603, MIC 660, MIC 661, MIC 665, NBL 620, NBL 625, NBL 633, NBL 634, NBL 644, NBL 655, NBL 656, PHR 611, PHR 612, PHR 613, PHR 614, PY 620, PY 653, PY 683, PY 687, PY 693.

For other elective options please discuss first with the MBS Program Director before registering.

4 Students may use 9 elective hours in one of the following themes to pursue a specialized concentration:

- **Bioinformatics**: INFO 601, INFO 602, INFO 603, INFO 604, INFO 610, INFO 625
- **Cancer Biology**: CNBY 610, CNBY 620, CNBY 630, CNBY 640, CNBY 660, CNBY 670
- **Genetic and Genomic Sciences (GGSC)**: GGSC 610, GGSC 615, GGSC 620, GGSC 635, GGSC 665, GGSC 670, GGSC 690, GGSC 691, BY 531, BY 634, BY 637
- **Immunology**: MIC 600, MIC 603, MIC 660, MIC 661, MIC 665
- **Neuroscience**: NBL 620, NBL 625, NBL 633, NBL 634, NBL 644, NBL 655, NBL 656, NBL 656, PY 620, PY 653, PY 683, PY 687, PY 693
- **Pharmacology**: PHR 611, PHR 612, PHR 613, PHR 614, GGSC 670

2) Critical Thinking (GRD 617, 3 hours)

3) Biostatistics (BST 603, 3 hours) or equivalent with permission

4) Non-Thesis Colloquium (MBS 695, 1 hour)

5) Biotechnology skills lab (BT 650, 2 hour, OR BT 651, 2 hour)

6) Electives (9 hours total). Students have the option of earning a concentration by completing their elective credit hours in a single subject area.

Students must obtain a minimum C final grade in all required (non-elective) classes in order to graduate.

Requirements

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBS 601</td>
<td>Molecular and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>MBS 602</td>
<td>Biochemistry and Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>MBS 603</td>
<td>General Human Physiology</td>
<td>4</td>
</tr>
<tr>
<td>MBS 695</td>
<td>Professional Development Colloquium for Non-Thesis Students</td>
<td>1</td>
</tr>
<tr>
<td>BT 650</td>
<td>Applications in Biotechnology</td>
<td>2</td>
</tr>
<tr>
<td>GRD 617</td>
<td>Critical Thinking and Scientific Integrity for Masters Students</td>
<td>3</td>
</tr>
<tr>
<td>BST 603</td>
<td>Introductory Biostatistics for Graduate Biomedical Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives 3, 4, 5

<table>
<thead>
<tr>
<th>Electives 3, 4, 5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

1 Students may substitute BT 651 (spring semester) for BT 650 (fall semester).

2 In place of BST 603, students may take one of the following statistics courses, with permission of the Course Director and MBS Program Director: BST 601, BST 611.

3 Students may select from the following electives: BY 501, BY 511, BY 512, BY 515, BY 527, BY 530, BY 531, BY 614, BY 620, BY 626, BY 629, BY 633, BY 634, BY 636, BY 637, BY 640, BY 644, BY 662, BY 674, BY 675, BY 696, BY 697, CNBY 610, CNBY 620, CNBY 630, CNBY 640, CNBY 660, CNBY 670, EPI 600, GGSC 610, GGSC 615, GGSC 620, GGSC 635, GGSC 665, GGSC 670, GGSC 690, GGSC 691, GRD 701, GRD 703, GRD 705, GRD 707, GRD 708, GRD 713, GRD 722, GRD 727, GRD 735, INFO 601, INFO 602, INFO 603, INFO 604, INFO 610, INFO 625, LEAD 500, LEAD 501, LEAD 502, LEAD 503, LEAD 505, LEAD 506, LEAD 520, LEAD 521, LEAD 522, LEAD 523, LEAD 524, LEAD 525, LEAD 540, LEAD 542, LEAD 543, LEAD 544, LEAD 560, LEAD 570, LEAD 590, MBS 696, MIC 600, MIC 603, MIC 660, MIC 661, MIC 665, NBL 620, NBL 625, NBL 633, NBL 634, NBL 644, NBL 655, NBL 656, PHR 611, PHR 612, PHR 613, PHR 614, PY 620, PY 653, PY 683, PY 687, PY 693.

For other elective options please discuss with the MBS Program Director.

4 Students may use 9 elective hours in one of the following themes to pursue a specialized concentration:

- **Bioinformatics**: INFO 601, INFO 602, INFO 603, INFO 604, INFO 610, INFO 625
- **Cancer Biology**: CNBY 610, CNBY 620, CNBY 630, CNBY 640, CNBY 660, CNBY 670
- **Genetic and Genomic Sciences (GGSC)**: GGSC 610, GGSC 615, GGSC 620, GGSC 635, GGSC 665, GGSC 670, GGSC 690, GGSC 691, BY 531, BY 634, BY 637
- **Immunology**: MIC 600, MIC 603, MIC 660, MIC 661, MIC 665
- **Neuroscience**: NBL 620, NBL 625, NBL 633, NBL 634, NBL 644, NBL 655, NBL 656, PY 620, PY 653, PY 683, PY 687, PY 693
- **Pharmacology**: PHR 611, PHR 612, PHR 613, PHR 614, GGSC 670

2) Critical Thinking (GRD 617, 3 hours)

3) Biostatistics (BST 603, 3 hours) or equivalent with permission

4) Non-Thesis Colloquium (MBS 695, 1 hour)

5) Biotechnology skills lab (BT 650, 2 hour, OR BT 651, 2 hour)
5 As the majority of ABM students entering our program already perform undergraduate research, and also have required colloquium courses with similar content for their majors, we do not require them to take BT 650/ BT 651 or MBS 695. These three hours may be used for elective coursework to complete requirements for their MS degree."

Non-Thesis (Plan II) for Accelerated Bachelor’s/Master’s (ABM) Program Students

Undergraduates at UAB who meet qualifications for admission to the Accelerated Bachelor’s/Master’s (ABM) program, and/or who also received an early acceptance (EA) option for a MS program at UAB, may choose to complete the Plan II MS non-thesis degree in MBS. Plan II students will complete a rigorous curriculum of required core and elective classes related to the biomedical sciences. Up to 12 of these elective credit hours may be used as shared credit towards both their B.S. and M.S. degrees. Successful completion of the Plan II MSBMS degree requires passing 30 credit hours of coursework and maintaining a minimum 3.0 GPA.

Coursework

Plan II students must complete the following required classes: 1) core science (MBS 601 (4 hours), MBS 602 (4 hours), MBS 603 (4 hours), 12 hours total); 2) critical thinking (GRD 617, 3 hours); 3) biostatistics (BST 603, 3 hours) or equivalent with permission; and 4) electives (12 hours total). Students have the option of earning a concentration by completing three elective courses (minimum 9 hours) in a single subject area. Students must obtain a minimum C final grade in all required (non-elective) classes in order to graduate.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBS 601</td>
<td>4</td>
</tr>
<tr>
<td>MBS 602</td>
<td>4</td>
</tr>
<tr>
<td>MBS 603</td>
<td>4</td>
</tr>
<tr>
<td>GRD 617</td>
<td>3</td>
</tr>
<tr>
<td>BST 603</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

1 Students may use 9 elective hours in one of the following themes to pursue a specialized concentration:

- **Bioinformatics:** INFO 601, INFO 602, INFO 603, INFO 604, INFO 610, INFO 625
- **Cancer Biology (CNBY):** CNBY 610, CNBY 620, CNBY 630, CNBY 640, CNBY 660, CNBY 670
- **Genetic and Genomic Sciences (GGSC):** GGSC 610, GGSC 615, GGSC 620, GGSC 635, GGSC 665, GGSC 670, GGSC 690
- **Immunology:** MIC 600, MIC 601, MIC 602, MIC 603, MIC 604
- **Neuroscience:** NBL 620, NBL 625, NBL 633, NBL 634, NBL 644, NBL 655, NBL 656, PY 620, PY 653, PY 683, PY 687, PY 693
- **Pharmacology:** PHR 611, PHR 612, PHR 613, PHR 614, PHR 614, GGSC 620

- **MBS 601. Molecular and Cell Biology. 4 Hours.**
 This course will provide a broad but rigorous overview of molecular biology. Cell structure between prokaryotes and eukaryotes will be compared and contrasted. DNA structure/organization will be discussed with respect to replication and repair mechanisms. Mendelian, non-Mendelian and chromosomal bases of genetics will also be discussed.

- **MBS 602. Biochemistry and Cell Biology. 4 Hours.**
 This course will cover the structure, function and metabolism of biological macromolecules including proteins, carbohydrates, lipids and nucleotides. A rigorous overview of pathways will be discussed that are important for the effective metabolism of macromolecules (e.g. glycolysis, citric acid cycle) and generation of energy for cells. The last part of this course will discuss membrane structure and function, and will provide an overview of eukaryotic cell signaling.

- **MBS 603. General Human Physiology. 4 Hours.**
 This course begins with the study of basic cell function, then proceeds to a rigorous overview of specific human organ systems.

- **MBS 695. Professional Development Colloquium for Non-Thesis Students. 1 Hour.**
 This course will provide a rigorous overview of scientific reading, writing, and presenting skills, with a focus on career development. Students will work in teams to read, present and critique journal club articles; prepare and review resumes, individualized development plans (IDPs) and personal statements, followed by submission of re-writes; and learn effective interview skills via mock interview format.

- **MBS 696. Special Topics. 1-3 Hour.**
 To be determined by the Program Director and prospective Course Directors.

2 Students may select from the following electives: BY 501, BY 511, BY 512, BY 515, BY 527, BY 530, BY 531, BY 614, BY 620, BY 626, BY 629, BY 633, BY 634, BY 636, BY 637, BY 640, BY 644, BY 662, BY 674, BY 675, BY 696, BY 697, CNBY 610, CNBY 620, CNBY 630, CNBY 640, CNBY 660, CNBY 670, EPI 600, GGSC 610, GGSC 615, GGSC 620, GGSC 635, GGSC 665, GGSC 670, GGSC 690, GGSC 691, GRD 701, GRD 703, GRD 705, GRD 706, GRD 707, GRD 708, GRD 713, GRD 722, GRD 727, GRD 735, INFO 601, INFO 602, INFO 603, INFO 604, INFO 610, INFO 625, MBS 696, MBS 698, MIC 600, MIC 601, MIC 602, MIC 603, MIC 604, NBL 620, NBL 625, NBL 633, NBL 634, NBL 644, NBL 655, NBL 656, PHR 611, PHR 612, PHR 613, PHR 614, PY 620, PY 653, PY 683, PY 687, PY 693.
MBS 697. Colloquium for MBS Plan I Thesis Students. 1 Hour.
This required colloquium course will be taught using a journal club format. Students will be taught to critically review scientific literature, while gaining effective written and oral scientific communication skills. Students working in small groups will be responsible for choosing a current biomedical research article and sharing their review of this article in a Power Point (PPT) presentation. Student audience members will be responsible for asking questions during the presentation and for submitting a review of each article in abstract form. The Course Director will provide initial instruction in the critical review, presentation and written summary of scientific literature. Topics to be covered include: critical review (background and rationale for study; identification of hypothesis; description of methods used; presentation of results and their interpretation; indicate significance of study and describe next step experiments), effective communication of research articles via Power Point presentations; and writing assignments based on articles discussed in class. When possible, scientific integrity in research will be a focus of in-class discussions.

MBS 698. Non-Thesis Research. 1-6 Hour.
Students may perform independent study in a research laboratory setting. This work may contribute toward concentration credits subject to Program Director approval.

MBS 699. Thesis Research. 1-6 Hour.
Supervised independent research.

Neuroengineering

<table>
<thead>
<tr>
<th>Degrees Offered</th>
<th>PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>www.uab.edu/engineering/home/neuroengineering</td>
</tr>
<tr>
<td>Program Co-Director</td>
<td>Lynn Dobrunz, PhD</td>
</tr>
<tr>
<td>Program Co-Director</td>
<td>Gregg Janowski, PhD</td>
</tr>
<tr>
<td>Program Associate Director</td>
<td>Mark Bolding, PhD</td>
</tr>
<tr>
<td>Program Administrator</td>
<td>Kristy Barlow, MPA</td>
</tr>
<tr>
<td>E-mail</td>
<td>neuroeng@uab.edu</td>
</tr>
</tbody>
</table>

Admissions Requirements

- BS, MS, or be currently enrolled in the DMD/PhD or MD/PhD program at UAB*
- Minimum GPA of 3.0 on a 4.0 scale on most recent degree
- GRE is not required
- Personal statement identifying research interest
- CV/Résumé
- 3 academic or professional recommendations
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. [Click here for details](#)
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)

* PhD students normally have earned a bachelor’s degree in an engineering discipline or a closely-related field. Students with undergraduate degrees in the computer science, neuroscience, physical sciences, life sciences, or mathematics will also be considered for admission; however, such students must demonstrate preparation for the NE graduate curriculum. Admission to the NE PhD program is competitive.

Students admitted to the doctoral program typically receive a competitive stipend that includes payment of tuition. In addition to completing coursework requirements (see below), doctoral students must form a Graduate Dissertation Committee consisting of at least five faculty members, including the primary research mentor. At least one committee member must have a primary appointment in the School of Engineering and one must have a primary appointment in the School of Medicine. A written dissertation proposal must be orally presented to the committee and approved, at which time the student is admitted to candidacy. Admission to Candidacy must take place at least two semesters before the student may graduate. A written dissertation embodying the results of the student’s original research must then be publicly defended, approved by the committee, and submitted to the Graduate School.

Publication Requirement. Original peer-reviewed research articles in reputable journals are the standard for demonstrating scientific productivity. The research conducted by NE doctoral students is expected to result in such publications. Before their degree is awarded, students are required to have at least one “first-author” journal article that has been published (or accepted for publication) and a second that has been submitted to a journal. Typically, a student’s doctoral research will result in at least three first-author articles. Many students will be co-authors on collaborative research articles and may also share authorship on review articles, book chapters, conference proceedings, and other forms of scientific communication. Although these works bolster the student’s scientific credentials, they do not count toward the NE publication requirement. In some cases, first-authorship of an article is shared among multiple individuals. In these cases, the article may count toward the publication requirement of only one doctoral student.

Additional Academic Policies

Special Topics courses and independent/individual study courses are reviewed for degree applicability to the degree. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the Neuroengineering PhD without appeal to and approval from the Program Directors.

UAB offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Ph.D. in Neuroengineering

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>IDNE 701 Topics in Neuroengineering I</td>
<td>3</td>
</tr>
<tr>
<td>IDNE 702 Topics in Neuroengineering II</td>
<td>3</td>
</tr>
<tr>
<td>IDNE 720 Applications in Data Science</td>
<td>1</td>
</tr>
<tr>
<td>IDNE 796 Neuroengineering Journal Club 1</td>
<td>6</td>
</tr>
<tr>
<td>BST 621 Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>or GRD 770 Intro to Biostats</td>
<td>3</td>
</tr>
<tr>
<td>BST 622 Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>BME 717 Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or ME 761 Math Methods in EGR I</td>
<td>3</td>
</tr>
<tr>
<td>NBL 655 Synapses, Neurons and Brains</td>
<td>3</td>
</tr>
<tr>
<td>NBL 656 From Systems to Cog Neuro</td>
<td>3</td>
</tr>
</tbody>
</table>
EGR/CS Elective
NS/LS Elective
Other Electives
IDNE 773 Lab Rotation
IDNE 798 Non-Dissertation Research
IDNE 799 Dissertation Research

Total Hours

Students must register for a minimum of 6 semesters; may also select another 700-level 1 hour Journal Club with Program Director approval.

Choose one from the following: CS 757, CS 760, CS 767, CS 773, CS 775, CS 785, EE 621, EE 641, EE 734, EE 738, EE 756, EE 758, ME 665.

Choose one from the following: GBS 714, GBSC 744, GBSC 718, GBSC 721, NBL 700, NBL 707, NBL 735, NBL 740, NBL 743, PY 707, PY 693, VIS 743, VIS 756, VIS 757.

Choose three from the following: GBS 714, GBS 722, GBSC 744, GBSC 718, NBL 740, NBL 743, PY 707, VIS 743, VIS 756, VIS 757, CS 760, CS 767, CS 773, CS 775, CS 785, EE 621, EE 641, EE 734, EE 738, EE 756, EE 758, ME 665, BST 623, BST 660, BST 680, BST 723.

Students who were not admitted directly into a lab may register for a maximum of 4 rotations.
School of Dentistry

Dean: Russell Taichman, DMD, DMSc

The School of Dentistry offers degree programs leading to a Master of Science in Dentistry and the DMD/PhD in Dentistry. Advanced clinical specialty training and research, leading to the degree of Master of Science in Dentistry, is offered to meet two areas of need: the preparation of qualified teachers and investigators in the various branches of academic dentistry and the preparation of fully trained dental specialists.

The UAB School of Dentistry DMD/PhD program prepares students for an exciting career in dental academics through an innovative integrated clinician scientist training program. Students in the program are allowed to apply credits earned in both dental and graduate school towards a specialized program earning both a DMD degree and a PhD degree in a biomedical science.

Dentistry

Degree Offered: M.S.
Director, Dentistry: Dr. Amjad Javed
Phone: (205) 996-5124
E-mail: javeda@uab.edu
Website: www.dental.uab.edu

Program Information

Advanced clinical specialty training and research, leading to the degree of Master of Science in Dentistry, is offered to meet two areas of need: the preparation of qualified teachers and investigators in the various branches of academic dentistry and the preparation of fully trained dental specialists. The program is a combination of the conventional work for the M.S. degree plus the achievement of proficiency in some phase of clinical dentistry. The course of study requires a minimum of two academic years; most students will require three years to complete the work. The applicant must be a graduate of an accredited school of dentistry, or an undergraduate school and must have achieved, in both predental and dental requirements, a superior scholastic record.

At the time of enrollment in the Graduate School, the student is assigned an appropriate faculty advisor, who works with the student in outlining a course of study consistent with objectives. This curriculum must cover the three areas of a selected phase of clinical dentistry, a related basic health science, and research.

Major and Minor

The major field of study must be selected from the following: dental biomaterials, endodontics, general dentistry, hospital dentistry, maxillofacial prosthetics, oral surgery, orthodontics, pediatric dentistry, periodontics, prosthodontics, public health dentistry, or oral biology. The program requires a minimum of 30 graduate credits. Not less than 18 semester hours of credit in the program must be in the major subject, with the minimum acceptable grade being B. A minor must involve at least six semester hours of study in one or two basic health science departments related to the student's major and research interests.

By the time the student has been in residence one year and has finished some of both major and minor courses, the student and the advisor should recommend to the Graduate School dean at least two additional graduate faculty members, one from outside the student's specialty area, for appointment to the graduate study committee. The student should discuss with his/her committee plans for the remaining course of study, including a proposed thesis title and outline of experimental design. Depending upon the nature of the research plan, it may be desirable for a different advisor to be appointed, serving either as co-chair or as new chair of the graduate study committee. At this time, demonstration of a reading knowledge related to literature review, competence in research and experimental design, understanding of biostatistics, experience with computer and other techniques may be required, as appropriate to the student's investigation.

Admission to Candidacy

When the graduate study committee is satisfied that the student is prepared to undertake the research, the student is admitted to candidacy for the master's degree. This step should be taken at least two semesters before the anticipated date of completion of the program.

Research and Thesis

Sufficient research work to train the candidate in the principles and methods of scientific investigation is required. The research project should involve the student's own intensive work in some area of dentistry, preferably related to the basic health sciences. The thesis is based on the research study and must show the candidate's ability to delineate a problem, logically plan its solution, and present the results of the work in an orderly fashion. Familiarity with the literature of the field is expected.

Final Examination

The final oral examination is administered by the student's graduate study committee before the deadline is set by the Graduate School. The examination begins with oral presentation and defense of the thesis and may include any work fundamental thereto. At the close of the examination, the committee votes on the candidate, taking into account all of the work undertaken. Majority approval is required.

Additional Information

Deadline for Entry Term(s): Consult Program Director for information
Deadline for All Application Materials to be in the Graduate School Office: Variable
Number of Evaluation Forms Required: Three
Entrance Tests: DDS (TOEFL and TWE also required for international applicants whose native language is not English.)

Contact Information

For detailed information, contact the graduate program director, Dr. Amjad Javed, University of Alabama School of Dentistry, School of Dentistry Building, SDB 714, 1919 Seventh Avenue South, Birmingham, AL 35294-0007.

Telephone 205-934-5407
Fax 205-934-0208
E-mail javeda@uab.edu
Web www.dental.uab.edu
Master of Science with Emphasis in Oral Biology

The School of Dentistry in collaboration with the joint basic science departments at The University of Alabama offers graduate studies leading to a Master of Science degree with emphasis in Oral Biology. The objective of the program is to relate basic biological sciences to health and disease of the oral cavity. This program is designed for individuals holding a D.D.S., D.M.D., or B.S. in Science (e.g. biology, chemistry etc) with little or no experience in basic research. This program will provide insight into dental academics and teaching in basic or applied research.

Students are required to pursue studies in oral biology and in the basic biological sciences. These studies include course work, seminars, journal club, and a laboratory component. Course work includes formal lectures from within the School of Dentistry and courses offered by the basic sciences departments, School of Public Health and the School of Medicine. The seminars and journal club include the “Dean’s Seminar Series” and the Oral and Skeletal Biology Journal Club and other Research seminars within UAB. The Seminars cover a wide array of topics relevant to various research areas as well as other disciplines of dentistry or dental education. A significant portion of the program is devoted to the design and completion of a thesis research project in the form of one publishable paper in a reputable scientific journal which is a requirement of the program. Thesis research will be carried out under the supervision of a faculty member. Faculty involved in the Master of Science program with emphasis in Oral Biology are actively engaged in research that represents a variety of oral and basic biomedical disciplines within the UAB. The diversity of the research interests offers opportunities for students to pursue studies in a stimulating research environment.

The program requires a minimum of 30 graduate credits. Of these, at least 24 credits must be selected from graduate-level courses approved for the program and a minimum of 6 credits at the master’s research level. Each student must orally defend a master’s thesis based on their research. If the applicant holds a D.D.S. or D.M.D. degree, the Master in Science may be combined with a clinical dental specialty training only after acceptance into the clinical program.

Admission

Applicants must hold a B.S., D.D.S., or D.M.D., or an equivalent degree and should possess a cumulative grade-point average of at least 3.00 on a 4.00 scale. Standardized test such as GRE or DAT is required for all applicants. Students whose first language is not English must earn a score of 560 or better on the Test of English as a Foreign Language (TOEFL).

Applicants are asked to submit a statement describing past research experience and current research interests, and stating how completion of the Master in Science program fits into their career goals.

For International applicants; transcripts and all related material should be received no later than February 28 to enroll in the fall semester of the same year.

For US applicants; transcripts and all related material should be received no later than March 31 to enroll in the fall semester of the same year.

Financial assistance is not available. Students must show that they can support themselves.

Contact

For further information and application materials, contact:
Jannet Katz, DDS, PhD
Professor
Department of Pediatric Dentistry
University of Alabama School of Dentistry
BBRB 713
1720 2nd Avenue South
Birmingham, AL 35294-2170
Telephone: (205) 934-2878
FAX: (205) 934-1426
e-mail: meow@uab.edu

M.S. in Dentistry

Select 6 classes from the list below - 18 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 525 Design and Analysis of Clinical Dental Research</td>
<td>3</td>
</tr>
<tr>
<td>PG 583 Graduate Cariology</td>
<td>3</td>
</tr>
<tr>
<td>OB 602 Pharmacology and Therapeutics for Dentistry</td>
<td>3</td>
</tr>
<tr>
<td>OB 604 Clinical Applied Dent Material</td>
<td>3</td>
</tr>
<tr>
<td>OB 620 Oral Microbiology and Immunology</td>
<td>3</td>
</tr>
<tr>
<td>OB 622 Biochemistry of Connective Tissue and Bone</td>
<td>3</td>
</tr>
<tr>
<td>CD 626 Graduate Implantology II</td>
<td>3</td>
</tr>
<tr>
<td>CD 639 Dental Management of Medically Compromised Patient</td>
<td>2</td>
</tr>
<tr>
<td>CD 640 Physical Diagnosis</td>
<td>3</td>
</tr>
<tr>
<td>CD 646 Multidisciplinary Seminars I</td>
<td>3</td>
</tr>
<tr>
<td>CD 667 Selected Topics in Anatomy of the Head and Neck</td>
<td>3</td>
</tr>
<tr>
<td>CD 689 Conscious Sedation</td>
<td>3</td>
</tr>
<tr>
<td>CD 697 Advanced Restorative Technique</td>
<td>3</td>
</tr>
<tr>
<td>CD 717 Multidisciplinary Seminars II</td>
<td>3</td>
</tr>
<tr>
<td>CD 721 Oral & Skeletal BiologyJour</td>
<td>2</td>
</tr>
<tr>
<td>CD 722 Advanced Craniofacial Growth</td>
<td>3</td>
</tr>
<tr>
<td>CD 727 Craniofacial Syndrome Series</td>
<td>3</td>
</tr>
<tr>
<td>CD 728 Advanced Oral Pathology</td>
<td>3</td>
</tr>
</tbody>
</table>

Non-Thesis Research - 6 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 698 Master s Level Non-Thesis Research</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Thesis Research - 6 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB 699 Thesis Research</td>
<td>1-6</td>
</tr>
<tr>
<td>or CD 699 Master s Level Thesis Research</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Total Hours - 30

CD-Clinical Dentistry Courses

CD 601. Advanced Endodontic Seminar I. 3 Hours.
Special Topics in Endodontics.
CD 602. Special Topics in General Dentistry. 3-6 Hours.
CD 603. Special Topics in Oral and Maxillofacial Surgery. 1-12 Hour.
CD 604. Special Topics in Orthodontics. 3 Hours.
CD 605. Special Topics in Pediatric Dentistry. 1-6 Hour.
CD 606. Special Topics in Periodontics. 3-12 Hours.
CD 607. Removable Prosthodontic Seminar. 1-12 Hour.
CD 608. Special Topics in Radiology. 1-6 Hour.
CD 609. Fixed Prosthodontics Seminar. 1-12 Hour.
CD 610. Introduction to Medical Genetics. 3 Hours.
CD 611. Special Topics in Maxillofacial Prosthodontics. 1-6 Hour.
CD 612. Advanced Prosthodontics Clinic First Year Clinic. 1-12 Hour.
CD 613. Special Topics in Hospital Dentistry. 1-6 Hour.
CD 614. Periodontal Case Conferences. 3 Hours.
CD 615. Periodontal Literature Review Seminars. 3 Hours.
CD 616. Periodontal Board Topics. 1-3 Hour.
CD 617. Maxillofacial Pathology. 3 Hours.
CD 618. Maxillofacial Orthognathic Surgery. 3 Hours.
CD 619. Dentoalveolar Surgery. 3 Hours.
CD 620. Clinical Pediatric Dentistry I. 3-6 Hours.
CD 621. POSTGRADUATE MAXILLOFACIAL TRAUMA. 3 Hours.
CD 622. ORAL and MAXILLOFACIAL MICROBIOLOGY SEMINAR. 3 Hours.
ORAL and MAXILLOFACIAL MICROBIOLOGY SEMINAR.

CD 623. POSTGRAD OMS SURGERY ANATOMY SEMINAR. 3 Hours.
CD 624. OMS Pathology Seminar. 3 Hours.
CD 625. Design and Analysis in Clinical Dental Research. 3 Hours.
CD 626. Graduate Implantology II. 3 Hours.
CD 627. Biocompatibility Testing/Biodegradation Phenomena. 3 Hours.
CD 628. Enamel Properties Acid Etching and Adhesion. 4 Hours.
CD 629. Ceramic Cements Alloy-Ceramic Systems Color Meas. 3 Hours.
CD 630. Clinical Biomaterials Research Methods. 3 Hours.
CD 631. Polymeric Biomaterials. 3 Hours.
CD 632. Biomaterials Seminar. 1 Hour.
CD 633. Alloy Systems in Dentistry. 3 Hours.
CD 634. Craniofacial Genetics. 3 Hours.
CD 635. Pediatric Dentistry Journal Club. 2 Hours.
CD 636. Hospital Dentistry. 2 Hours.
CD 637. Growth and Development-Genetics. 3 Hours.
CD 638. Current Topics in Dentistry. 1 Hour.
CD 639. Dental Management of Medically Compromised Patient. 2 Hours.
CD 640. Physical Diagnosis. 3 Hours.
CD 641. Advanced Dental Materials III. 3 Hours.
The resident will develop an in-depth understanding of the clinical applications and effective manipulation of current dental materials. Dentin bonding agents, composite resin selection, placement and polymerization will be covered. An overview of biomaterials for dental implants, and ceramic materials for prosthodontics will also be presented.

CD 642. Biomaterials Book Review. 3 Hours.
The purpose of the book review is to strengthen the basic understanding of properties and behavior of different dental materials.

CD 643. Adv Clinical Prosth III. 6 Hours.
Advanced Clinical Prosthodontics III will provide students with a breadth of clinical experience in fixed, removable, implant, surgical, maxillofacial and other complex prosthodontics.

CD 644. Evidence Based Dentistry. 3 Hours.
Evidence based dentistry will teach students how to use literature as basis of clinical decisions.

CD 645. PBL: Adv Prosthodontics Topics. 3 Hours.
Topics in Advanced Prosthodontics. Permission of instructor required.

CD 646. Multidisciplinary Seminars I. 3 Hours.
Multidisciplinary seminars will teach the students how to interact with other disciplines in an informal setting and learn from these other disciplines.

CD 647. Treatment Planning Conference. 3 Hours.
Treatment planning conference will teach students how to generate a succinct and reasonable treatment sequence.

CD 648. Prosthodontic Case Conference. 3 Hours.
Prosthodontic case conference will teach students how to present completed treatment, and how to critically and professionally evaluate treatment outcomes.
CD 649. Prosthodontics Lit Review. 3 Hours.
Prosthodontics literature review will teach students how to critically evaluate literature, and to be familiar with current concepts in prosthodontics.

CD 650. Advanced Topics in Hospital Dentistry. 1-6 Hour.
CD 651. Advanced Endodontics Seminar II. 3 Hours.
Advanced Topics in Endodontics.

CD 652. Advanced Topics in General Dentistry. 3-6 Hours.
CD 653. Advanced Topics in Oral Surgery. 3-6 Hours.
CD 654. Advanced Topics in Orthodontics. 3 Hours.
CD 655. Advanced Topics in Pediatric Dentistry. 1-6 Hour.
CD 656. Advanced Topics in Periodontics. 1-12 Hour.
CD 657. Advanced Clinical Prosthodontics Second Year Clin. 3-12 Hours.
CD 658. Advanced Topics in Radiology. 1-12 Hour.
CD 659. Advanced Topics Fixed Prosthodontics. 3-12 Hours.
CD 660. Advanced Topics in Maxillofacial Prosthetics. 1-6 Hour.
CD 661. Physical Properties of Biomaterials. 1-3 Hour.
CD 662. Laboratory Methods for Biomaterials Research. 2-4 Hours.
CD 663. Diagnosis and Screening Procedures in Dentistry. 3 Hours.
CD 664. Grand Rounds in Pediatric Dentistry. 2-3 Hours.
CD 665. Maxillofacial Seminar. 3 Hours.
Physiology and Concepts of Occlusion.
CD 666. Clinical Maxillofacial Prosthetics. 1-3 Hour.
CD 667. Selected Topics in Anatomy of the Head and Neck. 3 Hours.
CD 668. Postgraduate Oral Pathology. 3 Hours.
CD 669. Clinical Pediatric Dentistry II. 3 Hours.
CD 670. Board Case Reviews in Pediatric Dentistry. 3 Hours.
CD 671. Case Presentations in Pediatric Dentistry. 1 Hour.
CD 672. Advanced Topics in OMS. 5 Hours.
CD 673. Special Topics in OMS Trauma. 4 Hours.
CD 674. Advanced Topics in OMS - Orthognathic. 4 Hours.
Advanced Topics in OMS - Orthognathic.
CD 675. Special Topics in OMS - Patient Care. 4 Hours.
CD 676. Advanced Topics in Oral Pathology. 4 Hours.
CD 677. Advanced Prosthodontics Third Year Clinic. 3 Hours.
CD 678. Board Preparation in Pediatric Dentistry. 3 Hours.
Review course for pediatric dental residents.
CD 679. Fundamentals of Pediatric Dentistry. 1-6 Hour.
CD 680. Dental Clinical Pathology. 3 Hours.
CD 681. Clinical Pedodontics III. 3 Hours.
CD 682. Special Topics in Endodontics. 3 Hours.
CD 683. Advanced Dental Materials I. 3 Hours.
Advanced course in dental materials.
CD 684. Advanced Dental Materials II. 3 Hours.
Advanced course in dental materials II.

CD 685. Advanced Endodontic First Year Clinic. 3 Hours.
CD 686. Advanced Endodontic Second Year Clinic. 3 Hours.
CD 687. Advanced Clinical Dentistry. 3 Hours.
Advanced course in clinical dentistry.
CD 688. Special Pathology. 1 Hour.
CD 689. Conscious Sedation. 3 Hours.
CD 690. Physiology and Concepts of Occlusion. 3 Hours.
CD 691. Special Topics in Biomaterials Science. 1-6 Hour.
CD 692. Advanced Prosthodontic Seminar. 1-12 Hour.
CD 693. Special Topics in OMS. 5 Hours.
CD 694. Advanced General Dentistry Seminars (I-IV). 1 Hour.
CD 695. Literature Review in Pediatric Dentistry. 3 Hours.
CD 696. Dental Radiology. 3 Hours.
CD 697. Advanced Restorative Technique. 3 Hours.
CD 698. Master's Level Non-Thesis Research. 1-6 Hour.
CD 699. Master's Level Thesis Research. 1-6 Hour.
Prerequisites: GAC M
CD 700. Cranio Deformities. 3 Hours.
CD 701. Post-Graduate Micro Surgery. 3 Hours.
To understand the history of microsurgery; materials and instruments; coagulations and anticoagulants; technique or minor repair and vascularized tissue transfer.
CD 702. Post-Graduate Esthetic Surgery. 3 Hours.
Understand basic concepts of facial cosmetic surgery and become competent in diagnosis and treatment planning. The resident should learn surgery techniques of facial cosmetic surgery.
CD 703. Post-Graduate TMJ Disorders. 3 Hours.
To Understand the anatomy and biomechanics of the TMJ; the pathological conditions that affect the TMJ; the imaging modalities that can be utilized to aid in diagnosing TMD; and the various medical treatment options in managing TMD.
CD 704. Post-Grad Surg Implantology. 3 Hours.
Enrich the resident experience by providing in-depth discussion on the various surgical modalities that can aid in proper implant placement.
CD 705. Orthognatic Surgery. 3 Hours.
Understand the principle of orthognatic surgery.
CD 706. Board Exam Topics. 3 Hours.
To allow students time for study and laboratory activities in preparation of mock board exam, or the ABP examination.
DMD/PhD Program

The UAB School of Dentistry DMD/PhD program prepares students for an exciting career in dental academics through an innovative integrated clinician scientist training program. Applicants interested in the DMD/PhD program must have completed an undergraduate degree program (BA or BS) that fulfills all requirements for both dental school and graduate school admissions.

OB-Oral Biology Courses

OB 500. Graduate Cariology. 3 Hours.
OB 510. Intro to Dental Materials Res. 3 Hours.
OB 522. Biochemistry of Connective Tissue and Bone. 3 Hours.
OB 525. Current Issues in Nutrition and Oral Health. 3 Hours.
OB 563. Saliva as a Diagnostic Fluid. 3 Hours.
OB 598. MR Lev Non-Thesis Res. 3-6 Hours.
OB 599. Thesis Research. 3-6 Hours.
OB 600. Graduate Cariology. 3 Hours.
OB 601. Caries Journal Club. 1 Hour.

Introduce students communication skills in areas of scientific reading, presentation and use of scientific material.

OB 602. Pharmacology and Therapeutics for Dentistry. 3 Hours.
OB 603. Oral Inflammation and Periodontal Disease. 3 Hours.
Provides a fundamental knowledge base for understanding the initiation and progression of oral inflammation and how these processes mediate tissue destruction and bone loss.
OB 604. Clinical Applied Dent Material. 3 Hours.
OB 607. Prenatal Craniofacial Growth and Development. 3 Hours.
PRENATAL CRANIOFACIAL GROWTH and DEVELOPMENT.
OB 608. Special Topics in Oral Biology. 1 Hour.
OB 611. Saliva: Composition and Function. 3 Hours.
OB 616. Postgraduate Oral Histology. 3 Hours.
OB 620. Oral Microbiology and Immunology. 3 Hours.
OB 622. Biochemistry of Connective Tissue and Bone. 3 Hours.
Biochemistry of Connective Tissue and Bone.
OB 625. Current Issues in Nutrition and Oral Health. 3 Hours.
OB 626. Graduate Implantology. 3 Hours.
OB 627. Surgical Implants in Dentistry. 3 Hours.
OB 630. Introduction to Clinical Trials/Epidemiology. 3 Hours.
OB 631. Ethics in Biomedical Research. 1 Hour.
OB 632. Special Topics on Mucosal Immunology. 3 Hours.
OB 633. Research Design and Methodology. 3 Hours.
OB 634. Oral Biology Journal Club. 1 Hour.
OB 657. Prenatal Craniofacial Growth and Development. 3 Hours.
PRENATAL CRANIOFACIAL GROWTH and DEVELOPMENT.
OB 663. Saliva as A Diagnostic Fluid. 3 Hours.
OB 690. Oral Biology Seminar. 1 Hour.
OB 696. Research Skills Enhancement. 2 Hours.
OB 697. Journal Club - Frontiers in Biomedical Research. 1 Hour.
OB 698. MR Lev Non-Thesis Res. 1-6 Hour.
OB 699. Thesis Research. 1-6 Hour.

Prerequisites: GAC M

DMD/PhD Program

Degree Offered: DMD/PhD
Director: Dr. Carly McKenzie
Phone: (205) 934-3387
E-mail: dentaladmissions@uab.edu
Website: https://www.uab.edu/dentistry/home/academics/dmd-phd
Interested students need to contact Dr. Carly McKenzie, Director of Admissions, UAB-School of Dentistry at 205.934.3387 or by email at dentaladmissions@uab.edu.

Important Points:

1. DMD and PhD degrees will be awarded within the same year upon completion of all dental and graduate school requirements.
2. Duration of the program is 8 years; however students with strong prior research experience have completed the program in 7 years.
3. Students accepted into the DMD/PhD program that do not complete the PhD training program, are required to reapply to the School of Dentistry for admission as a traditional DMD candidate.

To apply to the program, applicants must:

1. Contact Dr. Steve Filler at UAB School of Dentistry indicating intent to apply for the DMD/PhD program.
2. Submit a formal application to the UAB School of Dentistry through AADSAS as early as possible.
3. Submit an online application to the UAB Graduate School through one of the Biomedical Sciences Interdisciplinary Themes, Engineering (Biomedical or Materials), Public Health, or other graduate program.
4. Have successfully taken the Dental Aptitude Test (DAT).
5. Have completed all the recommended courses for both dental and graduate school admissions.
6. Have prior hands-on-research experience.

Note: Students must submit separate applications to the UAB School of Dentistry and the UAB Graduate School. The Graduate School application can be found on the Graduate School’s website (uab.edu/graduate) by clicking the ‘Apply Now’ button. The UAB School of Dentistry participates in the American Association of Dental Schools Application Service (AADSAS). Students should initiate AADSAS applications as early as possible.

Applicants under consideration will be requested to file a supplemental DMD/PhD application. Applicants qualified for admission will be invited for a personal interview with the Admissions Committee.

Candidates will be evaluated based on their academic record, DAT scores, research accomplishments, publications, commitment to a research dental academic career, character, and personality traits indicating potential for success in a DMD/PhD program.

Sequence of the DMD/PhD Program:

1. Students first enter the Graduate School and complete at least two years of coursework including graduate school qualification examinations and dissertation proposal defense maintaining at least a 3.0 GPA.
2. After research PhD candidacy with approval of the DMD/PhD Advisory Committee the student transitions into the DMD curriculum in lock step with a dental class from years 2-4.
3. DMD and PhD degrees are awarded within the same year upon completion of the degrees programs.

Financial Support Opportunities:

Students enrolled in the DMD/PhD training program are eligible for funding through the School of Dentistry’s NIDCR supported T-90 Dental Academic Research Training (DART) Program or an individual NIDCR supported F-30 Training Award. See details about these programs at the following links: DART Program and the NIDCR F-30 grant application (http://grants.nih.gov/grants/guide/pa-files/PAR-08-119.html.)
School of Education

General Information

UAB offers graduate programs that lead to teacher certification in a variety of K-12 teaching disciplines (Biology, Language Arts, Early Childhood Education, English as a Second Language, Kinesiology/Physical Education, etc.) School Counseling, and Instructional Leadership and non-certification programs such as Community Health, Clinical Mental Health Counseling, Marriage, Couples, and Family, and Kinesiology with an Exercise Physiology concentration. UAB also offers graduate programs that are focused on Higher Education Administration (M.S.) and Instructional Design and Development (M.S.). A complete listing and description of all graduate programs are described in the Department of Curriculum and Instruction and Department of Human Studies sections of the catalog. Most certification programs have both master’s (MAEd) and a post-master’s Education Specialist (Ed.S.) degree. Additionally, the School of Education offers doctoral programs in Early Childhood Education (PhD), Educational Leadership (EdD), Educational Studies in Diverse Populations (PhD), and Health Education/Health Promotion (PhD).

All certification programs in the School of Education are fully approved by the National Council for Accreditation of Teacher Education (NCATE). All teacher certification programs within the School of Education have been approved by the Alabama State Board of Education (ALSDE). The School Counseling and Clinical Mental Health concentrations have also been accredited by the Council for Accreditation of Counseling & Related Educational Programs (CACREP). The Music program is accredited by the National Association of Schools of Music. The Art program has been accredited by the National Association of Schools of Art and Design.

Degrees and Certificates

Degrees are awarded by UAB in recognition of scholastic achievement and may be pursued for their own sake. However, employment in the public schools is governed not by the degree but by the professional certificate issued by the Alabama State Department of Education (ALSDE). Since many students in these programs are preparing for work in the public schools, the pursuit of a degree is usually coupled with pursuit of ALSDE certification. There is a rough correspondence between degree level and certification class, as follows:

Bachelor’s	Master’s	Specialist (post-master’s)	AA	Doctoral	No Equivalent

3 3 3 3 3

We emphasize that the admission and completion requirements for the degree and for the certificate are often significantly different. Furthermore, not all education students are pursuing teacher certification. Students seeking certification should verify requirements with an advisor or program director. Alabama State regulations governing certification change often; therefore, it is incumbent upon the student to seek advisement each term. Students should not register for any coursework without having first met with an advisor.

Interdisciplinary Studies

Ph.D. in Educational Studies in Diverse Populations (ESDP)

The Ph.D. in Educational Studies in Diverse Populations (ESDP) is to prepare professionals who can conduct research and lead innovation that enhances educational and life outcomes for diverse populations. This would include those who represent cultural or linguistic minorities, those with exceptionalities (gifted and disabled), those from economically challenged (and especially high-poverty) backgrounds, those impacted by gender biases, and those with other relevant learning or behavioral differences. To accommodate the widest range of student research interest in diversity issues there are three concentrations. Metropolitan Education Studies, Pedagogical Studies for Diverse Populations, Health Disparities within Diverse Populations. This doctoral program is especially suited to preparing graduates with the research acumen needed to move easily into higher educational/postsecondary settings, P-12 central administration at the local, state, and national level, and leadership roles within school based settings, or non-academic positions within nonprofit organizations, specifically those with a research component. The minimum admission requirements are those of the UAB Graduate School. However, admission is highly selective, and most successful applicants have qualifications much higher than the minimum. Application packets must be complete in the Graduate School office before the applicant can be considered for the program.

Contact Information

For detailed information please visit the program website (https://www.uab.edu/education/home/graduate/phd-educational-studies-diverse-populations), or contact Dr. Andrew McKnight (amcknig@uab.edu) (Program Director), Dr. Tondra Loder-Jackson (tloderjackson@uab.edu) (Metropolitan Education Studies Concentration Advisor), Dr. Susan Spezzini (spezzini@uab.edu) (Pedagogical Studies for Diverse Populations Concentration Advisor), or Dr. Laura Forbes (ltalbott@uab.edu) (Health Disparities within Diverse Populations Concentration Advisor).

Doctor of Philosophy in Educational Studies in Diverse Populations

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDC 750 Critical Pedagogy for Diverse Populations</td>
<td>3</td>
</tr>
<tr>
<td>EDF 755 Educational Studies in Diverse Populations: Theory of Inquiry</td>
<td>3</td>
</tr>
<tr>
<td>EDF 765 Context, Culture, and Policy (CCP) Proseminar</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 742 Health Disparities in Diverse Populations</td>
<td>3</td>
</tr>
</tbody>
</table>

Research Courses

<table>
<thead>
<tr>
<th>Research Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR 609 Statistical Methods and Research in Education: Intermediate</td>
<td>3</td>
</tr>
<tr>
<td>EPR 696 Qualitative Research: Inquiry and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EPR 710 Computer Applications and Advanced Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>EPR 792 Mixed Methods Approaches to Educational Research</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 27

Concentration Courses

12-36 Credits

Once the prerequisite coursework has been satisfied, you will follow an interdisciplinary program of study in one of the three concentrations:

- Pedagogical Studies
- Context, Culture, and Policy
- Health Disparities
Dissertation
24 Credits

- Dissertation Seminar: 3 credit hours
- Dissertation Research - (Prerequisite: Admission to candidacy). Note: one semester with at least 6 credit hours is required
- 9 credits of directed dissertation research or additional research courses specific to intended dissertation

Curriculum and Instruction

Chair:
Phone: (205) 996-8786
E-mail:
Website: http://www.uab.edu/education/ci/

Degree offered:
Arts Education with a Concentration M.A.Ed. in Visual Arts
Arts Education with a Concentration M.A.Ed. in Music
Education, Early Childhood Ph.D., Ed.S., M.A.Ed.
Education, Elementary Ed.S., M.A.Ed.
Education, High School and Middle School (Secondary Education) Ed.S., M.A.Ed.
Educational Studies Non-Certification M.A.Ed.
English as a Second Language Ed.S., M.A.Ed.
Instructional Design and Development M.S.
Reading M.A.Ed.
School Psychometry and Psychology Ed.S., M.A.Ed.
Special Education Ed.S., M.A.Ed.
Teaching English to Speakers of Other Languages Ed.S.

Program Contact Information

Program Coordinator Contact Information (Room and Phone Number)
UAB Teach, High School and Middle School Education:
Dr. (memoi@uab.edu), (memoi@uab.edu) Paulette Evans (spezzini@uab.edu) HBB 120 (205) 975-7419

Arts Education, Music, World Languages, and English as a Second Language: Dr. Susan Spezzini (spezzini@uab.edu) EEC 206B (205) 934-8357

Special Education: Dr. (emfinger@uab.edu) Robin Ennis EEC 208C (205) 975-6152

School Psychometry: Dr. Stephanie Corcoran (corcoran@uab.edu) EEC 208A (205) 934-6477

Elementary Education: Dr. (memoi@uab.edu) James Ernest EEC 211C, (205) 934-8360

Early Childhood Education: Dr. J (memoi@uab.edu) James Ernest, EEC 211C, (205) 934-8360

Reading Education: Dr. Jennifer Summerlin (summerl@uab.edu) EEC 211F (205) 996-3540

Early Childhood Education Ph.D.: Dr. J (memoi@uab.edu) James Ernest, EEC 211C, (205) 934-8360

Instructional Design and Development: EEC 203B (205) 996-8786

All Other Programs: EEC 203B (205) 996-8786

Graduate Programs

The M.A.Ed. and Ed.S. programs emphasize improving the teaching skills of the student and broadening the student's understanding of the field(s) of teaching specialization. Numerous teaching fields are available. All prospective students must apply for admission through the Graduate School.

The M.A.Ed. program requires a minimum of 30-32 semester hours of study, and the Ed.S. program requires at least an additional 30 semester hours. For students' eligibility to graduate, all programs require a written final examination or comprehensive electronic portfolio and a minimum GPA of 3.25 for master's degree and 3.50 for the Ed.S. An outline of the specific course requirements can be obtained from the following link: http://www.uab.edu/education/studentservices/general-information/checklists. Admission requirements are located at the following link: https://www.uab.edu/education/studentservices/admission-requirements.

The M.A.Ed. programs satisfy the academic requirements for the Alabama State Department of Education Class A Professional Certificate and an M.A.Ed. degree. The Ed.S. programs satisfy academic requirements for the Alabama State Department of Education Class AA Professional Certificate and an Ed.S. degree. See also the section “Education (General Information)” earlier in this catalog.

The M.S. in Instructional Design and Development program requires a minimum of 30 credit hours and is a fully online program. All prospective students must apply for admission through the Graduate School.

The program leading to the Doctor of Philosophy (Ph.D.) degree in early childhood education is sufficiently flexible to accommodate the interests and previous preparation of the student, but it must include an internship and a substantial research component culminating in the completion of a dissertation. The minimum admission requirements are those of the UAB Graduate School. However, admission is highly selective, and most successful applicants have qualifications much higher than the minimum. Admission is open with ongoing application considerations. Application packets must be complete in the Graduate School office before the applicant can be considered for the program.

ECE-Early Childhood Educ Courses

ECE 545. Curriculum for Young Children: Math Science and SS. 3-6 Hours.
Basic knowledge of curriculum and concepts of mathematics, science, and social studies for young children. Child growth and development as basis for planning and teaching mathematics, science, and social studies to young children. Teaching methods and use of instructional media. Practicum experience required.
ECE 546. Comm Arts/Reading Young Child. 3-6 Hours.
Nature of reading and language arts experiences for children grades Pre-K-3. Media, materials, experiences, programs, and strategies to facilitate development of communicative abilities with emphasis on preserving and maintaining creative expression. Integration of learning in areas of listening, speaking, reading, composition, literature, handwriting, spelling, and other communication arts. Laboratory experiences required.

ECE 548. Infant/Toddler Development. 3 Hours.
Study of human development within an ecological context from before birth to three years of age. Course covers social-emotional, physical, cognitive, language, and creative development of the infant and toddler in the home and also in programs for very young children.

ECE 549. Edu Environment: Inf/Todd/Par. 3-6 Hours.
Study of infant (or toddler) development as it relates to the organization of a parent/infant (or toddler) educational program. Information concerning program management, observation of parent/infant (or toddler) interaction, development and sequencing of activities, creation and evaluation of materials, and an examination of techniques and procedures for parent involvement and education. Actual experience in working with a parent/infant (or toddler) program will be an integral part of the course. Prerequisite: ECE 548 or equivalent.

Prerequisites: ECE 548 [Min Grade: C]

ECE 620. Introduction to Curriculum and Teaching in Cultural & Familial Contexts. 3 Hours.
Developing knowledge of early childhood curricula for young children and their families in a variety of cultural contexts. Relationship of child growth and development and family empowerment in planning and implementation of curriculum.

ECE 630. Cognitive Curriculum ECE. 3 Hours.
Mathematics and science for young children based on constructivism. Topics include children's thinking, particularly in physical-knowledge, group games, and situations in daily living. Developmental oral autonomy is also included. Field experiences required.

ECE 631. Programs for Young Children. 3 Hours.
Basic knowledge of organizing and administering early childhood programs, infancy through third grade, in a variety settings. Provides an overview of functions of program administration including pedagogy, accreditation, organizational development and systems, human resources, collaboration, and advocacy. Field experiences required.

ECE 632. Young Children and Their Literature. 3 Hours.
Literature for children infancy through third grade; selection, use, and integration of literature in total curriculum. Using literature for reading and writing instruction. Field experiences required.

ECE 633. Social and Emotional Development of the Young Child. 3 Hours.
Topics include the study of social and emotional development, the child's ability to react to and interact with the social environment, temperament, attachment, emotional regulation, and social competence. Field experiences required.

ECE 670. Studying the Young Child in School. 3 Hours.
This course provides an overview of key issues related to analysis of child study in school and the values and limitations of assessment. Candidates will engage in in-depth experiences in evaluating the growth and development of children.

ECE 690. Infant-Toddler Practicum. 1-6 Hour.
Early Childhood Practicum in birth to age three settings.

ECE 691. Practicum Supervision in ECE. 1-3 Hour.
Supervision of practicum students.

ECE 692. Practicum in Primary Education. 1-9 Hour.
Early Childhood Practicum in Kindergarten to third grade settings.

ECE 693. Internship in Early Childhood Education. 3-9 Hours.
Full-time internship for 10 weeks (300 clock hours).

ECE 694. Practicum in Play-based Education for the Young Child. 3 Hours.
Investigate the intrinsic nature of play in the lives of young children; engage in play observations, analyze contemporary theories of play & development, and plan and implement a play-based curriculum inclusive of creativity, curiosity, play, social negotiation, and problem-solving.

ECE 730. Doctoral Seminar I: Issues in Development Theory. 3 Hours.
Special Topics in Early Childhood and Development Studies. Specific topic announced in class schedule.

Prerequisites: GAC Z

ECE 731. Doctoral Seminar II: Children and Society. 3 Hours.
Special Topics in Early Childhood and Development Studies. Specific topic announced in class schedule.

Prerequisites: GAC Z

ECE 732. Doctoral Seminar III: History of Early Childhood Education. 1-3 Hour.
Survey of historical, philosophical, and sociocultural foundation of early childhood programs and policies.

Prerequisites: GAC Z

ECE 734. Logic and Scientific Inquiry. 3 Hours.
Scientific investigation as applied in education. Conceptual issues in research process. Methods of analysis and presentation.

ECE 735. Meaning and Development of Play. 3 Hours.
Nature of play, its importance and how it is nurtured.

ECE 737. Parent Child and School Interface. 3 Hours.
Historical development of parent involvement. Theoretical bases of family-school interactions.

ECE 738. The Consultation Process and the Young Child. 3 Hours.
Skills for working with families, teachers, and professionals in community agencies that serve infants, toddlers, and young children.

ECE 740. Research Apprenticeship. 3-6 Hours.
Planning, implementation, analysis, and presentation of research.

ECE 746. Contemporary Issues in Science Education. 3 Hours.
Crisis atmosphere surrounding science education in American classroom.

ECE 748. Research in Infancy. 3 Hours.
Theoretical and empirical evidence relating to developmental domains for young children.

ECE 749. Advanced Early Childhood Curriculum. 3 Hours.
Historical, philosophical, psychological, and social thought influencing curriculum in early childhood education.

ECE 750. Literacy Before School. 3 Hours.
Written language development of preschool children.

ECE 751. School and Literacy Instruction. 3 Hours.
Primary-level literacy instruction and children's literacy development. Prerequisites: Admission to doctoral program in early childhood education and two courses in language development.

ECE 752. Theory Research Literacy Development Instruction. 3 Hours.
Philosophical and psychological beliefs regarding literacy development.
ECT 760. Current Issues in Education. 2-3 Hours.
Current Issues in Early Childhood Education and Advocacy.

ECT 774. Advanced Seminar in Language Development. 3 Hours.
Relationship of thinking and knowing to language development; strategies for analysis; strengths and weaknesses of techniques of examining language development.

ECT 790. Internship in Early Childhood Education and Development. 3-9 Hours.
Internship.

ECT 791. Field Studies in Early Childhood Education. 1-6 Hour.
Individual Field Projects.

ECT 792. Directed Readings in Research. 3 Hours.
Review of research in early childhood education to gain understanding of conceptual and methodological basis.

ECT 793. Individual Research in Early Childhood Education. 3 Hours.
Recent research in early childhood education; systematic solutions to problems in education.

ECT 794. Current Research Topics in Early Childhood Education. 1-3 Hour.
Philosophical aspects of scientific methods in education; functions of paradigms, theories, and models in inquiry; theory development and validation; major types of experimental and nonexperimental inquiry appropriate to study of educational phenomena.

ECT 798. Non-Dissertation Research. 1-12 Hour.
The course provides for supervised research experience under the direction of a graduate faculty member within the School of Education. The topic for an ECE 798 course must relate to the discipline or specializations within early childhood education and child development.

ECT 799. Dissertation Research. 1-12 Hour.
Doctoral research.
Prerequisites: GAC Z

ECT-Collaborative Teacher Educ Courses

ECT 519. Methods of Reading Assessment, Instruction & Intervention. 3 Hours.
This 3-hour course will address knowledge and skills needed for selecting, administering, analyzing, interpreting, and discussing reading assessments. The foci of the course include utilizing the assessment data for the development of differentiated reading instruction, targeted intervention, and special education referral and review. Minimum grade of C required.
Prerequisites: ECY 600 [Min Grade: C] and ECT 520 [Min Grade: C]

ECT 520. Formative and Summative Assessment. 3 Hours.
In-depth analysis of testing, assessment, and accountability applied to special education. Analysis of applied issues such as standards-based reform, annual yearly progress, response to intervention, and program effectiveness. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities. [Course is for students in the Alternative Masters Program (AMP) only].
Prerequisites: ECY 600 [Min Grade: C]

ECT 521. IEP Programming and Lesson Planning. 3 Hours.
This course focuses on the diagnosis and evaluation of students with disabilities using a variety of developmentally appropriate curriculum-based assessments, criterion referenced, and norm-referenced tests. Emphasis is on the interpretation of information from assessments into Individualized Education Program annual goals and objectives, transition planning, and Response to Intervention planning. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 522. Language and Communication Facilitation. 3 Hours.
This course provides information on communication assessment and intervention procedures useful for teachers of students with disabilities. Includes an overview of normal and typical language development and research on effective naturalistic communication interventions. Candidates will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 523. Instructional Methods. 3 Hours.
This course provides information on research-based instructional strategies for equipping students with disabilities with the skills and knowledge that will help them thrive in the classroom and beyond the school day. Particular emphasis will be placed on general instructional strategies for the acquisition and generalization of skills. In addition, strategies for implementing individualized and effective programming will be addressed. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 524. Sensory, Health and Physical Methods. 3 Hours.
This course introduces research-based assessment and instructional strategies for equipping students with sensory, health, and physical disabilities with the skills and knowledge that will help them thrive in the classroom and beyond the school day. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 525. Positive Behavioral Supports. 3 Hours.
This course presents definition and measurement of behavior, reinforcement strategies, systematic program development, basic formats for classroom instruction, and techniques for monitoring student progress. There is an emphasis on procedures for increasing academic and socially appropriate behavior through simulations and practice exercises. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 526. Assistive and Instructional Technology. 3 Hours.
This course examines the use of computer-based instruction and management systems to facilitate classroom instruction. The course includes issues related to the integration of technology into instructional design, a review and analysis of educational software, an exploration of educational considerations of technology for individuals with disabilities, an evaluation of assistive technology options, and an overview of instructional and managerial computer applications. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]
ECT 527. Collaborative Processes. 3 Hours.
This course provides a variety of collaborative options for supporting students with disabilities. These include collaborating with families, agencies, paraprofessionals as well as other professionals.
Prerequisites: ECY 600 [Min Grade: C]
ECT 528. Legal Issues and Trends. 3 Hours.
This course explores current laws and trends relating to special education.
Prerequisites: ECY 600 [Min Grade: C]
ECT 529. Teaching Literacy and Reading in Inclusive Settings. 3 Hours.
The purpose of this course is to provide teacher candidates with an understanding of a balanced approach to literacy and research-based best practices for supporting literacy development among a diverse population of students. This knowledge affords teachers the ability to choose curricular goals, design instruction, promote student achievement, and assess and/or report student to a variety of stakeholders.
Prerequisites: EDU 500 [Min Grade: C] and ECY 600 [Min Grade: C]
ECT 530. Effective Teaching and Learning. 3 Hours.
This course focuses on the effective teaching and learning of students with disabilities. Course work will focus on planning appropriate lessons that support the student, ways to engage all learners and analyze teaching effectiveness. Candidates will also learn ways of using feedback to guide further learning and ways of using assessment to inform instruction.
Prerequisites: EDU 500 [Min Grade: C] and ECY 600 [Min Grade: C]
ECT 531. Internship in Collaborative Teaching. 3-9 Hours.
These courses are required in UAB’s Alternative Masters Program (AMP) for a Master of Arts in Education with Alternative Class A certification for teaching in the following areas: Collaborative Teacher K-6, Collaborative Teacher 6-12, Early Childhood Special Education, Visual Impairments P-12. The purpose of ECT 531 is to prepare teachers to use Best Practices for teaching within their content area. As stipulated by the ALSDE Administrative Code, determining readiness to serve as a certified teacher shall require competence to teach as demonstrated in an internship of 15 weeks of full-time student teaching. Collaborative Teacher K-6 and 6-12, and Visual Impairments P-12 interns will have two placements to satisfy their K-6 and 6-12 and P-12 certification requirements (i.e., 7.5 weeks in a K-5 placement and 7.5 weeks in a 6-12 placement).
ECT 532. Student Teaching Seminar. 1 Hour.
This course will accompany student teaching/internship to support and extend the efforts of student teaching. The course will focus on the successful completion of edTPA assignments and submission.
ECT 533. Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide information on communication facilitation and assistive and instructional technology applications for young children with delays or disabilities. The course examines (a) the use of various communication systems, (b) naturalistic communication strategies, (c) computer-based instruction and management systems to utilize assistive and instructional technology, (d) issues related to the integration of technology into instructional design, (e) a review and analysis of educational software, (f) an exploration of educational considerations of technology for young children with delays or disabilities, (g) an evaluation of assistive technology options, and (h) an overview of instructional and managerial computer applications. Candidates will incorporate evidence-based decision-making, IFSP and IEP development, and program planning to facilitate communication and provide instruction for young children with delays or disabilities and their families.
ECT 554. Communication & Technology Applications In Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide information on communication intervention, and co-teaching are central components of this course. This course provides information on providing evidence-based instructional strategies and support to young children (K-3) with delays or disabilities. The intent is to equip children (K-3) with the skills and knowledge that will help them thrive in the classroom, as well as other settings. Particular emphasis will be placed on applied teaching strategies for the acquisition and generalization of skills.
ECT 555. Early Primary Curriculum and Methods. 3 Hours.
Universal design, response to intervention, and co-teaching are central components of this course. This course provides information on providing evidence-based instructional strategies and support to young children (K-3) with delays or disabilities. The intent is to equip children (K-3) with the skills and knowledge that will help them thrive in the classroom, as well as other settings. Particular emphasis will be placed on applied teaching strategies for the acquisition and generalization of skills.
ECT 623. Instructional Methods. 3 Hours.
This course provides information on research-based instructional strategies for equipping students with disabilities with the skills and knowledge that will help them thrive in the classroom and beyond the school day. Particular emphasis will be placed on general instructional strategies for the acquisition and generalization of skills. In addition, strategies for implementing individualized and effective programming will be addressed. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 624. Sensory, Health and Physical Methods. 3 Hours.
This course introduces research-based assessment and instructional strategies for equipping students with sensory, health, and physical disabilities with the skills and knowledge that will help them thrive in the classroom and beyond the school day. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 625. Positive Behavioral Supports. 3 Hours.
This course presents definition and measurement of behavior, reinforcement strategies, systematic program development, basic formats for classroom instruction, and techniques for monitoring student progress. There is an emphasis on procedures for increasing academic and socially appropriate behavior through simulations and practice exercises. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 626. Assistive and Instructional Technology. 3 Hours.
This course examines the use of computer-based instruction and management systems to facilitate classroom instruction. The course includes issues related to the integration of technology into instructional design, a review and analysis of educational software, an exploration of educational considerations of technology for individuals with disabilities, an evaluation of assistive technology options, and an overview of instructional and managerial computer applications. Students will incorporate data-based decision making, IEP development and lesson planning to teach students with disabilities.
Prerequisites: ECY 600 [Min Grade: C]

ECT 627. Collaborative Processes. 3 Hours.
This course provides a variety of collaborative options for supporting students with disabilities. These include collaborating with families, agencies, paraprofessionals as well as other professionals.
Prerequisites: ECY 600 [Min Grade: C]

ECT 628. Legal Issues and Trends. 3 Hours.
This course explores current laws and trends relating to special education.
Prerequisites: ECY 600 [Min Grade: C]

ECT 631. Practicum in Collaborative Teaching. 3-9 Hours.
The purpose of ECT 631 is to prepare teachers to use Best Practices for teaching within their content area. As stipulated by the ALSDE Administrative Code, determining readiness to serve as a certified teacher shall require competence to teach as demonstrated in a focused practicum experience. Field experience is required.

ECT 654. Communication and Technology Applications In Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide information on communication facilitation and assistive and instructional technology applications for young children with delays or disabilities. The course examines (a) the use of various communication systems, (b) naturalistic communication strategies, (c) computer-based instruction and management systems to utilize assistive and instructional technology, (d) issues related to the integration of technology into instructional design, (e) a review and analysis of educational software, (f) an exploration of educational considerations of technology for young children with delays or disabilities, (g) an evaluation of assistive technology options, and (h) an overview of instructional and managerial computer applications. Candidates will incorporate evidence-based decision-making, IFSP and IEP development, and program planning to facilitate communication and provide instruction for young children with delays or disabilities and their families.

ECT 655. Early Primary Curriculum and Methods. 3 Hours.
Universal design, response to intervention, and co-teaching are central components of this course. This course provides information on providing evidence-based instructional strategies and support to young children (K-3) with delays or disabilities. The intent is to equip children (K-3) with the skills and knowledge that will help them thrive in the classroom, as well as other settings. Particular emphasis will be placed on applied teaching strategies for the acquisition and generalization of skills. In addition, strategies for implementing individualized and effective programming in all curricular areas will be addressed. Candidates will incorporate evidence-based decision-making, design instructional programs, provide instruction, and monitor the progress of children K-3 with delays or disabilities. The course also focuses on co-teaching and working as a member of the team along with paraprofessionals, related service personnel, general educators, and families.

ECT 679. Advanced Legal Aspects of Special Education. 3 Hours.
Provides students with an in-depth examination of legal information pursuant to individuals with disabilities. The Individuals with Disabilities Education Act and its related amendments, the Americans with Disabilities Act, and Section 504 of the Improvement Rehabilitation Act are major federal laws reviewed in this course. Special education litigation is also addressed during the course.
Prerequisites: ECT 650 [Min Grade: C]

ECT 700. ASD: An Introduction. 3 Hours.
The course provides candidates with an in-depth examination of the characteristics of individuals with autism spectrum disorders (ASD). Specific issues examined during the course include diagnostic and educational criteria as well as current research on etiology and medication. Additionally, the myriad challenges faced by individuals with ASD are examined. A broad overview of evidenced-based practices to support individuals with ASD is presented in the course. A developmental perspective of ASD across the life span is presented, and issues related to play and leisure, sexuality education, environmental supports, transition planning, and daily life skills are explored in the course. The nature and needs of individual with Asperger’s Syndrome are also addressed in this course.
ECT 701. ASD: App of Assessment Inform. 3 Hours.
Candidates taking this course are required to critically review, administer, and interpret the results of common standardized assessments given to individuals with ASD. Additionally, candidates are required to develop informal assessments to monitor the academic and behavioral progress of individuals with ASD. The CAPS/Ziggarut model will be used by candidates to conduct a comprehensive, developmental assessment in order to develop and implement an educational program for a student with ASD.

ECT 702. ASD: Meth Mod to Sev Function. 3 Hours.
Methods course, with special emphasis on low-functioning learners an Individuals with autism spectrum disorders. Particular attention is given effective practices and strategies for teaching and promoting functional and adaptive behavior that will enhance the learner’s social responsibility and independent performance of daily activities.

ECT 703. ASD: Meth High Func Learn- Asp. 3 Hours.
Methods course, with special emphasis on learners with higher functioning autism spectrum disorders and Asperger Syndrome. Particular attention is given effective practices and strategies for teaching and promoting social skill development and proactive social interactions. Autism Spectrum Disorders: Methods for High Functioning Learners and Asperger's Syndrome. Field experience required.

ECT 704. ASD: Collaboration-Consultation. 3 Hours.
This is a collaboration/consultation course designed to increase the candidate’s knowledge and skills in the areas of: (1) foundations of collaboration, consultation and teaming; (2) communication and problem-solving processes, (3) collaborative tools, technology and resources; (4) cultural and linguistic diversity issues related to collaboration; (5) collaboration in instructional and inclusive teams; (6) collaboration with families; and (7) consultation and collaboration with paraeducators, related service personnel, and other ancillary personnel. Leadership and advocacy as well as self-assessment/reflection of one’s collaboration and consultation skills are addressed in the course.

ECT 705. ASD: Accommodating the Needs of Diverse Learners on the Spectrum. 3 Hours.
In this course, candidates will learn a variety of teaching strategies to support students with ASD from diverse backgrounds and those with diverse learning needs to access the general education curriculum. Response to Intervention and differentiated instruction are central components of the course. Candidates will learn a variety of strategies for providing accommodations for students with ASD who present with behavior, communication, attention, and cognitive challenges in general education classroom settings. Strategies for supporting students in general education classrooms in the areas of literacy and math are covered in the course. Candidates will also acquire strategies for facilitating second language acquisition for English Language Learners.

ECT 706. ASD: Advanced Social and Behavioral Methods. 3 Hours.
A major focus of this course is the utilization of applied analysis to support students with ASD who present behavioral challenges. Development of behavioral objectives, data collection procedures, single-subject design and functional behavior assessment are addressed in the course. Strategies for addressing antecedents to behavior and consequences of behavior are explored. Generalization and self-monitoring/self-regulatory strategies are addressed. Candidates will learn a variety of positive environmental supports and classroom management strategies. Strategies for facilitating the development of social skills, including the use of social stories and video modeling, are addressed in the course.

ECT 707. Autism Spectrum Disorders: Transition and Life Skills Programming. 3 Hours.
The transition needs of individuals with ASD from preschool, middle school, high school and post-secondary settings is examined in this course. Transition models, assessment and planning are core components of the course. Facilitating the development of self-advocacy and self-determination skills in individuals with ASD are addressed. Independent living skills and transition to community are included in the course. Transition education curricula and instructional strategies for facilitating successful employment and post-secondary education are addressed in the course. Interagency and interdisciplinary collaboration as well as job placement, training, and supervision, are components of this course.

ECT 708. Autism Spectrum Disorders: Legal, Ethical, and Professional Issues. 3 Hours.
This course has three major components. First, special education legislation and case law related to the IDEA, Section 504, the ADA, FERPA, and the Elementary and Secondary Act are explored. Second, this course requires candidates to examine ethical issues in special education and to develop a personal code of ethics in special education based upon the Alabama Code of Ethics for Educators and the Council for Exceptional Children Code of Ethics. Third, the professional leadership skills of candidates in this course are developed. Development of candidates’ teacher leadership, mentorship, and advocacy skills is undertaken during in the course.

ECT 710. ASD: Practicum. 3 Hours.
To meet the requirements of this course, candidates will engage in a variety of integrated experiences in applied settings, including K-6, 6-12, and community settings. Please refer to the clinical and field experiences handbook for specifics regarding practicum requirements.

ECT 711. ASD: K-6 Internship. 3 Hours.
To meet the requirements of this course, candidates must complete an in-depth clinical experience in a K-6 setting that includes children and youth with ASD. Please refer to the clinical and field experiences handbook for specifics regarding internship requirements.

ECT 712. ASD: 6-12 Internship. 3 Hours.
To meet the requirements of this course, candidates must complete an in-depth clinical experience in a 6-12 setting that includes children and youth with ASD. Please refer to the clinical and field experiences handbook for specifics regarding internship requirements.

ECT 720. Universal Design for Lrn. 3 Hours.
This course covers the following areas: Accommodations/Modifications, Differentiated Instruction, Behavioral Strategies, Positive Learning Environments, Student Engagement, and Demonstration Teaching.

ECT 720L. Field Experience. 1 Hour.
This course covers the following areas: Accommodations/Modifications, Differentiated Instruction, Behavioral Strategies, Positive Learning Environments, Student Engagement, and Demonstration Teaching.

ECT 720R. Action Research. 1 Hour.
This course covers the following areas: Accommodations/Modifications, Differentiated Instruction, Behavioral Strategies, Positive Learning Environments, Student Engagement, and Demonstration Teaching.
ECY-Special Education Courses

ECY 535. Foundations of Early Childhood Special Education. 3 Hours.
This is the introductory graduate course in the early childhood special education program, which is designed to provide an overview of the field of early intervention/early childhood special education (EI/ECSE) and address policy issues, the importance of collaboration, and future directions. Candidates must develop competencies in the areas of historical and philosophical foundations of EI/ECSE, federal, state, and local laws and legal requirements, characteristics of young children with known or suspected disabilities, family-professional partnerships, service delivery options, recommended practices, current policy issues and trends, and professionalism and ethics. Another important aspect of this course is professional development and life-long learning. Candidates must demonstrate a number of research and technology skills such as: accessing resources to support graduate studies; conducting reviews of the early childhood special education resources and literature; using American Psychological Association (APA) professional style writing; utilizing technology to support graduate studies; and identifying professional development resources for life-long learning. Course content and assignments are designed to promote critical thinking, problem solving skills, evidence-based practice application, and resource identification.

ECY 536. Early Intervention and Preschool Curriculum and Methods. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children (birth through five) with known or suspected disabilities and their families from a variety of social, ethnic, and racial backgrounds. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying current curriculum and methods for young children. Special emphasis will be placed on supporting families in all aspects of intervention. Attention will be given to developmentally and individually appropriate practices that facilitate inclusive environments. Candidates will be familiarized with instructional strategies and technologies. Course content and assignments will promote the use of critical thinking skills, problem solving, and technologies as they are applied to instructional programs for young children with known or suspected disabilities and their families. The course objectives will be assessed through completion of the course requirements and class participation. The content of this course is based on evidence-based practices, which integrate the best available research evidence with professional and family wisdom and values. Emphasized throughout this course are the following objectives: how to be a member of a transdisciplinary team in providing services in the natural environment, how to respond to cultural diversity, how to provide services in high-poverty communities and LEAs, and how to utilize evidence-based practices in all aspects of assessment. These priority areas will be addressed throughout the course.

ECY 537. Assessment in Early Childhood Special Education. 3 Hours.
The purpose of this course is to prepare the candidate with knowledge and practical applications regarding the screening and assessment of young children with known or suspected disabilities (ages birth through eight). Both child-level and family-level assessment procedures will be emphasized. The candidate completing this course will be prepared to make professional decisions regarding the screening, assessment, program planning, and progress monitoring of young children with disabilities. Course content and assignments will promote critical thinking and problem solving skills. The content of this course is based on evidence-based practices, which integrate the best available research evidence with professional and family wisdom and values. Emphasized throughout this course are the following objectives: how to be a member of a transdisciplinary team in providing services in the natural environment, how to respond to cultural diversity, how to provide services in high-poverty communities and LEAs, and how to utilize evidence-based practices in all aspects of assessment. These priority areas will be addressed throughout the course.

ECY 538. Physical and Health Care Support in Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children with physical and health impairments. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying typical and atypical motor development and neurodevelopment. Candidates will become proficient in motor skill facilitation, positioning, handling, feeding and health care support. The course objectives will be assessed through completion of the course requirements and class participation.

ECY 539. Transdisciplinary Collaboration and Consultation in Early Childhood. 3 Hours.
This course is designed for students to develop the knowledge, skills, and ability to work collaboratively with other professionals who provide inclusive services to infants and young children with delays or disabilities and their families. Emphasis will be placed on working as members of teams, which include families, early childhood special education, and the related services of physical and occupational therapy. Topics include teamwork, group decision-making, team process, leadership, and communication, the evidence that supports these practices, and how such issues influence services for young children and their families. A significant portion of content/discussion will focus on the roles and functions of various disciplines (including family members) as team members. Case studies will be used in simulations of transdisciplinary teamwork in action.

ECY 600. Introduction to Exceptional Learner. 3 Hours.
An overview of exceptionality as it pertains to children and adults. Both high and low incidence populations will be examined. Each area of exceptionality will be reviewed in terms of etiology, diagnosis, prevalence, remediation, and educational strategies.
ECY 635. Foundations of Early Childhood Special Education. 3 Hours.
This is the introductory graduate course in the early childhood special education program, which is designed to provide an overview of the field of early intervention/early childhood special education (EI/ECSE) and address policy issues, the importance of collaboration, and future directions. Candidates must develop competencies in the areas of historical and philosophical foundations of EI/ECSE, federal, state, and local laws and legal requirements, characteristics of young children with known or suspected disabilities, family-professional partnerships, service delivery options, recommended practices, current policy issues and trends, and professionalism and ethics. Another important aspect of this course is professional development and life-long learning. Candidates must demonstrate a number of research and technology skills such as: accessing resources to support graduate studies; conducting reviews of the early childhood special education resources and literature; using American Psychological Association (APA) professional style writing; utilizing technology to support graduate studies; and identifying professional development resources for life-long learning. Course content and assignments are designed to promote critical thinking, problem solving skills, evidence-based practice application, and resource identification.

ECY 636. Early Intervention and Preschool Curriculum and Methods. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children (birth through five) with known or suspected disabilities and their families from a variety of social, ethnic, and racial backgrounds. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying current curriculum and methods for young children. Special emphasis will be placed on supporting families in all aspects of intervention. Attention will be given to developmentally and individually appropriate practices that facilitate inclusive environments. Candidates will be familiarized with instructional strategies and technologies. Course content and assignments will promote the use of critical thinking skills, problem solving, and technologies as they are applied to instructional programs for young children with known or suspected disabilities and their families. The course objectives will be assessed through completion of the course requirements and class participation.

ECY 637. Assessment in Early Childhood Special Education. 3 Hours.
The purpose of this course is to prepare the candidate with knowledge and practical applications regarding the screening and assessment of young children with known or suspected disabilities (ages birth through eight). Both child-level and family-level assessment procedures will be emphasized. The candidate completing this course will be prepared to make professional decisions regarding the screening, assessment, program planning, and progress monitoring of young children with disabilities. Course content and assignments will promote critical thinking and problem solving skills. The content of this course is based on evidence-based practices, which integrate the best available research evidence with professional and family wisdom and values. Emphasized throughout this course are the following objectives: how to be a member of a transdisciplinary team in providing services in the natural environment, how respond to cultural diversity, how to provide services in high-poverty communities and LEAs, and how to utilize evidence-based practices in all aspects of assessment. These priority areas will be addressed throughout the course.

ECY 638. Physical and Health Care Support in Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children with physical and health impairments. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying typical and atypical motor development and neurodevelopment. Candidates will become proficient in motor skill facilitation, positioning, handling, feeding and health care support. The course objectives will be assessed through completion of the course requirements and class participation.

ECY 639. Transdisciplinary Collaboration and Consultation in Early Childhood. 3 Hours.
This course is designed for students to develop the knowledge, skills, and ability to work collaboratively with other professionals who provide inclusive services to infants and young children with delays or disabilities and their families. Emphasis will be placed on working as members of teams, which include families, early childhood special education, and the related services of physical and occupational therapy. Topics include teamwork, group decision-making, team process, leadership, and communication, the evidence that supports these practices, and how such issues influence services for young children and their families. A significant portion of content/discussion will focus on the roles and functions of various disciplines (including family members) as team members. Case studies will be used in simulations of transdisciplinary teamwork in action.

ECY 670. Practicum in Early Childhood Special Education. 3-6 Hours.
Provides individualized field-based experiences to meet the unique needs of graduate candidates in ECSE. Students complete practicum experiences in settings that include children who present a wide range of disabilities within the 0-3, 3-5, 5-8 year age ranges. This practicum experience is tailored to the unique needs and experiences of each student.

ECY 672. Internship in Early Childhood Special Edu. 3-6 Hours.
Provides individualized field-based experiences that will meet the unique needs of ECSE candidates in the 5th year, nontraditional program. Students complete an internship in settings that include children who present a wide range of disabilities within the 0-3, 3-5, 5-8 year age ranges. This internship experience is tailored to the unique needs and experiences of each student.

ECY 689. Advanced Topics in Special Education/ School Psychometry. 1-6 Hour.
This course is designed to help candidates be scholars in the field of school psychology/psychometry. Candidates will learn the steps to explore, build on, and write about the literature on a topic in school psychology/psychometry. In this way, they will understand how to create new areas of scholarship to extend knowledge on a topic in their discipline.
Prerequisites: ECY 600 [Min Grade: C] and ESP 600 [Min Grade: C]

EDA-Art Education Courses
EDA 534. Methods I: Visual Arts. 3 Hours.
Introduction to teaching visual arts in school settings. Developing basic skills in planning, instruction, and assessment. Admission to Alternative Master's Program required.
EDA 564. Methods II: Visual Arts. 3 Hours.
Preparation to plan, teach and assess the visual arts in school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.

EDA 584. Methods of Teaching Art Lab. 1 Hour.
Methods of Teaching Art Lab required.

EDA 680. Advanced Methods: Visual Arts. 3 Hours.
Advanced methods for teaching the visual arts in grades 6-14. Includes curriculum development, classroom interaction, pedagogical activities, technology applications, source materials, current research, society issues, and cognitive development of students. Current classroom teaching required.
Prerequisites: GAC M

EDA 690. Internship in Art Education N-12. 3-9 Hours.
For Alternative Master's Program students. Observation and student teaching in elementary and secondary schools (15 full weeks in school setting). Approval of internship application required.

EDC-Curriculum Education Courses

EDC 606. The Dynamics of Educational Change. 3 Hours.
Defining roles as change agents; understanding school as unit undergoing change; guiding perspectives in making changes. Prerequisite: Admission to graduate school.

EDC 651. Innovative Practices in Instruction. 3 Hours.
Current issues and special topics in instructional practice; topics vary. May be repeated with different subject areas.

EDC 655. Curriculum Principles and Practices. 3 Hours.
Current curriculum practices; concepts and principles underlying their development.

EDC 656. Developmental Prob and Issues in Curriculum Construc. 3 Hours.
Developmental Prob and Issues in Curriculum Construction includes field study of curriculum in teachers' own schools.

EDC 694. Curriculum Seminar. 1-3 Hour.
Prerequisite: EDC 655 or permission of instructor.
Prerequisites: EDC 655 [Min Grade: C]

EDC 695. Coaching for Effective Instruction. 3 Hours.
This course provides research based and standards based practices to effect instructional change in schools, working collaboratively with children, teachers, and administration.

EDC 707. Introduction to Teacher Leadership. 3 Hours.
This course is intended to be the first course in the Ed.S. program where students will begin their teacher leadership project.

EDC 711. Analysis and Evaluation of Teaching. 3 Hours.
Strategies and models for analysis of teaching. Use of data in evaluating teacher effectiveness. Prerequisite: Master's degree.

EDC 712. Seminar in Curriculum and Instruction. 3 Hours.
Critical issues and research. Development and discussion of individual research. Prerequisite: Master's degree.

EDC 713. Educational Issues and Human Diversity. 3 Hours.
Social, economic, and cultural forces contributing to deprivation: implications for teachers, administrators, and educational staff. Prerequisite: Master's degree.

EDC 720. Problems and Issues in Education. 3 Hours.
An ecological systems approach is used to assist students in focusing on the microsystem, mesosystem, exosystem, and macrosystem as each relates to current problems and issues in education related meeting the needs of diverse populations. Further emphases are placed on transformational teaching and learning, service learning, social justice, and citizenship.

EDC 725. Advanced Study in Social Studies Curriculum. 3 Hours.
Major problems and issues associated with social studies curriculum and instructional practices. Prerequisites: Completion of graduate course in teaching social studies and experience in teaching social studies.

EDC 728. EDS Research Project I. 3 Hours.
Development of research proposal. Proposal must be accepted and approved by appointed faculty committee.
Prerequisites: EPR 596 [Min Grade: C]

EDC 729. EDS Research Project II. 3 Hours.
Development and implementation of research proposal. Proposal must be accepted and approved by appointed faculty committee.
Prerequisites: EDC 728 [Min Grade: C] and EPR 594 [Min Grade: C]

EDC 731. Curricular Design & Implementation. 3 Hours.
Recognizing, assessing, and supporting quality instructional practices; program evaluation. School-based problem research project and field experience.

EDC 732. Culturally and Linguistically Responsive Instruction. 3 Hours.
Culturally responsive instruction, effective instruction of culturally and linguistically diverse (CLD) students, strategies to support academic and linguistic growth of English Learners, outreach to CLD parents and families, and professional learning communities.

EDC 740. Teaching All Learners. 3 Hours.
This course explores Universal Design for Learning to meet the educational needs of diverse populations.

EDC 750. Critical Pedagogy for Diverse Populations. 3 Hours.
Critical analysis and social justice perspectives of historical and current social constructions of ethnicity, race, gender, religion, special needs, SES, and sexual orientation in educational settings will be explored.

EDC 760. Engaging Glocal Communities. 3 Hours.
Engagement of local and global, (glocal)communities through the identification, development, and implementation of grant projects, especially for promoting a targeted area of specialization.

EDC 770. Professional Preparation of College Educators. 3 Hours.
The professional preparation of college educators for area of specialization in teaching K-12. Registration for this course requires admission to Pedagogical Studies Concentration or instructor permission.

EDC 780. Expanding Literature on Responsive Methodologies. 3 Hours.
The expansion of literature on responsive methodologies in a targeted area of specialization.

EDC 791. Field Studies. 1-3 Hour.
Participation in field studies related to a targeted area of specialization.

EDC 793. Directed Reading. 1-3 Hour.
Review of literature to expand understanding of conceptual and methodological basis in a targeted area of specialization.

EDC 795. Selected Topics. 1-3 Hour.
Recent studies in the education of diverse populations; systematic solutions to problems in a targeted area of specialization.
EDC 797. Dissertation Seminar. 3-6 Hours.
Doctoral Seminar.

EDC 799. Dissertation Research. 1-12 Hour.
Doctoral dissertation.
Prerequisites: GAC Z

EDR-Reading Education Courses

EDR 521. Reading in Content Areas. 1 Hour.
Application of principles of reading process to content-area materials and instruction. Designed for pre-service teachers. Field experience required concurrently with the field experience in a teaching methods course. Supervision fee $100.

EDR 540. Developmental Reading I. 1-4 Hour.
Materials and methods. Emphasis on planning balanced program and understanding reading process. Includes field experiences. Prerequisite: Admission to 5th-Year Program.
Prerequisites: EEC 612 [Min Grade: C]

EDR 541. Literature for Adolescents. 3 Hours.
Literary works written for or about adolescents.

EDR 543. Developmental Reading II. 1-4 Hour.
Reading process as it relates to content area materials. Includes field experiences. Prerequisite: Admission to 5th-Year Program.
Prerequisites: EEC 612 [Min Grade: C]

EDR 551. Reading in Content Areas. 3 Hours.
Reading process; evaluation of content area materials; analysis of different content area textbooks; meeting individual differences. Supervision fee $100.

EDR 600. Disciplinary Literacy P-12. 3 Hours.
The purpose of this course is to provide candidates with the foundational knowledge to design or implement an integrated, comprehensive, and balanced curriculum. Specifically, candidates will gain an understanding of the reading and writing relate to the disciplines and to local, state, national, and professional standards. Candidates will develop an understanding of how to implement curriculum based on students’ prior knowledge, world experiences, and interests. Additionally, candidates will explore specific instructional strategies for supporting students as agents of their own learning to develop the ability to be critical consumers of the discipline. This knowledge affords teachers the ability to ultimately evaluate curriculum to ensure that instructional goals and objectives meet the reading and writing demands of the content area and/or discipline.

EDR 640. Reading Improvement Workshop. 3-6 Hours.
For inservice teachers of reading. Specific content varies according to needs of teachers.

EDR 650. Teaching Reading P-12. 3 Hours.
Understanding of reading process. Nature of reading programs; readiness motivation, methods, skills, assessment, evaluation, materials, and resources.

EDR 652. Pre and Early Reading Instruction. 3 Hours.
Theoretical bases, procedures, techniques, and materials for prereading and reading instruction. Prerequisite: Developmental reading course.

EDR 653. Literature for Grades P-12. 3 Hours.
Emphasis on needs of children, selection of books, societal issues in children’s literature.

EDR 654. Dyslexia Research, Education & Advocacy. 3 Hours.
The purpose of this course is to provide candidates with an understanding of a balanced approach to literacy and research-based best practices for supporting literacy development among a diverse population of students. Additionally, this course provides knowledge of the approaches available to specialize curriculum for meeting the exceptional needs of students.

EDR 655. Reading Assessment and Evaluation. 3 Hours.
Examines evaluation techniques such as observation, standardized oral and silent reading tests and informal reading inventories such as miscue analysis.

EDR 659. Research and Problems in Reading. 3 Hours.
For teachers in elementary and early childhood education.

EDR 690. Internship in Reading. 1-3 Hour.
Supervised experience with children with reading difficulties. Prerequisites: Admission to reading certification program, permission of instructor and department.

EDR 701. Advanced Diagnosis and Remediation of Reading. 3 Hours.
Examination of serious reading disabilities; diagnosis, possible remediation strategies, and development; diagnosis, possible remediation strategies, and development of remediation plan in lab setting. Prerequisites: Master’s degree and M.A.-level diagnostic reading course or permission of instructor.

EDR 702. Reading: Theoretical Foundations. 3 Hours.
Relates concepts of learning, development, and linguistics to reading-learning process; emphasis on current theory; implications for program planning and classroom practice. Prerequisites: EDR 650 or permission of instructor, and master’s degree.
Prerequisites: EDR 650 [Min Grade: C]

EDR 703. Advanced Research in Reading. 3 Hours.
Research Prerequisites: EDR 650 and master’s degree.
Prerequisites: EDR 650 [Min Grade: C]

EDR 704. Field Experience in Reading. 3-6 Hours.
Supervised field experiences under direction of qualified reading consultant or supervisor in school setting. Prerequisites: Admission to Sixth-Year Program for Reading Teacher and permission of instructor.

EDR 705. Reading Instruction Seminar. 3 Hours.
Examination of trends and issues in field of reading. Topics determined by each class. Prerequisites: Master’s degree and 9 graduate hours in reading or permission of instructor.

EDR 706. Research. 1-3 Hour.
Research Prerequisites: Master’s degree and permission of instructor.

EAC-Elm Early Childhood Courses

ECE 502. Primary Math Methods. 1-4 Hour.
Materials and methods on emergent numeracy. Field experience required.

ECE 505. Children’s Literature in Elem. and Early Childhood. 3 Hours.
Prerequisites: EDU 500 [Min Grade: C] and EEC 650 [Min Grade: C]
EEC 506. Language Arts in Elementary and Early Childhood Ed., 1-4 Hour.
Materials and methods. Communication-based approach in developing effective language arts program. All aspects of language arts program addressed. Field experiences required.
Prerequisites: EEC 600 [Min Grade: C] and EEC 612 [Min Grade: C] and EEC 650 [Min Grade: C]

EEC 512. Math in EC and Elementary Educ. 3 Hours.
Material and methods of teaching mathematics. Emphasizes scope, sequence, and content of the mathematics program. Computation skills and problem solving are stressed. Includes field experiences. Admission to 5th-Year Program.

EEC 513. Science in EC and Elem Edu. 3 Hours.
Scope, sequence, materials, and methods. Emphasis on teaching and the development of content and process skills. Field experiences completed in conjunction with practicum. Admission to 5th-Year Program.

EEC 514. Soc Studies in EC and Elem Edu. 3 Hours.
Scope, sequence, and content of elementary school social studies curriculum. Teaching strategies, program articulation, and instructional planning. Field experiences completed in conjunction with practicum. Admission to 5th-Year Program.

EEC 515. Learning Environments through Positive Behavior Support. 1-3 Hour.
Theoretical approaches that focus on child centered curriculum, classroom management, discipline strategies and cultural, linguistic, and developmentally appropriate instruction. Field experience required.

EEC 521. Methods of Teaching Foundations of Reading Development. 3 Hours.
This 3-hour foundations of reading methods course will prepare educators with content knowledge of scientific and evidence-based foundations of the cognitive, linguistic, socio-cultural, and motivational influences for early language and literacy development. The course presents scientifically proven instructional methods, strategies, techniques, and materials, with focused considerations for brain processes of reading, that are needed to successfully teach reading to P-6 students. Specific topics will include the teaching oral language development (expressive and receptive), concepts about print, early orthography, and beginning reading skills (phonemic awareness, alphabet knowledge, high frequency words, phonics, decoding, and encoding/spelling). Extensive field experience required.

EEC 522. Methods of Teaching the Development of Reading Comprehension. 3 Hours.
This three-hour course will prepare educators to teach foundations of reading development using evidence-based instructional practices. Specific topics include promoting academic language development, including vocabulary development; promoting comprehension and analysis of literary and informational texts; and developing the reading-writing connection. Extensive field experience required.

EEC 523. Methods of Reading Assessment, Instruction, & Intervention. 3 Hours.
This course will address the use of formal and informal assessment procedures used to design and evaluate robust reading instruction and intervention for children in preschool through high school. The focus of the course includes the knowledge and skills needed to choose and administer appropriate reading assessments for a variety of purposes, data-based decision making to guide instructional planning and intervention design, and understanding struggling readers, including those with reading disabilities. Instruction will be delivered within a context of an ecological, collaborative, problem solving model. Students will be guided to apply both formal and informal assessment in a problem-solving model aimed at the design of robust reading instruction. An emphasis will be placed on creating multi-tiered systems of support (MTSS) for increasing reading achievement among all students. Extensive field experience will be required. Admission to TEP required.

EEC 540. Advanced Workshop in Education: Methods to Support English Learners. 1-3 Hour.
Strengthen proficiency in teaching English Learners in the mainstream classroom. Develop understanding of second language acquisition, culturally responsive teaching, accommodations for varying language levels, and appropriate assessments for English Learners. Practice planning, implementing, and managing sheltered instruction.

EEC 593. Individual Readings. 1-3 Hour.
Individualized readings on special topics.

EEC 594. Field Work in Education. 1-6 Hour.
Observation and participation experiences with children.

EEC 600. Transition into P-6 Teaching. 3 Hours.
Introduction to the teaching profession (Alternative Master's Program, Elementary/Early Childhood Education).

EEC 610. Curriculum Development in Teaching. 3 Hours.
Curriculum decisions, planning and implementation.

EEC 612. Models of Teaching. 3 Hours.
Developing knowledge of curriculum and instruction. Selecting and applying specific teaching strategies. Includes practicum experiences.

EEC 615. Collaborative Learning Spaces - Designing and Developing. 3 Hours.
Introduction to the maker movement in P-6 STEM education. Explorations of the history of the maker movement in K-12 education, collaborative learning spaces, interdisciplinary connections, maker projects, curriculum, instructional strategies, assessment tools, and learning theories that support student-driven projects.

EEC 617. Engineering for P-6 Students. 3 Hours.
Introduction and exploration of the different fields of engineering, concepts, and content related to each field, engineering design process, and practices, the Next Generation Science Standards, curricular materials and resources, the latest research on engineering in P-12 schools, and assessments necessary to design and develop research-based interdisciplinary curricula for students in grades P-6.

EEC 620. Teaching Mathematics K-6. 3 Hours.
Issues and approaches in early childhood and elementary mathematics; research and implementation for instruction.
Prerequisites: EEC 660 [Min Grade: C]

EEC 621. Teaching Language Arts P-12. 3 Hours.
Issues and approaches in teaching early childhood and elementary school language arts. Implications of research for instruction.
EEC 625. Critical Pedagogy Advocacy Collaboration. 3 Hours.
Encompasses current issues in education from critical, postmodern, and feminist perspectives. Issues of advocacy, collaboration, equity, social justice, racism, sexism, and the marginalization of minorities in education will be explored.

EEC 626. Mathematics Coaching Grades K-2. 3 Hours.
Provides content knowledge and pedagogical strategies to empower instructional coaches to improve classroom teacher and instructional coach effectiveness and student achievement in mathematics. Includes authentic assessments requiring utilization of data and current research to provide intervention to effectively respond to mathematics difficulties. Includes facilitating coaching cycles with initial certification candidates and mentoring novice teachers.

EEC 627. Mathematics Coaching Grades 3-5. 3 Hours.
Content knowledge and pedagogical strategies to empower instructional coaches to improve classroom instruction and student achievement in mathematics. Includes authentic assessment requiring utilization of data and current research to provide intervention to effectively respond to mathematics difficulties. Includes facilitating coaching cycles with colleagues and novice educators.

EEC 633. Classroom Applications of Constructivist Theory. 3 Hours.
This course provides practical classroom applications of constructivist principles in teaching and learning.

EEC 650. Systematic Reflections About Teaching. 3 Hours.
Theory and practice of reflective inquiry in the elementary classroom which includes observations, data collection, analysis, and narrative reporting. Prerequisite: Admission into Graduate School.

EEC 660. Reading in Teaching and Learning. 3 Hours.
Introductory course is designed to assist the student in locating, analyzing, and synthesizing current research in early childhood and elementary education.

EEC 670. Studying the Child in School. 3 Hours.
Analysis of child study in school; values and limitations of assessment.

EEC 671. Creative and Affective Experiences. 1-3 Hour.
Nature and nurture of creativity through creative learning experiences. Maintaining and preserving creative expression throughout curriculum.

EEC 672. Piaget and Perspectives in Learning. 3 Hours.
Piaget's theory of intellectual or cognitive development; applications to elementary and early childhood education.

EEC 673. Teaching in Diverse Society. 3 Hours.
Examination of effective strategies for working with diverse populations.

EEC 674. Language Development. 3 Hours.
Developmental processes involved in language, relationship to education programs.

EEC 675. Teaching in the Urban School. 3 Hours.
Methods and materials; evaluation of school and school-related programs for equalizing educational opportunity.

EEC 677. Readiness for Learning. 3 Hours.
Preschool and primary level language development and literacy development; assessment techniques.

EEC 690. Internship in P-3/3-6. 3-9 Hours.
Supervised teaching in an early childhood (P-3) and/or an elementary (3-6) program. The student gradually assumes responsibility for planning and teaching for the entire class (minimum of 15 weeks). The internship experience includes supervision in working with professional resource professionals and parents. Approval of application for Internship in P-3/3-6 required.
Prerequisites: EDR 540 [Min Grade: C] and EEC 502 [Min Grade: C] and EEC 540 [Min Grade: C] and EEC 506 [Min Grade: C] and EEC 512 [Min Grade: C] and EEC 513 [Min Grade: C] and EEC 514 [Min Grade: C]

EEC 691. Practicum in ECE/ELEM. 1-3 Hour.
Practicum in Early Childhood Education and Elementary Education.

EEC 692. Curriculum Projects. 1-6 Hour.
Field projects in curriculum modifications and improvement of classroom practice.

EEC 693. Independent Studies. 1-3 Hour.
Independent Study in Elementary and Early Childhood Education.

EEC 694. Field Study. 1-6 Hour.
Field study.

EEC 695. Practicum Supervision in ECE/ELE. 2-6 Hours.
Supervision of practicum students.

EEC 696. Internship Seminar. 1-3 Hour.
Course will accompany the 9 semester hour internship (EEC 690) to support and extend the efforts of student teaching. The course will focus on problem-solving related to classroom situations such as classroom management, grading, professionalism and ethics, legal issues, teacher rights, and others that occur during the internship.

EEC 702. Administration and Supervision Prog Young Children. 3 Hours.
Evaluation, decision making, supportive services, staff development, community interaction strategies.

EESL-English as Second Language Courses

EESL 510. Second Language Acquisition. 3 Hours.
An in-depth look at major theories of second language acquisition. Exploration of learning environments, programs, home language, culture, and other factors that influence second language acquisition. This course entails 30 hours of field experiences. Required for the Alternative Master's.

EESL 512. Curriculum, Program, Policies. 3 Hours.
Introduction to the curriculum, programs, policies, and laws that support new language learners with respect to legal issues, instructional strategies, accommodations, assessments, and support networks and that are grounded in second language acquisition theory. This course entails 5 days of field experiences in an English learner summer program. Required for the Alternative Master's in ESL.

EESL 513. Teaching ESL in a Multicultural Society. 3 Hours.
Designed to introduce students to the goals, principles, and practices of multicultural education and to sensitize students to cultural pluralism in the United States. Required for the Alternative Master's.
EESL 515. Grammar and Linguistics for ESL Teachers. 3 Hours.
A critical study of aspects of Modern English grammar and linguistics that are important for the teaching of English as a Second or Foreign Language. Students will gain an understanding of the major syntactic and semantic phenomena important for teaching ESL/EFL, become familiar with the practical and theoretical literature on teaching English grammar, participate in practical exercises of grammar correction in writing with actual ESL students, and develop and compile classroom activities for teaching points of grammar. Required for the Alternative Master's.

EESL 525. Phonology for Second Language Teachers. 3 Hours.
An introduction to phonology and its application to the teaching of a second or foreign language. Students learn the phonological structure of the English language, analyze examples from language learner data, diagnose pronunciation difficulties experienced by language learners from different first languages, and identify instructional strategies for assisting language learners to perceive and produce challenging sounds. Required for the Alternative Master's.

EESL 530. Methods and Materials of Teaching ESL. 3 Hours.
Examines traditional and current approaches for teaching English to speakers of other languages and curriculum materials, texts, and other resources. This course entails 30 hours of field experiences. Required for the Alternative Master's.

EESL 540. Teaching New Languages Through Reading and Writing. 3 Hours.
Theory, research and practice in reading and writing for second language learners. Implications for teaching reading and writing skills that allow second language learners to participate in the full range of academic situations. This course entails 30 hours of field experiences. Required for the Alternative Master's.

EESL 560. Effective Teaching and Learning. 3 Hours.
This course prepares candidates to plan, teach, and assess second and foreign languages in school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment. This course entails 30 hours of field experience. Required for the Alternative Master's in ESL, French, and Spanish.

EESL 570. Engaging Families and Communities. 3 Hours.
This course prepares professional educators to engage families and communities with the overarching idea of shared responsibility for the English learner's academic success. In this course, UAB candidates will determine what family engagement could look like over time and through multiple levels, starting with individual engagement, the engagement of a school, and of a school system.

EESL 589. Internship Seminar in ESL. 1 Hour.
Provides an opportunity to explore in-depth effective ways to deliver instruction during the internship experience.

EESL 590. Internship in Second and Foreign Languages, N-12. 6 Hours.
Meets the internship requirements of the state code. Interns are engaged in the full scope of teaching activities including planning and delivering lessons, evaluating students, and conducting managerial tasks and other appropriate duties.

EESL 600. TESOL Residency. 0 Hours.
Students in the EdS program's non-certification track must enroll in EESL 008 during the summer term. During their two-week residency at UAB, they will participate in a TESOL institute on campus and also visit TESOL sites off-campus.

EESL 601L. Community English Teaching. 1 Hour.
Students co-teach weekly Community English Classes.

EESL 610. Second Language Acquisition. 3 Hours.
An in-depth look at major theories of second language acquisition. Exploration of learning environments, programs, home language, culture, and other factors that influence second language acquisition. This course entails 8 hours of field experiences at other schools plus 22 hours of working with English learners at one's own school.

EESL 612. Curriculum, Programs and Policies. 3 Hours.
Introduction to the curriculum, programs, policies, and laws that support new language learners with respect to legal issues, support networks, instructional strategies, assessments, and accommodations and that are grounded in second language acquisition theory. This course entails 3 days of field experiences in an English learner summer program.

EESL 613. Teaching ESL in a Multicultural Society. 3 Hours.
Designed to introduce students to the goals, principles, and practices of multicultural education and to sensitize students to cultural pluralism in the United States.

EESL 615. Grammar and Linguistics for ESL Teachers. 3 Hours.
A critical study of aspects of Modern English grammar and linguistics that are important for the teaching of English as a Second or Foreign Language. Students will gain an understanding of the major syntactic and semantic phenomena important for teaching ESL/EFL, become familiar with the practical and theoretical literature on teaching English grammar, participate in practical exercises of grammar correction in writing with actual ESL students, and develop and compile classroom activities for teaching points of grammar.

EESL 617. Teaching English in a Global Context. 3 Hours.
Provides a sociolinguistic perspective on the globalization of English and on the emergence and teaching of English as an International Language. Students explore dialectology, language change, language diversity, language ideology and power, national language policies, World Englishes, the growing number of non-native English speakers, and attitudes of native and non-native English speakers toward the domination of English.

EESL 620. Special Topics in ESL. 3 Hours.
Topics will vary from year to year.

EESL 625. Phonology for Second Language Teachers. 3 Hours.
An introduction to phonology and its application to the teaching of a second or foreign language. Students learn the phonological structure of the English language, analyze examples from language learner data, diagnose pronunciation difficulties experienced by language learners from different first languages, and identify instructional strategies for assisting language learners to perceive and produce challenging sounds.

EESL 627. Teaching Adult Language Learners. 3 Hours.
Introduces goals, principles, and practices for teaching English to adult learners, addresses the influence of varying backgrounds on adult language learning, and examines ways to evaluate adults' second language development. After learning to recognize quality components in distinct program models, as outlined by TESOL Standards for Adult Education ESL Programs, students do a critical study of community-based programs and English for Specific Purposes.

EESL 630. Methods and Materials of Teaching ESL. 3 Hours.
Examines traditional and current approaches to teaching English to speakers of other languages and curriculum materials, texts, and other resources. This course entails 40 hours of field experience working with English learners in one's own school.
EESL 637. Methods Teaching English as an International Language. 3 Hours.
Prepares students to teach English as an International Language by using methods, strategies, and techniques appropriate for adults in ESL contexts and for all learners in EFL contexts. Engaged with approaches aligned with TESOL Standards for ESL/EFL Teachers of Adults, students plan state-of-the-art curriculum, instruction and assessment for 5 program settings: adult/community, workplace, college/university, intensive English, and English as a Foreign Language.

EESL 640. Teaching New Languages Through Reading and Writing. 3 Hours.
Theory, research and practice in reading and writing for second language learners. Implications for teaching reading and writing skills that allow second language learners to participate in the full range of academic situations. This course entails 8 hours of field experiences at another school and 32 hours working with English learners in one's own school.

EESL 641. Teaching Emergent Bilingual Learners in the Early Childhood Setting. 3 Hours.
This course prepares candidates to work effectively with emergent bilingual learners in the early childhood setting. Candidates will gain context knowledge needed to design curriculum, including literacy, appropriate for emergent bilingual learners and will learn how culture and home language impacts learning additional languages.

EESL 643. Promoting Global Peace through TESOL. 3 Hours.
This course guides graduate students in understanding and facilitating the promotion of global peace within and out of the TESOL classroom through listening, speaking, reading and writing. The goal of this course is for educators to learn to use the tools of negotiation, arbitration, and mediation with an overarching focus on peacekeeping, peacemaking, and peacebuilding.

EESL 647. Instruction and Assessment: Reading and Writing. 3 Hours.
Addresses linguistic, sociocultural, psychological, and educational factors that affect literacy development of English as an additional language. Grounded in theoretical and practical aspects of teaching second language (L2) reading and writing to adolescents and adults in diverse communities, students learn to implement effective instructional strategies for promoting literacy in English as an additional language. To measure attainment of L2 reading and writing skills, students learn to design and conduct authentic assessments and to administer standardized assessments.

EESL 650. Strategies for Teaching Math and Science to ELLs. 3 Hours.
Provides knowledge and strategies for making math and science accessible to ELLs at all grade levels, K-12. Classroom teachers will learn to make accommodations for teaching ELLs within a sheltered instruction framework.

EESL 657. Instruction and Assessment: Listening and Speaking. 3 Hours.
Examines how spoken communication is structured so that it is socially appropriate and linguistically accurate. Students learn principles and best practices for the contextualized teaching of second language (L2) listening and speaking skills to adolescent and adult learners. After exploring the purposes, types, and availability of formal testing tools to assess the attainment of these skills in English as an additional language, students also learn to generate and conduct their own tests for assessing L2 listening and speaking.

EESL 660. Effective Teaching and Learning. 3 Hours.
This course prepares candidates to plan teach and assess second and foreign languages in school settings; making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment. This course entails 30 hours of field experience. Required for the traditional Master's in ESL.

EESL 670. Engaging Families and Communities. 3 Hours.
This course prepares professional educators to engage families and communities with the overarching idea of shared responsibility for the English learner's academic success. In this course, UAB candidates will determine what family engagement could look like over time (in school years) and through multiple levels, starting with individual engagement, the engagement of a school, and of a school system.

EESL 677. Field Studies. 1-3 Hour.
Students participate in field studies related to the teaching of English as a second or foreign language.

EESL 680. Research in ESL. 3 Hours.
Primary types of research conducted in second language teaching and learning and how these methods can be used to inform teaching. Introduction to classroom-based second language research approaches.

EESL 681. National Boards in English as a New Language. 3 Hours.
This course prepares experienced teachers for National Board Candidacy in English as a New Language (ENL). Students enrolled in this course may be either pre-candidates or candidates for National Board Certification.

EESL 687. English for Specific Purposes. 3 Hours.
This inquiry-focused course guides emerging teachers in experiencing the differentiated facets of working in adult ESL and EFL environments. Students explore English for Specific Purposes and related issues in Intensive English Programs, English for Occupational Purposes, Program Administration, and English as an International Language. Students observe classes in regional IEPs, develop an EOP program, receive hands-on experience in administration, apply research to various adult EIL teaching situations, and do an in-depth study of an EFL context.

EESL 689. Seminar in ESL. 1 Hour.
Provides an opportunity to explore in-depth effective ways to deliver instruction during the internship experience. Must be taken concurrently with EESL 690.

Prerequisites: EESL 610 [Min Grade: C]

EESL 690. Internship in Second and Foreign Languages, P-12. 3 Hours.
Meets the internship requirements of the state code. Interns are engaged in the full scope of teaching activities including planning and delivering lessons, evaluating students, and conducting managerial tasks and other appropriate duties. This course entails 2 weeks of internship in an English learner summer program. Approval of internship application for the traditional master's.

EESL 697. ESL Practicum. 1-3 Hour.
In this practicum course, prospective ESL/EFL teachers shadow a professional ESL teacher when teaching an Academic English class. As needed, they also provide specialized support for the ESL students in that class. To enhance their professional growth, these prospective teachers share their reflections and newly-acquired competencies with the EESL 697 course instructor.
EESL 698. Teaching Apprenticeship. 2-3 Hours.
This required teaching apprenticeship is housed in a standards-based course that offers practical application of the knowledge and skills learned in other courses for teaching ESL. After having completed one semester of structured observations of professional ESL educators and participated in corresponding debriefings, novice teachers engage in the full scope of ESL teaching activities. They plan and deliver lessons, assess learners and their language development, and conduct managerial tasks and other appropriate duties.
Prerequisites: EESL 697 [Min Grade: C]

EESL 717. Teaching English in Global Context. 3 Hours.
This course provides a sociolinguistic perspective on the globalization of English and on the emergence and teaching of English as an International Language. Students explore dialectology, language change, language diversity, language ideology and power, national language policies, World Englishes, the growing number of non-native English speakers, and attitudes of native and non-native English speakers toward the domination of English.

EESL 737. Teaching English as an International Language. 3 Hours.
The primary purpose of this course is to guide educators in exploring the teaching of English as a second, new, or foreign language to English learners of all ages. With the goal of expanding an educator's repertoire for teaching speakers of languages other than English, this course considers the relevance of historical approaches and methods used in language teaching during the past century and reviews language methods and approaches used in today's ESL and EFL classrooms. Educators analyze selected methods and approaches in differing contexts that include English as a Second Language (ESL), English as a Foreign Language (EFL), and English as an International Language (EIL) or English as Lingua Franca (ELF).

EESL 743. Promoting Global Peace through TESOL. 3 Hours.
This course guides doctoral students in understanding and facilitating the promotion of global peace within their classroom and educational setting as well as in other settings, both locally and globally.

EESL 747. Instruction and Assessment: Reading and Writing. 3 Hours.
This course explores the linguistic, sociocultural, psychological, and educational factors that affect literacy development in English as a second or foreign language (ESL/EFL). Educators will analyze literacy-learning needs of English learners (ELs) in diverse contexts and multiple age groups and will participate in effective and engaging ways to meet those needs.

EESL 757. Instruction and Assessment: Listening and Speaking. 3 Hours.
Based on linguistic perspectives and language acquisition research from earlier in their careers, educators will use research, experience, and reflection to further inform their own teaching practice in TESOL. To that end, they will explore the complexities of linguistic, sociocultural, psychological, and educational factors that affect ELs' aural and oral development.

EESL 763. Facilitating Intercultural Communicative Competence. 3 Hours.
This course guides doctoral students in understanding and facilitating their students’ intercultural communicative competence within and out of the classroom.

EESL 780. Research in ESL/EFL. 3 Hours.
Exploration of research methods conducted in second and foreign language teaching and applications of these methods to inform teaching in the ESL and/or EFL contexts.

EHS-High School Education Courses

EHS 530. Practicum. 1-2 Hour.
Field experience in school-based setting. Admission to Alternative Master's Program required.
Prerequisites: EDU 500 [Min Grade: C] (Can be taken Concurrently)

EHS 535. Methods I Mathematics 6-12. 3 Hours.
Introduction to teaching mathematics in secondary school settings. Developing basic skills in planning, instruction, and assessment. Supervision fee.

EHS 536. Methods I: English Language Arts, 6-12. 3 Hours.
Introduction to teaching English language arts in secondary school settings. Developing basic skills in planning, instruction, and assessment. Field supervision fee.

EHS 537. Methods I: Science, 6-12. 3 Hours.
Introduction to teaching science in secondary school settings. Developing basic skills in planning, instruction, and assessment. Admission to Alternative Master's Program required. Field supervision fee.

EHS 538. Methods I: Social Science, 6-12. 3 Hours.
Introduction to teaching the social sciences in secondary school settings. Developing basic skills in planning, instruction, and assessment. Supervision fee.

EHS 556. Classroom Mgt in Sec Schools. 3 Hours.
Designed to help teachers build their own personal system of discipline, consonant with their philosophies and personalities as well as with realities of students and schools. Emphasis on successful classroom management techniques.

EHS 565. Methods II: Mathematics, 6-12. 3 Hours.
Preparation to plan, teach and assess mathematics in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 535 [Min Grade: C]

EHS 566. Methods II: English Language Arts, 6-12. 3 Hours.
Preparation to plan, teach and assess English language arts in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 536 [Min Grade: C]

EHS 567. Methods II: Science, 6-12. 3 Hours.
Preparation to plan, teach and assess science in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 537 [Min Grade: C]

EHS 568. Methods II: Social Science, 6-12. 3 Hours.
Preparation to plan, teach and assess social science in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 538 [Min Grade: C]

EHS 570. Practicum II. 1 Hour.
Field experience in school-based setting.
EHS 597. Special Problems in Education: Diversity. 3 Hours.
Seminar for graduate students; readings and research projects based on special interests. May be repeated for total of 6 hours. Field Supervision Fee.

EHS 600. Secondary Education Curriculum and Methods I. 3 Hours.
Introductory course in Alternative Masters Program for secondary school education. Developing basic teaching skills and understanding of interdependence among all levels within school and community. Course requires 40 hours of field experiences beyond class meetings.

EHS 612. Advanced Methods: English Language Arts, Grades 6-12. 3 Hours.
Advanced methods for teaching English language arts in grades 6-14. Includes curriculum development, classroom interaction, pedagogical activities, technology applications, source materials, current research, society issues, and cognitive development of students. Current classroom teaching required. Changed to Grades 6-12 (rather than 14) to align with secondary education grade levels.

EHS 614. Advanced Methods: Social Sciences, Grades 6-12. 3 Hours.
Advanced methods for teaching the social sciences in grades 6-14. Includes curriculum development, classroom interaction, pedagogical activities, technology applications, source materials, current research, society issues, and cognitive development of students. Current classroom teaching required.

EHS 615. Advanced Methods: Science, Grades 6-12. 3 Hours.

EHS 616. Advanced Methods: Mathematics, Grades 6-12. 3 Hours.

Prerequisites: EHS 565 [Min Grade: C]

Innovative practices in planning, instructing, and evaluating high school area studies. May be repeated if taken in different areas of study.

EHS 680. National Board Seminar for Secondary Education. 3 Hours.
Course involves 18 Saturday seminars during the school year to prepare teachers for National Board Candidacy and to support candidates as they go through the certification process. Students enrolled in this course may be either pre-candidates or candidates for National Board Certification.

EHS 681. Special Topics in Education. 1-6 Hour.
Prerequisite: Permission of instructor.

EHS 690. Intern Seminar in Sec Edu. 1-3 Hour.
Observation and teaching in secondary school (15 weeks minimum). Includes attendance at several seminars on campus. Unconditional acceptance in Alternative Master's Program and approval of application for internship required.

EHS 691. Secondary School Internship. 3-9 Hours.
Observation and teaching in secondary school (15 weeks minimum). Includes attendance at a weekly seminar on campus. Prerequisites: Unconditional acceptance in 5th-Year Program and approval of application for internship.

EHS 692. Field Studies (Selected Educational Settings). 1-3 Hour.
Field Studies.

EHS 693. Advanced Field Experience. 3 Hours.
Field Studies.

EHS 698. Individual Research in Education. 1-6 Hour.
Research Prerequisite: Permission of instructor.

EHS 720. Individual Research in Education. 3-6 Hours.
Research Prerequisites: Master's degree and permission of instructor.

ESP-Edu School Psychometry Courses

ESP 600. Seminar in School Psychometry. 3 Hours.
This course is a survey of school psychometry ethics, the historical foundations, guidelines, and standards, legal issues, roles and functions, and contemporary professional issues in the field of school psychometry. Specifc items/ideas of discussion will include roles and functions of school psychologists and IDEA 2004 law, NCLB, confidentiality, NASP code of ethics, and cultural and human diversity.

ESP 627. Practicum in Schl Psychometry. 1 Hour.
The purpose of this course is to ensure that the candidate has met proficiency criteria in areas related to the administration, scoring, and interpretation of frequently administered standardized instruments in the following areas: Intellectual/cognitive assessments; Global achievement assessments; Adaptive behavior assessments; Early childhood assessments; Behavioral assessments; Vocational/transition assessments.

Prerequisites: (ESP 600 [Min Grade: C] and ESP 628 [Min Grade: C] and ESP 629 [Min Grade: C])

ESP 628. Indiv Assess Child/Youth I. 3 Hours.
This course is designed to prepare students to access children and youth in a manner that reflects federal and state mandates and regulations. Students are prepared to appropriately select, administer, and interpret cognitive assessment instruments designed to answer questions related to eligibility determination and, intervention programming.

ESP 629. Indiv Assess Child/Youth II. 3 Hours.
This course is designed to prepare candidates to access children and youth in a manner that reflects federal and state mandates and regulations. Candidates are prepared to appropriately select, administer, and interpret social/emotional, behavioral, and achievement assessment instruments designed to answer questions related to eligibility determination and, intervention programming.

ESP 630. Applied Neuropsychology in the School. 3 Hours.
ESP 630 is designed to provide foundational content in organization of the human nervous system and brain behavior relationships to inform functional skills in interpretation of cognitive test performance from neuropsychological perspective and administration of screening tests. This course will also include hands-on practical administration, scoring, and interpretation of the well-known neuropsychological test battery: NEPSY-II. Upon completion of this course, students should be familiar with how such assessments relate to educational diagnoses, special education eligibility, interventions and recommendations. Minimum grade of C required.

Prerequisites: ECY 600 [Min Grade: C] and ESP 627 [Min Grade: C] and ESP 628 [Min Grade: C] and ESP 629 [Min Grade: C] and ESP 600 [Min Grade: C]
ESP 631. Crisis Intervention & Prevention in Schools. 3 Hours.
This 3 hour course will train candidates in the PREPaRE School Crisis Prevention & Intervention Model on how to establish and serve on school safety and crisis response teams. Incorporates (a) prevention (b) protection, (c) mitigation, (d) response, and (e) recovery. It also incorporates the U.S. Department of Education’s Readiness and Emergency Management for Schools (REMS) guidance, and the Incident Command System (ICS) as delineated by the National Incident Management System (NIMS) from the Federal Emergency Management Agency (FEMA). Upon completion of this course candidates will receive PREPaRE Certificates of Completion. Minimum grade of C required.
Prerequisites: ECY 600 [Min Grade: C] and ESP 600 [Min Grade: C]

ESP 632. Consultation & Intervention for Learning & Behavior Problems. 3 Hours.
This 3 hour course will provide candidates with the knowledge base needed to design, implement, and evaluate effective academic interventions and prevention programs. The course is designed to build on consultation and assessment skills to work with teachers to develop programs for students in general and special education. Issues pertaining to interventions with students from culturally diverse groups will be presented. Minimum grade of C required.
Prerequisites: ECY 600 [Min Grade: C] and ESP 600 [Min Grade: C] and ECT 627 [Min Grade: C] and EDC 732 [Min Grade: C]

ESP 689. Internship in School Psychometry and Psychology. 3-9 Hours.
This course is an individualized field-based experience that meet the internship requirements of the state code. Interns are engaged in the full scope of School Psychometry activities including individual assessment, data based decision-making, referral and MEDC meetings, and other appropriate duties.

IDD-Instructional Design Dev Courses

IDD 600. Trends and Issues in Instructional Design. 3 Hours.
This course defines the field of instructional design and technology by exploring its history, current trends and future issues in the field. The course provides insights from leaders in the field, case studies on instructional design in different fields, and interactive activities on the systematic approaches to instructional design.

IDD 610. Instructional Design. 3 Hours.
Instructional Design is a project-based course that includes step-by-step strategies to create instruction using design models, instructional strategies, and technology applications. Learners will study the processes of analysis, design, development, implementation, and evaluation in order to apply real-world training solutions to instructional challenges.

IDD 620. Universal Differential Instructional Design and Development. 3 Hours.
This course gives students an experience in research-based instructional methods and alternative assessment strategies designed to meet the varied instructional needs and preferences of all learners in today’s educational environments.

IDD 630. Performance System Technology. 3 Hours.
This course provides students with practical methods of analyzing and solving human performance problems with an emphasis on development of both non-instructional and instructional interventions. An overview of concepts and current issues related to the design and development of training and performance systems at the macro-level is also provided, allowing learners to explore learning and performance from a broad organizational perspective.

IDD 640. Learning, Cognition, and Instructional Design and Development. 3 Hours.
This course surveys the cognitive science literature that is especially relevant for instructional designers. The course covers major theoretical perspectives in cognitive science and has students read original empirical research. The goal is to prepare IDD students to utilize cognitive science literature in their careers.

IDD 650. Alternate Instructional Design and Development Models. 3 Hours.
This course affords students the opportunity to apply a variety of well-established and emerging instructional design and development models.

IDD 660. Assessment and Evaluation in Instructional Design & Development. 3 Hours.
Students will learn how to assess human attitudes, knowledge and performance, analyze practical data, and evaluate training and human performance programs.

IDD 670. Multimedia Design and Development for Instruction and Training. 3 Hours.
This course will present techniques for the integration of instructional design theory and practice with the current and emerging delivery systems. Students will acquire skills and explore software necessary to develop and produce an original interactive instructional product.

IDD 680. Instructional Design and Development Elective. 3 Hours.
Content will be diversified opportunities to take advantage of specific areas of expertise of faculty, availability of experts in areas not covered in other course work, or original projects that become available.

IDD 685. Project Management in Instructional Design. 3 Hours.
Basics of project management as applied to instructional/learning design projects; introduction of standard terminology, description of typical project phases, and common deliverables expected in each phase.
Prerequisites: IDD 600 [Min Grade: C] and IDD 610 [Min Grade: C] and IDD 620 [Min Grade: C] and IDD 630 [Min Grade: C] and IDD 640 [Min Grade: C] and IDD 650 [Min Grade: C] and IDD 660 [Min Grade: C] and IDD 670 [Min Grade: C]

IDD 690. Research Practicum. 1-3 Hour.
The research practicum is a supervised learning experience in an actual or similar setting to that which instructional designers are employed.

Arts Education

Our UAB Arts Education Program will prepare you for a career as a music or visual arts teacher in the P-12 schools. Our instructors are nationally and internationally renowned teacher educators, scholars, performers, and artists who are active in their respective fields. The UAB Department of Music is accredited and nationally recognized by the National Association of Schools of Music, has the distinction of being Alabama’s first All Steinway School, and offers courses such as music theory and basic and advanced conducting. The UAB Department of Art and Art History is accredited and nationally recognized by the National Association of Schools of Art and Design and has studio courses in ceramics, drawing, painting, new media, photography, graphic design, sculpture, and printmaking.

Music Education

UAB's Graduate Music Education program consists of a Master of Arts degree in Arts Education with a Concentration in Music (Choral and Instrumental) and also an Alternative Master's degree in Arts Education with a Concentration in Music (Choral and Instrumental). The Arts
Music Education

Education program with a Concentration in Music is housed in the Department of Curriculum and Instruction. This program’s first purpose is to train educators in meeting the evolving needs of learners in grades P-12 within today’s rapidly changing society. Its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach that prepares educators to use state-of-the-art instructional strategies in their own classrooms. Its third purpose is to ensure that a quality program is available to pre-service and in-service teachers.

Prospective students should contact the Program Director, Dr. Susan Spezzini, at spezzini@uab.edu (205-934-8357).

UAB Department of Music

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.

Master of Arts in Education: Arts Education - Music Traditional Master’s Program

The MA.Ed. requires 30-33 hours for the Arts Education traditional master’s program in Music Education with concentrations in Choral Music and Instrumental Music. The minimum GPA required for certification is 3.25.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU 521 Foundations of Graduate Study in Music</td>
<td>3</td>
</tr>
<tr>
<td>MU 629 Music Research</td>
<td>3</td>
</tr>
<tr>
<td>Music History</td>
<td></td>
</tr>
<tr>
<td>MU 561 Music Literature Seminar</td>
<td></td>
</tr>
<tr>
<td>MU 564 American Music</td>
<td></td>
</tr>
<tr>
<td>MU 566 Music in World Cultures</td>
<td></td>
</tr>
<tr>
<td>Music Theory</td>
<td></td>
</tr>
<tr>
<td>MU 545 Modal Counterpoint</td>
<td></td>
</tr>
<tr>
<td>MU 548 Orchestration</td>
<td></td>
</tr>
<tr>
<td>MU 555 Form and Analysis</td>
<td></td>
</tr>
<tr>
<td>MU 558 Contemporary Techniques</td>
<td></td>
</tr>
<tr>
<td>Applied Music (student’s field)</td>
<td>3</td>
</tr>
<tr>
<td>MUP 520 Concert Choir</td>
<td></td>
</tr>
<tr>
<td>MUP 521 Chamber Singers</td>
<td></td>
</tr>
<tr>
<td>MUP 535 Wind Symphony</td>
<td></td>
</tr>
<tr>
<td>MUP 536 Jazz Ensemble</td>
<td></td>
</tr>
<tr>
<td>MUP 540 Private Lessons: Voice</td>
<td></td>
</tr>
<tr>
<td>MUP 561 Private Lessons: Flute</td>
<td></td>
</tr>
<tr>
<td>MUP 562 Private Lessons: Oboe</td>
<td></td>
</tr>
<tr>
<td>MUP 563 Private Lessons: Clarinet</td>
<td></td>
</tr>
<tr>
<td>MUP 564 Private Lessons: Saxophone</td>
<td></td>
</tr>
<tr>
<td>MUP 566 Private Lessons: Bassoon</td>
<td></td>
</tr>
<tr>
<td>MUP 571 Private Lessons: Trumpet</td>
<td></td>
</tr>
<tr>
<td>MUP 572 Private Lessons: French Horn</td>
<td></td>
</tr>
<tr>
<td>MUP 573 Private Lessons: Trombone</td>
<td></td>
</tr>
<tr>
<td>MUP 574 Private Lessons: Euphonium</td>
<td></td>
</tr>
<tr>
<td>MUP 575 Private Lessons: Tuba</td>
<td></td>
</tr>
<tr>
<td>MUP 580 Private Lessons: Percussion</td>
<td></td>
</tr>
<tr>
<td>MUP 591 Private Lessons: Violin</td>
<td></td>
</tr>
<tr>
<td>MUP 592 Private Lessons: Viola</td>
<td></td>
</tr>
<tr>
<td>MU 521 Foundations of Graduate Study in Music</td>
<td>3</td>
</tr>
<tr>
<td>MU 629 Music Research</td>
<td>3</td>
</tr>
<tr>
<td>MU 615 Technology in Music Instruction</td>
<td>3</td>
</tr>
<tr>
<td>MU 631 Advanced Methods of Teaching Music N-6</td>
<td>3</td>
</tr>
<tr>
<td>Choral or Instrumental Music Methods Course</td>
<td>3</td>
</tr>
<tr>
<td>MU 662 Advanced Methods of Teaching Secondary Choral Music</td>
<td></td>
</tr>
<tr>
<td>MU 663 Advanced Methods for Teaching Secondary Instrumental Music</td>
<td></td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>ALSDE-approved Diversity Course</td>
<td>3</td>
</tr>
<tr>
<td>EDF 600 Urban Education</td>
<td>3</td>
</tr>
<tr>
<td>EDF 602 Critical Social Issues in American Education</td>
<td></td>
</tr>
<tr>
<td>EDF 606 Social Movements in Education</td>
<td></td>
</tr>
<tr>
<td>EDF 620 Culture and American Education: Race Class and Gender</td>
<td></td>
</tr>
<tr>
<td>ECT 625 Positive Behavioral Supports</td>
<td></td>
</tr>
<tr>
<td>EESL 613 Teaching ESL in a Multicultural Society</td>
<td></td>
</tr>
</tbody>
</table>

Advisor-approved Elective

1 ECY 600 required if survey of special education course not completed previously

Total Hours 33

Master of Arts in Education: Arts Education - Music Fifth Year Alternative Master’s Program

The M.A.Ed. requires a minimum of 46 hours for the Arts Education Fifth Year Alternative Master’s program in Music Education with concentrations in Choral Music and Instrumental Music. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU 531 Methods of Teaching Music</td>
<td>3</td>
</tr>
<tr>
<td>EHS 597 Special Problems in Education</td>
<td>3</td>
</tr>
<tr>
<td>EDR 521 Reading in Context Areas</td>
<td>1</td>
</tr>
<tr>
<td>EDU 500 Education as a Profession</td>
<td>1</td>
</tr>
<tr>
<td>MU 521 Foundations of Graduate Study in Music</td>
<td>3</td>
</tr>
<tr>
<td>EPR 511 Measurement and Evaluation in Education Secondary Ed</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>EHS 690 Intern Seminar in Sec Edu</td>
<td>1</td>
</tr>
<tr>
<td>EMU 690 Internship in Music Education</td>
<td>6</td>
</tr>
<tr>
<td>MU 629 Music Research</td>
<td>3</td>
</tr>
<tr>
<td>MU 615 Technology in Music Instruction</td>
<td>3</td>
</tr>
<tr>
<td>Music Theory (choose 3 hours)</td>
<td>3</td>
</tr>
<tr>
<td>MU 545 Modal Counterpoint</td>
<td></td>
</tr>
<tr>
<td>MU 548 Orchestration</td>
<td></td>
</tr>
<tr>
<td>MU 555 Form and Analysis</td>
<td></td>
</tr>
<tr>
<td>MU 558 Contemporary Techniques</td>
<td></td>
</tr>
<tr>
<td>Music History (choose 3 hours)</td>
<td>3</td>
</tr>
<tr>
<td>MU 521 Foundations of Graduate Study in Music</td>
<td>3</td>
</tr>
<tr>
<td>MU 629 Music Research</td>
<td>3</td>
</tr>
<tr>
<td>MU 615 Technology in Music Instruction</td>
<td>3</td>
</tr>
</tbody>
</table>
MU 561 Music Literature Seminar
MU 564 American Music
MU 566 Music in World Cultures

Applied Music (student’s field)

- **MU 540** Private Lessons: Voice
- **MU 550** Private Lessons: Piano
- **MU 561** Private Lessons: Flute
- **MU 562** Private Lessons: Oboe
- **MU 563** Private Lessons: Clarinet
- **MU 564** Private Lessons: Saxophone
- **MU 566** Private Lessons: Bassoon
- **MU 571** Private Lessons: Trumpet
- **MU 572** Private Lessons: French Horn
- **MU 573** Private Lessons: Trombone
- **MU 574** Private Lessons: Euphonium
- **MU 575** Private Lessons: Tuba
- **MU 580** Private Lessons: Percussion
- **MU 591** Private Lessons: Violin
- **MU 592** Private Lessons: Viola
- **MU 593** Private Lessons: Cello
- **MU 594** Private Lessons: Bass

Music Ensemble (student’s field) choose 2 hours

- **MU 520** Concert Choir
- **MU 535** Wind Symphony
- **MU 536** Jazz Ensemble

Total Hours 40

A concentration is required

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choral Concentration</td>
<td></td>
</tr>
<tr>
<td>MU 532</td>
<td>3</td>
</tr>
<tr>
<td>MU 562</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental</td>
<td></td>
</tr>
<tr>
<td>MU 533</td>
<td>3</td>
</tr>
<tr>
<td>MU 563</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>6</td>
</tr>
</tbody>
</table>

May not be required if previously completed

EMU-Music Education Courses

EMU 503. Methods Teaching Music N-6 Lab. 1 Hour.
Provides public school observation experiences for music education students. Note: Fees will apply.

EMU 690. Internship in Music Education. 3-9 Hours.
Internship in Music Education. Seminar attendance required.

MU-Music Courses

MU 510. Music Technology Workshop. 1-3 Hour.

MU 521. Foundations of Graduate Study in Music. 3 Hours.
Examines the history and contemporary philosophy of music education in the public schools.

MU 529. Choral Tech and Materials. 3 Hours.
Advanced study of the techniques of choral conducting including appropriate gestures, score study, performance practice, choral diction, voice building for choirs, literature selection, rehearsal techniques and working with various types of instrumental accompaniment.

MU 530. Methods of Instrumental Music. 3 Hours.
A study of the instrumental music environment, with an emphasis on administrative topics, materials and literature.

MU 531. Methods of Teaching Music. 3 Hours.
Teaching music in the elementary school environment. Investigation of critical elements in the teaching and learning process as related to music in grades N-6. Permission of instructor required.

MU 532. Methods I: Choral Music. 3 Hours.
Introduction to teaching choral music to adolescent learners. Developing basic skills in planning, instruction, and assessment.

MU 533. Methods I: Instrumental Music. 3 Hours.
Introduction to teaching instrumental music to adolescent learners. Developing basic skills in planning, instruction, and assessment.

MU 545. Modal Counterpoint. 3 Hours.
Important characteristics of vocal polyphonic writing based on modal scales with emphasis on style of Palestrina and other Renaissance composers.

MU 551. Topics in Music Theory. 3 Hours.
Aspects of music theory and analysis. May be repeated for credit.

MU 555. Form and Analysis. 3 Hours.
Principles and techniques of organization in tonal music; analytical methods.

MU 558. Contemporary Techniques. 3 Hours.
Techniques and materials employed in contemporary music, including nonfunctional and nontertian harmony, poly harmony, atonal and serial music, microtones, sound-mass composition, and contemporary notation.

MU 561. Music Literature Seminar. 3 Hours.
Selected topics concerning specific periods, genres, and forms. May be repeated for credit.

MU 562. Methods II: Choral Music. 3 Hours.
Preparation to plan, teach and assess choral music with adolescent learners: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.

MU 563. Methods II: Instrumental Music. 3 Hours.
Preparation to plan, teach, and assess instrumental music with adolescent learners: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.

EMU-Music Education Courses

EMU 503. Methods Teaching Music N-6 Lab. 1 Hour.
Provides public school observation experiences for music education students. Note: Fees will apply.

EMU 690. Internship in Music Education. 3-9 Hours.
Internship in Music Education. Seminar attendance required.

MU 510. Music Technology Workshop. 1-3 Hour.

MU 521. Foundations of Graduate Study in Music. 3 Hours.
Examines the history and contemporary philosophy of music education in the public schools.

MU 529. Choral Tech and Materials. 3 Hours.
Advanced study of the techniques of choral conducting including appropriate gestures, score study, performance practice, choral diction, voice building for choirs, literature selection, rehearsal techniques and working with various types of instrumental accompaniment.

MU 530. Methods of Instrumental Music. 3 Hours.
A study of the instrumental music environment, with an emphasis on administrative topics, materials and literature.

MU 531. Methods of Teaching Music. 3 Hours.
Teaching music in the elementary school environment. Investigation of critical elements in the teaching and learning process as related to music in grades N-6. Permission of instructor required.

MU 532. Methods I: Choral Music. 3 Hours.
Introduction to teaching choral music to adolescent learners. Developing basic skills in planning, instruction, and assessment.

MU 533. Methods I: Instrumental Music. 3 Hours.
Introduction to teaching instrumental music to adolescent learners. Developing basic skills in planning, instruction, and assessment.

MU 545. Modal Counterpoint. 3 Hours.
Important characteristics of vocal polyphonic writing based on modal scales with emphasis on style of Palestrina and other Renaissance composers.

Prerequisites: MU 322 [Min Grade: C]

MU 548. Orchestration. 3 Hours.
Scoring techniques for orchestra, band, and other instrumental groups.

MU 551. Topics in Music Theory. 3 Hours.
Aspects of music theory and analysis. May be repeated for credit.

Prerequisites: MU 322 [Min Grade: C] and MU 325 [Min Grade: C]

MU 555. Form and Analysis. 3 Hours.
Principles and techniques of organization in tonal music; analytical methods.

Prerequisites: MU 322 [Min Grade: C]

MU 558. Contemporary Techniques. 3 Hours.
Techniques and materials employed in contemporary music, including nonfunctional and nontertian harmony, poly harmony, atonal and serial music, microtones, sound-mass composition, and contemporary notation.

MU 561. Music Literature Seminar. 3 Hours.
Selected topics concerning specific periods, genres, and forms. May be repeated for credit.

MU 562. Methods II: Choral Music. 3 Hours.
Preparation to plan, teach and assess choral music with adolescent learners: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.

MU 563. Methods II: Instrumental Music. 3 Hours.
Preparation to plan, teach, and assess instrumental music with adolescent learners: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.

MU 564. American Music. 3 Hours.
Music in the United States from colonial times to the present.
MU 565. The Evolution of Jazz. 3 Hours.
Origins and survey of jazz types and styles. Lectures, recordings, and readings.
Prerequisites: MU 165 [Min Grade: C]
MU 566. Music in World Cultures. 3 Hours.
Characteristics of musical styles found in various cultures throughout the world.
MU 599. Independent Studies. 1-3 Hour.
Directed studies in music. Permission of Department Chair based on written proposal submitted to registration.
MU 615. Technology in Music Instruction. 3 Hours.
Explores ongoing innovations in technology as applied to music instruction.
MU 629. Music Research. 3 Hours.
A study of music research, including both qualitative and quantitative techniques.
MU 631. Advanced Methods of Teaching Music N-6. 3 Hours.
This course engages advanced pedagogical methods and practices for teaching elementary school music.
MU 662. Advanced Methods of Teaching Secondary Choral Music. 3 Hours.
The purpose of this course is to engage the experienced music teacher to delve further into the procedures for operating a successful choral music program in the middle or high school level of public and private school teaching.
MU 663. Advanced Methods for Teaching Secondary Instrumental Music. 3 Hours.
This class is an advanced instrumental methods course focusing on application of the elements of the Education Teacher Performance Assessment (EdTPA), a portfolio-based teacher performance assessment created by the Stanford Center for Assessment Learning and Equity. The course will include advanced content relevant to current best practices and standards for teaching instrumental music.

MUP-Music Courses
MUP 520. Concert Choir. 1 Hour.
Performs choral music representing a variety of periods and styles.
MUP 520L. Concert Choir Learning Lab. 0 Hours.
MUP 521. Chamber Singers. 1 Hour.
Advanced choral group. Performs variety of choral music representing different periods and styles. By audition only. Advanced music-reading skills required. May be repeated for credit.
MUP 535. Wind Symphony. 1-2 Hour.
Performs finest concert band literature. Open to students of all majors. May be repeated for credit.
MUP 535L. Wind Symphony Learning Lab. 0 Hours.
Required Learning Lab for MUP 535 Wind Symphony. Performs finest concert band literature. Open to students of all majors.
MUP 536. Jazz Ensemble. 1 Hour.
Performs classic and contemporary jazz, swing, and rhythm and blues. May be repeated for credit.
Private instruction in voice.
Private instruction in piano.
Private instruction in flute.
Private instruction in oboe.
MUP 563. Private Lessons: Clarinet. 1-2 Hour.
Private instruction in clarinet.
Private instruction in saxophone.
MUP 566. Private Lessons: Bassoon. 1-2 Hour.
Private instruction in bassoon.
MUP 571. Private Lessons: Trumpet. 1-2 Hour.
Private instruction in trumpet.
Private instruction in french horn.
Private instruction in trombone.
MUP 574. Private Lessons: Euphonium. 1-2 Hour.
Private instruction in euphonium.
Private instruction in tuba.
Private instruction in percussion.
Private instruction in violin.
Private instruction in viola.
MUP 593. Private Lessons: Cello. 1-2 Hour.
Private instruction in cello.
Private instruction in bass.
MUP 595. Private Lessons: Guitar. 1-2 Hour.
Private instruction in guitar.

Arts Education - Visual Arts

UAB's Visual Arts Education program is housed within the Department of Curriculum and Instruction. This program consists of a Master of Arts degree in Arts Education and also an alternative master's degree in Arts Education, with a concentration in Visual Arts. The first purpose of this program in Visual Arts Education is to prepare educators in meeting the evolving needs of learners in grades P-12 within today's rapidly changing society. Its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach that prepares educators to use state-of-the-art instructional strategies in their own classrooms. Its third purpose is to ensure that a quality program is available to pre-service and in-service teachers with most of the education courses being offered online.

Prospective students should contact the Program Director, Dr. Susan Spezzini, at spezzini@uab.edu (205-934-8357).

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.
Master of Arts in Education: Arts Education - Visual Arts Fifth Year
Alternative Master's Program

The M.A.Ed. requires a minimum of 35-38 hours for the Arts Education Alternative Masters program with a concentration in Visual Arts.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>EDA 534 Methods I: Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>EDA 564 Methods II: Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>EHS 597 Special Problems in Education: Diversity</td>
<td>3</td>
</tr>
<tr>
<td>EHS 556 Classroom Mgt in Sec Schools</td>
<td>3</td>
</tr>
<tr>
<td>EDR 521 Reading in Content Areas</td>
<td>1</td>
</tr>
<tr>
<td>EPR 511 Measurement and Evaluation in Education</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>38</td>
</tr>
</tbody>
</table>

Master of Arts in Education: Arts Education - Visual Arts Traditional Master's Program

The M.A.Ed. requires a minimum of 33 hours for the Arts Education program with a concentration in Visual Arts. A GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved Visual Arts Courses at the 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>EDA 680 Advanced Methods: Visual Arts</td>
<td>3</td>
</tr>
<tr>
<td>EDC 606 The Dynamics of Educational Change</td>
<td>3</td>
</tr>
<tr>
<td>EDC 651 Innovative Practices in Instruction</td>
<td>3</td>
</tr>
<tr>
<td>EDC 655 Curriculum Principles and Practices</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>ALSDE-approved Course in Diversity</td>
<td>3</td>
</tr>
<tr>
<td>EDF 600 Urban Education</td>
<td></td>
</tr>
<tr>
<td>EDF 602 Critical Social Issues in American Education</td>
<td></td>
</tr>
<tr>
<td>EDF 606 Social Movements in Education</td>
<td></td>
</tr>
<tr>
<td>EDF 620 Culture and American Education: Race Class and Gender</td>
<td></td>
</tr>
<tr>
<td>ECT 625 Positive Behavioral Supports</td>
<td></td>
</tr>
<tr>
<td>EESL 613 Teaching ESL in a Multicultural Society</td>
<td></td>
</tr>
<tr>
<td>Research course</td>
<td>3</td>
</tr>
<tr>
<td>EPR 594 Introduction to Educational Research Design</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

1 Not required if previously completed

Courses

EDA 534. Methods I: Visual Arts. 3 Hours.
Introduction to teaching visual arts in school settings. Developing basic skills in planning, instruction, and assessment. Admission to Alternative Master's Program required.

EDA 564. Methods II: Visual Arts. 3 Hours.
Preparation to plan, teach and assess the visual arts in school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.

EDA 584. Methods of Teaching Art Lab. 1 Hour.
Methods of Teaching Art Lab required.

EDA 680. Advanced Methods: Visual Arts. 3 Hours.
Advanced methods for teaching the visual arts in grades 6-14. Includes curriculum development, classroom interaction, pedagogical activities, technology applications, source materials, current research, society issues, and cognitive development of students. Current classroom teaching required.

Prerequisites: GAC M

EDA 690. Internship in Art Education N-12. 3-9 Hours.
For Alternative Master's Program students. Observation and student teaching in elementary and secondary schools (15 full weeks in school setting). Approval of internship application required.

Early Childhood Education

UAB's Early Childhood Education program (M.A.Ed., Ed.S., Ph.D.) embodies a three-fold purpose. Its first purpose is to prepare educators in meeting the evolving needs of learners, primarily in grades P-6, within today's rapidly changing society. Its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach. Based on constructivism, this approach prepares prospective and experienced educators to use state-of-the-art instructional strategies in their own classrooms. Its third purpose is to ensure that a quality program is available to pre-service and in-service teachers who may be unable to attend class during traditional class hours. This program is unique in how it combines online support from the learning management system (i.e. Canvas) with a variety of delivery formats:

- blended courses (online alternating with face-to-face)
- professional learning communities
- flexible summer programming
- internships and practicums
- totally online platforms
- Saturday classes

These purposes are expanded through the Ed.S. program. This advanced degree program infuses an inquiry-focused approach that prepares teachers for assuming leadership roles in curriculum development and instructional delivery. It also provides experienced teachers with collaborative skills and mentoring techniques for serving as reflective practitioners to guide change and positively impact student achievement and school improvement. Teachers with Class A certification can pursue Ed.S. level certification in elementary education or early childhood education. By then pursuing the Ph.D. program in early childhood education, they can then explore relevant issues, theories, and practice at an even higher level.

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions
Requirements website at https://www.uab.edu/education/student-services/admission-requirements.

Master of Arts in Education in Early Childhood Education

The Early Childhood Education Master of Arts in Education program requires a minimum of 33 hours. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR 650</td>
<td>3</td>
</tr>
<tr>
<td>EEC 660</td>
<td>3</td>
</tr>
<tr>
<td>Select two (2) courses from the list below: 6</td>
<td></td>
</tr>
<tr>
<td>ECE 630</td>
<td>Cognitive Curriculum ECE</td>
</tr>
<tr>
<td>EEC 540</td>
<td>Workshop in Education: Strategies for English Learners</td>
</tr>
<tr>
<td>EEC 560</td>
<td>Current Issues in Education</td>
</tr>
<tr>
<td>EEC 620</td>
<td>Teaching Mathematics N-6</td>
</tr>
<tr>
<td>EEC 621</td>
<td>Teaching Language Arts P-12</td>
</tr>
<tr>
<td>EEC 622</td>
<td>Teaching Social Studies N-6</td>
</tr>
<tr>
<td>EEC 623</td>
<td>Teaching Science N-6</td>
</tr>
<tr>
<td>EEC 678</td>
<td>Primary Mathematics: A Constructive Approach</td>
</tr>
<tr>
<td>EDR 652</td>
<td>Pre and Early Reading Instruction</td>
</tr>
<tr>
<td>EDR 653</td>
<td>Literature for Grades P-12</td>
</tr>
<tr>
<td>EDR 655</td>
<td>Reading Assessment and Evaluation</td>
</tr>
<tr>
<td>EDR 659</td>
<td>Research and Problems in Reading</td>
</tr>
<tr>
<td>ECY 600</td>
<td>Introduction to Exceptional Learner 1</td>
</tr>
<tr>
<td>EEC 610</td>
<td>Curriculum Development in ELEM and ECE</td>
</tr>
<tr>
<td>EEC 625</td>
<td>Critical Pedagogy Advocacy Collaboration</td>
</tr>
<tr>
<td>EEC 670</td>
<td>Studying the Child in School</td>
</tr>
<tr>
<td>Select one (1) course from the list below: 3</td>
<td></td>
</tr>
<tr>
<td>EEC 672</td>
<td>Piaget and Perspectives in Learning</td>
</tr>
<tr>
<td>EPR 610</td>
<td>Child Psychology</td>
</tr>
<tr>
<td>EPR 622</td>
<td>Learning Theories</td>
</tr>
<tr>
<td>EEC 674</td>
<td>Language Development</td>
</tr>
<tr>
<td>Select one (1) course from the list below: 3</td>
<td></td>
</tr>
<tr>
<td>ECT 625</td>
<td>Positive Behavioral Supports</td>
</tr>
<tr>
<td>EEC 673</td>
<td>Teaching in Diverse Society</td>
</tr>
<tr>
<td>EEESL 620</td>
<td>Special Topics in ESL</td>
</tr>
<tr>
<td>EDF 600</td>
<td>Urban Education</td>
</tr>
<tr>
<td>EEC 691</td>
<td>Practicum in ECE/ELEM</td>
</tr>
<tr>
<td>Total Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

1 May not be required if previously completed

Master of Arts in Education in Early Childhood Alternative Master’s (Fifth Year)

The M.A.Ed. degree requires a minimum GPA of 3.25 for the Early Childhood/Elementary Education Alternative Master’s (Fifth Year).

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEC 620</td>
<td>Introduction to Curriculum and Teaching in Cultural & Familial Contexts</td>
</tr>
<tr>
<td>Diverse Populations</td>
<td></td>
</tr>
<tr>
<td>EESL 641</td>
<td>Teaching Emergent Bilingual Learners in the Early Childhood Setting</td>
</tr>
<tr>
<td>Literacy</td>
<td></td>
</tr>
<tr>
<td>EDR 540</td>
<td>Developmental Reading I 1-4</td>
</tr>
<tr>
<td>Professionalism</td>
<td></td>
</tr>
</tbody>
</table>

EDU 500	Education as a Profession	1-3
EEC 650	Systematic Reflections About Teaching	3
Using Assessment Data to Improve Student Learning		
EPR 510	Measurement and Evaluation in Education ECE	3
Survey of Special Education Coursework 1		
EEC 600	Introduction to Exceptional Learner	3
Internship		
EEC 693	Internship in Early Childhood Education	3-9
Teaching Field Courses	At least 1/3 of the program shall be in teaching field courses:	
EEC 633	Social and Emotional Development of the Young Child	3
EEC 670	Studying the Young Child in School	3
EEC 671	Creative and Affective Experiences	3
EEC 631	Programs for Young Children	3
EEC 502	Primary Math Methods	1-4
EEC 632	Young Children and Their Literature	3
EEC 546	Comm Arts/Reading Young Child	3-6
EEC 545	Curriculum for Young Children: Math Science and SS	3-6
EEC 594	Field Work in Elementary and Early Childhood Education	1-6

1 May not be required if previously completed

Each semester a student enrolls in a pedagogy course (i.e., EDR 540, EDR 543, EEC 502, EEC 506, EEC 512, EEC 513, or EEC 514, EEC 540), he or she must also enroll for one hour of EEC 594.
Educational Specialist in Education with a concentration in Early Childhood Education

The Educational Specialist degree for the Early Childhood Education program requires a minimum of 33 hours.

Requirements Hours
EDC 707 Introduction to Teacher Leadership 3
EDC 711 Analysis and Evaluation of Teaching 3
EDC 720 Problems and Issues in Education 3
EEC 692 Curriculum Projects 3
EEC 694 Field Study 1 1-6
EEC 695 Practicum Supervision in ECE/ELE 2
EEC 680 Reading in Teaching and Learning 3
Advisor-approved 600+ level Elective Courses 9
ECY 600 Introduction to Exceptional Learner 3
EPR 596 Introduction to Qualitative Methods in Educational Research 3
Total Hours 33-38

1 Students who have previously completed EEC 660 will complete four (4) hours of EEC 694 Field Study. Students who have not previously completed EEC 660 will complete one (1) hour of EEC 694 Field Study.

Doctor of Philosophy in Early Childhood Education

As candidates may enter the Ph.D. program from a variety of early childhood related fields, there are a number of basic prerequisites required for all applicants. If a Ph.D. applicant has completed most/all of the following coursework, they may enter the program and start their Ph.D. coursework the first semester. If Ph.D. applicants have not taken courses similar to the ones listed below, then the applicant can be accepted into the program and is expected to complete the majority of the prerequisite coursework prior to taking doctoral level classes. Determination of whether the following coursework has been completed will be made by the Program Director from a review of transcripts. Applicants may be asked to identify and submit additional documentation (course syllabi) to substantiate course credit toward prerequisite.

Requirements Hours
EEC 660 Reading in Teaching and Learning 3
EEC 791 Field Studies in Early Childhood Education 3

PhD Coursework - Minimum of 57 hours

If all prerequisites are met, the Ph.D. is a minimum of 57 hours made up of core, specialty, research, and dissertation hours. Students may apply for candidacy after 36 hours, with up to 6 hours being non-dissertation research credits.

Requirements Hours
Core courses - 15 credit hours
ECE 730 Doctoral Seminar I: Issues in Development Theory 3
ECE 731 Doctoral Seminar II: Children and Society 3
ECE 732 Doctoral Seminar III: History of Early Childhood Education 3
ECE 749 Advanced Early Childhood Curriculum 3
ECE 790 Internship in Early Childhood Education and Development 3
Interest Area - 9+ hours at the doctoral 730+ level. Other coursework at the discretion of the Program Director.
Select one of the following: 3
- ECE 740 Research Apprenticeship
 or ECE 790 Directed Readings in Research
Select two of the following: 6
- ECE 735 Meaning and Development of Play (Select two of the following:)
- ECE 738 The Consultation Process and the Young Child
- ECE 748 Research in Infancy
- ECE 750 Literacy Before School
- ECE 752 Theory Research Literacy Development Instruction
*Advisor and Program Director approved interest area course at 600 or 700 level
Research Methodology 12
- EPR 696 Qualitative Research: Inquiry and Analysis
- EPR 710 Computer Applications and Advanced Statistical Methods
- EPR 792 Mixed Methods Approaches to Educational Research
Select one of the following: 3
- EPR 695 Survey Methods in Educational Research
 or EPR 792 Mixed Methods Approaches to Educational Research
 or ECE 740 Research Apprenticeship
*Advisor and Program Director approved research course at the 600 or 700 level (not including listed prerequisite)
Principles of Scientific Integrity
- GRD 717 Principles of Scientific Integrity
Research Internship 6
- ECE 798 Non-Dissertation Research (Semester prior to application to candidacy)
Dissertation 12
- ECE 799 Dissertation Research (Prerequisite: Admission to candidacy. Two consecutive semesters of at least 6 credit hours each.)
Total Hours 57
ECE-Early Childhood Educ Courses

ECE 545. Curriculum for Young Children: Math Science and SS. 3-6 Hours.
Basic knowledge of curriculum and concepts of mathematics, science, and social studies for young children. Child growth and development as basis for planning and teaching mathematics, science, and social studies to young children. Teaching methods and use of instructional media. Practicum experience required.

ECE 546. Comm Arts/Reading Young Child. 3-6 Hours.
Nature of reading and language arts experiences for children grades Pre-K-3. Media, materials, experiences, programs, and strategies to facilitate development of communicative abilities with emphasis on preserving and maintaining creative expression. Integration of learning in areas of listening, speaking, reading, composition, literature, handwriting, spelling, and other communication arts. Laboratory experiences required.

ECE 548. Infant/Toddler Development. 3 Hours.
Study of human development within an ecological context from before birth to three years of age. Course covers social-emotional, physical, cognitive, language, and creative development of the infant and toddler in the home and also in programs for very young children.

ECE 549. Edu Environment: Inf/Todd/Par. 3-6 Hours.
Study of infant (or toddler) development as it relates to the organization of a parent/infant (or toddler) educational program. Information concerning program management, observation of parent/infant (or toddler) interaction, development and sequencing of activities, creation and evaluation of materials, and an examination of techniques and procedures for parent involvement and education. Actual experience in working with a parent/infant (or toddler) program will be an integral part of the course. Prerequisite: ECE 548 or equivalent.

Prerequisites: ECE 548 [Min Grade: C]

ECE 620. Introduction to Curriculum and Teaching in Cultural & Familial Contexts. 3 Hours.
Developing knowledge of early childhood curricula for young children and their families in a variety of cultural contexts. Relationship of child growth and development and family empowerment in planning and implementation of curriculum.

ECE 630. Cognitive Curriculum ECE. 3 Hours.
Mathematics and science for young children based on constructivism. Topics include children's thinking, particularly in physical-knowledge, group games, and situations in daily living. Development oral autonomy is also included. Field experiences required.

ECE 631. Programs for Young Children. 3 Hours.
Basic knowledge of organizing and administering early childhood programs, infancy through third grade, in a variety settings. Provides an overview of functions of program administration including pedagogy, accreditation, organizational development and systems, human resources, collaboration, and advocacy. Field experiences required.

ECE 632. Young Children and Their Literature. 3 Hours.
Literature for children infancy through third grade; selection, use, and integration of literature in total curriculum. Using literature for reading and writing instruction. Field experiences required.

ECE 633. Social and Emotional Development of the Young Child. 3 Hours.
Topics include the study of social and emotional development, the child's ability to react to and interact with the social environment, temperament, attachment, emotional regulation, and social competence. Field experiences required.

ECE 670. Studying the Young Child in School. 3 Hours.
This course provides an overview of key issues related to analysis of child study in school and the values and limitations of assessment. Candidates will engage in in-depth experiences in evaluating the growth and development of children.

ECE 690. Infant-Toddler Practicum. 1-6 Hour.
Early Childhood Practicum in birth to age three settings.

ECE 691. Practicum Supervision in ECE. 1-3 Hour.
Supervision of practicum students.

ECE 692. Practicum in Primary Education. 1-9 Hour.
Early Childhood Practicum in Kindergarten to third grade settings.

ECE 693. Internship in Early Childhood Education. 3-9 Hours.
Full-time internship for 10 weeks (300 clock hours).

ECE 694. Practicum in Play-based Education for the Young Child. 3 Hours.
Investigate the intrinsic nature of play in the lives of young children; engage in play observations, analyze contemporary theories of play & development, and plan and implement a play-based curriculum inclusive of creativity, curiosity, play, social negotiation, and problem-solving.

ECE 730. Doctoral Seminar I: Issues in Development Theory. 3 Hours.
Special Topics in Early Childhood and Development Studies. Specific topic announced in class schedule.

Prerequisites: GAC Z

ECE 731. Doctoral Seminar II: Children and Society. 3 Hours.
Special Topics in Early Childhood and Development Studies. Specific topic announced in class schedule.

Prerequisites: GAC Z

ECE 732. Doctoral Seminar III: History of Early Childhood Education. 1-3 Hour.
Survey of historical, philosophical, and sociocultural foundation of early childhood programs and policies.

Prerequisites: GAC Z

ECE 734. Logic and Scientific Inquiry. 3 Hours.
Scientific investigation as applied in education. Conceptual issues in research process. Methods of analysis and presentation.

ECE 735. Meaning and Development of Play. 3 Hours.
Nature of play, its importance and how it is nurtured.

ECE 737. Parent Child and School Interface. 3 Hours.
Historical development of parent involvement. Theoretical bases of family-school interactions.

ECE 738. The Consultation Process and the Young Child. 3 Hours.
Skills for working with families, teachers, and professionals in community agencies that serve infants, toddlers, and young children.

ECE 740. Research Apprenticeship. 3-6 Hours.
Planning, implementation, analysis, and presentation of research.

ECE 746. Contemporary Issues in Science Education. 3 Hours.
Crisis atmosphere surrounding science education in American classroom.

ECE 748. Research in Infancy. 3 Hours.
Theoretical and empirical evidence relating to developmental domains for young children.

ECE 749. Advanced Early Childhood Curriculum. 3 Hours.
Historical, philosophical, psychological, and social thought influencing curriculum in early childhood education.
ECE 750. Literacy Before School. 3 Hours.
Written language development of preschool children.

ECE 751. School and Literacy Instruction. 3 Hours.
Primary-level literacy instruction and children's literacy development.
Prerequisites: Admission to doctoral program in early childhood education and two courses in language development.

ECE 752. Theory Research Literacy Development Instruction. 3 Hours.
Philosophical and psychological beliefs regarding literacy development.

ECE 760. Current Issues in Education. 2-3 Hours.
Current Issues in Early Childhood Education and Advocacy.

ECE 774. Advanced Seminar in Language Development. 3 Hours.
Relationship of thinking and knowing to language development; strategies for analysis; strengths and weaknesses of techniques of examining language development.

ECE 790. Internship in Early Childhood Education and Development. 3-9 Hours.
Internship.

ECE 791. Field Studies in Early Childhood Education. 1-6 Hour.
Individual Field Projects.

ECE 792. Directed Readings in Research. 3 Hours.
Review of research in early childhood education to gain understanding of conceptual and methodological basis.

ECE 793. Individual Research in Early Childhood Education. 3 Hours.
Recent research in early childhood education; systematic solutions to problems in education.

ECE 794. Current Research Topics in Early Childhood Education. 1-3 Hour.
Philosophical aspects of scientific methods in education; functions of paradigms, theories, and models in inquiry; theory development and validation; major types of experimental and nonexperimental inquiry appropriate to study of educational phenomena.

ECE 798. Non-Dissertation Research. 1-12 Hour.
The course provides for supervised research experience under the direction of a graduate faculty member within the School of Education. The topic for an ECE 798 course must relate to the discipline or specializations within early childhood education and child development.

ECE 799. Dissertation Research. 1-12 Hour.
Doctoral research.

Prerequisites: GAC Z

EEC-Elem Early Childhood Courses

Materials and methods on emergent numeracy. Field experience required.

EEC 505. Children's Literature in Elem. and Early Childhood. 3 Hours.

Prerequisites: EDU 500 [Min Grade: C] and EEC 650 [Min Grade: C]

EEC 506. Language Arts in Elementary and Early Childhood Ed.. 1-4 Hour.
Materials and methods. Communication-based approach in developing effective language arts program. All aspects of language arts program addressed. Field experiences required.

Prerequisites: EEC 600 [Min Grade: C] and EEC 612 [Min Grade: C] and EEC 650 [Min Grade: C]

EEC 512. Math in EC and Elementary Educ. 3 Hours.
Material and methods of teaching mathematics. Emphasizes scope, sequence, and content of the mathematics program. Computation skills and problem solving are stressed. Includes field experiences. Admission to 5th-Year Program.

EEC 513. Science in EC and Elem Edu. 3 Hours.
Scope, sequence, materials, and methods. Emphasis on teaching and the development of content and process skills. Field experiences completed in conjunction with practicum. Admission to 5th-Year Program.

EEC 514. Soc Studies in EC and Elem Edu. 3 Hours.
Scope, sequence, and content of elementary school social studies curriculum. Teaching strategies, program articulation, and instructional planning. Field experiences completed in conjunction with practicum. Admission to 5th-Year Program.

Prerequisites: EEC 612 [Min Grade: C]

EEC 515. Learning Environments through Positive Behavior Support. 1-3 Hour.
Theoretical approaches that focus on child centered curriculum, classroom management, discipline strategies and cultural, linguistic, and developmentally appropriate instruction. Field experience required.

EEC 521. Methods of Teaching Foundations of Reading Development. 3 Hours.
This 3-hour foundations of reading methods course will prepare educators with content knowledge of scientific and evidence-based foundations of the cognitive, linguistic, socio-cultural, and motivational influences for early language and literacy development. The course presents scientifically proven instructional methods, strategies, techniques, and materials, with focused considerations for brain processes of reading, that are needed to successfully teach reading to P-6 students. Specific topics will include the teaching oral language development (expressive and receptive), concepts about print, early orthography, and beginning reading skills (phonemic awareness, alphabet knowledge, high frequency words, phonics, decoding, and encoding/spelling). Extensive field experience required.

EEC 522. Methods of Teaching the Development of Reading Comprehension. 3 Hours.
This three-hour course will prepare educators to teach foundations of reading development using evidence-based instructional practices. Specific topics include promoting academic language development, including vocabulary development; promoting comprehension and analysis of literacy and informational texts; and developing the reading-writing connection. Extensive field experience required.
EEC 523. Methods of Reading Assessment, Instruction, & Intervention. 3 Hours.
This course will address the use of formal and informal assessment procedures used to design and evaluate robust reading instruction and intervention for children in preschool through high school. The focus of the course includes the knowledge and skills needed to choose and administer appropriate reading assessments for a variety of purposes, data-based decision making to guide instructional planning and intervention design, and understanding struggling readers, including those with reading disabilities. Instruction will be delivered within a context of an ecological, collaborative, problem solving model. Students will be guided to apply both formal and informal assessment in a problem-solving model aimed at the design of robust reading instruction. An emphasis will be placed on creating multi-tiered systems of support (MTSS) for increasing reading achievement among all students. Extensive field experience will be required. Admission to TEP required.

EEC 540. Advanced Workshop in Education: Methods to Support English Learners. 1-3 Hour.
Strengthen proficiency in teaching English Learners in the mainstream classroom. Develop understanding of second language acquisition, culturally responsive teaching, accommodations for varying language levels, and appropriate assessments for English Learners. Practice planning, implementing, and managing sheltered instruction.

EEC 593. Individual Readings. 1-3 Hour.
Individualized readings on special topics.

EEC 594. Field Work in Education. 1-6 Hour.
Observation and participation experiences with children.

EEC 600. Transition into P-6 Teaching. 3 Hours.
Introduction to the teaching profession (Alternative Master's Program, Elementary/Early Childhood Education).

EEC 610. Curriculum Development in Teaching. 3 Hours.
Curriculum decisions, planning and implementation.

EEC 612. Models of Teaching. 3 Hours.
Developing knowledge of curriculum and instruction. Selecting and applying specific teaching strategies. Includes practicum experiences.

EEC 615. Collaborative Learning Spaces - Designing and Developing. 3 Hours.
Introduction to the maker movement in P-6 STEM education. Explorations of the history of the maker movement in K-12 education, collaborative learning spaces, interdisciplinary connections, maker projects, curriculum, instructional strategies, assessment tools, and learning theories that support student-driven projects.

EEC 617. Engineering for P-6 Students. 3 Hours.
Introduction and exploration of the different fields of engineering, concepts, and content related to each field, engineering design process, and practices, the Next Generation Science Standards, curricular materials and resources, the latest research on engineering in P-12 schools, and assessments necessary to design and develop research-based interdisciplinary curricula for students in grades P-6.

EEC 620. Teaching Mathematics K-6. 3 Hours.
Issues and approaches in early childhood and elementary mathematics; research and implementation for instruction.

Prerequisites: EEC 660 [Min Grade: C]

EEC 621. Teaching Language Arts P-12. 3 Hours.
Issues and approaches in teaching early childhood and elementary school language arts. Implications of research for instruction.

EEC 625. Critical Pedagogy Advocacy Collaboration. 3 Hours.
Encompasses current issues in education from critical, postmodern, and feminist perspectives. Issues of advocacy, collaboration, equity, social justice, racism, sexism, and the marginalization of minorities in education will be explored.

EEC 626. Mathematics Coaching Grades K-2. 3 Hours.
Provides content knowledge and pedagogical strategies to empower instructional coaches to improve classroom teacher and instructional coach effectiveness and student achievement in mathematics. Includes authentic assessments requiring utilization of data and current research to provide intervention to effectively respond to mathematics difficulties. Includes facilitating coaching cycles with initial certification candidates and mentoring novice teachers.

EEC 627. Mathematics Coaching Grades 3-5. 3 Hours.
Content knowledge and pedagogical strategies to empower instructional coaches to improve classroom instruction and student achievement in mathematics. Includes authentic assessment requiring utilization of data and current research to provide intervention to effectively respond to mathematics difficulties. Includes facilitating coaching cycles with colleagues and novice educators.

EEC 633. Classroom Applications of Constructivist Theory. 3 Hours.
This course provides practical classroom applications of constructivist principles in teaching and learning.

EEC 650. Systematic Reflections About Teaching. 3 Hours.
Theory and practice of reflective inquiry in the elementary classroom which includes observations, data collection, analysis, and narrative reporting. Prerequisite: Admission into Graduate School.

EEC 660. Reading in Teaching and Learning. 3 Hours.
Introductory course is designed to assist the student in locating, analyzing, and synthesizing current research in early childhood and elementary education.

EEC 670. Studying the Child in School. 3 Hours.
Analysis of child study in school; values and limitations of assessment.

EEC 671. Creative and Affective Experiences. 1-3 Hour.
Nature and nurture of creativity through creative learning experiences. Maintaining and preserving creative expression throughout curriculum.

EEC 672. Piaget and Perspectives in Learning. 3 Hours.
Piaget's theory of intellectual or cognitive development; applications to elementary and early childhood education.

EEC 673. Teaching in Diverse Society. 3 Hours.
Examination of effective strategies for working with diverse populations.

EEC 674. Language Development. 3 Hours.
Developmental processes involved in language, relationship to education programs.

EEC 675. Teaching in the Urban School. 3 Hours.
Methods and materials; evaluation of school and school-related programs for equalizing educational opportunity.

EEC 677. Readiness for Learning. 3 Hours.
Preschool and primary level language development and literacy development; assessment techniques.
EEC 690. Internship in P-3/3-6. 3-9 Hours.
Supervised teaching in an early childhood (P-3) and/or an elementary (3-6) program. The student gradually assumes responsibility for planning and teaching for the entire class (minimum of 15 weeks). The internship experience includes supervision in working with professional resource professionals and parents. Approval of application for Internship in P-3/3-6 required.

Prerequisites: EDR 540 [Min Grade: C] and EEC 502 [Min Grade: C] and EEC 540 [Min Grade: C] and EEE 506 [Min Grade: C] and EEC 512 [Min Grade: C] and EEC 513 [Min Grade: C] and EDR 543 [Min Grade: C] and EEC 514 [Min Grade: C]

EEC 691. Practicum in ECE/ELEM. 1-3 Hour.
Practicum in Early Childhood Education and Elementary Education.

EEC 692. Curriculum Projects. 1-6 Hour.
Field projects in curriculum modifications and improvement of classroom practice.

EEC 693. Independent Studies. 1-3 Hour.
Independent Study in Elementary and Early Childhood Education.

EEC 694. Field Study. 1-6 Hour.
Field study.

EEC 695. Practicum Supervision in ECE/ELE. 2-6 Hours.
Supervision of practicum students.

EEC 696. Internship Seminar. 1-3 Hour.
Course will accompany the 9 semester hour internship (EEC 690) to support and extend the efforts of student teaching. The course will focus on problem-solving related to classroom situations such as classroom management, grading, professionalism and ethics, legal issues, teacher rights, and others that occur during the internship.

EEC 702. Administration and Supervision Prog Young Children. 3 Hours.
Evaluation, decision making, supportive services, staff development, community interaction strategies.

Educational Studies (Non-Certification)

The Master of Arts in Education (MAEd) in Educational Studies is an MAEd without state-issued teacher certification for education-related employment that does not require certification. This MAEd promotes UAB's mission by providing support for the teaching and application of knowledge at the campus, state, regional, and global levels.

Through this MAEd, current and future educators who have a completed undergraduate degree, but no need for state-issued educator certification, can prepare for seeking meaningful employment within the field of education, mainly as teachers or coordinators in private schools or other types of educational entities. Overseas employment opportunities are available to international students who, as current or future educators, pursue this Educational Studies MAEd for career advancement in their own countries. This master's is not associated with state certification.

This Educational Studies MAEd consists of a 15-hour core with one course from each of these five areas: Curriculum Design and Implementation, Assessment and Measurement, Diverse Populations, Special Education, and Practicum/Capstone. This MAEd program also consists of a concentration (12 credit hours) and an elective (3 credit hours). For their concentration, students select from among the following five options: Early Childhood Education, Elementary Education, Secondary Education, Special Education, and Physical Education.

Secondary Education, Special Education, and Physical Education. This MAEd degree program facilitates the type of flexibility needed by graduate students to focus their coursework in a way that is most beneficial to them professionally and to their respective constituencies. These concentrations prepare educators for designing educational programs and delivering instruction in diverse settings that do not require state-issued educator certification.

Students in the Educational Studies MAEd are expected to demonstrate competencies in the following areas:

1. Knowledge in curriculum design and implementation, assessment and measurement, diverse populations, and special education,
2. Knowledge for designing and implementing instruction in the selected concentration,
3. Skills for delivering instruction,
4. Knowledge and skills to be competitive when seeking admission to advanced degree programs.

Master of Arts in Education in Educational Studies Non-Certification

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum Design/Program Implementation/Methods</td>
<td>3</td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
</tr>
<tr>
<td>ECT 521</td>
<td>IEP Programming and Lesson Planning</td>
</tr>
<tr>
<td>ECE 620</td>
<td>Introduction to Curriculum and Teaching in Cultural & Familial Contexts</td>
</tr>
<tr>
<td>EESL 512</td>
<td>Curriculum, Program, Policies</td>
</tr>
<tr>
<td>EESL 612</td>
<td>Curriculum, Programs and Policies</td>
</tr>
<tr>
<td>EESL 637</td>
<td>Methods Teaching English as an International Language</td>
</tr>
<tr>
<td>EDC 651</td>
<td>Innovative Practices in Instruction</td>
</tr>
<tr>
<td>EDR 551</td>
<td>Reading in Content Areas</td>
</tr>
<tr>
<td>EEC 612</td>
<td>Models of Teaching</td>
</tr>
<tr>
<td>KIN 511</td>
<td>Elementary School Physical Education</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment and Measurement</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one from the following:</td>
<td></td>
</tr>
<tr>
<td>ECT 520</td>
<td>Formative and Summative Assessment</td>
</tr>
<tr>
<td>EESL 657</td>
<td>Instruction and Assessment: Listening and Speaking</td>
</tr>
<tr>
<td>EPR 510</td>
<td>Measurement and Evaluation in Education ECE</td>
</tr>
<tr>
<td>EPR 511</td>
<td>Measurement and Evaluation in Education Secondary Ed</td>
</tr>
<tr>
<td>EPR 594</td>
<td>Introduction to Educational Research Design</td>
</tr>
<tr>
<td>KIN 509</td>
<td>Assessment in Physical Education</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diverse Populations</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ECT 523</td>
<td>Instructional Methods</td>
</tr>
<tr>
<td>ECT 527</td>
<td>Collaborative Processes</td>
</tr>
<tr>
<td>EDF 600</td>
<td>Urban Education</td>
</tr>
<tr>
<td>EDF 602</td>
<td>Critical Social Issues in American Education</td>
</tr>
<tr>
<td>EDF 606</td>
<td>Social Movements in Education</td>
</tr>
<tr>
<td>EDF 616</td>
<td>Comparative Education</td>
</tr>
<tr>
<td>EDF 620</td>
<td>Culture and American Education: Race Class and Gender</td>
</tr>
<tr>
<td>EEC 540</td>
<td>Advanced Workshop in Education: Methods to Support English Learners</td>
</tr>
<tr>
<td>EESL 513</td>
<td>Teaching ESL in a Multicultural Society</td>
</tr>
<tr>
<td>EESL 613</td>
<td>Teaching ESL in a Multicultural Society</td>
</tr>
<tr>
<td>EHS 597</td>
<td>Special Problems in Education: Diversity</td>
</tr>
</tbody>
</table>
Elementary Education

UAB’s Elementary Education program (M.A.Ed., Ed.S.) embodies a three-fold purpose. Its first purpose is to train educators in meeting the evolving needs of learners, primarily in grades K-6, within today’s rapidly changing society. Its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach. Based on constructivism, this approach prepares prospective and experienced educators to use state-of-the-art instructional strategies in their own classrooms. Its third purpose is to ensure that a quality program is available to pre-service and in-service teachers who may be unable to attend class during traditional class hours. This program is unique in how it combines online support from the learning management system (i.e. Canvas) with a variety of delivery formats:

- blended courses (online alternating with face-to-face)
- professional learning communities
- flexible summer programming
- internships and practicums
- totally online platforms
- Saturday classes

These purposes are expanded through the Ed.S. program. This advanced degree program infuses an inquiry-focused approach that prepares teachers for assuming leadership roles in curriculum development and instructional delivery. It also provides experienced teachers with collaborative skills and mentoring techniques for serving as reflective practitioners to guide change and positively impact student achievement and school improvement. Teachers with Class A certification can pursue EdS-level certification in elementary education.

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.

Master of Arts in Education in Elementary Education

The MAEd degree in Elementary Education requires a minimum of 33 hours.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR 650</td>
<td>3</td>
</tr>
<tr>
<td>EEC 660</td>
<td>3</td>
</tr>
<tr>
<td>Select two courses from the list below</td>
<td>6</td>
</tr>
<tr>
<td>EEC 678</td>
<td>Primary Mathematics: A Constructive Approach</td>
</tr>
<tr>
<td>ECE 630</td>
<td>Cognitive Curriculum ECE</td>
</tr>
<tr>
<td>EEC 620</td>
<td>Teaching Mathematics N-6</td>
</tr>
<tr>
<td>EEC 622</td>
<td>Teaching Social Studies N-6</td>
</tr>
<tr>
<td>EEC 623</td>
<td>Teaching Science N-6</td>
</tr>
<tr>
<td>EEC 621</td>
<td>Teaching Language Arts P-12</td>
</tr>
<tr>
<td>EDR 652</td>
<td>Pre and Early Reading Instruction</td>
</tr>
<tr>
<td>EDR 653</td>
<td>Literature for Grades P-12</td>
</tr>
<tr>
<td>EDR 655</td>
<td>Reading Assessment and Evaluation</td>
</tr>
<tr>
<td>EDR 659</td>
<td>Research and Problems in Reading</td>
</tr>
<tr>
<td>EEC 560</td>
<td>Current Issues in Education</td>
</tr>
<tr>
<td>or EEC 540 Workshop in Education: Strategies for English Learners</td>
<td></td>
</tr>
<tr>
<td>EDR 600</td>
<td>Introduction to Exceptional Learner</td>
</tr>
<tr>
<td>EEC 610</td>
<td>Curriculum Development in ELEM and ECE</td>
</tr>
<tr>
<td>EEC 625</td>
<td>Critical Pedagogy Advocacy Collaboration</td>
</tr>
<tr>
<td>EEC 670</td>
<td>Studying the Child in School</td>
</tr>
<tr>
<td>Select one course from the list below</td>
<td>3</td>
</tr>
<tr>
<td>EEC 672</td>
<td>Piaget and Perspectives in Learning</td>
</tr>
<tr>
<td>EDR 610</td>
<td>Child Psychology</td>
</tr>
<tr>
<td>EPR 622</td>
<td>Learning Theories</td>
</tr>
<tr>
<td>EEC 674</td>
<td>Language Development</td>
</tr>
</tbody>
</table>

Select one course from the list below

- EEC 672
- Piaget and Perspectives in Learning
- EDR 610
- Child Psychology
- EPR 622
- Learning Theories
- EEC 674
- Language Development
Educational Specialist in Education with a Concentration in Elementary Education

The Ed.S. in Education with a concentration in Elementary Education requires a minimum of 30 hours.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDC 707 Introduction to Teacher Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EDC 711 Analysis and Evaluation of Teaching</td>
<td>3</td>
</tr>
<tr>
<td>EDC 720 Problems and Issues in Education</td>
<td>3</td>
</tr>
<tr>
<td>EEC 660 Reading in Teaching and Learning</td>
<td>3</td>
</tr>
<tr>
<td>EEC 692 Curriculum Projects</td>
<td>3</td>
</tr>
<tr>
<td>EEC 694 Field Study</td>
<td>1-6</td>
</tr>
<tr>
<td>EEC 695 Practicum Supervision in ECE/ELEM</td>
<td>2</td>
</tr>
<tr>
<td>Advisor-approved 600+ level Elective Courses</td>
<td>9</td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>EPR 598 Introduction to Qualitative Methods in Educational Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 33-38

1 Students who have previously completed EEC 660 will complete four (4) hours of EEC 694 Field Study. Students who have not previously completed EEC 660, will complete one (1) hour of EEC 694 Field Study.

Courses

EEC 502. Primary Math Methods. 1-4 Hour.
Materials and methods on emergent numeracy. Field experience required.

EEC 505. Children’s Literature in Elem. and Early Childhood. 3 Hours.

Prerequisites: EDU 500 [Min Grade: C] and EEC 650 [Min Grade: C]

EEC 506. Language Arts in Elementary and Early Childhood Ed.. 1-4 Hour.
Materials and methods. Communication-based approach in developing effective language arts program. All aspects of language arts program addressed. Field experiences required.

Prerequisites: EEC 600 [Min Grade: C] and EEC 612 [Min Grade: C] and EEC 650 [Min Grade: C]

EEC 512. Math in EC and Elementary Educ. 3 Hours.
Material and methods of teaching mathematics. Emphasizes scope, sequence, and content of the mathematics program. Computation skills and problem solving are stressed. Includes field experiences. Admission to 5th-Year Program.

EEC 513. Science in EC and Elem Edu. 3 Hours.
Scope, sequence, materials, and methods. Emphasis on teaching and the development of content and process skills. Field experiences completed in conjunction with practicum. Admission to 5th-Year Program.

EEC 514. Soc Studies in EC and Elem Edu. 3 Hours.
Scope, sequence, and content of elementary school social studies curriculum. Teaching strategies, program articulation, and instructional planning. Field experiences completed in conjunction with practicum. Admission to 5th-Year Program.

Prerequisites: EEC 612 [Min Grade: C]

EEC 515. Learning Environments through Positive Behavior Support. 1-3 Hour.
Theoretical approaches that focus on child centered curriculum, classroom management, discipline strategies and cultural, linguistic, and developmentally appropriate instruction. Field experience required.

EEC 521. Methods of Teaching Foundations of Reading Development. 3 Hours.
This 3-hour course will prepare educators with content knowledge of scientific and evidence-based foundations of the cognitive, linguistic, socio-cultural, and motivational influences for early language and literacy development. The course presents scientifically proven instructional methods, strategies, techniques, and materials, with focused considerations for brain processes of reading, that are needed to successfully teach reading to P-6 students. Specific topics will include the teaching oral language development (expressive and receptive), concepts about print, early orthography, and beginning reading skills (phonemic awareness, alphabet knowledge, high frequency words, phonics, decoding, and encoding/spelling). Extensive field experience required.

EEC 522. Methods of Teaching the Development of Reading Comprehension. 3 Hours.
This three-hour course will prepare educators to teach foundations of reading development using evidence-based instructional practices. Specific topics include promoting academic language development, including vocabulary development; promoting comprehension and analysis of literacy and informational texts; and developing the reading-writing connection. Extensive field experience required.

EEC 523. Methods of Reading Assessment, Instruction, & Intervention. 3 Hours.
This course will address the use of formal and informal assessment procedures used to design and evaluate robust reading instruction and intervention for children in preschool through high school. The focus of the course includes the knowledge and skills needed to choose and administer appropriate reading assessments for a variety of purposes, data-based decision making to guide instructional planning and intervention design, and understanding struggling readers, including those with reading disabilities. Instruction will be delivered within a context of an ecological, collaborative, problem solving model. Students will be guided to apply both formal and informal assessment in a problem-solving model aimed at the design of robust reading instruction. An emphasis will be placed on creating multi-tiered systems of support (MTSS) for increasing reading achievement among all students. Extensive field experience will be required. Admission to TEP required.

EEC 540. Advanced Workshop in Education: Methods to Support English Learners. 1-3 Hour.
Strengthen proficiency in teaching English Learners in the mainstream classroom. Develop understanding of second language acquisition, culturally responsive teaching, accommodations for varying language levels, and appropriate assessments for English Learners. Practice planning, implementing, and managing sheltered instruction.

EEC 593. Individual Readings. 1-3 Hour.
Individualized readings on special topics.
EEC 594. Field Work in Education. 1-6 Hour.
Observation and participation experiences with children.

EEC 600. Transition into P-6 Teaching. 3 Hours.
Introduction to the teaching profession (Alternative Master's Program, Elementary/Early Childhood Education).

EEC 610. Curriculum Development in Teaching. 3 Hours.
Curriculum decisions, planning and implementation.

EEC 612. Models of Teaching. 3 Hours.
Developing knowledge of curriculum and instruction. Selecting and applying specific teaching strategies. Includes practicum experiences.

EEC 615. Collaborative Learning Spaces - Designing and Developing. 3 Hours.
Introduction to the maker movement in P-6 STEM education. Explorations of the history of the maker movement in K-12 education, collaborative learning spaces, interdisciplinary connections, maker projects, curriculum, instructional strategies, assessment tools, and learning theories that support student-driven projects.

EEC 617. Engineering for P-6 Students. 3 Hours.
Introduction and exploration of the different fields of engineering, concepts, and content related to each field, engineering design process, and practices, the Next Generation Science Standards, curricular materials and resources, the latest research on engineering in P-12 schools, and assessments necessary to design and develop research-based interdisciplinary curricula for students in grades P-6.

EEC 620. Teaching Mathematics K-6. 3 Hours.
Issues and approaches in early childhood and elementary mathematics; research and implementation for instruction.
Prerequisites: EEC 660 [Min Grade: C]

EEC 621. Teaching Language Arts P-12. 3 Hours.
Issues and approaches in teaching early childhood and elementary school language arts. Implications of research for instruction.

EEC 625. Critical Pedagogy Advocacy Collaboration. 3 Hours.
Encompasses current issues in education from critical, postmodern, and feminist perspectives. Issues of advocacy, collaboration, equity, social justice, racism, sexism, and the marginalization of minorities in education will be explored.

EEC 626. Mathematics Coaching Grades K-2. 3 Hours.
Provides content knowledge and pedagogical strategies to empower instructional coaches to improve classroom teacher and instructional coach effectiveness and student achievement in mathematics. Includes authentic assessments requiring utilization of data and current research to provide intervention to effectively respond to mathematics difficulties. Includes facilitating coaching cycles with initial certification candidates and mentoring novice teachers.

EEC 627. Mathematics Coaching Grades 3-5. 3 Hours.
Content knowledge and pedagogical strategies to empower instructional coaches to improve classroom instruction and student achievement in mathematics. Includes authentic assessment requiring utilization of data and current research to provide intervention to effectively respond to mathematics difficulties. Includes facilitating coaching cycles with colleagues and novice educators.

EEC 633. Classroom Applications of Constructivist Theory. 3 Hours.
This course provides practical classroom applications of constructivist principles in teaching and learning.

EEC 650. Systematic Reflections About Teaching. 3 Hours.
Theory and practice of reflective inquiry in the elementary classroom which includes observations, data collection, analysis, and narrative reporting. Prerequisite: Admission into Graduate School.

EEC 660. Reading in Teaching and Learning. 3 Hours.
Introductory course is designed to assist the student in locating, analyzing, and synthesizing current research in early childhood and elementary education.

EEC 670. Studying the Child in School. 3 Hours.
Analysis of child study in school; values and limitations of assessment.

EEC 671. Creative and Affective Experiences. 1-3 Hour.
Nature and nurture of creativity through creative learning experiences. Maintaining and preserving creative expression throughout curriculum.

EEC 672. Piaget and Perspectives in Learning. 3 Hours.
Piaget's theory of intellectual or cognitive development; applications to elementary and early childhood education.

EEC 673. Teaching in Diverse Society. 3 Hours.
Examination of effective strategies for working with diverse populations.

EEC 674. Language Development. 3 Hours.
Developmental processes involved in language, relationship to education programs.

EEC 675. Teaching in the Urban School. 3 Hours.
Methods and materials; evaluation of school and school-related programs for equalizing educational opportunity.

EEC 677. Readiness for Learning. 3 Hours.
Preschool and primary level language development and literacy development; assessment techniques.

EEC 690. Internship in P-3/3-6. 3-9 Hours.
Supervised teaching in an early childhood (P-3) and/or an elementary (3-6) program. The student gradually assumes responsibility for planning and teaching for the entire class (minimum of 15 weeks). The internship experience includes supervision in working with professional resource professionals and parents. Approval of application for Internship in P-3/3-6 required.
Prerequisites: EDR 540 [Min Grade: C] and EEC 502 [Min Grade: C] and EEC 540 [Min Grade: C] and EEC 506 [Min Grade: C] and EEC 512 [Min Grade: C] and EEC 513 [Min Grade: C] and EDR 543 [Min Grade: C] and EEC 514 [Min Grade: C]

EEC 691. Practicum in ECE/ELEM. 1-3 Hour.
Practicum in Early Childhood Education and Elementary Education.

EEC 692. Curriculum Projects. 1-6 Hour.
Field projects in curriculum modifications and improvement of classroom practice.

EEC 693. Independent Studies. 1-3 Hour.
Independent Study in Elementary and Early Childhood Education.

EEC 694. Field Study. 1-6 Hour.
Field study.

EEC 695. Practicum Supervision in ECE/ELE. 2-6 Hours.
Supervision of practicum students.

EEC 696. Internship Seminar. 1-3 Hour.
Course will accompany the 9 semester hour internship (EEC 690) to support and extend the efforts of student teaching. The course will focus on problem-solving related to classroom situations such as classroom management, grading, professionalism and ethics, legal issues, teacher rights, and others that occur during the internship.
Graduate Catalog 2023-2024 223

EEC 702. Administration and Supervision Prog Young Children. 3 Hours.
Evaluation, decision making, supportive services, staff development, community interaction strategies.

English as a Second Language

UAB’s graduate degree program in English as a Second Language (ESL) is fully online. This program offers a Master of Arts in Education (M.A.Ed.) degree and an Educational Specialist (Ed.S.) degree. It also offers two Graduate Certificates from UAB’s Graduate School. All of these degrees and certificates embody a three-fold purpose. The first purpose is to train educators in meeting the needs of a growing population of English learners of all ages (from preschool through adult) in Alabama, across the U.S., and abroad. Its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach. Its third purpose is to ensure that quality ESL graduate degrees are available to teachers everywhere by offering online courses.

The ESL master’s degree program has three tracks. The traditional track is for teachers who are already-certified at the bachelor’s level and wish to earn a master’s degree in ESL and Class A certification for teaching ESL to K-12 learners, issued by the Alabama State Department of Education (ALSDE). The alternative track is for prospective teachers who wish to enter the K-12 teaching profession by earning Alternative Class A certification in ESL from the ALSDE. The TESOL track (non-certification) is to prepare prospective teachers for teaching ESL to adult learners in the U.S. and learners of any age overseas. Additionally, the traditional and alternative tracks offer options for earning dual certification (from the ALSDE) in ESL and French, as well as in ESL and Spanish.

The EdS-TESOL program has two tracks. The certification track is for Alabama teachers who hold Class A certification in any teaching field and wish to earn an EdS-TESOL with Class AA certification in ESL from the ALSDE. The professional track is for ESL teachers from other states as well as ESL teachers of adult learners; it does not lead to K-12 certification from the ALSDE. The EdS-TESOL infuses an inquiry-focused approach that prepares teachers for assuming leadership roles in curriculum development and instructional delivery. It provides experienced teachers with collaborative skills to serve as reflective practitioners in guiding school change as well as with mentoring techniques to positively impact student achievement and school improvement. For detailed information about the Eds-TESOL, go to the last tab listed under Curriculum and Instruction, which is called “Teaching English to Speakers of Other Languages.”

UAB offers the Teaching Multilingual Learners (TML) graduate certificate and the Teaching English as an Additional Language (TEAL) graduate certificate. The TML certificate consists of 12 graduate credit hours and focuses mainly on teaching ESL to P-12 learners. The TEAL graduate certificate consists of 15 graduate credit hours and focuses fully on teaching ESL to adult learners. Both certificates can be earned while pursuing an ESL master’s degree or the EdS-TESOL. The TEAL certificate can also be combined with another 15-hour certificate at UAB for earning the Interdisciplinary Graduate Master’s degree.

Prospective students should contact the Program Director, Dr. Susan Spezzini, at spezzini@uab.edu (205-934-8357).

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.

Master of Arts in Education in English as a Second Language Fifth Year Alternative Master's Program

The M.A.Ed in English as a Second Language degree for the fifth year alternative program requires a minimum of 43 hours for the concentration in ESL and 55 hours for the concentrations in ESL/Spanish and ESL/French. The minimum required GPA is 3.25.

Requirements Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 510</td>
<td>Second Language Acquisition</td>
<td>3</td>
</tr>
<tr>
<td>EESL 512</td>
<td>Curriculum, Program, Policies</td>
<td>3</td>
</tr>
<tr>
<td>EESL 513</td>
<td>Teaching ESL in a Multicultural Society</td>
<td>3</td>
</tr>
<tr>
<td>EESL 515</td>
<td>Grammar and Linguistics for ESL Teachers</td>
<td>3</td>
</tr>
<tr>
<td>EESL 525</td>
<td>Phonology for Second Language Teachers</td>
<td>3</td>
</tr>
<tr>
<td>EESL 530</td>
<td>Methods and Materials of Teaching ESL</td>
<td>3</td>
</tr>
<tr>
<td>EESL 540</td>
<td>Teaching New Languages Through Reading and Writing</td>
<td>3</td>
</tr>
<tr>
<td>EESL 560</td>
<td>Effective Teaching and Learning</td>
<td>3</td>
</tr>
<tr>
<td>EESL 589</td>
<td>Internship Seminar in ESL</td>
<td>1</td>
</tr>
<tr>
<td>EESL 590</td>
<td>Internship in Second and Foreign Languages, N-12</td>
<td>6</td>
</tr>
<tr>
<td>EHS 556</td>
<td>Classroom Mgt in Sec Schools</td>
<td>3</td>
</tr>
<tr>
<td>EPR 510</td>
<td>Measurement and Evaluation in Education ECE</td>
<td>3</td>
</tr>
<tr>
<td>or EPR 511</td>
<td>Measurement and Evaluation in Education Secondary Ed</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

1. Diversity standards met in EESL 513
2. ECY 600 required if a survey of special education course not completed previously

ESL Concentration

Requirements Hours
advisor-approved ESL elective 500+ level | 3

Total Hours | 3

French and ESL Concentration

Requirements Hours
EFL 539 | Methods I: World Languages | 3 |
Advisor-approved 500+ level courses in French | 12

Total Hours | 15

Spanish and ESL Concentration

Requirements Hours
EFL 539 | Methods I: World Languages | 3 |
Advisor-approved 500+ level courses in Spanish | 12

Total Hours | 15

Master of Arts in Education in English as a Second Language Traditional Master’s Program

The M.A.Ed in English as a Second Language degree for the traditional program requires a minimum of 30 hours for the concentration in ESL and
42 hours for the concentrations in ESL/Spanish and ESL/French. The minimum required GPA is 3.25.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 610</td>
<td>3</td>
</tr>
<tr>
<td>EESL 612</td>
<td>3</td>
</tr>
<tr>
<td>EESL 613</td>
<td>3</td>
</tr>
<tr>
<td>EESL 615</td>
<td>3</td>
</tr>
<tr>
<td>EESL 625</td>
<td>3</td>
</tr>
<tr>
<td>EESL 630</td>
<td>3</td>
</tr>
<tr>
<td>EESL 640</td>
<td>3</td>
</tr>
<tr>
<td>EESL 660</td>
<td>3</td>
</tr>
<tr>
<td>EESL 690</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 30

1. Diversity standards met in EESL 613
2. ECY 600 required if survey of special education course not completed previously

French and ESL Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFL 611</td>
<td>3</td>
</tr>
<tr>
<td>Advisor-approved 500+ level courses in French</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Hours 15

Spanish and ESL Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFL 611</td>
<td>3</td>
</tr>
<tr>
<td>Advisor-approved 500+ level courses in Spanish</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Hours 15

Master of Arts in Education in English as a Second Language Non-Certification International/Adult Track

The M.A.Ed in English as a Second Language degree for the traditional program requires a minimum of 33 hours for the non-certification concentration in ESL and 45 hours for the concentrations in ESL/Spanish and ESL/French. The minimum required GPA is 3.25.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 007</td>
<td>0</td>
</tr>
<tr>
<td>EESL 610</td>
<td>3</td>
</tr>
<tr>
<td>EESL 615</td>
<td>3</td>
</tr>
<tr>
<td>EESL 617</td>
<td>3</td>
</tr>
<tr>
<td>EESL 625</td>
<td>3</td>
</tr>
<tr>
<td>EESL 627</td>
<td>3</td>
</tr>
<tr>
<td>EESL 637</td>
<td>3</td>
</tr>
<tr>
<td>EESL 640</td>
<td>3</td>
</tr>
<tr>
<td>EESL 647</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 31-36

Educational Specialist in Education with a Concentration in English as a Second Language

The Ed.S. requires a minimum of 30 credit hours for the Education program with a concentration in English as a Second Language.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 647</td>
<td>3</td>
</tr>
<tr>
<td>EESL 657</td>
<td>3</td>
</tr>
<tr>
<td>ALSDE-approved Diversity Course</td>
<td>3</td>
</tr>
<tr>
<td>EDC 732</td>
<td>3</td>
</tr>
<tr>
<td>EPR 700</td>
<td>3</td>
</tr>
<tr>
<td>EPR 700L</td>
<td>1</td>
</tr>
<tr>
<td>EPR 700R</td>
<td>1</td>
</tr>
<tr>
<td>ECT 720</td>
<td>3</td>
</tr>
<tr>
<td>ECT 720L</td>
<td>1</td>
</tr>
<tr>
<td>ECT 720R</td>
<td>1</td>
</tr>
<tr>
<td>EDC 731</td>
<td>3</td>
</tr>
<tr>
<td>EESL Electives</td>
<td>6</td>
</tr>
<tr>
<td>EESL 617</td>
<td>3</td>
</tr>
<tr>
<td>EESL 627</td>
<td>3</td>
</tr>
<tr>
<td>EESL 637</td>
<td>3</td>
</tr>
<tr>
<td>EESL 677</td>
<td>2-3</td>
</tr>
<tr>
<td>EHS 681</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 28

Courses

EESL 50. Second Language Acquisition. 3 Hours.
An in-depth look at major theories of second language acquisition. Exploration of learning environments, programs, home language, culture, and other factors that influence second language acquisition. This course entails 30 hours of field experiences. Required for the Alternative Master’s.

EESL 512. Curriculum, Program, Policies. 3 Hours.
Introduction to the curriculum, programs, policies, and laws that support new language learners with respect to legal issues, instructional strategies, accommodations, assessments, and support networks and that are grounded in second language acquisition theory. This course entails 5 days of field experiences in an English learner summer program. Required for the Alternative Master’s in ESL.

EESL 513. Teaching ESL in a Multicultural Society. 3 Hours.
Designed to introduce students to the goals, principles, and practices of multicultural education and to sensitize students to cultural pluralism in the United States. Required for the Alternative Master’s.
EESL 515. Grammar and Linguistics for ESL Teachers. 3 Hours.
A critical study of aspects of Modern English grammar and linguistics that are important for the teaching of English as a Second or Foreign Language. Students will gain an understanding of the major syntactic and semantic phenomena important for teaching ESL/EFL, become familiar with the practical and theoretical literature on teaching English grammar, participate in practical exercises of grammar correction in writing with actual ESL students, and develop and compile classroom activities for teaching points of grammar. Required for the Alternative Master’s.

EESL 525. Phonology for Second Language Teachers. 3 Hours.
An introduction to phonology and its application to the teaching of a second or foreign language. Students learn the phonological structure of the English language, analyze examples from language learner data, diagnose pronunciation difficulties experienced by language learners from different first languages, and identify instructional strategies for assisting language learners to perceive and produce challenging sounds. Required for the Alternative Master’s.

EESL 530. Methods and Materials of Teaching ESL. 3 Hours.
Examines traditional and current approaches for teaching English to speakers of other languages and curriculum materials, texts, and other resources. This course entails 30 hours of field experiences. Required for the Alternative Master’s.

EESL 540. Teaching New Languages Through Reading and Writing. 3 Hours.
Theory, research and practice in reading and writing for second language learners. Implications for teaching reading and writing skills that allow second language learners to participate in the full range of academic situations. This course entails 30 hours of field experiences. Required for the Alternative Master’s.

EESL 560. Effective Teaching and Learning. 3 Hours.
This course prepares candidates to plan, teach, and assess second and foreign languages in school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment. This course entails 30 hours of field experience. Required for the Alternative Master’s.

EESL 570. Engaging Families and Communities. 3 Hours.
This course prepares professional educators to engage families and communities with the overarching idea of shared responsibility for the English learner’s academic success. In this course, UAB candidates will determine what family engagement could look like over time and through multiple levels, starting with individual engagement, the engagement of a school, and of a school system.

EESL 589. Internship Seminar in ESL. 1 Hour.
Provides an opportunity to explore in-depth effective ways to deliver instruction during the internship experience.

EESL 590. Internship in Second and Foreign Languages, N-12. 6 Hours.
Meets the internship requirements of the state code. Interns are engaged in the full scope of teaching activities including planning and delivering lessons, evaluating students, and conducting managerial tasks and other appropriate duties.

EESL 600. TESOL Residency. 0 Hours.
Students in the EdS program’s non-certification track must enroll in EESL 008 during the summer term. During their two-week residency at UAB, they will participate in a TESOL institute on campus and also visit TESOL sites off-campus.

EESL 601L. Community English Teaching. 1 Hour.
Students co-teach weekly Community English Classes.

EESL 610. Second Language Acquisition. 3 Hours.
An in-depth look at major theories of second language acquisition. Exploration of learning environments, programs, home language, culture, and other factors that influence second language acquisition. This course entails 8 hours of field experiences at other schools plus 22 hours of working with English learners at one’s own school.

EESL 612. Curriculum, Programs and Policies. 3 Hours.
Introduction to the curriculum, programs, policies, and laws that support new language learners with respect to legal issues, support networks, instructional strategies, assessments, and accommodations and that are grounded in second language acquisition theory. This course entails 3 days of field experiences in an English learner summer program.

EESL 613. Teaching ESL in a Multicultural Society. 3 Hours.
Designed to introduce students to the goals, principles, and practices of multicultural education and to sensitize students to cultural pluralism in the United States.

EESL 615. Grammar and Linguistics for ESL Teachers. 3 Hours.
A critical study of aspects of Modern English grammar and linguistics that are important for the teaching of English as a Second or Foreign Language. Students will gain an understanding of the major syntactic and semantic phenomena important for teaching ESL/EFL, become familiar with the practical and theoretical literature on teaching English grammar, participate in practical exercises of grammar correction in writing with actual ESL students, and develop and compile classroom activities for teaching points of grammar.

EESL 617. Teaching English in a Global Context. 3 Hours.
Provides a sociolinguistic perspective on the globalization of English and on the emergence and teaching of English as an International Language. Students explore dialectology, language change, language diversity, language ideology and power, national language policies, World Englishes, the growing number of non-native English speakers, and attitudes of native and non-native English speakers toward the domination of English.

EESL 620. Special Topics in ESL. 3 Hours.
Topics will vary from year to year.

EESL 625. Phonology for Second Language Teachers. 3 Hours.
An introduction to phonology and its application to the teaching of a second or foreign language. Students learn the phonological structure of the English language, analyze examples from language learner data, diagnose pronunciation difficulties experienced by language learners from different first languages, and identify instructional strategies for assisting language learners to perceive and produce challenging sounds.

EESL 627. Teaching Adult Language Learners. 3 Hours.
Introduces goals, principles, and practices for teaching English to adult learners, addresses the influence of varying backgrounds on adult language learning, and examines ways to evaluate adults’ second language development. After learning to recognize quality components in distinct program models, as outlined by TESOL Standards for Adult Education ESL Programs, students do a critical study of community-based programs and English for Specific Purposes.

EESL 630. Methods and Materials of Teaching ESL. 3 Hours.
Examines traditional and current approaches to teaching English to speakers of other languages and curriculum materials, texts, and other resources. This course entails 40 hours of field experience working with English learners in one’s own school.
EESL 637. Methods Teaching English as an International Language. 3 Hours.
Prepares students to teach English as an International Language by using methods, strategies, and techniques appropriate for adults in ESL contexts and for all learners in EFL contexts. Engaged with approaches aligned with TESOL Standards for ESL/EFL Teachers of Adults, students plan state-of-the-art curriculum, instruction and assessment for 5 program settings: adult/community, workplace, college/university, intensive English, and English as a Foreign Language.

EESL 640. Teaching New Languages Through Reading and Writing. 3 Hours.
Theory, research and practice in reading and writing for second language learners. Implications for teaching reading and writing skills that allow second language learners to participate in the full range of academic situations. This course entails 8 hours of field experiences at another school and 32 hours working with English learners in one’s own school.

EESL 641. Teaching Emergent Bilingual Learners in the Early Childhood Setting. 3 Hours.
This course prepares candidates to work effectively with emergent bilingual learners in the early childhood setting. Candidates will gain context knowledge needed to design curriculum, including literacy, appropriate for emergent bilingual learners and will learn how culture and home language impacts learning additional languages.

EESL 643. Promoting Global Peace through TESOL. 3 Hours.
This course guides graduate students in understanding and facilitating the promotion of global peace within and out of the TESOL classroom through listening, speaking, reading and writing. The goal of this course is for educators to learn to use the tools of negotiation, arbitration, and mediation with an overarching focus on peacekeeping, peacemaking, and peacebuilding.

EESL 647. Instruction and Assessment: Reading and Writing. 3 Hours.
Addresses linguistic, sociocultural, psychological, and educational factors that affect literacy development of English as an additional language. Grounded in theoretical and practical aspects of teaching second language (L2) reading and writing to adolescents and adults in diverse communities, students learn to implement effective instructional strategies for promoting literacy in English as an additional language. To measure attainment of L2 reading and writing skills, students learn to design and conduct authentic assessments and to administer standardized assessments.

EESL 650. Strategies for Teaching Math and Science to ELLs. 3 Hours.
Provides knowledge and strategies for making math and science accessible to ELLs at all grade levels, K-12. Classroom teachers will learn to make accommodations for teaching ELLs within a sheltered instruction framework.

EESL 657. Instruction and Assessment: Listening and Speaking. 3 Hours.
Examines how spoken communication is structured so that it is socially appropriate and linguistically accurate. Students learn principles and best practices for the contextualized teaching of second language (L2) listening and speaking skills to adolescent and adult learners. After exploring the purposes, types, and availability of formal testing tools to assess the attainment of these skills in English as an additional language, students also learn to generate and conduct their own tests for assessing L2 listening and speaking.

EESL 660. Effective Teaching and Learning. 3 Hours.
This course prepares candidates to plan teach and assess second and foreign languages in school settings; making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment. This course entails 30 hours of field experience. Required for the traditional Master’s in ESL.

EESL 670. Engaging Families and Communities. 3 Hours.
This course prepares professional educators to engage families and communities with the overarching idea of shared responsibility for the English learner’s academic success. In this course, UAB candidates will determine what family engagement could look like over time (in school years) and through multiple levels, starting with individual engagement, the engagement of a school, and of a school system.

EESL 677. Field Studies. 1-3 Hour.
Students participate in field studies related to the teaching of English as a second or foreign language.

EESL 680. Research in ESL. 3 Hours.
Primary types of research conducted in second language teaching and learning and how these methods can be used to inform teaching. Introduction to classroom-based second language research approaches.

EESL 681. National Boards in English as a New Language. 3 Hours.
This course prepares experienced teachers for National Board Certification in English as a New Language (ENL). Students enrolled in this course may be either pre-candidates or candidates for National Board Certification.

EESL 687. English for Specific Purposes. 3 Hours.
This inquiry-focused course guides emerging teachers in experiencing the differentiated facets of working in adult ESL and EFL environments. Students explore English for Specific Purposes and related issues in Intensive English Programs, English for Occupational Purposes, Program Administration, and English as an International Language. Students observe classes in regional IEPs, develop an EOP program, receive hands-on experience in administration, apply research to various adult ESL teaching situations, and do an in-depth study of an EFL context.

EESL 689. Seminar in ESL. 1 Hour.
Provides an opportunity to explore in-depth effective ways to deliver instruction during the internship experience. Must be taken concurrently with EESL 690.

Prerequisites: EESL 610 [Min Grade: C]

EESL 690. Internship in Second and Foreign Languages, P-12. 3 Hours.
Meets the internship requirements of the state code. Interns are engaged in the full scope of teaching activities including planning and delivering lessons, evaluating students, and conducting managerial tasks and other appropriate duties. This course entails 2 weeks of internship in an English learner summer program. Approval of internship application for the traditional master’s.

EESL 697. ESL Practicum. 1-3 Hour.
In this practicum course, prospective ESL/EFL teachers shadow a professional ESL teacher when teaching an Academic English class. As needed, they also provide specialized support for the ESL students in that class. To enhance their professional growth, these prospective teachers share their reflections and newly-acquired competencies with the EESL 697 course instructor.
EESL 698. Teaching Apprenticeship. 2-3 Hours.
This required teaching apprenticeship is housed in a standards-based course that offers practical application of the knowledge and skills learned in other courses for teaching ESL. After having completed one semester of structured observations of professional ESL educators and participated in corresponding debriefings, novice teachers engage in the full scope of ESL teaching activities. They plan and deliver lessons, assess learners and their language development, and conduct managerial tasks and other appropriate duties.
Prerequisites: EESL 697 [Min Grade: C]

EESL 717. Teaching English in Global Context. 3 Hours.
This course provides a sociolinguistic perspective on the globalization of English and on the emergence and teaching of English as an International Language. Students explore dialectology, language change, language diversity, language ideology and power, national language policies, World Englishes, the growing number of non-native English speakers, and attitudes of native and non-native English speakers toward the domination of English.

EESL 737. Teaching English as an International Language. 3 Hours.
The primary purpose of this course is to guide educators in exploring the teaching of English as a second, new, or foreign language to English learners of all ages. With the goal of expanding an educator's repertoire for teaching speakers of languages other than English, this course considers the relevance of historical approaches and methods used in language teaching during the past century and reviews language methods and approaches used in today's ESL and EFL classrooms. Educators analyze selected methods and approaches in differing contexts that include English as a Second Language (ESL), English as a Foreign Language (EFL), and English as an International Language (EIL) or English as Lingua Franca (ELF).

EESL 743. Promoting Global Peace through TESOL. 3 Hours.
This course guides doctoral students in understanding and facilitating the promotion of global peace within their classroom and educational setting as well as in other settings, both locally and globally.

EESL 747. Instruction and Assessment: Reading and Writing. 3 Hours.
This course explores the linguistic, sociocultural, psychological, and educational factors that affect literacy development in English as a second or foreign language (ESL/EFL). Educators will analyze literacy-learning needs of English learners (ELs) in diverse contexts and multiple age groups and will participate in effective and engaging ways to meet those needs.

EESL 757. Instruction and Assessment: Listening and Speaking. 3 Hours.
Based on linguistic perspectives and language acquisition research from earlier in their careers, educators will use research, experience, and reflection to further inform their own teaching practice in TESOL. To that end, they will explore the complexities of linguistic, sociocultural, psychological, and educational factors that affect ELLs' aural and oral development.

EESL 763. Facilitating Intercultural Communicative Competence. 3 Hours.
This course guides doctoral students in understanding and facilitating their students' intercultural communicative competence within and out of the classroom.

EESL 780. Research in ESL/EFL. 3 Hours.
Exploration of research methods conducted in second and foreign language teaching and applications of these methods to inform teaching in the ESL and/or EFL contexts.

High School Education

UAB's High School Education program prepares pre-service and in-service teachers for teaching in both Middle School and High School. This secondary education program offers the following graduate degrees: Master of Arts in Education (MAEd) and Educational Specialist (Ed.S.).

UAB's High School Education program embodies a three-fold purpose. Its first purpose is to prepare educators in meeting the evolving needs of learners, primarily in grades 6-12, within today's rapidly changing society. Based on constructivism, its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach that prepares educators to use state-of-the-art instructional strategies in their own classrooms. Its third purpose is to ensure that a quality program is available to pre-service and in-service teachers who may be unable to attend class during traditional class hours. This program is unique in how it combines online support from Canvas with a variety of delivery formats:

- blended courses (online & face-to-face evenings)
- professional learning communities
- flexible summer programming
- totally online platforms
- Saturday classes

These purposes are expanded and enhanced by the Ed.S. program. This advanced degree offers standards-based concentrations within discipline areas. It infuses an inquiry-focused teacher leader approach that prepares teachers for assuming leadership roles in curriculum development and instructional delivery. It also provides experienced teachers with collaborative skills to serve as reflective practitioners in guiding school change as well as with mentoring techniques to positively impact student achievement and school improvement.

Prospective students should contact the Program Director, Paulette Evans at pgevans@uab.edu (205-975-7519).

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.

Master of Arts in Education in High School Education Traditional Master's Program

The M.A.Ed. degree requires a minimum of 33 credit hours for the High School Education program (i.e., Secondary Education) with concentrations in Biology, Chemistry, General Science, Mathematics, Physics, English Language Arts, General Social Science, and History. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Concentrations</td>
<td></td>
</tr>
<tr>
<td>EDC 606</td>
<td>The Dynamics of Educational Change</td>
</tr>
<tr>
<td>EDC 651</td>
<td>Innovative Practices in Instruction</td>
</tr>
<tr>
<td>EDC 655</td>
<td>Curriculum Principles and Practices</td>
</tr>
<tr>
<td>EPR 594</td>
<td>Introduction to Educational Research Design</td>
</tr>
</tbody>
</table>
High School Education

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECY 600</td>
<td>Introduction to Exceptional Learner ¹</td>
<td>3</td>
</tr>
<tr>
<td>ALSDE-approved Diversity course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EDF 600</td>
<td>Urban Education</td>
<td></td>
</tr>
<tr>
<td>EDF 602</td>
<td>Critical Social Issues in American Education</td>
<td></td>
</tr>
<tr>
<td>EDF 606</td>
<td>Social Movements in Education</td>
<td></td>
</tr>
<tr>
<td>EDF 620</td>
<td>Culture and American Education: Race and Gender</td>
<td></td>
</tr>
<tr>
<td>ECT 625</td>
<td>Positive Behavioral Supports</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 18

¹ May not be required if previously completed

<table>
<thead>
<tr>
<th>Concentration in Biology, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved Biology courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>EHS 615 Advanced Methods: Science, Grades 6-12</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration in Chemistry, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved Chemistry courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>EHS 615 Advanced Methods: Science, Grades 6-12</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration in General Science, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved 500+ level courses in two Science Disciplines</td>
<td>12</td>
</tr>
<tr>
<td>EHS 615 Advanced Methods: Science, Grades 6-12</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration in Mathematics, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved Mathematics courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>EHS 616 Advanced Methods: Mathematics, Grades 6-12</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration in Physics, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved Physics courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>EHS 615 Advanced Methods: Science, Grades 6-12</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration in English Language Arts, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved courses at 500+ level in English and another ELA field</td>
<td>12</td>
</tr>
<tr>
<td>EHS 612 Advanced Methods: English Language Arts, Grades 6-12</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration in General Social Science, 6-12</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved courses at the 500+ level in 2 or more Social Science disciplines</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Master of Art in Education in High School Education Fifth Year Alternative Master's Program

The Alternative M.A.Ed. degree requires 37-40 credit hours for the Fifth Year Alternative Master's program in High School Education (i.e., Secondary Education) with concentrations in Biology, Chemistry, General Science, Mathematics, Physics, English Language Arts, General Social Science, and History. The Alabama State Department of Education requires a minimum GPA of 3.25 for certification.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Concentrations</td>
<td></td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner ¹</td>
<td>3</td>
</tr>
<tr>
<td>EDR 551 Reading in Content Areas</td>
<td>3</td>
</tr>
<tr>
<td>EHS 556 Classroom Mgt in Sec Schools</td>
<td>3</td>
</tr>
<tr>
<td>EHS 597 Special Problems in Education: Diversity</td>
<td>3</td>
</tr>
<tr>
<td>EHS 690 Intern Seminar in Sec Edu</td>
<td>1</td>
</tr>
<tr>
<td>EHS 691 Secondary School Internship</td>
<td>6</td>
</tr>
<tr>
<td>EPR 511 Measurement and Evaluation in Education Secondary Ed</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>22</td>
</tr>
</tbody>
</table>

¹ May not be required if previously completed
Concentration in Mathematics, 6-12

Requirements

- Advisor-approved Mathematics courses at 500+ level: 12 hours
- EHS 535 Methods I Mathematics 6-12: 3 hours
- EHS 565 Methods II: Mathematics, 6-12: 3 hours

Total Hours: 18

Concentration in Physics, 6-12

Requirements

- Advisor-approved Physics at 500+ level: 12 hours
- EHS 537 Methods I: Science, 6-12: 3 hours
- EHS 567 Methods II: Science, 6-12: 3 hours

Total Hours: 18

Concentration in English Language Arts, 6-12

Requirements

- Advisor-approved at the 500+ level in English and another ELA field: 12 hours
- EHS 536 Methods I: English Language Arts, 6-12: 3 hours
- EHS 566 Methods II: English Language Arts, 6-12: 3 hours

Total Hours: 18

Concentration in General Social Science, 6-12

Requirements

- Advisor-approved Courses in 2 or more 500+ level Social Science Disciplines: 12 hours
- EHS 538 Methods I: Social Science, 6-12: 3 hours
- EHS 568 Methods II: Social Science, 6-12: 3 hours

Total Hours: 18

Master of Arts in Education High School Education Concentrations in French and Spanish Fifth Year Alternative Master's Program

The M.A.Ed. degree requires a minimum of 33 credit hours for the Fifth Year Alternative Master's program in High School Education (i.e., Secondary Education) with concentrations in French and Spanish. A minimum GPA of 3.25 is required.

Requirements

- EFL 539 Methods I: World Languages: 3 hours
- EFL 569 Methods II: World Languages: 3 hours
- EHS 597 Special Problems in Education: Diversity 1 or EESL 513 Teaching ESL in a Multicultural Society: 3 hours
- EESL 540 Teaching New Languages Through Reading and Writing or EDR 551 Reading in Content Areas: 3 hours
- EHS 556 Classroom Mgt in Sec Schools: 3 hours
- EPR 510 Measurement and Evaluation in Education ECE or EPR 511 Measurement and Evaluation in Education Secondary Ed: 3 hours
- ECY 600 Introduction to Exceptional Learner 2: 3 hours
- EESL 510 Second Language Acquisition: 3 hours
- EHS 690 Intern Seminar in Sec Edu: 1 hour

Total Hours: 25

1 Diversity standards met in EHS 597 and EESL 513
2 May not be required if previously completed

Concentration in French

Requirements

- Advisor-approved 500+ level French courses: 12 hours
- EFL 591 N-12 Foreign Language Internship: 6 hours

Total Hours: 18

Concentration in Spanish

Requirements

- Spanish courses at the 500+ level: 12 hours
- EFL 591 N-12 Foreign Language Internship: 6 hours

Total Hours: 18
Educational Specialist in Education with a concentration in High School Education

The Ed.S. degree requires a minimum of 33 credit hours for the High School Education concentration (i.e., Secondary Education) with content areas in Biology, Chemistry, General Science, Mathematics, Physics, English Language Arts, General Social Science, and History. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Concentrations</td>
<td></td>
</tr>
<tr>
<td>EDC 707 Introduction to Teacher Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EDC 711 Analysis and Evaluation of Teaching</td>
<td>3</td>
</tr>
<tr>
<td>EDC 720 Problems and Issues in Education</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>EPR 596 Introduction to Qualitative Methods in Educational Research</td>
<td>3</td>
</tr>
<tr>
<td>EHS 720 Individual Research in Education</td>
<td>3</td>
</tr>
<tr>
<td>or EHS 680 National Board Seminar for Secondary Education</td>
<td></td>
</tr>
<tr>
<td>Advisor-approved Elective</td>
<td>3</td>
</tr>
<tr>
<td>EHS 681 Special Topics in Education</td>
<td></td>
</tr>
<tr>
<td>600+ level Education course</td>
<td></td>
</tr>
<tr>
<td>500+ level course in Teaching Field</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>21</td>
</tr>
</tbody>
</table>

| May not be required if previously completed |

Concentration in High School Education - Biology, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved Biology courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - Chemistry, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved Chemistry courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - General Science, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved Science courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - Mathematics, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved Mathematics courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - Physics, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved Physics courses at 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - English Language Arts, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved courses at the 500+ level in English and another ELA field</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - General Social Science, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved courses at the 500+ level in 2 or more Social Science disciplines</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Concentration in High School Education - History, 6-12

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved History courses at the 500+ level</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Courses

EHS 530. Practicum. 1-2 Hour.
Field experience in school-based setting. Admission to Alternative Master's Program required.
Prerequisites: EDU 500 [Min Grade: C](Can be taken Concurrently)

EHS 535. Methods I Mathematics 6-12. 3 Hours.
Introduction to teaching mathematics in secondary school settings. Developing basic skills in planning, instruction, and assessment. Supervision fee.

EHS 536. Methods I: English Language Arts, 6-12. 3 Hours.
Introduction to teaching English language arts in secondary school settings. Developing basic skills in planning, instruction, and assessment. Field supervision fee.

EHS 537. Methods I: Science, 6-12. 3 Hours.
Introduction to teaching science in secondary school settings. Developing basic skills in planning, instruction, and assessment. Admission to Alternative Master's Program required. Field supervision fee.

EHS 538. Methods I: Social Science, 6-12. 3 Hours.
Introduction to teaching the social sciences in secondary school settings. Developing basic skills in planning, instruction, and assessment. Supervision fee.

EHS 556. Classroom Mgt in Sec Schools. 3 Hours.
Designed to help teachers build their own personal system of discipline, consonant with their philosophies and personalities as well as with realities of students and schools. Emphasis on successful classroom management techniques.
EHS 565. Methods II: Mathematics, 6-12. 3 Hours.
Preparation to plan, teach and assess mathematics in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 535 [Min Grade: C]

EHS 566. Methods II: English Language Arts, 6-12. 3 Hours.
Preparation to plan, teach and assess English language arts in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 536 [Min Grade: C]

EHS 567. Methods II: Science, 6-12. 3 Hours.
Preparation to plan, teach and assess science in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 537 [Min Grade: C]

EHS 568. Methods II: Social Science, 6-12. 3 Hours.
Preparation to plan, teach and assess social science in secondary school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment.
Prerequisites: EHS 538 [Min Grade: C]

EHS 570. Practicum II. 1 Hour.
Field experience in school-based setting.

EHS 597. Special Problems in Education: Diversity. 3 Hours.
Seminar for graduate students; readings and research projects based on special interests. May be repeated for total of 6 hours. Field Supervision Fee.

EHS 600. Secondary Education Curriculum and Methods I. 3 Hours.
Introductory course in Alternative Masters Program for secondary school education. Developing basic teaching skills and understanding of interdependence among all levels within school and community. Course requires 40 hours of field experiences beyond class meetings.

EHS 612. Advanced Methods: English Language Arts, Grades 6-12. 3 Hours.
Advanced methods for teaching English language arts in grades 6-14. Includes curriculum development, classroom interaction, pedagogical activities, technology applications, source materials, current research, society issues, and cognitive development of students. Current classroom teaching required. Changed to Grades 6-12 (rather than 14) to align with secondary education grade levels.

EHS 614. Advanced Methods: Social Sciences, Grades 6-12. 3 Hours.
Advanced methods for teaching the social sciences in grades 6-14. Includes curriculum development, classroom interaction, pedagogical activities, technology applications, source materials, current research, society issues, and cognitive development of students. Current classroom teaching required.

EHS 615. Advanced Methods: Science, Grades 6-12. 3 Hours.

EHS 616. Advanced Methods: Mathematics, Grades 6-12. 3 Hours.
Prerequisites: EHS 565 [Min Grade: C]

Innovative practices in planning, instructing, and evaluating high school area studies. May be repeated if taken in different areas of study.

EHS 680. National Board Seminar for Secondary Education. 3 Hours.
Course involves 18 Saturday seminars during the school year to prepare teachers for National Board Candidacy and to support candidates as they go through the certification process. Students enrolled in this course may be either pre-candidates or candidates for National Board Certification.

EHS 681. Special Topics in Education. 1-6 Hour.
Prerequisite: Permission of instructor.

EHS 690. Intern Seminar in Sec Edu. 1-3 Hour.
Field experience in school-based setting. Includes attendance at a weekly seminar on campus. Prerequisite: Internship required.

EHS 691. Secondary School Internship. 3-9 Hours.
Observation and teaching in secondary school (15 weeks minimum). Includes attendance at several seminars on campus. Unconditional acceptance in Alternative Master's Program and approval of application for internship required.

EHS 692. Field Studies (Selected Educational Settings). 1-3 Hour.
Field Studies.

EHS 693. Advanced Field Experience. 3 Hours.
Field Studies.

EHS 698. Individual Research in Education. 1-6 Hour.
Research Prerequisite: Permission of instructor.

EHS 720. Individual Research in Education. 3-6 Hours.
Research Prerequisites: Master's degree and permission of instructor.

Instructional Design & Development

The purpose of the UAB Instructional Design and Development (IDD) program is to train qualified instructional designers who effectively analyze, design, develop, evaluate, and implement quality online, blended, and on-ground instruction. This fully-online program follows and achieves the International Board of Standards for Training, Performance and Instruction (IBSTPI) competencies and performance standards for instructional designers.

Instructional design and development is the practice of systematically creating instructional experiences that make the acquisition of knowledge and skill more efficient and effective. The process consists broadly of determining the current state and needs of the learner, defining the end goal of instruction, and creating some "intervention" to assist in the transition. The process is guided by pedagogically-tested theories of learning and may take place in many different learning environments. As a field, instructional design and development is historically and
traditionally rooted in cognitive and behavioral psychology, though recently, constructivism has influenced thinking in the field.

The study of instructional design and development includes the study of learning theory and trends in educational technology, instructional design principles, universal design and usability for effective design, development, and delivery of learning materials across a wide range of learning environments.

M.S. Instructional Design & Development

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD 600</td>
<td>Trends and Issues in Instructional Design</td>
<td>3</td>
</tr>
<tr>
<td>IDD 610</td>
<td>Instructional Design</td>
<td>3</td>
</tr>
<tr>
<td>IDD 620</td>
<td>Universal Differential Instructional Design and Development</td>
<td>3</td>
</tr>
<tr>
<td>IDD 630</td>
<td>Performance System Technology</td>
<td>3</td>
</tr>
<tr>
<td>IDD 640</td>
<td>Learning, Cognition, and Instructional Design and Development</td>
<td>3</td>
</tr>
<tr>
<td>IDD 650</td>
<td>Alternate Instructional Design and Development Models</td>
<td>3</td>
</tr>
<tr>
<td>IDD 660</td>
<td>Assessment and Evaluation in Instructional Design & Development</td>
<td>3</td>
</tr>
<tr>
<td>IDD 670</td>
<td>Multimedia Design and Development for Instruction and Training</td>
<td>3</td>
</tr>
<tr>
<td>IDD 680</td>
<td>Instructional Design and Development Elective</td>
<td>3</td>
</tr>
<tr>
<td>IDD 690</td>
<td>Research Practicum</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Courses

IDD 600. Trends and Issues in Instructional Design. 3 Hours.

This course defines the field of instructional design and technology by exploring its history, current trends and future issues in the field. The course provides insights from leaders in the field, case studies on instructional design in different fields, and interactive activities on the systematic approaches to instructional design.

IDD 610. Instructional Design. 3 Hours.

Instructional Design is a project-based course that includes step-by-step strategies to create instruction using design models, instructional strategies, and technology applications. Learners will study the processes of analysis, design, development, implementation, and evaluation in order to apply real-world training solutions to instructional challenges.

IDD 620. Universal Differential Instructional Design and Development. 3 Hours.

This course gives students an experience in research-based instructional methods and alternative assessment strategies designed to meet the varied instructional needs and preferences of all learners in today's educational environments.

IDD 630. Performance System Technology. 3 Hours.

This course provides students with practical methods of analyzing and solving human performance problems with an emphasis on development of both non-instructional and instructional interventions. An overview of concepts and current issues related to the design and development of training and performance systems at the macro-level is also provided, allowing learners to explore learning and performance from a broad organizational perspective.

IDD 640. Learning, Cognition, and Instructional Design and Development. 3 Hours.

This course surveys the cognitive science literature that is especially relevant for instructional designers. The course covers major theoretical perspectives in cognitive science and has students read original empirical research. The goal is to prepare IDD students to utilize cognitive science literature in their careers.

IDD 650. Alternate Instructional Design and Development Models. 3 Hours.

This course affords students the opportunity to apply a variety of well-established and emerging instructional design and development models.

IDD 660. Assessment and Evaluation in Instructional Design & Development. 3 Hours.

Students will learn how to assess human attitudes, knowledge and performance, analyze practical data, and evaluate training and human performance programs.

IDD 670. Multimedia Design and Development for Instruction and Training. 3 Hours.

This course will present techniques for the integration of instructional design theory and practice with the current and emerging delivery systems. Students will acquire skills and explore software necessary to develop and produce an original interactive instructional product.

IDD 680. Instructional Design and Development Elective. 3 Hours.

Content will be diversified opportunities to take advantage of specific areas of expertise of faculty, availability of experts in areas not covered in other course work, or original projects that become available.

IDD 685. Project Management in Instructional Design. 3 Hours.

Basics of project management as applied to instructional/learning design projects; introduction of standard terminology, description of typical project phases, and common deliverables expected in each phase.

Prerequisites: IDD 600 [Min Grade: C] and IDD 610 [Min Grade: C] and IDD 620 [Min Grade: C] and IDD 630 [Min Grade: C] and IDD 640 [Min Grade: C] and IDD 650 [Min Grade: C] and IDD 660 [Min Grade: C] and IDD 670 [Min Grade: C]

IDD 690. Research Practicum. 1-3 Hour.

The research practicum is a supervised learning experience in an actual or similar setting to that which instructional designers are employed.

Reading

The Reading Education master's program (M.A.Ed.) prepares teachers to serve as reading specialists and to improve their classroom skills in teaching and coaching for reading. Reading candidates will receive in-depth knowledge of reading pedagogy and implementation during their program. The reading candidates participate in extensive work with children/students in diverse groupings and settings. A portfolio of professional development in reading is completed by the end of the program.

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.
Reading Specialist Certification

The Graduate Non-Degree Reading Specialist Program requires a minimum of 36 credit hours.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEC 621</td>
<td>3</td>
</tr>
<tr>
<td>EEC 660</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>3</td>
</tr>
<tr>
<td>EDC 695</td>
<td>3</td>
</tr>
<tr>
<td>EDR 551</td>
<td>3</td>
</tr>
<tr>
<td>EDR 650</td>
<td>3</td>
</tr>
<tr>
<td>EDR 653</td>
<td>3</td>
</tr>
<tr>
<td>EDR 654</td>
<td>3</td>
</tr>
<tr>
<td>EDR 655</td>
<td>3</td>
</tr>
<tr>
<td>EDR 659</td>
<td>3</td>
</tr>
<tr>
<td>EESL 640</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>36</td>
</tr>
</tbody>
</table>

Master of Arts in Education in Reading Education

The M.A.Ed. in Reading Education degree for the Reading Specialist program requires a minimum of 36 hours. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDC 695</td>
<td>3</td>
</tr>
<tr>
<td>EEC 621</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>1</td>
</tr>
<tr>
<td>EDR 551</td>
<td>3</td>
</tr>
<tr>
<td>EDR 650</td>
<td>3</td>
</tr>
<tr>
<td>EDR 653</td>
<td>3</td>
</tr>
<tr>
<td>EDR 654</td>
<td>3</td>
</tr>
<tr>
<td>EDR 655</td>
<td>3</td>
</tr>
<tr>
<td>EDR 659</td>
<td>3</td>
</tr>
<tr>
<td>EEC 660</td>
<td>3</td>
</tr>
<tr>
<td>EDR 690</td>
<td>3</td>
</tr>
<tr>
<td>EESL 640</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>36</td>
</tr>
</tbody>
</table>

1 May not be required if previously completed

Educational Specialist in Education with a Concentration in K-12 Collaborative Teacher in Reading

The Ed.S. in Education with a concentration in K-12 Collaborative Teacher in Reading program requires a minimum of 36 hours. A minimum GPA of 3.50 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR 650</td>
<td>3</td>
</tr>
<tr>
<td>EDC 695</td>
<td>3</td>
</tr>
<tr>
<td>EDR 655</td>
<td>3</td>
</tr>
<tr>
<td>EDR 659</td>
<td>3</td>
</tr>
<tr>
<td>EDR 654</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>1</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 620</td>
<td>3</td>
</tr>
<tr>
<td>ECT 621</td>
<td>3</td>
</tr>
<tr>
<td>ECT 623</td>
<td>3</td>
</tr>
<tr>
<td>ECT 625</td>
<td>3</td>
</tr>
<tr>
<td>ECT 631</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>21</td>
</tr>
</tbody>
</table>

Track 1

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR 550</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Track 2

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR 550</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1 May not be required if previously completed

Courses

EDR 521. Reading in Content Areas. 1 Hour.
Application of principles of reading process to content-area materials and instruction. Designed for pre-service teachers. Field experience required concurrently with the field experience in a teaching methods course. Supervision fee $100.

EDR 540. Developmental Reading I. 1-4 Hour.
Materials and methods. Emphasis on planning balanced program and understanding reading process. Includes field experiences. Prerequisite: Admission to 5th-Year Program.

EDR 541. Literature for Adolescents. 3 Hours.
Literary works written for or about adolescents.

EDR 543. Developmental Reading II. 1-4 Hour.
Reading process as it relates to content area materials. Includes field experience. Prerequisite: Admission to 5th-Year Program.

Prerequisites: EEC 612 [Min Grade: C]

EDR 551. Reading in Content Areas. 3 Hours.
Reading process; evaluation of content area materials; analysis of different content area textbooks; meeting individual differences. Supervision fee $100.
EDR 600. Disciplinary Literacy P-12. 3 Hours.
The purpose of this course is to provide candidates with the foundational knowledge to design or implement an integrated, comprehensive, and balanced curriculum. Students will gain an understanding of how reading and writing relate to the disciplines and to local, state, national, and professional standards. Candidates will develop an understanding of how to implement curriculum based on students' prior knowledge, world experiences, and interests. Additionally, candidates will explore instructional strategies to support students as agents of their own learning to develop the ability to be critical consumers of the discipline. This knowledge affords teachers the ability to ultimately evaluate curriculum to ensure that instructional goals and objectives meet the reading and writing demands of the content area and/or discipline.

EDR 640. Reading Improvement Workshop. 3-6 Hours.
For inservice teachers of reading. Specific content varies according to needs of teachers.

EDR 650. Teaching Reading P-12. 3 Hours.
Understanding of reading process. Nature of reading programs; readiness motivation, methods, skills, assessment, evaluation, materials, and resources.

EDR 652. Pre and Early Reading Instruction. 3 Hours.
Theoretical bases, procedures, techniques, and materials for prereading and reading instruction. Prerequisite: Developmental reading course.

EDR 653. Literature for Grades P-12. 3 Hours.
Emphasis on needs of children, selection of books, societal issues in children's literature.

EDR 654. Dyslexia Research, Education & Advocacy. 3 Hours.
The purpose of this course is to provide candidates with an understanding of a balanced approach to literacy and research-based best practices for supporting literacy development among a diverse population of students. Additionally, this course provides knowledge of the approaches available to specialize curriculum for meeting the exceptional needs of students.

EDR 655. Reading Assessment and Evaluation. 3 Hours.
Examines evaluation techniques such as observation, standardized oral and silent reading tests and informal reading inventories such as miscue analysis.

EDR 659. Research and Problems in Reading. 3 Hours.
For teachers in elementary and early childhood education.

EDR 690. Internship in Reading. 1-3 Hour.
Supervised experience with children with reading difficulties. Prerequisites: Admission to reading certification program, permission of instructor and department.

EDR 701. Advanced Diagnosis and Remediation of Reading. 3 Hours.
Examination of serious reading disabilities; diagnosis, possible remediation strategies, and development; diagnosis, possible remediation strategies, and development of remediation plan in lab setting. Prerequisites: Master's degree and M.A.-level diagnostic reading course or permission of instructor.

EDR 702. Reading: Theoretical Foundations. 3 Hours.
Relates concepts of learning, development, and linguistics to reading-learning process; emphasis on current theory; implications for program planning and classroom practice. Prerequisites: EDR 650 or permission of instructor, and master's degree. Prerequisites: EDR 650 [Min Grade: C]

EDR 703. Advanced Research in Reading. 3 Hours.
Research Prerequisites: EDR 650 and master's degree. Prerequisites: EDR 650 [Min Grade: C]

EDR 704. Field Experience in Reading. 3-6 Hours.
Supervised field experiences under direction of qualified reading consultant or supervisor in school setting. Prerequisites: Admission to Sixth-Year Program for Reading Teacher and permission of instructor.

EDR 705. Reading Instruction Seminar. 3 Hours.
Examination of trends and issues in field of reading. Topics determined by each class. Prerequisites: Master's degree and 9 graduate hours in reading or permission of instructor.

EDR 706. Research. 1-3 Hour.
Research Prerequisites: Master's degree and permission of instructor.

School Psychometry

UAB's School Psychometry program (Class A certification or M.A.Ed.) embodies a three-fold purpose. Its first purpose is to prepare candidates to serve as a school psychometrist to assist in meeting the evolving needs of learners, in grades K-12, within today's rapidly changing society. Its second purpose is to deliver cutting-edge instruction through a standards-based, inquiry-focused approach. Based on constructivism, this approach prepares candidates to administer psychological services in the schools. These services include the conduction of psychoeducational assessment on students referred for special services. Its third purpose is to ensure that a quality program is available to candidates who may be unable to attend class during traditional class hours. This program is delivered through a totally online platform.

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at www.uab.edu/education/studentservices/admission-requirements.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 620</td>
<td>3</td>
</tr>
<tr>
<td>ECT 623</td>
<td>3</td>
</tr>
<tr>
<td>ECT 625</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>3</td>
</tr>
<tr>
<td>EPR 614</td>
<td>3</td>
</tr>
<tr>
<td>ESP 600</td>
<td>3</td>
</tr>
<tr>
<td>ESP 627</td>
<td>1</td>
</tr>
<tr>
<td>ESP 628</td>
<td>3</td>
</tr>
<tr>
<td>ESP 629</td>
<td>3</td>
</tr>
<tr>
<td>ESP 689</td>
<td>6</td>
</tr>
<tr>
<td>Required Elective 1</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Advisor approved electives at the 500 or 600 level.

School Psychometry Certification

The Graduate Non-Degree School Psychometry Certification Program requires a minimum of 34 credit hours.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 620</td>
<td>3</td>
</tr>
<tr>
<td>ECT 623</td>
<td>3</td>
</tr>
<tr>
<td>ECT 625</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600</td>
<td>3</td>
</tr>
<tr>
<td>EPR 614</td>
<td>3</td>
</tr>
</tbody>
</table>

Individuals pursuing this certificate/degree must complete one of two tracks in this program. The track selected depends upon the type of valid, prerequisite Alabama professional educator certificate held PRIOR to unconditional admission to the Class AA Program in Collaborative Teacher. Track 1 is for candidates who DO NOT currently hold a valid Alabama Class A Certificate in Collaborative Teacher. Candidates who must take this track of courses are those with a valid, prerequisite Alabama Class A Professional Educator Certificate in any teaching field (other than Collaborative Teacher). To be eligible to pursue Track 2 courses, candidates MUST hold a valid, prerequisite Alabama Class A Professional Educator Certificate in Collaborative Teacher.

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.

Master of Arts in Special Education Collaborative Teacher K-12

The MA.Ed. in Special Education degree for the Collaborative Teacher K-12 program requires a minimum of 33 hours. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 620 Formative and Summative Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ECT 621 Program and Lesson Planning</td>
<td>3</td>
</tr>
<tr>
<td>ECT 622 Language and Communication Facilitation</td>
<td>3</td>
</tr>
<tr>
<td>ECT 623 Instructional Methods</td>
<td>3</td>
</tr>
<tr>
<td>ECT 624 Sensory, Health and Physical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ECT 625 Positive Behavioral Supports</td>
<td>3</td>
</tr>
<tr>
<td>ECT 626 Assistive and Instructional Technology</td>
<td>3</td>
</tr>
<tr>
<td>ECT 627 Collaborative Processes</td>
<td>3</td>
</tr>
<tr>
<td>ECT 628 Legal Issues and Trends</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>ECT 631 Practicum in Collaborative Teaching K-12</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 33

1 May not be required if previously completed

Special Education

Welcome to UAB where students become skilled, reflective educators through Special Education graduate degree programs in Collaborative Teacher (CT) K-12, and Early Childhood Special Education (ECSE). These innovative program offer degrees and/or certification at three levels—alternative masters, traditional masters and specialist.

The alternative masters program (AMP) is for graduate students who do not already hold teacher certification in elementary or early childhood education. To be eligible for seeking initial teacher certification at a masters level, applicants must have an undergraduate degree with a 2.75 GPA on their transcript from a regionally accredited college. They must have passed the Basic Skills test and the Praxis II exam in the targeted teaching field and also met other criteria stipulated by the ALSDE. Upon completing the AMP, candidates earn alternative Class A certification in this teaching field.

The traditional masters program (MAE) is for teachers who already hold Class B initial certification in any area of education. Upon completing the MAE, they earn Class A certification in the special education teaching field.

The Collaborative Teacher: Concentration in Reading Educational Specialist (EDS) degree program is for teachers who already hold either an Alabama Class B or Class A certificate in any field of special education OR general education who have at least 2 years of verified, full-time teaching experience with special populations or general populations and hold a valid Class A Professional Educator Certificate.
Individuals with Exceptionalities requires a minimum of 39 hours. A minimum GPA of 3.25 is required.

Master of Arts in Early Childhood Special Education

The MA.Ed. degree in Early Childhood Special Education program requires a minimum of 39 hours. A minimum GPA of 3.25 is required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECY 635 Foundations of Early Childhood Special Education</td>
<td>3</td>
</tr>
<tr>
<td>ECY 637 Assessment in Early Childhood Special Education</td>
<td>3</td>
</tr>
<tr>
<td>ECT 621 Program and Lesson Planning</td>
<td>3</td>
</tr>
<tr>
<td>ECT 636 Early Intervention and Preschool Curriculum and Methods</td>
<td>3</td>
</tr>
<tr>
<td>ECT 655 Early Primary Curriculum and Methods</td>
<td>3</td>
</tr>
<tr>
<td>ECT 625 Positive Behavioral Supports</td>
<td>3</td>
</tr>
<tr>
<td>ECT 654 Communication and Technology Applications In Early Childhood Special Education</td>
<td>3</td>
</tr>
<tr>
<td>ECT 627 Collaborative Processes</td>
<td>3</td>
</tr>
<tr>
<td>ECT 639 Transdisciplinary Collaboration and Consultation in Early Childhood</td>
<td>3</td>
</tr>
<tr>
<td>ECT 689 Advanced Topics in Special Education</td>
<td>1-6</td>
</tr>
<tr>
<td>EDR 652 Pre and Early Reading Instruction</td>
<td>3</td>
</tr>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>ECY 670 Practicum in Early Childhood Special Education</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>44</td>
</tr>
</tbody>
</table>

1 May not be required if previously completed

Graduate Certificate in Supporting Individuals with Exceptionalities

Select four of the following courses.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>3</td>
</tr>
<tr>
<td>ECT 520 Formative and Summative Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ECT 523 Instructional Methods or ECT 622</td>
<td>3</td>
</tr>
<tr>
<td>ECT 524 Sensory, Health and Physical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ECT 525 Positive Behavioral Supports or ECT 622POBehavioral Supports</td>
<td>3</td>
</tr>
<tr>
<td>ECT 526 Assistive and Instructional Technology or ECT 62Assistive and Instructional Technology</td>
<td>3</td>
</tr>
<tr>
<td>ECT 527 Collaborative Processes or ECT 62Collaborative Processes</td>
<td>3</td>
</tr>
<tr>
<td>ECT 528 Legal Issues and Trends or ECT 62Legal Issues and Trends</td>
<td>3</td>
</tr>
<tr>
<td>ECT 529 Teaching Literacy and Reading in Inclusive Settings</td>
<td>3</td>
</tr>
<tr>
<td>ECT 530 Effective Teaching and Learning</td>
<td>3</td>
</tr>
<tr>
<td>KIN 649 Advanced Adapted Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>36-45</td>
</tr>
</tbody>
</table>

1 May not be required if previously completed

Courses

ECY 535. Foundations of Early Childhood Special Education. 3 Hours.

This is the introductory graduate course in the early childhood special education program, which is designed to provide an overview of the field of early intervention/early childhood special education (EI/ECSE) and address policy issues, the importance of collaboration, and future directions. Candidates must develop competencies in the areas of historical and philosophical foundations of EI/ECSE, federal, state, and local laws and legal requirements, characteristics of young children with known or suspected disabilities, family-professional partnerships, service delivery options, recommended practices, current policy issues and trends, and professionalism and ethics. Another important aspect of this course is professional development and life-long learning. Candidates must demonstrate a number of research and technology skills such as: accessing resources to support graduate studies; conducting reviews of the early childhood special education resources and literature; using American Psychological Association (APA) professional style writing; utilizing technology to support graduate studies; and identifying professional development resources for life-long learning. Course content and assignments are designed to promote critical thinking, problem solving skills, evidence-based practice application, and resource identification.

ECY 536. Early Intervention and Preschool Curriculum and Methods. 3 Hours.

The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children (birth through five) with known or suspected disabilities and their families from a variety of social, ethnic, and racial backgrounds. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying current curriculum and methods for young children. Special emphasis will be placed on supporting families in all aspects of intervention. Attention will be given to developmentally and individually appropriate practices that facilitate inclusive environments. Candidates will be familiarized with instructional strategies and technologies. Course content and assignments will promote the use of critical thinking skills, problem solving, and technologies as they are applied to instructional programs for young children with known or suspected disabilities and their families. The course objectives will be assessed through completion of the course requirements and class participation. The content of this course is based on evidence-based practices, which integrate the best available research evidence with professional and family wisdom and values. Emphasized throughout this course are the following objectives: how to be a member of a transdisciplinary team in providing instruction, how to respond to cultural diversity, how to provide services in high-poverty communities and LEAs, and how to utilize evidence-based practices in all aspects of services. These priority areas will be addressed throughout the course.

Prerequisites: EDU 500 [Min Grade: C] and ECY 600 [Min Grade: C] and ECY 535 [Min Grade: C] and ECY 537 [Min Grade: C]
ECY 537. Assessment in Early Childhood Special Education. 3 Hours.
The purpose of this course is to prepare the candidate with knowledge and practical applications regarding the screening and assessment of young children with known or suspected disabilities (ages birth through eight). Both child-level and family-level assessment procedures will be emphasized. The candidate completing this course will be prepared to make professional decisions regarding the screening, assessment, program planning, and progress monitoring of young children with disabilities. Course content and assignments will promote critical thinking and problem solving skills. The content of this course is based on evidence-based practices, which integrate the best available research evidence with professional and family wisdom and values. Emphasized throughout this course are the following objectives: how to be a member of a transdisciplinary team in providing services in the natural environment, how to respond to cultural diversity, how to provide services in high-poverty communities and LEAs, and how to utilize evidence-based practices in all aspects of assessment. These priority areas will be addressed throughout the course.

ECY 538. Physical and Health Care Support in Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children with physical and health impairments. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying typical and atypical motor development and neurodevelopment. Candidates will become proficient in motor skill facilitation, positioning, handling, feeding and health care support. The course objectives will be assessed through completion of the course requirements and class participation.

ECY 539. Transdisciplinary Collaboration and Consultation in Early Childhood. 3 Hours.
This course is designed for students to develop the knowledge, skills, and ability to work collaboratively with other professionals who provide inclusive services to infants and young children with delays or disabilities and their families. Emphasis will be placed on working as members of teams, which include families, early childhood special education, and the related services of physical and occupational therapy. Topics include teamwork, group decision-making, team process, leadership, and communication, the evidence that supports these practices, and how such issues influence services for young children and their families. A significant portion of content/discussion will focus on the roles and functions of various disciplines (including family members) as team members. Case studies will be used in simulations of transdisciplinary teamwork in action.

ECY 600. Introduction to Exceptional Learner. 3 Hours.
An overview of exceptionality as it pertains to children and adults. Both high and low incidence populations will be examined. Each area of exceptionality will be reviewed in terms of etiology, diagnosis, prevalence, remediation, and educational strategies.

ECY 635. Foundations of Early Childhood Special Education. 3 Hours.
This is the introductory graduate course in the early childhood special education program, which is designed to provide an overview of the field of early intervention/early childhood special education (EI/ECSE) and address policy issues, the importance of collaboration, and future directions. Candidates must develop competencies in the areas of historical and philosophical foundations of EI/ECSE, federal, state, and local laws and legal requirements, characteristics of young children with known or suspected disabilities, family-professional partnerships, service delivery options, recommended practices, current policy issues and trends, and professionalism and ethics. Another important aspect of this course is professional development and life-long learning. Candidates must demonstrate a number of research and technology skills such as: accessing resources to support graduate studies; conducting reviews of the early childhood special education resources and literature; using American Psychological Association (APA) professional style writing; utilizing technology to support graduate studies; and identifying professional development resources for life-long learning. Course content and assignments are designed to promote critical thinking, problem solving skills, evidence-based practice application, and resource identification.

ECY 636. Early Intervention and Preschool Curriculum and Methods. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, methods, and attitudes necessary to deliver effective intervention/education to young children (birth through five) with known or suspected disabilities and their families from a variety of social, ethnic, and racial backgrounds. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying current curriculum and methods for young children. Special emphasis will be placed on supporting families in all aspects of intervention. Attention will be given to developmentally and individually appropriate practices that facilitate inclusive environments. Candidates will be familiarized with instructional strategies and technologies. Course content and assignments will promote the use of critical thinking skills, problem solving, and technologies as they are applied to instructional programs for young children with known or suspected disabilities and their families. The course objectives will be assessed through completion of the course requirements and class participation.

ECY 637. Assessment in Early Childhood Special Education. 3 Hours.
The purpose of this course is to prepare the candidate with knowledge and practical applications regarding the screening and assessment of young children with known or suspected disabilities (ages birth through eight). Both child-level and family-level assessment procedures will be emphasized. The candidate completing this course will be prepared to make professional decisions regarding the screening, assessment, program planning, and progress monitoring of young children with disabilities. Course content and assignments will promote critical thinking and problem solving skills. The content of this course is based on evidence-based practices, which integrate the best available research evidence with professional and family wisdom and values. Emphasized throughout this course are the following objectives: how to be a member of a transdisciplinary team in providing services in the natural environment, how to respond to cultural diversity, how to provide services in high-poverty communities and LEAs, and how to utilize evidence-based practices in all aspects of assessment. These priority areas will be addressed throughout the course.
ECY 638. Physical and Health Care Support in Early Childhood Special Education. 3 Hours.
The purpose of this course is to provide candidates with the knowledge, skills, and attitudes necessary to deliver effective intervention/education to young children with physical and health impairments. The course will include discussions and readings on topics central to an adequate understanding of the conceptual and theoretical foundations underlying typical and atypical motor development and neurodevelopment. Candidates will become proficient in motor skill facilitation, positioning, handling, feeding and health care support. The course objectives will be assessed through completion of the course requirements and class participation.

ECY 639. Transdisciplinary Collaboration and Consultation in Early Childhood. 3 Hours.
This course is designed for students to develop the knowledge, skills, and ability to work collaboratively with other professionals who provide inclusive services to infants and young children with delays or disabilities and their families. Emphasis will be placed on working as members of teams, which include families, early childhood special education, and the related services of physical and occupational therapy. Topics include teamwork, group decision-making, team process, leadership, and communication, the evidence that supports these practices, and how such issues influence services for young children and their families. A significant portion of content/discussion will focus on the roles and functions of various disciplines (including family members) as team members. Case studies will be used in simulations of transdisciplinary teamwork in action.

ECY 670. Practicum in Early Childhood Special Education. 3-6 Hours.
Provides individualized field-based experiences to meet the unique needs of graduate candidates in ECSE. Students complete practicum experiences in settings that include children who present a wide range of disabilities within the 0-3, 3-5, 5-8 year age ranges. This practicum experience is tailored to the unique needs and experiences of each student.

ECY 672. Internship in Early Childhood Special Edu. 3-6 Hours.
Provides individualized field-based experiences that will meet the unique needs of ECSE candidates in the 5th year, nontraditional program. Students complete an internship in settings that include children who present a wide range of disabilities within the 0-3, 3-5, 5-8 year age ranges. This internship experience is tailored to the unique needs and experiences of each student.

ECY 689. Advanced Topics in Special Education/ School Psychology. 1-6 Hour.
This course is designed to help candidates be scholars in the field of school psychology/psychometry. Candidates will learn the steps to explore, build on, and write about the literature on a topic in school psychology/psychometry. In this way, they will understand how to create new areas of scholarship to extend knowledge on a topic in their discipline.

Prerequisites: ECY 600 [Min Grade: C] and ESP 600 [Min Grade: C]

Teaching English to Speakers of Other Languages

UAB offers an Educational Specialist degree in Teaching English to Speakers of Other Languages (TESOL). As a post-MA degree, this EdS-TESOL provides advanced training in the teaching and learning of English as a Second Language (ESL) and English as a Foreign Language (EFL). Targeted for educators who already hold a master's degree in TESOL or a related area, this program equips TESOL educators with state-of-the-art instructional strategies for meeting the evolving needs of linguistically and culturally diverse learners, with collaborative skills for serving as reflective practitioners to guide change, and with mentoring techniques for positively influencing student achievement and institutional improvement. This EdS-TESOL prepares educators to assume mentorship and leadership roles to guide other educators in meeting the English-learning needs of their students in P-12 and adult settings. To that end, it prepares educators to become dynamic leaders and effective change agents by developing their capacity to serve as lead teachers, division heads, instructional coaches, professional development facilitators, and program specialists.

The EdS-TESOL has two tracks. The certification track is for Alabama teachers who hold Class A certification in any teaching field from the Alabama State Department of Education (ALSDE) and who wish to earn Class AA certification in ESL. The professional track does not lead to K-12 certification from the ALSDE; it is for ESL teachers in other states and also for ESL teachers of adult learners.

At UAB, this EdS-TESOL degree is classified by the National Center for Education Statistics (NCES) with code 13.1401 Teaching English as a Second or Foreign Language. In the NCES Classification of Instructional Programs (CIP), this code defines programs that "focus on the principles and practice of teaching English to students who are not proficient in English or who do not speak, read or write English, and that may prepare individuals to function as teachers and administrators in such programs." Within this code, UAB’s EdS-TESOL program is unique in how it offers two distinct tracks - the certification track and the non-certification track.

NOTE: For information about the ESL master's, please visit English as a Second Language (p. 223).

Educational Specialist (EdS) in TESOL (Certification)

This track leads to Class AA certification in ESOL issued by ALSDE. Students who hold Class A certification in ESOL complete 30 hours which must include EESL 647, EESL 657, EDC 707, and EDC 711. Students who hold Class A in another teaching field complete 36 hours which must include EESL 610, 612, 613, 615, 625, 630, 640, 660, and 690. For Class AA certification in ESOL, the minimum required program GPA is 3.50.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECY 600 Introduction to Exceptional Learner</td>
<td>1</td>
</tr>
<tr>
<td>Track 1 (candidates w/Class A in non-ESOL teaching field)</td>
<td>15-18</td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>EESL 610 Second Language Acquisition (if not already taken)</td>
<td></td>
</tr>
<tr>
<td>EESL 612 Curriculum, Programs and Policies</td>
<td></td>
</tr>
<tr>
<td>EESL 615 Grammar and Linguistics for ESL Teachers</td>
<td></td>
</tr>
<tr>
<td>EESL 625 Phonology for Second Language Teachers</td>
<td></td>
</tr>
<tr>
<td>EESL 660 Effective Teaching and Learning</td>
<td></td>
</tr>
<tr>
<td>EESL 640 Teaching New Languages Through Reading and Writing</td>
<td></td>
</tr>
<tr>
<td>(EESL 647 if EESL 640 was used towards an earlier degree)</td>
<td></td>
</tr>
<tr>
<td>Track 2 (candidates with Class A in ESOL)</td>
<td>12</td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>EESL 647 Instruction and Assessment: Reading and Writing</td>
<td></td>
</tr>
<tr>
<td>EESL 657 Instruction and Assessment: Listening and Speaking</td>
<td></td>
</tr>
</tbody>
</table>

Two advisor-approved ESL electives from among the following courses
Graduate Catalog 2023-2024

EESL 617
Teaching English in a Global Context

EESL 627
Teaching Adult Language Learners

EESL 637
Methods Teaching English as an International Language

EESL 687
English for Specific Purposes

Advisor-approved courses in ESL or related to ESL (3-6 hours)

National Board Certification in English as New Language by enrolling in EESL 681 and EESL 677 (6 hrs)

EESL 677
Field Studies

EESL 681
National Boards in English as a New Language

Diversity

3

EESL 613 Teaching ESL in a Multicultural Society (OR)

EDC 732 Culturally and Linguistically Responsive Instruction

Additional Courses

15

Track 1 (candidates w/Class A in non-ESOL teaching field)

EESL 630 Methods and Materials of Teaching ESL (EESL 637 if EESL 630 was used towards earlier degree.)

EESL 690 Internship in Second and Foreign Languages, P-12 (The internship will be teaching ESOL and divided between early childhood/elementary and middle/secondary.)

Track 2 (for candidates with Class A in ESOL)

EDC 707 Introduction to Teacher Leadership

EDC 711 Analysis and Evaluation of Teaching

Elective

3

Choose one of the following:

EPR 608 Introduction to Qualitative Methods in Educational Research

EESL 641 Teaching Emergent Bilingual Learners in the Early Childhood Setting

EESL 670 Engaging Families and Communities

EESL 680 Research in ESL

EDC 695 Coaching for Effective Instruction

Any Approved 600-level EESL course

Research

6

EPR 594 Introduction to Educational Research Design

EPR 596 Introduction to Qualitative Methods in Educational Research

Total Hours

30-36

1 Required if not previously completed.

Educational Specialist (EdS) in TESOL (Professional Track)

This track does not lead to Class AA certification in ESOL issued by ALSDE. 30-37 Credit hours.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 610</td>
<td>3</td>
</tr>
<tr>
<td>EESL 697</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Advisor-Approved Teaching Field Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 612</td>
<td>3</td>
</tr>
<tr>
<td>EESL 615</td>
<td>3</td>
</tr>
<tr>
<td>EESL 620</td>
<td>3</td>
</tr>
<tr>
<td>EESL 625</td>
<td>3</td>
</tr>
<tr>
<td>EESL 627</td>
<td>3</td>
</tr>
<tr>
<td>EESL 630</td>
<td>3</td>
</tr>
<tr>
<td>EESL 637</td>
<td>3</td>
</tr>
</tbody>
</table>

EESL 640
Teaching New Languages Through Reading and Writing

EESL 641
Teaching Emergent Bilingual Learners in the Early Childhood Setting

EESL 643
Promoting Global Peace through TESOL

EESL 647
Instruction and Assessment: Reading and Writing

EESL 657
Instruction and Assessment: Listening and Speaking

EESL 660
Effective Teaching and Learning

EESL 670
Engaging Families and Communities

EESL 687
English for Specific Purposes

EESL 681
National Boards in English as a New Language

Any Approved 600-level EESL course

Diversity Course

3

EESL 613 Teaching ESL in a Multicultural Society

EESL 617 Teaching English in a Global Context

EDC 732 Culturally and Linguistically Responsive Instruction

EPR 594 Introduction to Educational Research Design

Another Research Course

3

EESL 680 Research in ESL

EPR 596 Introduction to Qualitative Methods in Educational Research

EPR 608 Introduction to Statistical Methods in Educational Research

Advisor-Approved Education Courses

9

EDC 695 Coaching for Effective Instruction

EDC 707 Introduction to Teacher Leadership

EDC 711 Analysis and Evaluation of Teaching

EDC 677 Field Studies

Any Approved 600-level EESL course

Total Hours

34-36

1 Required if not previously taken.

Graduate Certificate in Teaching English as an Additional Language

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 625</td>
<td>3</td>
</tr>
<tr>
<td>EESL 627</td>
<td>3</td>
</tr>
<tr>
<td>EESL 637</td>
<td>3</td>
</tr>
<tr>
<td>EESL 687</td>
<td>3</td>
</tr>
<tr>
<td>EESL 677</td>
<td>3</td>
</tr>
<tr>
<td>EESL 607</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours

15

Graduate Certificate in Teaching Multilingual Learners

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESL 625</td>
<td>3</td>
</tr>
<tr>
<td>EESL 627</td>
<td>3</td>
</tr>
<tr>
<td>EESL 637</td>
<td>3</td>
</tr>
<tr>
<td>EESL 687</td>
<td>3</td>
</tr>
<tr>
<td>EESL 677</td>
<td>3</td>
</tr>
</tbody>
</table>

Advisor Approved Electives

Select 9 credits of Electives from EESL 512:697 for approval

Total Hours

12
Courses

EESL 510. Second Language Acquisition. 3 Hours.
An in-depth look at major theories of second language acquisition. Exploration of learning environments, programs, home language, culture, and other factors that influence second language acquisition. This course entails 30 hours of field experiences. Required for the Alternative Master’s.

EESL 512. Curriculum, Program, Policies. 3 Hours.
Introduction to the curriculum, programs, policies, and laws that support new language learners with respect to legal issues, instructional strategies, accommodations, assessments, and support networks and that are grounded in second language acquisition theory. This course entails 5 days of field experiences in an English learner summer program. Required for the Alternative Master’s in ESL.

EESL 513. Teaching ESL in a Multicultural Society. 3 Hours.
Designed to introduce students to the goals, principles, and practices of multicultural education and to sensitize students to cultural pluralism in the United States. Required for the Alternative Master’s.

EESL 515. Grammar and Linguistics for ESL Teachers. 3 Hours.
A critical study of aspects of Modern English grammar and linguistics that are important for the teaching of English as a Second or Foreign Language. Students will gain an understanding of the major syntactic and semantic phenomena important for teaching ESL/EFL, become familiar with the practical and theoretical literature on teaching English grammar, participate in practical exercises of grammar correction in writing with actual ESL students, and develop and compile classroom activities for teaching points of grammar. Required for the Alternative Master’s.

EESL 525. Phonology for Second Language Teachers. 3 Hours.
An introduction to phonology and its application to the teaching of a second or foreign language. Students learn the phonological structure of the English language, analyze examples from language learner data, diagnose pronunciation difficulties experienced by language learners from different first languages, and identify instructional strategies for assisting language learners to perceive and produce challenging sounds. Required for the Alternative Master’s.

EESL 530. Methods and Materials of Teaching ESL. 3 Hours.
Examines traditional and current approaches for teaching English to speakers of other languages and curriculum materials, texts, and other resources. This course entails 30 hours of field experiences. Required for the Alternative Master’s.

EESL 540. Teaching New Languages Through Reading and Writing. 3 Hours.
Theory, research and practice in reading and writing for second language learners. Implications for teaching reading and writing skills that allow second language learners to participate in the full range of academic situations. This course entails 30 hours of field experiences. Required for the Alternative Master’s.

EESL 560. Effective Teaching and Learning. 3 Hours.
This course prepares candidates to plan, teach, and assess second and foreign languages in school settings: making informed decisions about content, learners, learner differences, teaching strategies, methodologies, curricula, and assessment. This course entails 30 hours of field experience. Required for the Alternative Master’s in ESL, French, and Spanish.

EESL 570. Engaging Families and Communities. 3 Hours.
This course prepares professional educators to engage families and communities with the overarching idea of shared responsibility for the English learner’s academic success. In this course, UAB candidates will determine what family engagement could look like over time and through multiple levels, starting with individual engagement, the engagement of a school, and of a school system.

EESL 589. Internship Seminar in ESL. 1 Hour.
Provides an opportunity to explore in-depth effective ways to deliver instruction during the internship experience.

EESL 590. Internship in Second and Foreign Languages, N-12. 6 Hours.
Meets the internship requirements of the state code. Interns are engaged in the full scope of teaching activities including planning and delivering lessons, evaluating students, and conducting managerial tasks and other appropriate duties.

EESL 600. TESOL Residency. 0 Hours.
Students in the EdS program’s non-certification track must enroll in EESL 008 during the summer term. During their two-week residency at UAB, they will participate in a TESOL institute on campus and also visit TESOL sites off-campus.

EESL 601L. Community English Teaching. 1 Hour.
Students co-teach weekly Community English Classes.

EESL 610. Second Language Acquisition. 3 Hours.
An in-depth look at major theories of second language acquisition. Exploration of learning environments, programs, home language, culture, and other factors that influence second language acquisition. This course entails 8 hours of field experiences at other schools plus 22 hours of working with English learners at one’s own school.

EESL 612. Curriculum, Programs and Policies. 3 Hours.
Introduction to the curriculum, programs, policies, and laws that support new language learners with respect to legal issues, support networks, instructional strategies, assessments, and accommodations and that are grounded in second language acquisition theory. This course entails 3 days of field experiences in an English learner summer program.

EESL 613. Teaching ESL in a Multicultural Society. 3 Hours.
Designed to introduce students to the goals, principles, and practices of multicultural education and to sensitize students to cultural pluralism in the United States.

EESL 615. Grammar and Linguistics for ESL Teachers. 3 Hours.
A critical study of aspects of Modern English grammar and linguistics that are important for the teaching of English as a Second or Foreign Language. Students will gain an understanding of the major syntactic and semantic phenomena important for teaching ESL/EFL, become familiar with the practical and theoretical literature on teaching English grammar, participate in practical exercises of grammar correction in writing with actual ESL students, and develop and compile classroom activities for teaching points of grammar.

EESL 617. Teaching English in a Global Context. 3 Hours.
Provides a sociolinguistic perspective on the globalization of English and on the emergence and teaching of English as an International Language. Students explore dialectology, language change, language diversity, language ideology and power, national language policies, World Englishes, the growing number of non-native English speakers, and attitudes of native and non-native English speakers toward the domination of English.

EESL 620. Special Topics in ESL. 3 Hours.
Topics will vary from year to year.
EESL 625. Phonology for Second Language Teachers. 3 Hours.
An introduction to phonology and its application to the teaching of a second or foreign language. Students learn the phonological structure of the English language, analyze examples from language learner data, diagnose pronunciation difficulties experienced by language learners from different first languages, and identify instructional strategies for assisting language learners to perceive and produce challenging sounds.

EESL 627. Teaching Adult Language Learners. 3 Hours.
Introduces goals, principles, and practices for teaching English to adult learners, addresses the influence of varying backgrounds on adult language learning, and examines ways to evaluate adults’ second language development. After learning to recognize quality components in distinct program models, as outlined by TESOL Standards for Adult Education ESL Programs, students do a critical study of community-based programs and English for Specific Purposes.

EESL 630. Methods and Materials of Teaching ESL. 3 Hours.
Examines traditional and current approaches to teaching English to speakers of other languages and curriculum materials, texts, and other resources. This course entails 40 hours of field experience working with English learners in one’s own school.

EESL 637. Methods Teaching English as an International Language. 3 Hours.
Prepares students to teach English as an International Language by using methods, strategies, and techniques appropriate for adults in ESL contexts and for all learners in EFL contexts. Engaged with approaches aligned with TESOL Standards for ESL/EFL Teachers of Adults, students plan state-of-the-art curriculum, instruction and assessment for 5 program settings: adult/community, workplace, college/university, intensive English, and English as a Foreign Language.

EESL 640. Teaching New Languages Through Reading and Writing. 3 Hours.
Theory, research and practice in reading and writing for second language learners. Implications for teaching reading and writing skills that allow second language learners to participate in the full range of academic situations. This course entails 8 hours of field experiences at another school and 32 hours working with English learners in one’s own school.

EESL 641. Teaching Emergent Bilingual Learners in the Early Childhood Setting. 3 Hours.
This course prepares candidates to work effectively with emergent bilingual learners in the early childhood setting. Candidates will gain context knowledge needed to design curriculum, including literacy, appropriate for emergent bilingual learners and will learn how culture and home language impacts learning additional languages.

EESL 643. Promoting Global Peace through TESOL. 3 Hours.
This course guides graduate students in understanding and facilitating the promotion of global peace within and out of the TESOL classroom through listening, speaking, reading and writing. The goal of this course is for educators to learn to use the tools of negotiation, arbitration, and mediation with an overarching focus on peacekeeping, peacemaking, and peacebuilding.

EESL 647. Instruction and Assessment: Reading and Writing. 3 Hours.
Addresses linguistic, sociocultural, psychological, and educational factors that affect literacy development of English as an additional language. Grounded in theoretical and practical aspects of teaching second language (L2) reading and writing to adolescents and adults in diverse communities, students learn to implement effective instructional strategies for promoting literacy in English as an additional language. To measure attainment of L2 reading and writing skills, students learn to design and conduct authentic assessments and to administer standardized assessments.

EESL 650. Strategies for Teaching Math and Science to ELLs. 3 Hours.
Provides knowledge and strategies for making math and science accessible to ELLs at all grade levels, K-12. Classroom teachers will learn to make accommodations for teaching ELLs within a sheltered instruction framework.

EESL 657. Instruction and Assessment: Listening and Speaking. 3 Hours.
Examines how spoken communication is structured so that it is socially appropriate and linguistically accurate. Students learn principles and best practices for the contextualized teaching of second language (L2) listening and speaking skills to adolescent and adult learners. After exploring the purposes, types, and availability of formal testing tools to assess the attainment of these skills in English as an additional language, students also learn to generate and conduct their own tests for assessing L2 listening and speaking.

EESL 660. Effective Teaching and Learning. 3 Hours.
This course prepares candidates to plan teach and assess second and foreign languages in school settings: making informed decisions about context, learners, learner differences, teaching strategies, methodologies, curricula, and assessment. This course entails 30 hours of field experience. Required for the traditional Master’s in ESL.

EESL 670. Engaging Families and Communities. 3 Hours.
This course prepares professional educators to engage families and communities with the overarching idea of shared responsibility for the English learner’s academic success. In this course, UAB candidates will determine what family engagement could look like over time (in school years) and through multiple levels, starting with individual engagement, the engagement of a school, and of a school system.

EESL 677. Field Studies. 1-3 Hour.
Students participate in field studies related to the teaching of English as a second or foreign language.

EESL 680. Research in ESL. 3 Hours.
Primary types of research conducted in second language teaching and learning and how these methods can be used to inform teaching. Introduction to classroom-based second language research approaches.

EESL 681. National Boards in English as a New Language. 3 Hours.
This course prepares experienced teachers for National Board Candidacy in English as a New Language (ENL). Students enrolled in this course may be either pre-candidates or candidates for National Board Certification.
EESL 687. English for Specific Purposes. 3 Hours.
This inquiry-focused course guides emerging teachers in experiencing the differentiated facets of working in adult ESL and EFL environments. Students explore English for Specific Purposes and related issues in Intensive English Programs, English for Occupational Purposes, Program Administration, and English as an International Language. Students observe classes in regional IEPs, develop an EOP program, receive hands-on experience in administration, apply research to various adult EIL teaching situations, and do an in-depth study of an EFL context.

EESL 689. Seminar in ESL. 1 Hour.
Provides an opportunity to explore in-depth effective ways to deliver instruction during the internship experience. Must be taken concurrently with EESL 690.
Prerequisites: EESL 610 [Min Grade: C]

EESL 690. Internship in Second and Foreign Languages, P-12. 3 Hours.
Meets the internship requirements of the state code. Interns are engaged in the full scope of teaching activities including planning and delivering lessons, evaluating students, and conducting managerial tasks and other appropriate duties. This course entails 2 weeks of internship in an English learner summer program. Approval of internship application for the traditional master's.

EESL 697. ESL Practicum. 1-3 Hours.
In this practicum course, prospective ESL/EFL teachers shadow a professional ESL teacher when teaching an Academic English class. As needed, they also provide specialized support for the ESL students in that class. To enhance their professional growth, these prospective teachers share their reflections and newly-acquired competencies with the EESL 697 course instructor.

EESL 698. Teaching Apprenticeship. 2-3 Hours.
This required teaching apprenticeship is housed in a standards-based course that offers practical application of the knowledge and skills learned in other courses for teaching ESL. After having completed one semester of structured observations of professional ESL educators and participated in corresponding debriefings, novice teachers engage in the full scope of ESL teaching activities. They plan and deliver lessons, assess learners and their language development, and conduct managerial tasks and other appropriate duties.
Prerequisites: EESL 697 [Min Grade: C]

EESL 717. Teaching English in Global Context. 3 Hours.
This course provides a sociolinguistic perspective on the globalization of English and on the emergence and teaching of English as an International Language. Students explore dialectology, language change, language diversity, language ideology and power, national language policies, World Englishes, the growing number of non-native English speakers, and attitudes of native and non-native English speakers toward the domination of English.

EESL 737. Teaching English as an International Language. 3 Hours.
The primary purpose of this course is to guide educators in exploring the teaching of English as a second, new, or foreign language to English learners of all ages. With the goal of expanding an educator's repertoire for teaching speakers of languages other than English, this course considers the relevance of historical approaches and methods used in language teaching during the past century and reviews language methods and approaches used in today's ESL and EFL classrooms. Educators analyze selected methods and approaches in differing contexts that include English as a Second Language (ESL), English as a Foreign Language (EFL), and English as an International Language (EIL) or English as Lingua Franca (ELF).

EESL 743. Promoting Global Peace through TESOL. 3 Hours.
This course guides doctoral students in understanding and facilitating the promotion of global peace within their classroom and educational setting as well as in other settings, both locally and globally.

EESL 747. Instruction and Assessment: Reading and Writing. 3 Hours.
This course explores the linguistic, sociocultural, psychological, and educational factors that affect literacy development in English as a second or foreign language (ESL/EFL). Educators will analyze literacy-learning needs of English learners (ELs) in diverse contexts and multiple age groups and will participate in effective and engaging ways to meet those needs.

EESL 757. Instruction and Assessment: Listening and Speaking. 3 Hours.
Based on linguistic perspectives and language acquisition research from earlier in their careers, educators will use research, experience, and reflection to further inform their own teaching practice in TESOL. To that end, they will explore the complexities of linguistic, sociocultural, psychological, and educational factors that affect ELs’ aural and oral development.

EESL 763. Facilitating Intercultural Communicative Competence. 3 Hours.
This course guides doctoral students in understanding and facilitating their students’ intercultural communicative competence within and out of the classroom.

EESL 780. Research in ESL/EFL. 3 Hours.
Exploration of research methods conducted in second and foreign language teaching and applications of these methods to inform teaching in the ESL and/or EFL contexts.

Human Studies
Program Contact Information

<table>
<thead>
<tr>
<th>Program</th>
<th>Coordinator</th>
<th>Room</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Health and Human Services - Masters</td>
<td>Dr. Larrell L. Wilkinson</td>
<td>EEC 304C</td>
<td>(205) 975-1295</td>
</tr>
<tr>
<td>Community Health and Human Services - Masters</td>
<td>Dr. Retta Evans</td>
<td>EEC 304B</td>
<td>(205) 996-2701</td>
</tr>
<tr>
<td>Counseling</td>
<td>Dr. Dayna Watson</td>
<td>EEC 115G</td>
<td>(205) 934-2005</td>
</tr>
<tr>
<td>Educational Leadership</td>
<td>Dr. Keith Gurley</td>
<td>EEC 308D</td>
<td>(205) 975-1983</td>
</tr>
<tr>
<td>Education Psychology and Research</td>
<td>Dr. Jenna LaChenaye</td>
<td>EEC 316B</td>
<td>(205) 934-2008</td>
</tr>
<tr>
<td>Foundations</td>
<td>Dr. Tondra Loder-Jackson</td>
<td>EEC 306C</td>
<td>(205) 934-8304</td>
</tr>
<tr>
<td>Higher Education Administration</td>
<td>Dr. Mary Ann Bodine Al-Sharif</td>
<td>EEC 306D</td>
<td>(205) 975-4521</td>
</tr>
<tr>
<td>Kinesiology - Teacher Certification</td>
<td>Dr. Sandra Sims</td>
<td>EEC 309C</td>
<td>(205) 996-2721</td>
</tr>
</tbody>
</table>
Educational Foundations

The Educational Foundations (EDF) Program examines how educational institutions shape and are shaped by the social and cultural structures within our society. Our mission is to offer a program that examines current teaching contexts and practice, research, and theory with the aim of increasing our professional candidates' knowledge and understanding of the socio-cultural, historical, political, and economic factors, as well as the philosophical underpinnings, that influence education and shape the societies and world in which we live. Within a diverse world, we also believe that professional educators should recognize a profound need to intentionally learn about and incorporate their students' personal experiences, cultures, and community resources into their instruction and programs. It is through our courses that students come to encounter, interrogate, better understand, and embrace the increasingly diverse landscape of our society and P-12 students.

Educational Psychology and Research

At the undergraduate level, the Educational Psychology and Research Program (EPR) provides courses in psychological foundations and measurement and evaluation that are necessary for all prospective teachers to complete who are pursuing an undergraduate teaching degree. We also house the undergraduate Introduction to Statistics that serves the Community Health and Human Services and Kinesiology programs and concentrations.

At the graduate level, we provide educational psychology courses that meet the program requirements for graduate teacher certification programs as well as courses taken for recertification and other Masters, Educational Specialists, and doctoral programs within and outside of the School of Education. These courses also attract graduate students from programs outside the School of Education such as Nursing, Public Health, and the School of Health Professions.

AEL-Area Educ Leadership Courses

AEL 602. Advanced Educational Leadership. 3 Hours.
Basic concepts, group interaction on selected presentation of assigned research. Prerequisite: Admission to EdL Doctoral program. 3 hours.

AEL 650. Organizational Theory. 3 Hours.
An exploration of the relationship among concepts, generalizations, and theoretical models in the behavioral and social sciences. The application of these to administrative practice in educational settings is addressed.

AEL 671. Survey of Instructional Supervision. 3 Hours.
A critical examination, interpretation, and evaluation of significant current and classical writings in the field of instructional supervision with particular emphasis on research findings, the emergence of instructional supervision perspectives, issues, and controversies across the literature, and applications for supervisory practice and instructional leadership roles.

CHHS-Comm Hlth Human Serv Courses

CHHS 526. Wellness Promotion Peer Educators Part 1. 3 Hours.
The intent of this course is to provide students will the skills to facilitate group presentations on health-related content to their peers. Students will complete the Certified Peer Education Training a comprehensive, interactive, and skills-based training. Students will learn about the programs and services offered at the UAB Student Health and Wellness Center and will be able to articulate this to new student users. Students will learn basic alcohol and other drug information in preparation for presentation to their peers.

CHHS 527. SHAPE Peer Education. 3 Hours.
This course is designed to provide students with the knowledge and skills needed to effectively communicate accurate information related to sexual health and decision-making. The concept of total health and the effects of lifestyle and decision-making on the quality of life will be emphasized.

CHHS 528. Wellness Promotion Peer Education Part 2. 3 Hours.
This course involves course involves students active engagement in the delivery of peer education programs and services to the UAB campus community. The purpose of the Wellness Promotion Peer Education Part 2 course is to provide candidates with a supervised, field-based, work experience in a wellness promotion setting.

Prerequisites: CHHS 426 [Min Grade: C] and CHHS 526 [Min Grade: C]

CHHS 598. Lifespan Dimensions in Women’s Health and Nutrition. 3 Hours.
Highlights will include health issues specific to women, chronic diseases, body image and eating disorders, health promotion and disease prevention, pregnancy, childbirth and lactation, weight loss/maintenance, menopause and ageing, fitness management and stress management.

CHHS 601. Current Readings in Health Education. 1-3 Hour.
Review of literature in health education. Development of annotated bibliography pertinent to professional practice.

CHHS 602. Advanced Principles of Mental Health, Stress, & Well-being. 3 Hours.
This advanced course explains how an individual can manage their internal and external stressors to optimize their mental and emotional well-being. Topics span the discipline of health promotion and wellness, including theoretical models, discussions on the importance of relationships and social support, personality differences and risk of disease, how attitudes and emotions can change body chemistry, heart rates, hormone levels, and immunity against disease.

CHHS 606. Advanced Issues of Disease Prevention in Health Education/Promotion. 3 Hours.
This is an introductory course designed to teach graduate-level health promotion students, the basic principles, methods, and applications of epidemiology and issues in disease control.

CHHS 608. Advanced Principles of Substance Abuse Prevention and Education. 3 Hours.
This course provides an advanced discussion of major drug classifications and their effects, behavioral theories giving explanation to substance use, societal norms, and different pathways of addiction. Prevention strategies, intervention modalities, and treatment options are explored within the context of the community health and human services professions.
CHHS 610. The Advanced Health Education/Promotion Specialist. 3 Hours.
This course emphasizes application of advanced Health Education/Promotion competencies corresponding to the Master Certified Health Education Specialist. Topics include the significant historical contributions, application of theories and planning models, advanced professional ethics, advanced administrative tasks, advanced literature reviews, and emphasis on advanced levels of health communication and advocacy.

CHHS 611. Interdisciplinary Approaches to School Health Education/Promotion. 3 Hours.
This course is designed to provide students with a fundamental knowledge base on contemporary issues related to school health programs; national, state, and local factors influencing school health programs; importance of collaboration between school administration, teachers and parents. The Whole School, Whole Community, Whole Child Model (WSCC) will be a reference point for class discussion.

CHHS 612. Student Health and Well-Being in Higher Education. 3 Hours.
This course prepares higher education professionals to understand and address wellness and health promotion issues contributing to students' overall success, academic performance, retention, satisfaction, and quality of life. Application of student health concerns in an urban campus context can guide those working in a variety of student affairs and higher education settings not limited to: residence halls, orientation, student leadership, advising, multicultural programs, and other areas of student development.

CHHS 621. Advanced Health Communications in Health Education/Promotion. 3 Hours.
This course promotes skills appropriate for selected health problems, problem solving, and referrals. It also promotes skills to enhance communication with clients, peers, and community members at large. Health-related theories, communication theories, and marketing strategies are discussed in this course.

CHHS 623. Sexuality Education: Theory and Practice. 3 Hours.
This course provides an advanced review of biological, sociological, psychological, and ethical aspects of human sexuality as encountered by health education specialists and human services practitioners. Content related to an anatomical overview, sexual decision-making process, harm reduction approaches, social norms, societal issues, gender stereotypes, sexual complications, and the sexuality of special populations are emphasized.

CHHS 624. Advanced Health Coaching in Health Education/Promotion. 3 Hours.
This course promotes mobilizing the strengths and resources of individuals, peers, and the community at large to develop strategies for adopting healthier lifestyles. Health coaching emphasizes specialized methods to support clients, which includes referrals, problem solving, goal setting, creation of action steps, and accountability.

CHHS 626. Student Health and Wellness Center Peer Educators. 3 Hours.
The intent of this course is to provide students with the skills to facilitate group presentations on health related content to their peers. Students will complete the Certified Peer Education Training, a comprehensive, interactive, and skills-based training. Students will learn about the programs and services offered at the UAB Student Health and Wellness Center and be able to articulate this to new student users. Students will learn basic alcohol and other drug information in preparation for presentation to their peers.

CHHS 631. Applied Planning and Implementation of Health Education/Promotion Programs. 3 Hours.
Content and process planning and implementing programs in health education and health promotion. Sociological, psychological, and epidemiological foundations of health promotion programs. Development of practical skills for school, occupational, clinical, and community settings. A comprehensive program planning assessment will reinforce quantitative literacy in the profession. Quantitative Literacy is a significant component of this course.

CHHS 632. Advanced Administration of Health Education/Promotion Programs. 3 Hours.
This course focuses on issues related to the advanced practice of administration and management of health education/promotion programs. Topics include leadership theory and development, staff development and training, ethical issues and human resources, fiscal responsibility, and emphasis on data driven decision-making.

CHHS 640. Content Issues I. 3 Hours.
The content issues course allows the student to explore a topic, of his/her choice, in depth. The resulting document(s) must be thorough including a detailed, complete review of historical and current literature related to the topic.

CHHS 641. Content Issues II. 3 Hours.
The Content Issues II course allows a student to build upon information gathered in Content Issues I or can be developed as a new project. A general outline is provided below. Identification of the health issue or problem Description of who is being affected (including their risk factors) Discussion of national, state, and local initiatives and interventions aimed at reducing the problem and/or risks.

CHHS 642. Applied Behavioral Theory and Health Education/Promotion. 3 Hours.
This course provides students with a better understanding of how to use health behavior theory in guiding health behavior change. The student will examine theories and models that assist in increasing healthy behaviors of youth and adults of all ages.

CHHS 662. Advanced Worksite Health Education/Promotion. 3 Hours.
This course emphasizes the interrelationship of intervention planning, methodology, and the selection and use of teaching aids, and methods or materials to be use in the worksite setting. Special problems associated with health interventions are discussed.

CHHS 689. Intervention Strategies for Health Education/Promotion. 3 Hours.
The purpose of this course is to present the interrelationship of intervention planning to promote health behavior change and the selection and use of teaching aids, methods and materials to facilitate helping relationships. Special problems associated with health interventions are discussed. Students will learn ethical, theoretical and practical aspects of health education, teaching techniques, curricular development, organization skills and techniques.
CHHS 691. Special Topics in Health Education. 3-6 Hours.
HE 691 is offered to advanced students who display a high level of commitment to their studies, willingness to work flexible hours, a desire to become involved in research and training, and the ability to work independently under faculty supervision. At least 4 goals will be accomplished during this semester: 1. To complete a review of professional literature related to educator’s knowledge of, and response to body dysmorphic disorders; 2. To prepare a detailed summary of the Steps to a HealthierUS fitness and nutrition initiative; 3. To offer technical assistance to staff and volunteers of the Steps to a HealthierUS – River Region consistent with the logic model and Year Two Community Action Plan aimed at goal achievement; 4. To prepare an objective typewritten summary of accomplishments completed in this course during the semester.

CHHS 692. Supervised Research in Health Education. 3-6 Hours.
CHHS 692 is offered to advanced students who display a high level of commitment to their studies, willingness to work flexible hours, a desire to become involved in research and training, and the ability to work independently under faculty supervision.

Prerequisites: EPR 608 [Min Grade: C] or EPR 609 [Min Grade: C]

CHHS 693. Advanced Field Experience in Community Health Education. 3-6 Hours.
The internship experience is designed to enhance the student's skills in planning, implementing, and evaluating health promotion interventions.

CHHS 696. Ethical Problems and Principles in Health Education/Promotion. 3 Hours.
This course is designed to provide students with opportunities to review and discuss case studies involving ethical decisions.

CHHS 697. Community-Based Approaches to Evaluation and Grantsmanship of Health Education/Promotion Programs. 3 Hours.
This course enhances knowledge, competencies and skills required to obtain funding and to evaluate community-based health education/promotion programs for defined health issues. The course emphasizes elements of evaluating community-based intervention activities at macro-levels including determining needs and assets, writing realistic goals and measurable objectives, incorporating quantitative and qualitative data, and evaluating behavior change at the community level. The course also focuses on grant preparation, including topics such as engaging funders, establishing grant need, planning grant activities, creating a budget, and program sustainability.

Prerequisites: CHHS 610 [Min Grade: C] or HE 610 [Min Grade: C]

CHHS 698. Lifespan Dimensions Women. 3 Hours.
Highlights will include health issues specific to women, chronic diseases, body image and eating disorders, health promotion and disease prevention, pregnancy, childbirth and lactation, weight loss/maintenance, menopause and ageing, fitness management and stress management.

CHHS 699. Thesis Research. 1-3 Hour.
Research and completion of the thesis.

Prerequisites: GAC M

CHHS 730. Special Topics in Health Education. 3-6 Hours.
Special Topics in Health Education.

CHHS 731. Advanced Theoretic/Scientific Basis of Health Education/Promotion. 3 Hours.
This course facilitates integration, application and evaluation of specific information regarding health education and health promotion theory, research, and practice. This course will guide analysis of current issues in health science specifically those related to behavior change. Health behavior theories are emphasized.

CHHS 732. Advanced Planning and Implementation of Health Education/Promotion Programs. 3 Hours.
This course emphasizes content and process of advanced planning and implementation of health education/promotion programs. Advanced topics include application of the Precede-Procede Model to multiple health issues; application of health behavior theory; examination of advanced program evaluation measures; and advanced constituent engagement.

CHHS 733. Evaluation of Health Education/Promotion Programs. 3 Hours.
This course provides the graduate health education student with the competencies, knowledge and skills to plan and to implement an evaluation of health promotion-disease prevention intervention for a defined population at risk.

CHHS 734. Health Education Seminar I. 1 Hour.
Seminars introduce doctoral students to various topics related to professionalism.

CHHS 735. Health Education Seminar II. 1 Hour.
Seminars introduce doctoral students to various topics related to professionalism.

CHHS 736. Health Education Seminar III. 1 Hour.
Seminars introduce doctoral students to various topics related to professionalism.

CHHS 740. Evaluation and Research Methods in Health Education/Promotion Programs. 3 Hours.
This course promotes understanding at the doctoral level of the knowledge, competencies and skills required to plan a research approach and evaluation strategy for health education/promotion research programs for defined health issues among specific audiences. The course emphasizes elements of evaluating community-based research and intervention activities at micro- and macro-levels including examining previous published literature, writing specific aims and measurable objectives, incorporating quantitative and qualitative data, evaluating behavioral impacts, and assessing health outcomes. The course also focuses on federal grant preparation, including topics such as engaging funders, using federal grant formatting, creating a grant budget, and assessing research impact.

CHHS 742. Health Disparities in Diverse Populations. 3 Hours.
This course is designed to provide students with a fundamental knowledge base on contemporary issues related to health, disparities in health outcomes and social determinants of health. It is intended to provide students with a broader understanding of the structural and psychosocial factors related to health disparities. To do so, the course will focus on theoretical frameworks that draw on an ecological perspective and examine how factors associated with families, peers, schools, neighborhoods, and communities influence health.

CHHS 798. Supervised Research in Health Education/Promotion. 1-6 Hour.
The purpose of this course is for students to engage in meaningful research and writing activities.

CHHS 799. Dissertation Research. 1-12 Hour.
Design and completion of the dissertation.

Prerequisites: GAC Z
ECG-Counseling, Human Services Courses

ECG 600. Intro to Integrated Care Counseling. 3 Hours.
Integrated care capitalizes on the combined expertise of mental health and primary care providers working together within a single treatment setting to more effectively address the physical health problems of individuals suffering from mental illness. Within these settings mental health counselors work collaboratively with health care professionals to design and implement comprehensive biopsychosocial treatment plans. This course addresses the specific needs of students preparing for contemporary counseling careers in both primary care and behavioral health settings, including the multi-faceted roles and functions of a professional counselor, the counseling needs of special community populations, and the professional/ethical issues unique to integrated care counseling.

ECG 605. Introduction to Employee Assistance Counseling Programs. 3 Hours.
Employee Assistance Counseling Programs or Employee Assistance Programs (EAPs) provide counseling, assessment and services to address personal problems and work-related concerns that hinder employees’ well-being, work productivity, and job performance. EAPs may assist employees with mental health and substance use disorders, relationship issues, financial and legal problems, and eldercare. In addition, EAPs provide resources and referral information, psychoeducation, supervisor consultation and work-site trainings. EAP services are typically an employer sponsored benefit provided at no cost and counseling and referrals may be delivered by telephone, in-person or through video-conferencing technology. The primary aim of this course is to provide a comprehensive overview of EAPs and EAP service delivery in the United States. This course will cover the history of EAPs in addition to program design, EAP-related legislation, and ethical considerations.

ECG 612. Professional Orientation. 3 Hours.
This course emphasizes an understanding of professional roles and responsibilities; ethical and legal issues; historical perspectives; preparation standards; credentialing; trends and issues in the counseling profession. Central to this course will be an on-going self-evaluation of the student’s attitudes, values, interpersonal skills, and motives for choosing counseling as a potential profession. Threaded throughout the course will be the concept of the counselor as a social change agent and advocate for clients, the community, and the counseling profession. This course is open to Non-Degree seeking students.

ECG 613. Foundations of Substance Abuse. 3 Hours.
The foundations of Substance Abuse course is an introductory overview of relevant theory, research, and practice associated with substance abuse and addictions counseling. The course will be presented as a blend of didactic and practical elements to increase student knowledge of fundamental concepts while providing opportunities to experiment with approaches to working with clients presenting with substance abuse and/or addictions concerns. To that end, the instructor will introduce topics that include pharmacological issues and terminology, models of addiction, theories on etiology, diagnosis and assessment, and evidence based treatment strategies. A practicum element that requires students to practice the introductory concepts of Motivational Interviewing will accompany lectures, group discussion, case studies, and demonstrations over the course of the semester. This course is open to Non-Degree seeking students.

ECG 616. Motivational Interviewing. 3 Hours.
Motivational Interviewing (MI) is an approach to behavior change designed to enhance intrinsic motivation by exploring and resolving ambivalence within the client. This course will introduce the underlying philosophy of MI, as well as the key MI principles, concepts, and “active ingredients” that make MI successful in a variety of settings with a variety of populations. Emphasis will be placed on instruction of the four fundamental processes of MI, engaging, focusing, evoking, and planning; MI interventions, treatment fidelity, short-term models, responding to discord between practitioner and client, and developing change plans. The instructor will provide supervision and feedback of MI practice for all enrolled students. Though the course will be fully taught online, the instructor will evaluate students based on their presentation of the skills of MI.

ECG 619. Special Issues for School Counselors. 3 Hours.
This course will expose the school counselor-in-training to a variety of critical incidents. These incidents (situations) will cover a variety of experiences which will be presented in a seminar environment and will require the student counselor’s expertise and proper response. Authorities from the various school systems, law enforcement agencies, counseling/mental health agencies, and child protective agencies will provide knowledge and insight from their perspectives.

ECG 620. Foundations of School Counseling. 3 Hours.
Social, psychological, economic, and philosophic trends leading to development of guidance programs in American schools. Organization and administration of guidance services. This course is open to Non-Degree seeking students.

ECG 621. Theories of Individual Counseling. 3 Hours.
Students will be provided an introduction to counseling theories. Students will explore beliefs about different approaches and methods of counseling including, educational, vocational, systemic, and personal counseling.

ECG 623. Comprehensive Counseling and Guidance: M/H School. 3 Hours.
Principles and practices of comprehensive counseling and guidance in the middle/high school related to curriculum, guidance services, and the guidance program.

ECG 624. Assessment. 3 Hours.
The purpose of this course is to provide an introductory overview of assessment methods, instrumentation, and basic principles of measurement. Discussion topics will review techniques for assessing intellectual ability, aptitude/achievement, psychopathology, emotion, and personality. Additional topics will include clinical assessment, communicating results, multicultural considerations, and ethical/legal issues. This course will orient students to common instruments used in educational and clinical settings, common selection procedures, measurement methods, administration, scoring, and interpretation.

Prerequisites: EPR 590 [Min Grade: C]

ECG 626. Group Counseling: Process and Procedures. 3 Hours.
This course provides an introduction to many of the important challenges facing group leaders and group members in contemporary society. Ethical guidelines particular to group work will be discussed. Students will be exposed to how common counseling theories can be applied in group settings. Students will gain an understanding of group developmental stages and processes, and how these dynamics influence group growth and productivity. Leader skill development will be emphasized. Approximately 20 hours of class time is spent in a laboratory experience wherein each student is provided the opportunity to function in a group.

Prerequisites: ECG 621 [Min Grade: C](Can be taken Concurrently)
ECG 627. Comprehensive Counseling and Guidance: Elementary School. 3 Hours.
Principles and practices of comprehensive counseling and guidance in Elementary School related to curriculum, guidance services, and the guidance program.

ECG 628. Social and Cultural Diversity. 3 Hours.
This course is designed to expose students to various cultures, and the methods, values, and beliefs that organize family life and human development. Using the oppression model, students will examine how the intersections of race, class, culture, gender, ethnicity and sexuality shape and affect the lives of individuals and families and the therapeutic process itself. Intervention practices, social advocacy models, and resistance strategies will be reviewed.

ECG 630. Career Development: Vocational and Life Planning. 3 Hours.
This course will introduce students to the concepts of career development. The course will present the philosophical and historical foundations of career counseling. Students will learn how to apply career counseling theory to practice. Instruction will include career counseling technique, career assessment, career exploration, job market strategies, examination of workplace issues, and lifestyle and wellness concepts.

ECG 631. Suicide Prevention. 3 Hours.
The course will address the epidemiology of suicide, demographic and incidence information about at-risk groups, risk factors, protective factors, warning signs, assessment of emergency risk and chronic risk, intervention strategies, nomenclature, national strategy planning, prevention advocacy, and attention to the bereaved and complicated mourning and subsequent postvention. Students will be engaged in case studies and assessment exercises, research and review into the literature, hear from guest speakers including advocates and survivors, journal writing and reflection, exams, and presentations. This course is open to Non-Degree seeking students.

ECG 638. Practicum I: Clinical Skills and Techniques. 3 Hours.
The Counseling Techniques course is a forum for the instructor to introduce candidates to the practical skills necessary for development as a counseling professional. Through coursework lecture, discussion and demonstration will be used in the instruction of course material, an emphasis on experimental education will be implemented to encourage growth in candidates’ use of counseling skills. Opportunities to integrate counseling skills with counseling and multicultural theory will be afforded throughout the coursework.

Prerequisites: ECG 621 [Min Grade: C]

ECG 650. Diagnosis and Treatment of Psychological Disorders. 3 Hours.
This course will introduce students to the diagnosis, treatment, and conceptualization of mental disorders. First, students will learn about diagnostic classification, models for conceptualizing and treatment planning. Finally, students will receive a broad introduction into psychopharmacological interventions associated with the treatment of mental disorders.

ECG 652. Advanced Counseling Techniques. 3 Hours.
This course will involve the study of theoretical approaches to counseling which have been demonstrated to be culturally-relevant and conceptually inclusive of multiple theories and techniques: Advanced Cognitive Behavioral Therapy techniques will be emphasized (other techniques will also be explored). Selected readings, academic discussion and clinical application will be stressed. Critical thinking and active participation are essential. Students will focus on the application of theoretical information towards a goal of case conceptualizations as a precursor to effective treatment planning.

Prerequisites: ECG 621 [Min Grade: C] and ECG 638 [Min Grade: C]

ECG 653. Counseling Children and Adolescents. 3 Hours.
This course will review current evidenced based treatment interventions for children and families. Candidates will learn play therapy techniques, art therapy techniques, and behavioral interventions including how to create behavioral contracts, and methods for writing informative treatment plans. Candidates will also learn specific strategies for engaging parents and siblings in treatment, and will learn specific structural and narrative based theoretical approaches to family therapy.

ECG 660. Relationships and Human Sexuality. 3 Hours.
Introduction to the theory of human sexuality and considerations of couples therapy will be presented, followed by a discussion of systematic goal setting, treatment planning, and assessment, and an investigation of issues of dysfunctional sexual functioning, sexual disorders, and its effect on couple and family systems. Focus will be given to specific issues to take into account in the practice of systematic couples therapy, including cultural diversity, age, disability and illness, diverse sexual behavior, sexual trauma, and rape. Appropriate assessment and intervention methods, as well as techniques utilizing a contextual and systemic approach will be studied and practiced.

ECG 661. Play Therapy I. 3 Hours.
This course will introduce students to the philosophical underpinnings and theoretical approaches of play therapy with children. During this course, students will learn to appropriately conceptualize mental health in childhood, develop treatment plans, and apply play theory techniques for the treatment of children. Group counseling and incorporating families into play therapy will also be considered.

ECG 662. Play Therapy II. 3 Hours.
Counseling children. Advanced counseling theories and advanced techniques appropriate to working with children are explored. Play therapy is emphasized.

ECG 668. The Intersections of Family and Community Systems. 3 Hours.
This course will examine the interactions and issues that arise between the family system and prominent community and social systems, with a focus on the education system and schools, the medical system and wellness, and mental health. Contemporary issues affecting families in the context of these systems will also be examined. These interactions and issues will be examined through a systemic lens with an emphasis on family strengths and resilience.
ECG 685. Marriage and Couples Counseling. 3 Hours.
This course is designed to introduce students to principles of effective couples therapy while preparing them to critically assess couple relationships. This course will be taught from a systems perspective and will include an overview of models and techniques drawn from evidence based research. This course is designed to blend theory and application. Students in this course will participate in didactic and experiential learning and will participate in simulations and case presentations to further understand clinical aspects of couples therapy.
Prerequisites: ECG 691 [Min Grade: C]

ECG 689. Advanced Family Counseling Techniques. 3 Hours.
This course will serve as an in-depth exploration of limited theories of family therapy, including Emotionally Focused Couples Therapy and Cognitive Behavioral Family Therapy, their more recent expressions within the professional literature, and how to consider them against the standards of evidenced based practice. Conceptual understanding and acquisition of specific treatment skills through direct clinical experiences and reflection/advisory teams will be emphasized. This course is designed to allow students to gain a greater understanding of how these key theoretical approaches and techniques, and advanced systemic concepts, can be applied in marriage and family therapy practice.
Prerequisites: ECG 685 [Min Grade: C] and ECG 691 [Min Grade: C]

ECG 691. Introduction to Couples and Family Counseling. 3 Hours.
The purpose of this course is to provide an introduction to family, systems, and relational therapies. An overview of theoretical concepts and intervention strategies associated with traditional and systemic theories of marriage and family therapy will be provided. This course also provides an examination of how family therapy has been shaped through cybernetics and systems theory.

ECG 692. Independent Readings in Counselor Education. 1-3 Hour.

ECG 695. Practicum II: Supervised Field Experience. 3 Hours.
This clinical course is designed to give students the opportunity to demonstrate basic counseling skills with students/clients at a school or agency and to begin to move toward proficiency. Knowledge and skills developed in previous course work will be applied in the clinical setting. The counselor-in-training is involved in serious counseling interactions with clients. Student counselors receive feedback and supervision from on-site supervisors, group seminar supervisors, and UAB faculty members. Counselors in-training are assigned to a school, or agency setting for a minimum of 100 clock hours, 40 of the hours must be in direct service with clients. Prerequisites: Completion of Area I Courses, Completion of required personal counseling sessions, a grade of “Pass” on the comprehensive exam, and satisfactory dis-positional evaluations/successful resolution of a dis-positional letter.

ECG 696. Counseling Internship A. 3 Hours.
The internship provides an opportunity for the student to perform, under supervision, a variety of activities that a regularly employed counselor would be expected to perform in the clinical setting. A regularly employed staff member is defined as a person occupying the professional counseling and clinician’s role to which the student is aspiring (school or clinical mental health). The intern is involved in counseling interactions with clients. Interns receive feedback and supervision from their on-site supervisor, group supervisors, and UAB faculty members. Interns are assigned to a school, agency, or rehabilitation setting for a total of 600 clock hours. 240 of the hours must be in direct service with clients. In this course, students will be challenged to become more self-aware of both their professional approach to counseling as well as how they personally influence the therapeutic space. This development will occur primarily via direct feedback from peers, facilitated by the group supervisor, as well as opportunities for personal reflection and individualized feedback from the supervisor. Interns are often unaware that counselor development hinges on one’s willingness to explore themselves. The goal of this internship is to push the boundaries of this lack of awareness within a safe and supportive atmosphere and to challenge others to do the same for the benefit of providing our clients with a more authentic representation of ourselves as professional counselors. Interns are always given the opportunity to discuss this in the group setting or on an individual basis as desired.
Prerequisites: ECG 695 [Min Grade: P]

ECG 697. Counseling Internship B. 3 Hours.
The internship provides an opportunity for the student to perform, under supervision, a variety of activities that a regularly employed counselor would be expected to perform in the clinical setting. A regularly employed staff member is defined as a person occupying the professional counseling and clinician’s role to which the student is aspiring (school or clinical mental health). The intern is involved in counseling interactions with clients. Interns receive feedback from their on-site supervisor, group supervisors, and UAB faculty members. Interns are assigned to a school, agency, or rehabilitation setting. Each semester of internship, students are required to have at least 300 total hours at their site, 120 of which must be in direct service with clients, for a total over two semesters of 600 clock hours, and 240 in direct service with clients.
Prerequisites: ECG 696 [Min Grade: P]

EDF-Foundations of Education Courses

EDF 600. Urban Education. 3 Hours.
An examination of the historical, social, political, and economic factors that shape urban education, as well as its similarities and differences to suburban and rural education, in the United States.

EDF 601. The History of American Curricular Thought. 3 Hours.
An examination of American educational history using primary source documents to provide insight into the evolution of curriculum, policy, and educational practice.

EDF 602. Critical Social Issues in American Education. 3 Hours.
An examination of contemporary social issues facing schools in the United States, from politics and policy, school structure, and curriculum to pedagogical practice. The relationship of the school to society is also addressed.

EDF 606. Social Movements in Education. 3 Hours.
An examination of how the Progressive Education Movement, the Women’s Movement, along with other major social movements in recent history have shaped American education. The history of the Civil Rights Movement in Birmingham and its impact on schools, communities, and the lives of educators and students are of special interest.
EDF 616. Comparative Education. 3 Hours.
An examination of the historical, social, economic, political, and cultural forces influencing the structure and function of education in other countries in comparison to education in the United States. Course may be taught as part of a study abroad program.

EDF 620. Culture and American Education: Race Class and Gender. 3 Hours.
An examination of the interlocking influences and socially constructed meanings and understandings of culture, race, ethnicity, social class, and gender in American education.

EDF 691. Special Problems in The Foundations of Education. 3 Hours.
This course covers variable topics addressing critical issues and problems in the educational foundations field. The course may be taught for in-service educator credit in conjunction with special P-12 school/ university collaborative initiatives.

EDF 697. Individual Readings in Foundations of Education. 1-3 Hour.
This course emphasizes individually-guided and research-focused readings in the field of educational foundations.

EDF 698. Individual Research in Foundations of Education. 1-3 Hour.
This course is generally taught in independent study or small seminar formats to guide graduate research in the field of educational foundations.

EDF 700. Urban Education. 3 Hours.
An examination of the historical, social, political, and economic factors that shape urban education, as well as its similarities and differences to suburban and rural education, in the United States.

EDF 701. The History of American Curricular Thought. 3 Hours.
An examination of American educational history using primary source documents to provide insight into the evolution of curriculum, policy, and educational practice.

EDF 702. Critical Social Issues in American Education. 3 Hours.
An examination of contemporary social issues facing American schools, from politics and policy, school structure, and curriculum to pedagogical practice. The relationship of the school to society is also addressed.

EDF 706. Social Movements in Education. 3 Hours.
An examination of how the Progressive Education Movement, the Women’s Movement, along with other major social movements in recent history have shaped American education. The history of the Civil Rights Movement in Birmingham and its impact on schools, communities, and the lives of educators and students are of special interest.

EDF 708. Ethical Dilemmas in Educational Administration. 3 Hours.
This course addresses ethical dilemmas in educational administration and leadership. May be taught by both Educational Foundations and Educational Leadership faculty.

EDF 716. Comparative Education. 3 Hours.
An examination of the historical, social, economic, political, and cultural forces influencing the structure and function of education in other countries in comparison to education in the United States. Course may be taught as part of a study abroad program.

EDF 720. Cult and Amer Educ: Race Class and Gender. 3 Hours.
An examination of the interlocking influences and socially constructed meanings and understandings of culture, race, ethnicity, social class, and gender in American education.

EDF 750. Special Problems in the Foundations of Education. 3-9 Hours.
A doctoral seminar on various special problems and issues in educational foundations. May be taken for 3, 6, or 9 credit hours.

This doctoral seminar examines contemporary issues concerning diversity and institutions of education and the various epistemological lenses and theoretical perspectives that can be used to conduct research about culture and human differences as related to educational policy and practice.

EDF 756. Context, Culture, and Policy (CCP) Proseminar. 3 Hours.
This required seminar introduces doctoral candidates in the Educational Studies in Diverse Populations program to the interrelationships among context, culture, and policy. The course provides analysis of educational institutions and initiatives through the lens of geopolitical space, sociocultural studies, and global justice. Specifically, it encompasses the institutional locations (both national and international, and urban, suburban, and exurban) of higher education, P-12 schools, and non-profit and community organizations, in relation to the experiences of diverse populations.

EDF 796. Dissertation Seminar. 3 Hours.
This course provides for supervised research experience under the direction of a graduate faculty member within the School of Education. The topic for an EDF 796 course must relate to the concentration area of Metropolitan Education Studies within the Educational Studies in Diverse Populations (ESDP) doctoral program. This course is only available to students who have been admitted to the ESDP doctoral program. Prerequisite/co-requisite completion of research sequence and prerequisite courses. Prerequisites: EDF 699 (Can be taken Concurrently) and EDF 701 (Can be taken Concurrently) and EDF 702 (Can be taken Concurrently) and EPR 696 (Can be taken Concurrently) and EPR 702 (Can be taken Concurrently)

EDF 797. Independent Studies. 3 Hours.
Independent readings under the direction and supervision of EDF faculty. Doctoral status and the permission of the instructor are required.

EDF 798. Individual Research in the Foundations. 3 Hours.
This course is designed for doctoral students to deepen their understanding of selected research topics.

EDF 799. Dissertation Research. 1-12 Hour.
Doctoral research in the Context, Culture, and Policy concentration of the Educational Studies in Diverse Populations doctoral program. A minimum of 12 hours of EDF 799 is required for the PhD program; up to 21 credits of EDF 799 may be taken. Prerequisites: GAC Z

EDL-Educational Leadership Courses

EDL 601. Foundations of Instr. Ldrshp. 3 Hours.
The purpose of the course is to provide a strong foundation in strengthening knowledge and skills in instructional leadership. The student will be prepared to become an instructional leader who engages the school community in developing a shared mission, vision; will explore various leadership theories and application; and will review the purpose and process of leadership for continuous school improvement. Requires admission to either EDL Master's or Post-Master's Certification program.
EDL 602. Fld Exp: Found of Inst Ldrshp. 1 Hour.
Through observing, participating, and leading field-based experiences, Foundations of Instructional Leadership students will gain practical knowledge and skills needed to be effective school leaders. This course is for master's students in educational leadership and is taken in connection with EDL 601.

EDL 603. Data Driven Decision Making. 3 Hours.
This course prepares the future school leader to effectively use and interpret data in all forms to lead and monitor continuous school improvement. Students will become conversant with strategies and techniques that enhance classroom instruction. The students will lead in a school improvement project, identifying and addressing student achievement gaps. This course is required for all students earning a Master of Arts in Educational Leadership. Other students interested in studying data-based decision making to improve student learning are welcome to enroll.

EDL 604. Fld. Exp. in Data Driven Dec.. 1 Hour.
Through observing, participating, and leading field based experiences, Data Driven Decision Making for School Improvement students will gain practical knowledge and skills in using data and techniques to enhance leadership for learning in a school. This course is required for students earning their Master of Arts in Educational Leadership, but other students interested in studying data-based decision making for a school setting are welcome to enroll.

EDL 605. Residency in Inst. Leadership. 3 Hours.
The purpose of the Residency in Instructional Leadership is to give future instructional leaders authentic experiences in a continuum of observing, participating, and leading in K-12 schools without the distraction of teaching responsibilities or other coursework requirements. Students are required to complete their residency, in a school with children present, over 10 days. Students are required to attend two Residency Seminars during the term. Residency is a requirement for eligibility for Alabama Class A certification in Instructional Leadership.

EDL 606. Supervision/ Ment. Inst. Staff. 3 Hours.
The purpose of this course is to prepare the future school leader to utilize knowledge of human resources to accomplish school and system goals. This involves developing the ability to design and implement effective professional development and facilitate teaching that will impact student achievement. Emphasis is placed on the observation of classroom teachers and developing systematic feedback processes in order to facilitate improvement in classroom instruction. A final unit will assist the future leader in seeking mentoring opportunities.

EDL 607. Fld Exp. in Super / Mentoring. 1 Hour.
Through observing, participating and leading field based experiences, students will gain practical knowledge and skills in implementing staff development, supervision of instructional staff, and creating mentoring opportunities for new teachers and oneself. This class is for students earning their Master of Arts in Educational Leadership.

EDL 608. Org. & Financial Mgt. 3 Hours.
This course is designed to prepare instructional leaders to develop the knowledge and skills to apply financial procedures for public schools in Alabama. An emphasis on strategies to utilize student data as the impetus for allocating financial resources will be part of the curriculum. In addition, students will conduct a technology audit and explore guidelines for creating safe school facilities.

EDL 609. Fld. Exp. in Org & Finc Mgmt. 1 Hour.
Through observing, participating, and leading field-based experiences, students will gain practical knowledge and skills in applying financial procedures, allocating resources and creating safe K-12 schools.

EDL 610. Legal & Ethical Foundations. 3 Hours.
The purpose of this course is twofold: (1) Candidates will give a fundamental knowledge of ethical principles based on the Alabama Educator Code of Ethics and guidelines of the State Ethics Commission and (2) Candidates will gain a working knowledge of legal principles established by local, state, and federal legislatures and judicial requirements.

EDL 611. Fld. Exp. in Legal/Eth Found. 1 Hour.
Through observing, participating and leading field based experiences assigned in EDL 610 Legal and Ethical Foundations of School Leadership, students will gain a working knowledge of legal and ethical principles necessary to employ in K12 school leadership.

EDL 612. Best Prac. Inst. Ldrship. 3 Hours.
The purpose of this course is to prepare instructional leaders who can create positive learning environments for all students. Special emphasis will be placed on using data to assess and improve student achievement. Students will explore the needs of diverse and underrepresented populations, including racial/ethnic minorities, students with special needs, LGBTQ students, and others. Students will also examine legal mandates for providing services to diverse student populations.

Through observing, participating leading field based experiences, students will gain practical experience needed to meet the instructional needs of diverse populations, including racial/ethnic minorities, students with special needs, LGBTQ students, and others. This course is required for all students earning a Master of Arts in Educational Leadership.

EDL 661. Simulation in Educational Leadership. 3 Hours.
This is a course designed to provide practice for prospective school administrators in observing teachers in the classroom. Emphasis is placed on developing the skill base of school leaders in observing, note-taking, and providing meaningful feedback to classroom teachers regarding the delivery of instruction and student response. Skills are also developed in assisting teachers in writing their own professional development plans based upon classroom observation.

EDL 704. Educational Law and Policy Development. 3 Hours.
In this course, students will take an indepth look at influential court decisions and legislation that affects the operation of schools and school districts in modern society. Furthermore, the processes, responsibilities and multiple roles in the development of school and school district policy will also be explored.

EDL 710. Mentoring for Educational Leadership. 3 Hours.
In this course, students will develop their knowledge base and skill sets in mentoring instructional staff in the development of their own practice as classroom instructors. Concepts of mentoring as a key process in professional development of teachers will be examined. Specific mentoring skills and strategies will be emphasized. Students will be required to examine current mentoring program goals and processes as well as practice their own skills in mentoring.
EDL 717. Leading Change Through Action Research. 3 Hours.
The purpose of this course is to strengthen knowledge and skills in the areas of effective leadership and systemic organizational change. This course will teach participants the skills and strategies to prepare for and introduce change in their schools through an identified school-based problem solving project. Candidates will be required to lead a collaborative effort of analyzing and applying strategies and quality tools in addressing a school-based problem, preferably one that is impacting student achievement. Course content will include: an introduction to quality tools (TQM), shared decision-making, group processes, effective teaming, and using data to make decisions.

EDL 717L. Field Experience for Leading Change Through Action Research. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 717-L. the Field Experience Course is taken concurrently with the core course.

EDL 718. Essential Skills for Organizational Leadership. 3 Hours.
This course is designed to strengthen knowledge and skills essential to effective leadership in the school setting. Candidates will increase their understanding of and skills in utilizing participatory /shared decision making; using data focused on student learning to drive the decision making process; communicating high expectations for student learning; and enhancing human resource development. Candidates will demonstrate the ability to analyze various situations involving community and stakeholder relationships through the structural, human resource, political, and symbolic frames and devise appropriate courses of action based on this analysis of school programs.

EDL 718L. Field Experience for Essential Skills for Organizational Leadership. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 718-L. The Field Experience Course is taken concurrently with the core course.

EDL 719. Mentoring & Coaching Skills for School Leaders. 3 Hours.
In an era of ensuring highly qualified teachers through embedded, research-based staff development, the role of supervision and mentoring has taken on an unprecedented role in successful schooling. Supervision and mentoring are at the heart of schooling. In addition, future school leaders need to understand their own mentoring needs, and be comfortable with seeking a mentor for themselves. In this course, candidates will conduct a comprehensive critical examination of mentoring concepts, both for personal development and for instructional supervision of classroom teachers. The skills of supervision through cognitive coaching will be learned and practiced. Implications for individual and group development and the improvement of instruction are emphasized. The field experience, EDL 719L will involve candidates seeking a mentor for themselves, as well as engaging in mentoring a new teacher.

EDL 719L. Field Experience for Mentoring & Coaching Skills for School Leaders. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 719-L. the Field Experience Course is taken concurrently with the core course.

EDL 720. Proposal Writing. 3 Hours.
In this course, students enrolled in the Doctorate of Education program work closely with their course instructor to develop their proposal for dissertation research. The content and structure of the proposal and dissertation are examined, including conducting a comprehensive review of the relevant literature and the techniques and strategies of data collection, analysis, and development of conclusions and implications related to research findings. The anticipated culminating field project is the development and defense of the proposal for doctoral dissertation research.

EDL 725. Current Issues and Problems in School Administration. 3 Hours.
This is a seminar type course that explores current issues affecting the profession of school leadership. Various topics of concern will be presented and discussed. Multiple guest speakers with expert knowledge of selected issues may be invited to present in this class. Students will be required to reflect carefully about their own positions relative to select issues and problems.

EDL 727. Leading the Adult Learning Community. 3 Hours.
This course is divided into the following conceptual units: a. Teachers as Adult Learners b. Understanding Adult Learning Theories c. Applying Adult Learning Theories to Professional Learning Communities d. Creating Collaborative Teams to support learners e. Shared Leadership to improve academic achievement of diverse learners f. Developing and Utilizing Shared Leadership Strategies The purpose of this course is to prepare candidates with the ability to and the knowledge of skills and strategies required to Lead the Adult Learning community in schools. An in-depth analysis of adult learning theories and strategies to develop shared leadership capacity in school communities will provide the impetus of this course. Candidates will learn about characteristics of adult learners and various theories of how adults learn, develop, and interact in professional learning communities. The second focus of this course is how to develop and implement shared leadership in schools.

EDL 727L. Field Experience for Leading the Adult Learning Community. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 727-L. the Field Experience Course is taken concurrently with the core course.

EDL 728. Management of the Learning Organization. 3 Hours.
The purpose of this course is to strengthen knowledge of and skills in essential management functions within the school or district setting, as noted in specified ISLLC and Alabama Administrative Code Standards. The course will focus on practices and procedures that are vital to the efficient and effective operation of a school or a school district.

EDL 728L. Field Experience for Management of the Learning Organization. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 728-L. The Field Experience Course is taken concurrently with the core course.
EDL 731. Law, Ethics, and Policy for Educational Leaders. 3 Hours.
The purpose of this course is twofold: 1) Candidates will gain a fundamental knowledge of ethical principles based on the Alabama Educator Code of Ethics and the guidelines of the State Ethics Commission. 2) Candidates will gain a working knowledge of legal principles established by local, state, and federal legislative and judicial requirements. Candidates will be able to demonstrate an understanding of legal and ethical principles related to underrepresented populations within the school setting. Candidates will be able to demonstrate a knowledge and application of the ethical principles stipulated in the Alabama Educator Code of Ethics and accompanying legal precepts. Candidates’ ability to make sound legal and ethical decisions will be enhanced through a better understanding of board policies and politics as well as through reflection on and clarification of personal values and beliefs.

EDL 731L. Field Experience for Law, Ethics, and Policy for Educational Leaders. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school in the area of law, ethics, and policy. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 731-L. The Field Experience Course is taken concurrently with the core course.

EDL 732. Leadership of Special Programs. 3 Hours.
Leadership of Special Programs coalesces the knowledge of and ability to lead special programs within a school site. Candidates will apply leadership skills in developing a comprehensive home school collaborative project and a comprehensive technology integration project. In addition, candidates will develop curriculum which will align state standards unique to career and technical education. Emphasis will be placed on models of communication, problem solving, conflict resolution and team building principles and skills. Focus will also be placed on best practices in the development of community information, networking, public relations, and media. The technology portion of this class will focus on the total integration of technology into a school community.

EDL 732L. Field Experience for Leadership of Special Programs. 1 Hour.
The course is designed to give Ed.S. candidates authentic, practical experience in leading in a school. A minimum of 20 hours of field experience, spent in leadership activities correlating to the core course, at the school site, will be required as the field experience for EDL 732-L. The Field Experience Course is taken concurrently with the core course.

EDL 735. Professional Leadership. 3 Hours.
Provides an overview of key issues related to professional leadership from the perspective of the teacher leader. Special emphasis will be given to the following course themes: Alabama Educator Code of Ethics, ethical and professional conduct, school law and policy, and adult learning.

EDL 746. Practicum in Instructional Leadership. 1 Hour.
Course required in the Ed.S. program for candidates who completed the Class A Administrative Certification before 2009, before program redesign. The practicum in Institutional Leadership allows for authentic leadership experiences in K-12 schools. The Practicum consists of developing projects and documents/artifacts, throughout the four-semester Educational Specialist Program, that outline leadership experiences in all areas of the Alabama Standard for Instructional Leaders.

EDL 755. Advanced School System Administration. 3 Hours.
An advanced course for practicing school leaders examining the various aspects of leadership of a school district from the level of the principalship and beyond. This course explores systems theory and systems thinking relative to the various systems enacted in the leadership of a school district.

EDL 756. Advanced Educational Law. 3 Hours.
An advanced course for practicing school leaders examining the various aspects and implications of educational state and national level case law and policy governing and related to leadership of a school district from the level of the principalship and beyond.

EDL 792. Directed Study in Educational Leadership. 3 Hours.

EDL 796. Individual Readings in School Law. 3-6 Hours.

This course is for doctoral students in educational leadership who have completed their preliminary course work but who have not yet attained candidacy (i.e., developed or defended their proposal for doctoral dissertation research).

EDL 799. Dissertation Research. 1-12 Hour.
This course is for doctoral students in educational leadership who have completed their preliminary course work, passed their comprehensive written exam, and have successfully defended their proposal for doctoral dissertation research and who, upon the recommendation of their dissertation committee, are entered into doctoral candidacy through the Graduate School. A minimum of 12 hours of EDL 799 is required for the EdD program.

Prerequisites: GAC Z

EPR-Educational Psychology Courses

EPR 510. Measurement and Evaluation in Education ECE. 3 Hours.
For early childhood/elementary education majors only. Basic concepts and principles of measurement and evaluation of personal and academic progress in classroom. Elementary descriptive statistics and measurement techniques used in student evaluation. Quantitative literacy is a significant component of this course (QEP).
Prerequisites: EEC 600 [Min Grade: C](Can be taken Concurrently)

EPR 511. Measurement and Evaluation in Education Secondary Ed. 3 Hours.
For secondary education majors only. Basic concepts and principles of measurement and evaluation of personal and academic progress in classroom. Elementary descriptive statistics and measurement techniques used in student evaluation. Quantitative literacy is a significant component of this course (QEP).

EPR 590. Research & Prgm Eval in Coun. 4 Hours.
This course will provide an introduction to major principles, strategies, and instruments in social science research and program evaluation. Students will become familiar with (1) basic strategies used to conduct research; (2) basic methodology for collecting and interpreting data typically reported in counseling; (3) basic conventions for published reporting research in his/her field of interest; (4) basic program evaluation; and (5) the knowledge and skills to become consumers and producers of counseling research.

EPR 594. Introduction to Educational Research Design. 3 Hours.
Introduction to educational research design purposes and characteristics of the research process, including: types of research approaches and research design; procedures for collecting; analyzing and evaluating data; critical review of published research; research ethics; and institutional review.
EPR 596. Introduction to Qualitative Methods in Educational Research. 3 Hours.
The purpose of this course is to provide a practical introduction to qualitative research and its application in education, social, and behavioral sciences.
Prerequisites: EPR 594 [Min Grade: C]
EPR 607. Computer Applications to Statistical Analysis. 1 Hour.
Excel and SPSS will be used for statistical analyses and data interpretation. Lab to accompany EPR 608.
EPR 608. Introduction to Statistical Methods in Educational Research. 3 Hours.
This statistics course will cover descriptive and inferential statistics to include the following: measures of central tendency; measures of variability; frequency distributions; normal curve; probability; sampling; regression; hypothesis testing; and analysis of variance. Excel and SPSS will be used for statistical analyses and data interpretation.
EPR 609. Statistical Methods and Research in Education: Intermediate. 3 Hours.
This course will cover basic inferential techniques including hypothesis testing and parametric and non-parametric techniques related to factorial ANOVA and within-subjects ANOVA designs. A significant focus of this course is on assumptions, rationale, application and interpretation of various analysis of variance techniques.
Prerequisites: EPR 608 [Min Grade: C]
EPR 610. Child Psychology. 3 Hours.
This course covers human development through infancy, preschool, and preadolescence.
EPR 611. Adolescent Psychology. 3 Hours.
This course offers an in-depth examination of selected topics in the psychological, social, emotional, moral, cognitive, cultural and physical development of adolescents and how these aspects affect classroom and school behavior.
EPR 614. Lifespan Human Development. 3 Hours.
The objective of this course is to further students' knowledge of human development, the multidisciplinary study of how people change and how they remain the same over time. Topics to be covered will include developmental theories, biological development, social developing, language development, cognitive development, young adulthood, and aging.
EPR 622. Learning Theories. 3 Hours.
This course covers the application of learning theories to educational practice, behavioral theories, information processing, biochemical basis of memory and learning, as well as other major learning theories.
EPR 688. Seminar on Current Issues: Measurement/Eval School. 3 Hours.
This course provides advanced training on current issues, policies, and methods in educational measurement and evaluation relevant to classroom teachers.
EPR 691. Independent Readings in Educational Psychology and Research. 3 Hours.
Independent Readings in Educational Psychology and Research.
EPR 692. Introduction to Educational Research Design. 3 Hours.
Introduction to educational research design purposes and characteristics of research process, types of research approaches and research designs, procedures for collecting, analyzing and evaluating data, critical review of published research, research ethics and institutional review.
EPR 695. Survey Methods in Educational Research. 3 Hours.
Provides an overview of the basic principles, applications, and types of survey research in education. Students completing this course should have basic knowledge of the survey implementation procedures, use of appropriate sampling techniques and principles of survey instrument construction. Students should be able to develop reliable survey items, establish reliability and validity of survey scales and instruments, and demonstrate awareness of ethical issues related to conducting survey research. Finally, students will learn how to evaluate and critique published survey research studies.
Prerequisites: EPR 594 [Min Grade: C] and EPR 608 [Min Grade: C]
EPR 696. Qualitative Research: Inquiry and Analysis. 3 Hours.
The purpose of this course is to provide an in-depth insight into the history, philosophy and applications of qualitative research. The course provides a structured field experience of designing and conducting a qualitative small-scale research study within a select qualitative approach.
Prerequisites: EPR 594 [Min Grade: C] and EPR 596 [Min Grade: C]
(Can be taken Concurrently)
EPR 700. Data Based Decision Making. 3 Hours.
Provides an overview of key issues related to data-based decision making for students who are interested in moving into leadership positions within their own school and school system. Issues such as Response to Intervention (RTI), progress monitoring, formative and summative evaluation, basic statistical and measurement issues, and other related topics are introduced and discussed.
EPR 700L. Field Experience/Data Based Decision Making. 1 Hour.
Field-based experience to accompany Data Based Decision Making.
EPR 700R. School Based Problem Research Project/Data Based Decision. 1 Hour.
Action-research project to accompany Data Based Decision Making.
EPR 710. Computer Applications and Advanced Statistical Methods. 3 Hours.
Provides an overview of multivariate analyses including multiple regression, MANOVA, logistic regression, discriminant function analysis, factor analysis, cluster analysis, and related procedures. The course focuses on conducting analyses, interpreting results, and conducting studies that require multivariate analyses.
Prerequisites: EPR 608 [Min Grade: C] and EPR 609 [Min Grade: C]
(Can be taken Concurrently)
EPR 792. Mixed Methods Approaches to Educational Research. 3 Hours.
This course will provide an overview of mixed methods research, including the history and philosophy of mixed methods research, relevant emerging literature, types of research problems addressed, types of mixed methods designs, and the writing and evaluation of mixed methods studies.
Prerequisites: EPR 594 [Min Grade: C] and EPR 596 [Min Grade: C] and EPR 609 [Min Grade: C](Can be taken Concurrently)
EPR 793. Doctoral Seminar in Research Evaluation and Design. 3 Hours.
Doctoral seminar in educational research and psychology. Topics vary by semester.
HEA-Higher Education Admin Courses

HEA 600. Administration of Higher Education. 3 Hours.
This course reviews the history, philosophy, and development of higher education through an overview of American and international institutions of higher learning. Students examine organization, governance, and administrative structures of American universities and are introduced to the function and responsibilities of major administrative divisions of a college or university and the major tasks of administration. Students are introduced to major journals in the field and discuss curricular, administrative, and policy issues as well as future trends. Students are required to familiarize themselves with one or more administrative offices on a campus.

HEA 610. History of Higher Education. 3 Hours.
This course is an examination of the development of the American system of higher education across 200-plus years – its origin, major characteristics, trends, and distinctive features. The course emphasizes how historical events have unfolded in our culture and in higher education to influence the growth and development of various forms of institutions within the modern American higher education system.

HEA 620. Access & Equity in Higher Education. 3 Hours.
This course introduces students to research, theory, and practice issues surrounding access to college and equity in higher education. Through the integration of relevant information from history, law, interpersonal development, organizational development, and philosophy, students will develop complex, comprehensive understandings of equity and diversity in higher education.

HEA 630. Higher Education Law. 3 Hours.
This course provides an overview of federal and state statutes, as well as case law, relevant to higher education. Students examine legal and ethical issues that confront college and university personnel and explore the legal relationships between the institution and the faculty, the student, and state and federal governments.

HEA 640. Organization, Leadership, & Change. 3 Hours.
Major organizational and leadership theories are examined as students explore their own leadership abilities and the cultural facets of organizational life in universities with special emphasis on improvement opportunities such as strategic planning, values clarification, cultural norms, innovation, process and people integration, key performance indicators, the balanced scorecard and the alignment of human resources systems.

HEA 650. Assessment & Evaluation of Higher Education. 3 Hours.
This course is an examination of the philosophy and practice of assessment and evaluation in higher education with particular emphasis on assessment of programs/services and/or students. The course addresses the use of qualitative and quantitative data in the processes of decision making at all levels within institutions of higher education. Consideration for advanced data collection and analytics, as well as an introduction to facilitating data management are included. Students will gain a better understanding of the importance of assessment in higher education and their role in the assessment process. Therefore, this course is designed to prepare students to conduct an evaluability assessment and assessment design for a real program where they have the potential to provide a program/department with accurate and usable results, as well as actionable next steps.

HEA 660. College Student Development. 3 Hours.
In this course students will have an opportunity to examine various theories of student development in higher education including social, psychosocial, cognitive structural, integrative and more. Students are asked to look not only at the identity development models presented in isolation, but also at the ways in which they intersect and at times, trouble theory due to the multiplicity of an individual’s identities. College retention theories, as well as environmental factors in persistence and attainment will be explored. Students will also review and discuss contemporary issues and trends related to providing services to various types of students.

HEA 670. Strategic Partnerships in Academic & Student Affairs. 3 Hours.
This course introduces students to concepts and theories that underlie scholarship and frame practice in academic and student affairs and considers the factors that shape the teaching-learning environment. It is an interactive course. It will examine ways academic and student affairs can develop, increase, and provide resources and support to students across multiple departments to engender personal and professional growth. Special emphasis is given to communication and co-curricular opportunities to provide a richer learning experience through the application of classroom learning to real-world environments, i.e., service-learning.

HEA 680. Practical Issues & Challenges in Higher Education. 3 Hours.
In this course, students will review issues that have informed best practices in higher education in American society, as well as identify current trends and concerns. This course offers in-depth analysis of prevalent issues affecting institutions of higher education including, but not limited to, federal educational policies, the role of faculty, changes in student populations, the funding of higher education, the changing nature of instructional delivery, and student affordability.

HEA 685. Special Topics. 3 Hours.
Topical courses not offered in regular course rotation – e.g., courses by visiting faculty, courses on timely topics, highly specialized courses responding to unique student demand. The Higher Education Administration program offers Special Topics only occasionally and the selection is different every semester. Special Topics courses do not repeat material presented by regular semester courses.

HEA 690. Practicum in Higher Education. 3 Hours.
This course is intended for master’s students in higher education as a complement to their core course requirements and as an opportunity for professional development. The broad purpose of this course is to prepare graduate students for professional practice in various higher education contexts. To achieve this goal, this course is designed to help students to link theoretical current issues and administrative challenges to their own professional development and their work (i.e., practice) in a higher education setting.

Prerequisites: HEA 600 [Min Grade: C] and HEA 610 [Min Grade: C] and HEA 620 [Min Grade: C] and EPR 594 [Min Grade: C]
KIN - Kinesiology Courses

KIN 500. Organization & Admin of PE. 3 Hours.
This course is designed to provide the student with opportunities to increase their knowledge of problems and issues involved in the organization and administration of physical education programs in elementary and secondary schools.

KIN 508. Adapted Physical Education. 3 Hours.
This methods course provides knowledge and skills for assessing, interpreting, programming, and instructing K-12 students with disabilities in physical education. Topics include the law, inclusion, IEP writing, differentiation, modifications, instructional delivery, and generalities of specific disabilities. The course will engage students through lecture, peer teaching, and problem-based learning activities. Best practices teaching children with disabilities will be applied through clinical experiences in select schools.

KIN 509. Assessment in Physical Education. 3 Hours.
This course emphasizes the development, implementation, and analysis of assessments within K-12 physical education programs, including assessment of the cognitive, physical, and psychomotor domains including program assessment.

KIN 511. Elementary School Physical Education. 3 Hours.
This course will include the nature and content of a developmentally appropriate elementary physical education program.

KIN 520. Fitness and Motor Skill Acquisition. 3 Hours.
This course will enable candidates to acquire the knowledge and the skills necessary to analyze and appropriately teach motor skills and design developmentally appropriate fitness activities for middle school students.

KIN 520L. Sport Skill Proficiency. 1 Hour.
This course will enable candidates to acquire the knowledge and the skills necessary to teach the critical elements needed to perform all basic sport skills. Candidates will demonstrate skill proficiency in the sport skills as well as the ability to teach others to perform the skills.

KIN 523. Techniques of Teaching Fitness and Nutrition in Schools. 3 Hours.
This course will enable candidates to learn techniques and strategies for teaching fitness and nutrition in physical education programs.

KIN 585. Advanced Exercise Testing and Prescription. 3 Hours.
This course studies participant screening, risk stratification, and exercise assessment/testing and prescription for apparently healthy, special and diseased populations.

KIN 589. Physical Education Instructional Strategies. 6 Hours.
This course will focus on information to help potential physical educators attain teaching skills and knowledge necessary to design, implement and evaluate developmentally appropriate K-12 physical education programs. Students will gain hands-on teaching experience with students in school settings.

KIN 601. Introduction to Sports Administration. 3 Hours.
This course will explore the field of sport administration. Students will learn about the many skills needed to be an effective administrator.

KIN 607. Principles of Coaching. 3 Hours.
This course will explore the principles of coaching regarding sport psychology, sport pedagogy, sport physiology, and sport management.

KIN 615. Sport Facility Planning. 3 Hours.
Principles of planning and managing sport facilities and events.

KIN 630. Mechanical Analysis of Motor Skills. 3 Hours.
Analysis of motor skills in children, youth, and adults.

KIN 631. Foundations of Physical Education. 3 Hours.
Basic foundations of physical education in the school setting.

KIN 632. Supervision of Physical Education. 3 Hours.
Principles of supervising and maintaining a physical education program.

KIN 635. Principles of Management in Sports. 3 Hours.
This course is designed to give students an overview of the duties, responsibilities and problems facing athletic administrators in today’s sports-conscious society.

KIN 636. Current Readings in Physical Education. 3 Hours.
This course is designed to assist the student in locating, analyzing, and synthesizing professional literature relative to current trends, issues and research in physical education.

KIN 637. Physiology of Exercise I. 3 Hours.
Advanced study of energy metabolism and cardiovascular, respiratory and skeletal muscle physiology during exercise.

KIN 638. Physiology of Exercise II. 3 Hours.
Advanced instruction on human physiological responses to exercise and exercise training, altitude and climate, and spaceflight.

KIN 639. Exercise Prescription for High Risk Populations. 3 Hours.
Advanced exercise prescription for special populations including cardiovascular disease, obesity, diabetes, cancer and other chronic disease conditions.

KIN 640. Advanced Techniques in Conditioning the Athlete. 3 Hours.
Advanced endurance, resistance, and flexibility training for conditioning the athlete.

KIN 641. Advanced Planning/Management of Fitness Facilities. 3 Hours.
Advanced knowledge and skills needed for successful management, marketing, operational leadership, evaluation, and planning principles of commercial, corporate, clinical, and community health/fitness facilities.

KIN 642. Practicum in Physiology. 3 Hours.
Pre-thesis research.
Prerequisites: KIN 637 [Min Grade: C] or PE 637 [Min Grade: C] and (KIN 638 [Min Grade: C] or PE 638 [Min Grade: C])

KIN 643. Curriculum Development in Physical Education. 3 Hours.
This course focuses on the development of curricula in physical education grades K-12. Principles of curriculum development, existing curriculum models and current trends and contemporary issues related to curriculum development are covered.
KIN 644. Application of Exercise Physiology to Fitness and Performance. 3 Hours.
Students in this course will learn the scientific principles that underlie exercise physiology. In this course you will learn about exercise tests to evaluate fitness, and exercise training to promote performance and health, and disease prevention throughout the lifespan.

KIN 645. Advanced Motor Development. 3 Hours.
The purpose of this course is to provide graduate students the opportunity to develop skill and knowledge related to lifespan motor development. Through online discussion, readings, and laboratory activities, students will be exposed to information regarding physical growth, maturation, and aging; motor skill acquisition from infancy through adulthood; perceptual-motor development; physiological changes and exercise over the lifespan; and sociocultural influences on motor development.

KIN 647. Teaching Strategies and Issues in K-12 PE. 3 Hours.
This course is designed to update graduate students who are currently teaching physical education or seeking initial certification regarding new teaching strategies and methodologies as well as current state and national issues affecting K-12 physical education programs.

KIN 649. Advanced Adapted Physical Education. 3 Hours.
This course prepares students to make informed decisions about curriculum and instructional strategies for students with disabilities in physical education settings.

KIN 650. Social Aspects of Sport. 3 Hours.
This course is designed to study sport from a sociological perspective. The course will explore the importance of sports in people’s lives and the sports connection with culture and society.

KIN 651. Issues and Problems in Coaching. 3 Hours.
This course is designed to allow the students to approach issues and problems from a practical perspective, particularly related to legal duties.

KIN 652. Measurement and Evaluation of Athletes. 3 Hours.
This course is primarily designed to help athletic coaches locate, select, and construct quality sport skill tests. Additional attention will be given to body composition, fitness, and psychological assessment of athletes. Students will review reasons why coaches should measure and evaluate athletes, and survey sound testing procedures.

KIN 653. Plan/Conduct Act Prog for Indiv with Disabilities. 3 Hours.
The purpose of this course is to provide students with knowledge and skills needed to meet the unique fitness and physical activity needs of individuals with various disabilities. Through class discussions and course assignments, students will learn to design and implement personal training/fitness programs and disability sports/recreation programs for individuals with disabilities based on assessments of health related strengths and needs.

KIN 655. Motor Learning. 3 Hours.
Principles of teaching and learning motor skills.

KIN 656. Advanced Sport Psychology. 3 Hours.
Psychological principles of sports.

KIN 672. Advanced Treatment of Athletic Injuries. 3 Hours.
Advanced treatment of athletic injuries.

KIN 674. Advanced Sports Nutrition. 3 Hours.
Advanced exploration of nutrient absorption, digestion and metabolism in the athlete prior to, during and following training and athletic competition.

KIN 690. Seminar in Sports Administration. 1-3 Hour.
Overview of administration of sports programs.

KIN 693. Advanced Field Experience in Physical Education. 3-6 Hours.
Field Experience in Physical Education applying the National Board for Professional Teaching Standards.

KIN 694. Special Projects in Kinesiology. 1-6 Hour.
Special topics course in kinesiology.

KIN 695. Problems in Physical Education. 3-6 Hours.
Development of a project that addresses a current problem in Physical Education with a researched solution.

KIN 696. Elementary/Secondary Physical Education Internship. 9 Hours.
Student teaching provides an opportunity for physical education teacher education candidates to synthesize and apply all knowledge and skills acquired during previous coursework. Interns teach for 15 weeks at two levels, elementary and either middle or high school. The candidates must pass edTPA assessments to receive teacher certification.

KIN 697. Advanced Field Experience in Kinesiology. 1-6 Hour.
Culminating field experience in Kinesiology.

KIN 698. Coaching Internship (Individual Sport). 1-3 Hour.
Culminating internship in coaching.

KIN 699. Thesis Research. 1-6 Hour.
Kinesiology Thesis Research.
Prerequisites: KIN 642 [Min Grade: C]

KIN 710. Special Topics in Physical Education. 3 Hours.
Special topics course in physical education.

KIN 715. Advanced Field Experience in Physical Education. 3-6 Hours.
Within your current teaching environment, demonstrate your teaching practice of the National Board for Professional Teaching Standards.

KIN 718. Practicum in Exercise Physiology. 3 Hours.
Practicum in Exercise Physiology.

KIN 720. Research Design and Methodology. 3 Hours.
Research and design methods in kinesiology.
Prerequisites: EPR 692 [Min Grade: C]

KIN 726. Supervised Research in Physical Education. 3-6 Hours.
Completion of research project in the field of physical education.

KIN 728. EdS Thesis Research. 3-6 Hours.
Completion of indepth research in the field of kinesiology.

KIN 729. Physical Education Seminar. 3 Hours.
This course involves the development of thesis or research project presentation.

Community Health

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admissions.

Overview of Our Programs

The Community Health and Human Services program at UAB is designed to prepare students to work in professional health settings including national/state health organizations, clinical-based programs, and community-based non-profit agencies. In addition to studying contemporary health content, students are guided in the process of assessing community needs, planning, implementing, and evaluating
The Graduate Certificate in Health Education is designed for students who desire to work in the community or enhance their skills in academia and seek preparation at the graduate level in community health, but not a full master’s degree. The Graduate Certificate in Health Education is also designed for students wishing to obtain eligibility for the Certified Health Education Specialist Examination that have a degree in a complementary field but do not currently have the corresponding coursework. This certificate will formally recognize UAB students and community professionals who have sought out necessary skills and training in community health education. All courses are offered online.

Master of Arts in Education (M.A.Ed.): Community Health (Online)

The Community Health and Human Services program at UAB prepares students for advanced employment opportunities beyond the bachelor’s degree level with a M.A.Ed. in Community Health. Work settings include public, private, and public health agencies, community health clinics, hospitals, and worksites. Students gain skills in health education program planning, implementation, evaluation, and administration. Students are provided numerous opportunities to practice advanced health education specialist tasks via Instructor led community-based projects and purposefully designed service learning experiences. Students learn research-based protocol and may choose to complete either a thesis or an internship upon degree completion. Required courses include research design, the advanced health education/promotion specialist, program planning, evaluation, and administration, along with health behavior theory. Course work is aligned with responsibilities and competencies of advanced level health education specialists developed by the National Commission for Health Education Credentialing (www.nchec.org). This program of study has been developed to include the knowledge and competencies needed to prepare students for either the Certified or Master Certified Health Education Specialist (CHES/ MCHES) examination.

Admission to the graduate program is initiated through the Graduate School and all required materials are to be submitted per specified instructions delineated by the Graduate School. M.A.Ed. applicants should have a cumulative GPA of 2.50. The M.A.Ed. program does not require that student complete the MAT/GRE examination. In rare cases, applicants who do not meet aforementioned standards may be considered for admission.

In addition, applicants must address several questions in writing that reflect the applicant’s background, development, pertinent work-related experience, and professional career objectives relating to careers in Community Health. Applicants will also be required to submit a professional resume. All applications for graduate admission are reviewed by the Community Health and Human Services faculty and may be given one of two decisions: a) admit or b) not admit.

Graduate Traineeship in Pediatric Pulmonary Care (with School of Health Professions)

A Graduate Traineeship in partnership with the UAB Pediatric Pulmonary Center (PPC) is offered to a student currently trained as a respiratory therapist. Prospective students are those desiring a graduate degree in Community Health and Human Services; is interested in pediatric pulmonary care; and aspires to positions of leadership. One trainee is selected per year. The traineeship features a combination of planned coursework, hospital rounds, pulmonary clinics, patient and family education, and research experience. This interdisciplinary training program is offered to graduate students in Respiratory Therapy. Community Health and Human Services, nursing, nutrition, social work and medicine. Training is provided in each of the Maternal and Child Health Leadership Competencies. The Traineeship includes a monthly stipend (for up to 12 months) and tuition assistance (limited to U.S. citizens or to individuals with a permanent visa).

For more information go to uab.edu/medicine/peds/ ppc or contact: LaShonna Stodghill, MAE, RRT, AE-C, lashonna.stodghill@childrensal.org or Dr. Laura Forbes at Italbott@uab.edu.

Student Professional Dispositions

Community Health and Human Services faculty individually review the professional dispositions (behaviors and attitudes) of students within each course in accordance with the School of Education’s policy and procedure. Additionally, faculty will collectively review student dispositions and overall progress in the program at the end of each semester. Dispositional areas identified as deficient could result in termination from the program.

Graduate Program Policies

No individual course grade below “C” will be accepted. Each course with an earned grade below “C” must be repeated. Repeating a required health education course more than twice is not permitted. If a student receives a grade lower than a “C” after their second attempt, he or she will be dismissed from the Community Health and Human Services program and not allowed readmission.
Non-Degree Seeking Graduate Students

Following admission to the UAB Graduate School, students may enroll in elective Community Health and Human Services courses as "non-degree seeking" students with the permission of the instructor. Non-degree seeking students are limited to 12 hours of coursework. It is essential for non-degree seeking students to make an advising appointment with a faculty member prior to enrolling in elective courses as some elective courses have pre-/co-requisites. Non-degree seeking students are not permitted to take "core" health education courses prior to admission. Enrolling and passing non-degree seeking coursework does not guarantee admission into a masters or doctoral degree program. Admission criteria (cumulative GPA, recommendations, and written statement) are the primary factors considered when reviewing student suitability for admission to a program.

Graduate Certificate in Health Education

The last decade has seen significant emphasis being placed on the ability of professionals in non-profit, governmental and agency settings to have the skills and training needed to effectively plan, implement and evaluate health related policies and programs. Skills such as grant writing, budgeting, assessing needs of the service population, and using an ecological lens to develop meaningful interventions are only a few of the needed competencies in today’s job market. This certificate is for students who have a desire to work in the community or enhance their skills in academia and want some preparation at the graduate level in health education, but not a full master’s degree. This certificate is also appropriate for those already working in community agencies who want advanced skills and knowledge of how to conduct successful health-related interventions using a community based participatory research approach.

The Graduate Certificate in Health Education is designed for students who have a desire to work in the community or enhance their skills in academy and want some preparation at the graduate level in community health, but not a full master’s degree. This certificate will formally recognize UAB students and community professionals who receive the necessary skills and training in community health education. All courses are offered online.

Graduate Certificate in Health Coaching

The online Graduate Certificate in Health Coaching prepares individuals to design, conduct, and evaluate clinical and non-clinical health behavior change via wellness-oriented coaching interventions. Students will be provided with the skills needed to conduct individual or small group coaching sessions. Students will also learn the fundamentals of chronic disease prevention and strategies to help improve the health status of coaching clients.

Over the last decade, significant emphasis has been placed on the ability of professionals in non-profit, governmental, and agency setting to have the skills and training needed to effectively plan, implement and evaluate health interventions. This certificate helps individuals gain those skills to work as health coaches in those organizations or independently.

Students wishing to pursue the health coaching certificate must apply through the UAB Graduate School. A student who has completed the health coaching certificate and would like to apply to the master’s degree program in community health must complete all application requirements as outlined in the UAB Graduate School guidelines. A maximum of four certificate courses may be applied toward the master’s degree once the student has been admitted to the program.

Graduate Certificate in Health Promotion Across the Lifespan

The Graduate Certificate in Health Promotion intends to prepare students to address community health concerns from birth to older adult life. In the recent past, emphasis has been placed on the ability of professionals in non-profit, governmental and health agency settings to have the skills and training needed to effectively implement health interventions for a variety of people groups within diverse settings. Skills such as planning interventions for diverse community groups; providing effective programming in a variety of settings including schools and worksites; assessing needs of the service population; and using a
client-centered lens to develop meaningful interventions are only a few of the needed competencies in today’s job market.

The Graduate Certificate in Health Promotion Across the Lifespan is a program that consists of eighteen credit hours (6 CHHS courses). All courses can be completed within one academic year.

Requirements

<table>
<thead>
<tr>
<th>Hours</th>
<th>CHHS 632</th>
<th>Advanced Administration of Health Education/Promotion Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHHS 611</td>
<td>Interdisciplinary Approaches to School Health Education/Promotion</td>
</tr>
<tr>
<td></td>
<td>CHHS 612</td>
<td>Student Health and Well-Being in Higher Education</td>
</tr>
<tr>
<td></td>
<td>CHHS 662</td>
<td>Advanced Worksite Health Education/Promotion</td>
</tr>
<tr>
<td></td>
<td>CHHS 602</td>
<td>Advanced Principles of Mental Health, Stress, & Well-being</td>
</tr>
<tr>
<td></td>
<td>CHHS 608</td>
<td>Advanced Principles of Substance Abuse Prevention and Education</td>
</tr>
<tr>
<td></td>
<td>CHHS 623</td>
<td>Sexuality Education: Theory and Practice</td>
</tr>
<tr>
<td></td>
<td>CHHS 698</td>
<td>Lifespan Dimensions in Women’s Health and Nutrition</td>
</tr>
</tbody>
</table>

Total Hours 15

Students earning the MAEd in Community Health and completing two electives in lieu of the internship may not apply those same elective credits to this certificate. Program coordinator approval for course substitutions will be required and may include but are not limited to: CHHS 601, CHHS 611, CHHS 612, CHHS 640, EPR 610, EPR 614, KIN 607

M.A.Ed. in Community Health

Designed to prepare individuals for advanced health education and promotion careers in agencies, schools, worksites, and allied health care settings. All courses are offered online. This program is aligned with the National Commission for Health Education Credentialing standards and prepares students to sit for the Certified Health Education Specialist (CHES) or the Master Certified Health Education Specialist (MCHES) examination. CHES/MCHES provides evidence of competency of the knowledge, skills and application of the Areas of Responsibilities defining the role of an entry or masters-level health educator. Program options allow students to select a thesis, internship, or course work completion option based on approval of the Graduate Program Director and prior professional work experience of the individual student.

Master of Arts in Education in Community Health (Online)

Admission Requirement and Prerequisites

In addition to the general admission requirements of the Graduate School, it is preferred that applicants have passed an undergraduate or graduate level BY or CH course. Undergraduate level Chemistry, Anatomy, and Physiology courses are preferred program prerequisites.

Plan I - 39 hours and Thesis

This is an online program.

Requirements

| Hours | EPR 594 | Introduction to Educational Research Design |

Total Hours 39

Plan II - 39 hours and Internship

This is an online program.

Requirements

| Hours | EPR 594 | Introduction to Educational Research Design |

Total Hours 39

Comprehensive Examination (Non-Thesis and Course Work Options Only)

Students with at least one year of full time work (Non-Thesis Option Only) in the health education/promotion field approaching degree completion may opt to complete six additional hours of advisor approved CHHS coursework rather than an internship. The level of work experience will be determined by the CHHS Graduate Program Director. Non-
Thesis M.A.Ed. examples of course work may include but are not limited to: CHHS 598, 601, 602, 608, 611, 612, 621, 623, 640, 660, 682, 692, or 742.

M.A.Ed. students with less than one year of full time work in the health education/promotion field approaching degree completion will be required to complete an internship experience. Students must complete a supervised internship at a pre-approved community health education/promotion site. Students must also complete the M.A.Ed. comprehensive examination during their last semester of coursework. The comprehensive examination is an opportunity for students to demonstrate the appropriate aptitude for advanced level health education competencies. The comprehensive exam is a culminating task that encompasses the content knowledge and critical thinking skills that a Health Education/Promotion Specialist should possess. A student cannot attempt the internship and comprehensive examination more than twice. Those who cannot complete the internship and examination with a passing score during the second attempt will be dismissed from the program and not allowed readmission. Please contact the CHHS Graduate Program Director for additional information about examination scheduling.

Master of Arts in Education in Community Health (Online) with a Non-Profit Management Graduate Certificate

The M.A.Ed. degree requires a minimum of 45 credit hours for the Community Health with a Non-Profit Management Graduate certificate.

Plan I - 45 hours with Thesis

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR 594 Introduction to Educational Research Design</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 606 Advanced Issues of Disease Prevention in Health Education/Promotion</td>
<td>3</td>
</tr>
<tr>
<td>EPR 609 Statistical Methods and Research in Education: Intermediate</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 610 The Advanced Health Education/Promotion Specialist</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 631 Applied Planning and Implementation of Health Education/Promotion Programs</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 642 Applied Behavioral Theory and Health Education/ Promotion</td>
<td>3</td>
</tr>
<tr>
<td>MPA 671 Marketing and Fundraising</td>
<td>3</td>
</tr>
<tr>
<td>MPA 672 Nonprofit Management</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 689 Intervention Strategies for Health Education/Promotion</td>
<td>3</td>
</tr>
<tr>
<td>EPR 696 Qualitative Research: Inquiry and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 697 Community-Based Approaches to Evaluation and Grantsmanship of Health Education/Promotion Programs</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Level Elective (choose two)</td>
<td>6</td>
</tr>
<tr>
<td>MPA 684 Grants Management</td>
<td>3</td>
</tr>
<tr>
<td>MPA 674 GIS for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MPA 678 Strategic Planning</td>
<td>3</td>
</tr>
<tr>
<td>CHHS 693 Advanced Field Experience in Community Health Education (OR 6 Hours of Additional CHHS Advisor Approved Course Work)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Hours 45

Student with at least one year of full time work in the health education/promotion field approaching degree completion may opt to complete six additional hours of advisor approved CHHS coursework rather than an internship. Examples of course work may include but are not limited to: CHHS 598, 601, 602, 608, 611, 621, 623, 640, 692, or 742.

Students with less than one year of full time work in the health education/promotion field approaching degree completion will be required to complete an internship experience. The level of work experience will be determined by the CHHS Graduate Program Director.

Comprehensive Examination

Those students completing the program with additional course work or the internship option must also complete the comprehensive examination during their last semester of coursework. The examination is an opportunity for students to demonstrate the appropriate aptitude for advanced level health education competencies. The comprehensive exam is a culminating task that encompasses the content knowledge and critical thinking skills that a Health Education/Promotion Specialist should possess. A student cannot attempt the internship and comprehensive examination more than twice. Those who cannot complete the examination with a passing score during the second attempt will be dismissed from the program and not allowed readmission. Please contact the CHHS Graduate Program Director for additional information about examination scheduling.

Community Health Promotion

For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions...
Requirements website at https://www.uab.edu/education/studentservices/admission-requirements.

Community Health Promotion (PhD)
Graduate Program Director: Dr. Retta Evans, revans@uab.edu

Ph.D. Community Health Promotion
The PhD program in Community Health Promotion offers a broad-based curriculum emphasizing biological, behavioral, and socio-cultural determinants of health, as well as interventions and policies aimed at improving community health. The curriculum provides students with the coursework, background, and practical experiences to become leading researchers and practitioners in the broad and rapidly growing field of health education and health promotion. Students learn the skills needed to work with individuals and communities to assess health needs, and then effectively plan, implement and evaluate culturally appropriate and theoretically based interventions to improve health and to lessen unhealthy behaviors by addressing knowledge, attitudes, skills, and beliefs in various settings. By the conclusion of the program, students are able to conceptualize the theoretical and philosophical basis of health promotion clearly and conduct their own independent research projects. The curriculum prepares students for careers in academia, clinical research, and leadership roles in community and public health promotion in private industry, as well as non-profit and governmental health organizations.

Ph.D. Admission Process
Consideration for admission to graduate study in health education will occur each Fall for acceptance to start the following Fall term. The completed application packet must be received by the Community Health and Human Services Program from the Graduate School by the dates shown:

<table>
<thead>
<tr>
<th>Entry Term</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>April 30</td>
</tr>
</tbody>
</table>

Candidates for admission must have completed a master's degree from an accredited institution in health education or a health-related field. Admission to doctoral study is initiated through the Graduate School. Applicants will: (a) request official transcripts of all college coursework to send to UAB Graduate School; (b) submit 3 letters of recommendation from professors or others who are qualified to judge your ability to complete doctoral coursework; and (c) submit writing sample(s), such as an essay describing your academic training, professional experiences and career goals. Admission to the program is competitive. The GRE is being waived for the Fall 2022 term.

Ph.D. applicants should have a cumulative GPA of 3.00/4.00 or greater for prior college coursework.

Ph.D. in Community Health Promotion Program of Study
Students may enter the program with a master's degree in health education, or closely related health field. Students with no prior academic background in health education will be required to take these corequisites: CHHS 610, CHHS 631, & CHHS 697 during years one and two. This will be determined through a review of transcripts by the Graduate Program Director upon admission to the program. A required review of student credentials prior to admission will identify strengths and needs. This review will provide students with a blueprint for their course of study and will be conducted by the program director and faculty advisor. The PhD degree program will require students to complete a minimum of 72 credit hours. Students will meet regularly with a faculty advisor to plan course enrollment.

Research and Statistics Prerequisites: Students are required to have completed the following courses (or equivalents) BEFORE enrolling in the Advanced Research and Statistical Methods Core.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR 594</td>
<td>Introduction to Educational Research Design</td>
</tr>
<tr>
<td>EPR 596</td>
<td>Introduction to Qualitative Methods in Educational Research</td>
</tr>
<tr>
<td>EPR 608</td>
<td>Introduction to Statistical Methods in Educational Research</td>
</tr>
<tr>
<td>EPR 607</td>
<td>Computer Applications to Statistical Analysis</td>
</tr>
<tr>
<td>EPR 609</td>
<td>Statistical Methods and Research in Education: Intermediate</td>
</tr>
<tr>
<td>Total Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

The specific components of the PhD program in Health Education and Health Promotion are outlined below.

Ph.D. through the School of Education

<table>
<thead>
<tr>
<th>Health Promotion CORE Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHHS 731 Advanced Theoretic/Scientific Basis of Health Education/Promotion</td>
<td>13</td>
</tr>
<tr>
<td>CHHS 732 Advanced Planning and Implementation of Health Education/Promotion Programs</td>
<td>13</td>
</tr>
<tr>
<td>CHHS 740 Evaluation and Research Methods in Health Education/Promotion Programs</td>
<td>13</td>
</tr>
<tr>
<td>CHHS 742 Health Disparities in Diverse Populations</td>
<td>13</td>
</tr>
<tr>
<td>CHHS 734 Health Education Seminar I</td>
<td>13</td>
</tr>
<tr>
<td>CHHS 735 Health Education Seminar II</td>
<td>13</td>
</tr>
<tr>
<td>CHHS 736 Health Education Seminar III</td>
<td>13</td>
</tr>
<tr>
<td>Research and Statistical Methods CORE Courses</td>
<td>12</td>
</tr>
<tr>
<td>CHHS 606 Advanced Issues of Disease Prevention in Health Education/Promotion</td>
<td>12</td>
</tr>
<tr>
<td>EPR 696 Qualitative Research: Inquiry and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>EPR 710 Computer Applications and Advanced Statistical Methods</td>
<td>12</td>
</tr>
<tr>
<td>Graduate Research Design</td>
<td>18</td>
</tr>
<tr>
<td>EPR 695 Survey Methods in Educational Research</td>
<td>18</td>
</tr>
<tr>
<td>EPR 792 Mixed Methods Approaches to Educational Research</td>
<td>18</td>
</tr>
<tr>
<td>Health Sciences Concentration</td>
<td>15</td>
</tr>
<tr>
<td>EPR 793 Research (Pre-requisite GRD 717)</td>
<td>15</td>
</tr>
<tr>
<td>Dissertation Hours</td>
<td>18</td>
</tr>
<tr>
<td>Total Hours</td>
<td>72</td>
</tr>
</tbody>
</table>

1. Choose one course that fits the needs of your dissertation, with the approval of an advisor. Two examples are listed, but other courses could apply.
2. Selection of courses pre-approved by doctoral program advisor to build knowledge and skills in a cognate area, e.g. Health Disparities, Research, Global Health, Public Health Policy, Aging and Health, Disabilities and Health.
Comprehensive Examination

A written comprehensive examination is required of all candidates for the Ph.D. degree. To be eligible to sit for comprehensive exams, students must have successfully completed CHHS 731, CHHS 732, CHHS 740 and CHHS 742. Students must register for a minimum of 3 hours of graduate work during the semester in which the comprehensive exam is taken. The exam must be passed unconditionally before the student can defend his/her proposal and be advanced to candidacy.

To prepare, students should review all materials from listed coursework as well as other related courses and supplementary material. This exam is designed to test the student’s ability to take a given population and design an appropriate, theory-based health intervention to the situation. Each student must synthesize and apply what has been learned throughout the program. On the day of the exam, students will be given questions that require them to write a paper, describing an appropriate, theory based program to address the chosen health issue/population. This must involve thorough planning, implementation, and evaluation. The PRECEDE/PROCEED model should be used as a framework for the paper.

Comprehensive exams will be offered twice each year and is written and graded by the graduate faculty in the doctoral program. Grading of the comprehensive exam is done blinded, and by consensus. Students who fail to achieve passing scores will have one attempt to remediate within a calendar year. If a student fails a section for the second time, they will be dismissed from the program.

Counseling

Overview

The program in Counseling at the University of Alabama at Birmingham offers concentrations in Clinical Mental Health; Marriage, Couples, and Family; and School Counseling at the Master’s level. At the master’s level students acquire core knowledge and clinical skills, which enable them to enter the profession of counseling.

All counseling concentrations (Clinical Mental Health; Marriage, Couples, and Family; and School Counseling) are designed to meet the coursework and field experiences requirements for professional licensure in the State of Alabama. A 15-credit Marriage, Couples, and Family certificate is offered to provide additional coursework for mental health and school counselors who would like to broaden their clinical expertise and knowledge in Marriage, Couples, and Family counseling. A 15-credit Clinical Mental Health Counseling certificate is also offered to provide additional coursework for school counselors and marriage, couples, and family counselors who would like to deepen their knowledge and skills in mental health. The School Counseling Concentration meets the course work and field experiences required by the Alabama State Department of Education for certification.

The Counseling program at the University of Alabama at Birmingham is accredited by the Council for Accreditation of Counseling and Related Educational Programs (CACREP). All three counseling concentrations (Clinical Mental Health Counseling, School Counseling, and Marriage, Couples, and Family Counseling) are CACREP-accredited.

Admission Process

Consideration for admission to graduate study in Counseling will occur in the fall and spring semesters.

For more information about admission to the Counseling program, please see the following link: https://www.uab.edu/education/home/graduate/counseling

Non-Degree Seeking Students

Potential students may take classes prior to admission to the Counseling Program as "non-degree seeking" students. However, non-degree seeking students are limited to 12 hours of coursework that may be transferred into the Counseling Program. Non-degree seeking students may enroll in elective courses with the permission of the instructor. It would be important for non-degree seeking students to make an advising appointment with a Counseling faculty member prior to enrolling in courses. Non-degree seeking students are not permitted to take courses not designated as open to non-degree seeking students. It is also important to note that students taking coursework as a non-degree seeking student do so at their own risk. Enrolling and passing non-degree seeking coursework does not guarantee admission into the program as admission criteria (e.g., test scores, undergraduate GPA, and interview) are the primary factors considered when reviewing student suitability for the program.

Evaluation of Candidates

Counseling candidates are evaluated throughout the course of their program via a series of Key Performance Indicators (KPIs). These KPIs are found throughout the course of study, including indicators such as specific course assignments in Area I coursework, CPCE exam, and midterm/final evaluations in internship. Evaluation of the counselor-in-training is an on-going process. The faculty reserves the right to assess the candidate’s appropriateness to be a professional counselor.

Dispositions

Counseling faculty individually review the professional dispositions (behaviors and attitudes) of students within each course in accordance with the Counseling Student Handbook. Additionally, faculty will collectively review student dispositions and overall progress in the program at the end of each semester. Dispositional areas identified as deficient could result in termination from the program.

Clinical Experience: Master’s Level

Before admission to the program, students in the school counseling concentration must submit to fingerprinting and a Background Review conducted by the Alabama State Department of Education at the student’s cost. For information on the cost and how to complete this requirement, go to http://background.alabama.gov/. No school counseling student shall begin a clinical placement (Practicum or Internship in an education environment) in Alabama without a suitability letter from the Alabama State Department of Education demonstrating that the student’s criminal background has been reviewed and cleared by the Department of Education. Clinical Mental Health counseling students are not required to submit to fingerprinting or a background review upon admission to the Counseling Program. However, Clinical Mental Health counseling students are required to complete clinical placements in order to obtain the master’s degree in counseling and many of the outside agencies/entities require fingerprinting and background reviews prior to accepting a student for clinical placement.

For all counseling students, the appearance of one or more felonies and/or several misdemeanors on a student’s background review may negatively impact placement potential and/or credential obtainment.

Per CACREP standards, before beginning the first semester of their clinical experience, students must obtain and submit proof of individual
liability insurance. This is to be procured by the student at the student’s expense and must be maintained throughout the student’s clinical experience. Student must submit proof of current individual liability coverage at the beginning of each semester that student is enrolled in a clinical experience. This is a requirement for all counseling students, regardless of concentration. If proof of insurance is not provided, student will be administratively removed from the clinical course.

Prerequisites for the clinical experience include successful completion of required coursework, meeting the required outcomes and competencies in Area I, and successful completion of comprehensive exams. The practicum experience requires a minimum of 100 hours (including 40 hours of direct client contact) on-site at an appropriate setting to be determined by the Clinical Coordinator. The internship is 600 hours (including 240 hours of direct client contact) on-site over two semesters (Each semester, students must have a minimum of 300 hours on-site and 120 hours of direct client contact.) Grading for the clinical experiences is on a Pass/Fail basis. To receive a Pass grade the counselor-in-training must be able to demonstrate basic counseling skills, behave in an appropriate professional manner consistent with the American Counseling Association’s Code of Ethics, and satisfactorily complete the academic, dispositional and outcome requirements set forth in both the practicum and internship classes.

Certificate in Marriage, Couples, and Family Counseling

The certificate in Marriage, Couples, and Family counseling prepares school counselors and clinical mental health counselors to position themselves to more effectively work with clients, to better align with evidence-based practice, and to increase their range of services and versatility through additional coursework in this subject area. The certificate is open to current UAB counseling students as well as graduates of Master’s level school counseling and mental health programs. The certificate consists of 15 credits of coursework, and takes students about one year to complete on average.

Admission Process

Candidates seeking admission to the Marriage, Couples, and Family counseling certificate who are graduates of a Master’s level counseling program, must complete an application found on the UAB Graduate School website, as well as submit a statement of purpose, and their graduate-level transcript. Admission is accepted for summer and fall terms. The admissions deadline for the certificate is April 1.

Current UAB counseling students who wish to pursue the CMHC certificate should speak with their advisor to arrange to complete the required coursework.

Certificate in Clinical Mental Health Counseling

Admission Process

Candidates seeking admission to the Clinical Mental Health counseling certificate who are graduates of a Master’s level counseling program, must complete an application found on the UAB Graduate School website, as well as submit a statement of purpose, and their graduate-level transcript. Admission is accepted for summer and fall terms. The admissions deadline for the certificate is April 1.

Current UAB counseling students who wish to pursue the CMHC certificate should speak with their advisor to arrange to complete the required coursework.

Master of Arts in Counseling with a Concentration in Clinical Mental Health

The Master of Arts in Counseling with a concentration in Clinical Mental Health counseling is designed to prepare students to demonstrate knowledge and skills with several counseling modalities appropriate for a broad range of clients in a multicultural society; interact effectively with other helping professionals and referral resources; make appropriate counselor-client related decisions in the context of professional, ethical, and legal guidelines; and fill effectively entry-level positions of professional responsibility within the specialization of agency counseling. The coursework is approved by the Alabama Board of Examiners in Counseling, which allows graduates of the program to pursue licensure as professional counselors in the state of Alabama. This program takes no less than 3 years to complete. For most students, it takes approximately 3 years or 9 terms (including summers) to complete the program.
The coursework allows graduates of the program to pursue licensure as marriage and family therapists in the state of Alabama. This program takes about 3 years to complete.

The concentration in Marriage, Couples, and Family Counseling is designed to prepare students to work with individuals, couples, or groups where interpersonal relationships are examined for the purpose of achieving more adequate, satisfying, and productive marriage and family adjustments; make appropriate ethical decisions as counseling professionals; comprehend systems theory and use it to conceptualize problems and solutions for couples and families; and fill effectively, entry-level positions of professional responsibility within the specialization of marriage and family counseling. The coursework allows graduates of the program to pursue licensure as marriage and family therapists in the state of Alabama. This program takes about 3 years to complete.

Master of Arts in Counseling with a Concentration in Marriage, Couples and Family Counseling

The Master of Arts in Counseling with a concentration in Marriage, Couples, and Family Counseling is designed to prepare students to work with individuals, couples, or groups where interpersonal relationships are examined for the purpose of achieving more adequate, satisfying, and productive marriage and family adjustments; make appropriate ethical decisions as counseling professionals; comprehend systems theory and use it to conceptualize problems and solutions for couples and families; and fill effectively, entry-level positions of professional responsibility within the specialization of marriage and family counseling. The coursework allows graduates of the program to pursue licensure as marriage and family therapists in the state of Alabama. This program takes about 3 years to complete.

Certification Requirements: In order to receive certification as a school counselor, school counseling students who do not hold a teacher certificate in Alabama must satisfactorily obtain a passing score on the following assessments: the Praxis II Test in School Counseling and the National Counselor Exam. School counseling students who already hold teaching certificates in Alabama must obtain a passing score on the Praxis II Test in School Counseling to receive certification.

The school counseling concentration meets the course work and field experiences required by the Alabama State Department of Education for certification. The concentrations meet the academic and field experience requirements for licensure as professional counselors in Alabama.
ECG 619 Special Issues for School Counselors 3
ECG 620 Foundations of School Counseling 3
ECG 623 Comprehensive Counseling and Guidance: M/H School 3
ECG 627 Comprehensive Counseling and Guidance: Elementary School 3
ECG 653 Counseling Children and Adolescents 3
ECG 661 Play Therapy I 3
ECG 680 The Intersections of Family and Community Systems 3
ECY 600 (If not completed previously) 0-3
ECY 600 Introduction to Exceptional Learner 3
EEC 515 Learning Environments through Positive Behavior Support 3

Area III: Clinical Requirements
ECG 695 Practicum II: Supervised Field Experience 3
Counseling Internship
ECG 696 Counseling Internship A 3
ECG 697 Counseling Internship B 3

Total Hours 64-67

1 A National Comprehensive Examination will be given the semester of successful completion or upon successful completion of Area I. This is a “high stakes” assessment. Students who do not successfully pass this examination will be given the opportunity to re-take the exam a maximum of two times. There are no exceptions. Students unsuccessful in passing the comprehensive exam after 3 attempts will be dismissed from the program.

2 Must be taken if not taken as part of previous studies. This usually applies to students who did not go through teacher certification programs previously.

Educational Leadership

Because admission to these programs is selective, prospective students should contact a departmental advisor to determine specific admission requirements for the degree or certificate in which they are interested. For detailed information regarding admission requirements for the School of Education graduate programs, please visit the Admissions Requirements website at https://www.uab.edu/education/studentservices/admissions.

The following degrees are offered: Master of Arts in Education (MAE) in Educational Leadership, leading to Alabama Class A Certification in Instructional Leadership; the Educational Specialist Degree (EdS), leading to Alabama Class AA Certification in Instructional Leadership (must have Class A in Instructional Leadership to apply); the Doctorate of Education degree (Ed.D) in Educational Leadership (must have Ed.S. in Educational or Educational Support area and a leadership background). The programs leading to the Doctorate of Education (Ed.D) degree in educational leadership are offered at UAB by the joint faculties of UAB and the University of Alabama (Tuscaloosa). Admission is highly selective and is open every other year. In addition to the Graduate School requirements, a portfolio and writing sample are required by the program.

The Educational Leadership program also offers a Post Master’s Certification (PMC) program as a reduced-hour option leading to Alabama Class A certification in Instructional Leadership for individuals who already hold a master’s degree and Class A certification in an instructional or instructional support area, and who have at least three years’ certified classroom teaching experience.

Additional Information

For detailed information, contact Dr. Keith Gurley, Program Director, Educational Leadership, Department of Human Studies, UAB School of Education, 1720 2nd Avenue South, EB 210B, Birmingham, AL 35294-1250.

Telephone: 205-975-1983
E-mail: kgurley@uab.edu (jcollins@uab.edu)
Web: http://www.uab.edu/education/humanstudies/educational-leadership

Dispositions

Educational Leadership faculty individually review the professional dispositions (behaviors and attitudes) of students within each course in accordance with the School of Education’s policy and procedure. Additionally, faculty will collectively review student dispositions and overall progress in the program at the end of each semester. Dispositional areas identified as deficient could result in termination from the program.

Master of Arts in Education in Educational Leadership

The M.A.Ed. degree requires a minimum of 33 credit hours for the Educational Leadership program. A GPA of 3.25 is required.

Requirements Hours
ECY 600 Introduction to Exceptional Learner 1 3
EDL 601 Foundations of Instr. Ldrship 3
EDL 602 Fld Exp: Found of Inst Ldrship 1
EDL 603 Data Driven Decision Making 3
EDL 604 Fld. Exp. in Data Driven Dec. 1
EDL 605 Residency in Inst. Leadership 3
EDL 606 Supervision/ Ment. Inst. Staff 3
EDL 607 Fld Exp. in Super / Mentoring 1
EDL 608 Org. & Financial Mgt 3
EDL 609 Fld. Exp. in Org & Finc Mgmt 1
EDL 610 Legal & Ethical Foundations 3
EDL 611 Fld. Exp. in Legal/Eth Found 1
EDL 612 Best Prac. Inst. Ldrship 3
EDL 613 Fld Exp in Best Practices for Inst Ldrship for Diverse Populations 1
EPR 594 Introduction to Educational Research Design 3

Total Hours 33

1 Not required if previously completed

Post-Master’s Certificate in Educational Leadership

Requirements Hours
ECY 600 Introduction to Exceptional Learner 1 3
EDL 601 Foundations of Instr. Ldrship 3
EDL 605 Residency in Inst. Leadership 3
EDL 606 Supervision/ Ment. Inst. Staff 3
EDL 608 Org. & Financial Mgt 3
EDL 610 Legal & Ethical Foundations 3
The Educational Doctorate in Educational Leadership program requires a Leadership Educational Doctorate in Educational Leadership program. A GPA of 3.50 is required. The Ed.S. degree requires a minimum of 35 credit hours for the Educational Specialist in Educational Leadership program.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL 612</td>
<td>Best Pract. Inst. Ldrship</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

1. Not required if previously completed

Educational Specialist in Educational Leadership

The Ed.S. degree requires a minimum of 35 credit hours for the Educational Leadership program. A GPA of 3.50 is required.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL 617</td>
<td>Leading Change Through Action Research</td>
<td>3</td>
</tr>
<tr>
<td>EDL 727</td>
<td>Field Experience for Leading the Adult Learning Community</td>
<td>3</td>
</tr>
<tr>
<td>EDL 727L</td>
<td>Field Experience for Leading the Adult Learning Community</td>
<td>1</td>
</tr>
<tr>
<td>EDL 718</td>
<td>Essential Skills for Organizational Leadership</td>
<td>3</td>
</tr>
<tr>
<td>EDL 718L</td>
<td>Field Experience for Essential Skills for Organizational Leadership</td>
<td>1</td>
</tr>
<tr>
<td>EDL 728</td>
<td>Management of the Learning Organization</td>
<td>3</td>
</tr>
<tr>
<td>EDL 728L</td>
<td>Field Experience for Management of the Learning Organization</td>
<td>1</td>
</tr>
<tr>
<td>EDL 731</td>
<td>Law, Ethics, and Policy for Educational Leaders</td>
<td>3</td>
</tr>
<tr>
<td>EDL 731L</td>
<td>Field Experience for Law, Ethics, and Policy for Educational Leaders</td>
<td>1</td>
</tr>
<tr>
<td>EDL 732</td>
<td>Leadership of Special Programs</td>
<td>3</td>
</tr>
<tr>
<td>EDL 732L</td>
<td>Field Experience for Leadership of Special Programs</td>
<td>1</td>
</tr>
<tr>
<td>EDL 719</td>
<td>Mentoring & Coaching Skills for School Leaders</td>
<td>3</td>
</tr>
<tr>
<td>EDL 719L</td>
<td>Field Experience for Mentoring & Coaching Skills for School Leaders</td>
<td>1</td>
</tr>
<tr>
<td>EDF 700</td>
<td>Urban Education</td>
<td>3</td>
</tr>
<tr>
<td>or EDF 702</td>
<td>or Critical Social Issues in American Education</td>
<td>3</td>
</tr>
<tr>
<td>EDL 746</td>
<td>Practicum in Instructional Leadership</td>
<td>1</td>
</tr>
<tr>
<td>ECY 600</td>
<td>Introduction to Exceptional Learner</td>
<td>1</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

1. Not required if previously completed

Educational Doctorate in Educational Leadership

The Educational Doctorate in Educational Leadership program requires a minimum of 55 hours. The minimum required GPA is 3.50.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEL 602</td>
<td>Advanced Educational Leadership</td>
<td>3</td>
</tr>
<tr>
<td>AEL 650</td>
<td>Organizational Theory</td>
<td>3</td>
</tr>
<tr>
<td>AEL 671</td>
<td>Survey of Instructional Supervision</td>
<td>3</td>
</tr>
<tr>
<td>EDL 720</td>
<td>Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>EDL 725</td>
<td>Current Issues and Problems in School Administration</td>
<td>3</td>
</tr>
<tr>
<td>EDL 755</td>
<td>Advanced School System Administration</td>
<td>3</td>
</tr>
<tr>
<td>EDF 708</td>
<td>Ethical Dilemmas in Educational Administration</td>
<td>3</td>
</tr>
<tr>
<td>EDF 720</td>
<td>Cult and Amer Educ: Race Class and Gender</td>
<td>3</td>
</tr>
<tr>
<td>EDL 756</td>
<td>Advanced Educational Law</td>
<td>3</td>
</tr>
<tr>
<td>EPR 596</td>
<td>Introduction to Qualitative Methods in Educational Research</td>
<td>3</td>
</tr>
<tr>
<td>EPR 608</td>
<td>Introduction to Statistical Methods in Educational Research</td>
<td>3</td>
</tr>
<tr>
<td>EPR 696</td>
<td>Qualitative Research: Inquiry and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or EPR 609</td>
<td>Statistical Methods and Research in Education: Intermediate</td>
<td>3</td>
</tr>
<tr>
<td>EDL 799</td>
<td>Dissertation Research</td>
<td>12</td>
</tr>
<tr>
<td>GRD 717</td>
<td>Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>EPR 594</td>
<td>Introduction to Educational Research Design</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

1. May be replaced with approved substitute

Higher Education Administration

Master of Science in Higher Education Administration

The Master of Science in Higher Education Administration serves the purpose of preparing students for innovative and socially responsible leadership roles within higher education. Students will gain knowledge and leadership skills necessary to meet the growing challenges of working with and supporting a culturally diverse student population consisting of first generation students, underrepresented minoritized students, international students, and/or students who face economic challenges.

Students pursuing an M.S. in Higher Education Administration may choose between two tracks. These include the Higher Education Administration track (thesis or non-thesis) and an Academic Advising track (non-thesis). Coursework for all options is offered entirely online.

Higher Education Administration Track

Thesis: The thesis option consists of 39 credit hours. This path is for those seeking upward mobility within the field of higher education in either student or academic affairs, as well as those seeking to further their academic research skills in preparation for doctoral study. Students who choose this path are required to take a minimum of 6 credit hours of thesis research. The thesis option will require successful completion of the thesis defense.

Non-Thesis: The non-thesis option consists of 36 credit hours and successful completion of a practicum and comprehensive exam. This path is designed to give students a foundation in education research, while also focusing on content relevant to those who wish to work or are currently working in academic or student affairs. This general option gives students the ability to elect to complete a practicum course and submit an experiential project to complete degree requirements. All practicum students may select from the following options:

- Select an administrative practicum in an area of interest
- Select an experiential practicum focused on preparation for a national or regional conference
- Select a written practicum focused on publication
- Select a personalized practicum with your faculty advisor

The Non-thesis option will require successful completion of a comprehensive exam. Comprehensive exam dates and timelines will be announced at the beginning of the final semester of a student’s degree plan. Students will be given a period of no more than two weeks to complete their comprehensive exam. No collaboration nor outside help is allowed during the exam period. Failure to independently complete the comprehensive exam will result in an automatic no-pass score and the student will be removed from the program with no option to reapply.
Higher Education Administration - Academic Advising Track

Non-Thesis: The Higher Education Administration - Academic Advising track is a non-thesis option consisting of 36 credit hours, successful completion of a practicum, and comprehensive exam. This path is designed to give students a foundation in academic advising competencies required for the administration of academic advising within higher education. Students will gain valuable knowledge on the advancement of academic advising practices, create their own personalized advising philosophy, develop assessment skills, as well as applicable knowledge of diversity, equity, inclusion, and how to create a sense of belonging to support all students. Special attention will be given to work related to supporting students who identify within marginalized and minoritized populations. This track option gives students the ability to complete a practicum course and submit an experiential project to improve education programs and practices within higher education.

Admissions Requirements

Applicants must meet the following requirements for admission to the higher education administration program:

- Completed undergraduate degree (any major)
- An official copy of all transcripts
- GPA of at least 2.5 on a 4.0 scale
- Resume/CV
- Statement of purpose
- Three professional recommendations
- Interview
- No GRE score is required

Learning Outcomes

The Master of Science in Higher Education Administration program will prepare students with competency in the following areas:

- Knowledge of organizational theory, as well as social and policy issues that critically impact student success.
- Knowledge of ways in which to engage in strategic partnerships between academic affairs and student affairs to provide critical support structures for student success.
- Knowledge of the unique challenges and variations within higher education, including differences in schools by regions of the United States, urban/rural institutions, tribal colleges and universities (TCUs), historically Black colleges and universities (HBCs), and other iterations of higher education institutions.
- Knowledge of organization, culture, diversity and the history of higher education.
- Knowledge of relevant research on student development theories.
- Knowledge and skills to engage in and use research and assessment to improve education programs and practices within higher education.
- Knowledge and skills to be competitive when seeking admission to advanced degree programs.

Graduate Certificate in Higher Education Administration

The Higher Education Administration Graduate Certificate serves the purpose of preparing current and future professionals with the knowledge base necessary to be successful within their current positions within higher education, as an avenue for work-related advancement and promotion, and/or enrollment in a future degree-seeking graduate program in Higher Education.

Admission Requirements

Applicants must meet the following requirements for admission to the Graduate Certificate in Higher Education Administration:

- Completed undergraduate degree with an overall GPA of at least 2.5 on a 4.0 scale or current UAB undergraduate student in good standing with 60+ credit hours completed and an institutional GPA of 3.0 (Applicants do not need to have earned a degree in education nor be currently pursuing a degree in education).
- Applicants must submit an official copy of their transcripts.
- Submit a purpose statement outlining the reason student is pursuing the Graduate Certificate (not to exceed one page).
- Provide a letter of recommendation from your current (most recent if currently unemployed) supervisor.

Note: If undergraduate students meet the certificate admission criteria stated above, they can start the Higher Education Administration Graduate Certificate while still pursuing their bachelor's degree. However, because of their admission to a Graduate Certificate program, these undergraduate students cannot use the graduate credit hours from this certificate program toward their undergraduate degree. After having earned their undergraduate degree and also having earned the Higher Education graduate certificate, alumni will be able to use up to 12 credit hours from their graduate certificate toward an Master of Science in Higher Education Administration at UAB if completed within five years of having earned their undergraduate degree.

Learning Outcomes

The Higher Education Administration Graduate Certificate will prepare certificate-seekers with competency in the following areas:

- Organization, culture, diversity and history of higher education,
- Governance, structure, and management of higher education institutions,
- Research, theoretical, and practical issues surrounding access to college and equity in higher education, and
- Critical support systems within higher education that promote student success.

Students pursuing an M.S. in Higher Education Administration may choose between two tracks. The Higher Education Administration track has both a thesis and non-thesis option. The Academic Advising track is a non-thesis only option. Coursework for all options is offered entirely online. All non-thesis options require successful completion of the comprehensive exam for graduation. The thesis option requires successful defense of the master's thesis for graduation.
Master of Science in Higher Education Administration

Higher Education Administration Track (Thesis Option)

Requirements

Major Courses

HEA 600 Administration of Higher Education 3
HEA 610 History of Higher Education 3
HEA 620 Access & Equity in Higher Education 3
HEA 630 Higher Education Law 3
HEA 640 Organization, Leadership, & Change 3
HEA 660 College Student Development 3
HEA 670 Strategic Partnerships in Academic & Student Affairs 3
HEA 680 Practical Issues & Challenges in Higher Education 3

Electives

HEA 685 Special Topics 3
CHHS 612 Student Health and Well-Being in Higher Education 3
EDF 602 Critical Social Issues in American Education 3
EDF 620 Culture and American Education: Race Class and Gender 3

Research Courses

EPR 594 Introduction to Educational Research Design 3
EPR 608 Introduction to Statistical Methods in Educational Research 3
or EPR 596 Introduction to Qualitative Methods in Educational Research 3

Thesis

HEA 699 Thesis Research 3
HEA 699 Thesis Research 3

Total Hours 39

Higher Education Administration Track (Non-Thesis Option)

Requirements

Major Courses

HEA 600 Administration of Higher Education 3
HEA 610 History of Higher Education 3
HEA 620 Access & Equity in Higher Education 3
HEA 630 Higher Education Law 3
HEA 640 Organization, Leadership, & Change 3
HEA 660 College Student Development 3
HEA 670 Strategic Partnerships in Academic & Student Affairs 3
HEA 680 Practical Issues & Challenges in Higher Education 3

Electives

HEA 685 Special Topics 3
CHHS 612 Student Health and Well-Being in Higher Education 3
EDF 602 Critical Social Issues in American Education 3
EDF 620 Culture and American Education: Race Class and Gender 3

Research Courses

EPR 594 Introduction to Educational Research Design 3
Practicum

HEA 690 Practicum in Higher Education 3

Total Hours 36

Individuals who complete the Higher Education graduate certificate will be able to use 12 credit hours from their graduate certificate toward the Master of Science in Higher Education Administration at UAB if completed within five years of having earned their undergraduate degree.

Certificate in Higher Education Administration

Requirements

Required Coursework

HEA 600 Administration of Higher Education 3
HEA 610 History of Higher Education 3
HEA 620 Access & Equity in Higher Education 3

Advisor Approved Electives 6

HEA 630 Higher Education Law 3
HEA 640 Organization, Leadership, & Change 3
HEA 660 College Student Development 3
HEA 670 Strategic Partnerships in Academic & Student Affairs 3
HEA 680 Practical Issues & Challenges in Higher Education 3
HEA 685 Special Topics 3

Total Hours 15

Kinesiology

Degrees offered include the Master of Science and the Educational Specialist. At the master's degree level, students may specialize in Exercise Physiology (see listing below for more information about this program) or complete a teacher certification program (traditional master's program for those holding a valid B level certificate in physical education or the alternative master's program for those NOT completing an undergraduate physical education teacher education program). The traditional master's and the educational specialist link teacher certification with the graduate program in physical education. For example, the M.S. awards the level A certificate and the Ed.S. is linked
to the AA certificate. Each program requires a teaching certificate in physical education at the previous level (e.g., B certificate for admission to the A level, except the Alternative A program, and the A certificate for admission to the AA certificate).

Dispositions

Faculty individually review the professional dispositions (behaviors and attitudes) of students within each course in accordance with the School of Education’s policy and procedure. Additionally, faculty will collectively review student dispositions and overall progress in the program at the end of each semester. Dispositional areas identified as deficient could result in termination from the program.

Master of Science and "A" level teaching certificate; Non-Thesis

(31-34 hours)

Teaching Field: At least 1/3 of the program shall be teaching field courses. (18 hours)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIN 643</td>
<td>3</td>
</tr>
<tr>
<td>KIN 647</td>
<td>3</td>
</tr>
<tr>
<td>KIN 649</td>
<td>3</td>
</tr>
<tr>
<td>KIN 693</td>
<td>3</td>
</tr>
<tr>
<td>EPR 608</td>
<td>3</td>
</tr>
<tr>
<td>EDF or EPR 600 level course</td>
<td>3</td>
</tr>
<tr>
<td>Electives (as approved by advisor)</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>30-33</td>
</tr>
</tbody>
</table>

1 Survey of Special Education Coursework: Required if not previously completed (0-3 hours)

2 Potential courses that may be used for the Elective in the Physical Education Teacher Certification Master’s Degree Program: KIN 601, KIN 607, KIN 636, KIN 645, KIN 650, KIN 651, KIN 672, KIN 693, KIN 694. Other graduate level courses may be used with the consent of your Advisor.

Exercise Physiology

The Exercise Physiology specialization offers a master’s degree option for students interested in either clinical exercise physiology or physiology research. The curriculum is multidisciplinary and can comprise of courses in the Schools of Education, Medicine, Health Related Professions, and Public Health. Two program plans are offered (detailed below). Plan I culminates with a thesis research project, and Plan II culminates with a written comprehensive exam. Resources for student participation in research include an Exercise Physiology Laboratory and Exercise & Nutritional Physiology Laboratory. Wide arrays of field experiences are also available at UAB and in local agencies and clinics. In addition to Graduate School admission requirements, prospective students must have completed undergraduate coursework in Biology or Chemistry. Listed below are the courses required in the program and a sample of elective courses.

Master of Science in Kinesiology with Exercise Physiology Concentration

Admission Requirement and Prerequisites

In addition to the general admission requirements of the Graduate School, potential applicants must have passed an undergraduate or graduate level Biology, Chemistry, Anatomy, and Physiology courses. A minimum undergraduate GPA of 2.75 is required.

Plan I - 33 hours with Thesis

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR 594</td>
<td>3</td>
</tr>
<tr>
<td>EPR 609</td>
<td>3</td>
</tr>
<tr>
<td>KIN 637</td>
<td>3</td>
</tr>
<tr>
<td>KIN 638</td>
<td>3</td>
</tr>
<tr>
<td>KIN 642</td>
<td>3</td>
</tr>
<tr>
<td>KIN 699</td>
<td>6</td>
</tr>
<tr>
<td>Electives in Major</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

1 EPR 609 has a prerequisite of EPR 608 or equivalent (the equivalent must have been completed within two years of enrolling in EPR 609 and the student must have earned a grade of C or better); OR, a student may take a by-pass exam and earn a score of 70 or above. Please contact Dr. Jenna LaChenaye, (EPR Program Director), jmlach@uab.edu if you have questions regarding this EPR Policy.
Plan II - 36 hours with Comprehensive Exam

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR 594</td>
<td>3</td>
</tr>
<tr>
<td>EPR 609</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>KIN 637</td>
<td>3</td>
</tr>
<tr>
<td>KIN 638</td>
<td>3</td>
</tr>
<tr>
<td>Electives in Major</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Total Hours 36

1 EPR 609 has a prerequisite of EPR 608 or equivalent (the equivalent must have been completed within two years of enrolling in EPR 609 and the student must have earned a grade of C or better); OR, a student may take a by-pass exam and earn a score of 70 or above. Please contact Dr. Jenna LaChenaye, (EPR Program Director), jmlach@uab.edu if you have questions regarding this EPR Policy.

2 Potential courses that may be used for the Electives in the Exercise Physiology Master Degree Program: CHHS 602, CHHS 621, CHHS 631, BY 511, GER 540, BY 611, BY 616, BHS 550, BHS 555, CH 560, EPR 607, EPR 608, KIN 585, KIN 639, KIN 640, KIN 641, KIN 645, KIN 653, KIN 656, KIN 672, KIN 674, KIN 694, KIN 695, KIN 697, NTR 521, NTR 601, NTR 609, NTR 779, NTR 618, NTR 625, NTR 750, RHB 780, RHB 781. Other graduate-level courses may be used with the consent of your Advisor.

Master of Science in Kinesiology: Physical Education Alternative Master's Non-Thesis Program

The M.S. requires a minimum of 51 hours for the Physical Education Alternative Master's Non-Thesis program. A GPA of 3.25 is required.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPR 594</td>
<td>3</td>
</tr>
<tr>
<td>EPR 609</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>KIN 637</td>
<td>3</td>
</tr>
<tr>
<td>KIN 638</td>
<td>3</td>
</tr>
<tr>
<td>Electives in Major</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Total Hours 36

1 EPR 609 has a prerequisite of EPR 608 or equivalent (the equivalent must have been completed within two years of enrolling in EPR 609 and the student must have earned a grade of C or better); OR, a student may take a by-pass exam and earn a score of 70 or above. Please contact Dr. Jenna LaChenaye, (EPR Program Director), jmlach@uab.edu if you have questions regarding this EPR Policy.

2 Potential courses that may be used for the Electives in the Exercise Physiology Master Degree Program: CHHS 602, CHHS 621, CHHS 631, BY 511, GER 540, BY 611, BY 616, BHS 550, BHS 555, CH 560, EPR 607, EPR 608, KIN 585, KIN 639, KIN 640, KIN 641, KIN 645, KIN 653, KIN 656, KIN 672, KIN 674, KIN 694, KIN 695, KIN 697, NTR 521, NTR 601, NTR 609, NTR 779, NTR 618, NTR 625, NTR 750, RHB 780, RHB 781. Other graduate-level courses may be used with the consent of your Advisor.

Graduate Certificate in Clinical Exercise Physiology

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIN 639</td>
<td>3</td>
</tr>
<tr>
<td>KIN 644</td>
<td>3</td>
</tr>
<tr>
<td>KIN 697</td>
<td>6</td>
</tr>
<tr>
<td>KIN 640</td>
<td>3</td>
</tr>
<tr>
<td>or KIN 585</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 15

1 Not required if previously completed

Graduate Certificate in Coaching the Intercollegiate Scholar Athlete

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD 500</td>
<td>3</td>
</tr>
<tr>
<td>HEA 660</td>
<td>3</td>
</tr>
<tr>
<td>KIN 652</td>
<td>3</td>
</tr>
<tr>
<td>KIN 656</td>
<td>3</td>
</tr>
<tr>
<td>KIN 690</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hours 9
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIN 698</td>
<td>Coaching Internship (Individual Sport)</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hours: 15
School of Engineering

Dean: Jeffrey W. Holmes, MD, PhD
Associate Dean for Academic Affairs & Graduate Programs: Gregg M. Janowski, PhD
Associate Dean for Undergraduate Programs: Zoe B. Dwyer, PhD
Associate Dean for Research: Mark Banaszak Holl, PhD

The School of Engineering is comprised of four departments: Biomedical Engineering; Civil, Construction, and Environmental Engineering; Electrical and Computer Engineering; and Mechanical and Materials Engineering. The School offers seven programs leading to a master’s degree and six programs leading to a doctoral degree. In addition, the Neuroengineering PhD program is jointly offered by the School of Engineering and the School of Medicine.

Graduate education at UAB’s School of Engineering is about advancing your career, whether your goal is engineering practice, industrial research, further studies, or academia. The Master of Engineering (MEng) and Masters of Science in Engineering Management (MSEM) emphasize specialized skills in engineering management, information management, leadership, construction, structures, sustainable smart cities, and safety. Our research-based masters of science and doctoral programs bring students and faculty together with medical professionals, practicing engineers, business leaders, and scientists to push the envelope and discover new, innovative solutions for the challenges of our world.

ASEM-Adv Safety Engineering Courses

ASEM 601. ASEM Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to safety and risk management engineers and safety professionals.

ASEM 610. Introduction to System Safety - Prevention through Design. 3 Hours.
Best practice in any business sector requires the pursuit of a triple bottom line - protecting people, planet, and profit. This course provides an overview of system safety in general and Prevention through Design in particular and explores their efficacy in helping companies achieve a bottom line that is socially, environmentally, and financially rewarding. Topics of inquiry include the processes of hazard analysis and risk assessment, the concept of “acceptable” risk, the safety decision hierarchy of controls, safety standards (the mandatory minimum vs. the voluntary best practice), safety as a cost control strategy, and the critical elements of a comprehensive, advanced safety program. Course content is presented within the framework of real-world case studies from a variety of industry sectors, including, but not limited to, manufacturing, utilities, and health care and includes several guest lectures by leaders in the profession. Students apply course content to their own business environment. Guest lecturers from diverse backgrounds will discuss their experiences in managing safety in the workplace. Live participation in a weekly 1.5 hour online forum is required. Course must be taken during the first semester.

ASEM 611. Hazard Analysis and Waste Elimination. 3 Hours.
Hazards have the potential to cause harm to people, planet, and profits. Hazard analysis is a process that begins with the identification of a hazard and proceeds into an estimate of the severity of harm or damage that could result if the potential is realized and a hazard-related incident occurs (ASSE TR-Z790.001 – 2009). This course examines engineering techniques utilized to systematically and logically identify and analyze hazards in the workplace. These techniques include preliminary hazard list (PHL), preliminary hazard analysis (PHA), system hazard analysis (SHA), subsystem hazard analysis (SSHA) and others. Students work in teams to use these techniques to retrospectively analyze a real-world disaster.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 612. Engineering Risk. 3 Hours.
Engineering risk is defined both quantitatively and qualitatively as an estimate of the probability that a hazard-related incident will occur and of the severity of harm or damage that could result. This course provides students with tools to assess and reduce safety risks in their own company. These tools include risk assessment matrices, probabilistic risk assessment (PRA) measures, including event tree analysis, fault tree analysis, and other prevention through design concepts. The role of a structured, formalized decision analysis process in preventing serious injuries and fatalities is also explored. Students engage in a risk mitigation decision analysis project, which is specific to their company and/or business sector. Guest lecturers from diverse industries discuss their experiences in assessing and managing risk. Live participation in a weekly 1.5 hour online forum is required.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 613. Human Performance and Engineering Design. 3 Hours.
Companies can miss important opportunities to eliminate waste if they rely primarily on training to prevent human error. This course explores the historical perspective on human error and serious injury. The course material will provide a solid understanding of the principles of occupational biomechanics and human tolerance to injury with focus on human anthropometry and mechanical work capacity. This course also includes studies of human reliability, static analysis of systems in equilibrium and mechanical systems, design and performance. Due to the quantity of back related injuries and related lost time in the workplace, back pain and injury is studied along with the effect of vibration on the human body. Real-world case studies provide for application of the engineering hierarchy of controls: hazard elimination, hazard substitution, engineering controls, warnings, administrative behavior controls, and personal protective equipment. The course also examines the design aspects of ergonomics, the biomechanical engineering basis of injury prevention, and the long term economic consequences of seemingly minor injuries. In semester projects, students perform incident investigations using biomechanical and other data. After gathering and analyzing data to determine injury causation, they will identify and re-design error-provocative environments in their own workplaces. Guest lecturers from diverse backgrounds will discuss their experiences with human performance and/or biomechanics. Live participation in a weekly 1.5 hour online forum is required.
Prerequisites: ASEM 610 [Min Grade: B]
ASEM 614. Engineering Ethics and Acceptable Risk. 3 Hours.

This course explores the economic, social, and political consequences of safety risk and considers provocative real world dilemmas: What is acceptable risk? Are the fundamental canons of engineering ethics contrary to the concept of acceptable risk? What is the worth of human life? Students will conduct critical reviews of corporate safety and ethics policies from market leaders in all major industries as well as their own company. Real-world case studies provide the framework for exercises and projects in resolving conflicts of interest and avoiding the dilemma of "whistle blowing." Guest lecturers from diverse backgrounds will discuss their experiences with ethics in the workplace. Live participation in a weekly 1.5 hour online forum is required.

Prerequisites: ASEM 610 [Min Grade: B](Can be taken Concurrently)

ASEM 615. Leading through Climates of Change. 3 Hours.

All progressive companies are moving toward greater sustainability - protecting people, planet, and profits. To guide their companies through these changes and integrate safety into the priorities at the executive level, safety engineers and professionals must have strong leadership skills. This course explores engineering leadership best practices, including the eight steps of transformational leadership - creating a sense of urgency, creating a guiding coalition, developing a vision and strategies, communicating the vision, empowering broad-based action, generating short term wins, consolidating gains and anchoring the culture. This course also explores the concept of Resilience Engineering and helps students understand the impacts of socio-technical risks. Guest lecturers from diverse industries discuss their experiences in managing change in today's global business environment. Live participation in a weekly 1.5 hour online forum is required.

Prerequisites: ASEM 610 [Min Grade: B]

ASEM 616. Policy Issues in Prevention through Design. 3 Hours.

This course provides an overview of best practices in four major policy areas: (1) cost-benefit analysis; (2) corporate culture and the "HR Department"; (3) standards, codes, and regulations; and (4) strategic alliance development. Case studies are used to illuminate both the role of engineers and other safety professionals in shaping public policy on the local, national and international levels and the ethical challenges they encounter. The significance of an organization's corporate culture in developing and implementing advanced safety management plans is also explored. Students conduct "gap analyses" of their company's policies by comparing them to best practices and identifying unintended consequences of poor safety policy in their own business and industry sector. Students will engage in discussion board posts on contemporary policy issues and participate in exercises related to federal rulemaking. Guest lecturers from diverse backgrounds will discuss their experiences with policy issues. Live participation in a weekly 1.5 hour online forum is required.

Prerequisites: ASEM 610 [Min Grade: B]

ASEM 617. Crisis Leadership. 3 Hours.

Leadership requires more than the predication, control, and management of the vast network of influences that make up our work, especially in times of crisis. By its nature, a crisis is an unpredicted event that requires sensemaking and innovation to go beyond immediate recovery, to step forward into learning. We can only do this when we value, trust, and communicate with the people in our systems. This course will explore why complex adaptive systems are different and may be understood and influenced by leadership at all levels before, during, or after a crisis. Students will assess their own organizational culture through the artifacts, espoused values, and deep assumptions and learn to shape these through relationships, sensemaking, and divergent thinking. This course includes two-week long learning modules based on a combination of written discussion boards that emphasize academic rigor, small group dialogues, network mindmapping, and dynamic online Zoom classes with the professors.

Prerequisites: ASEM 610 [Min Grade: B]

ASEM 619. Capstone Project - Part 1. 3 Hours.

Bringing to bear the competencies acquired through the program, students develop a proposal, outline, schedule and rough draft of a comprehensive, advanced safety engineering and management plan for their business unit/specialty area that is consistent with the ANSI/ AIHA Z10-2005, Occupational Health and Safety Management Systems standard. Judicious selection of the Capstone topic and of projects throughout the ASEM curriculum allows students to build on and use earlier course products to support their Capstone report. Live participation in a quarterly 1.25 hour online forum is required. Must be taken during the penultimate or final semester.

Prerequisites: ASEM 610 [Min Grade: B] and ASEM 611 [Min Grade: B] and ASEM 612 [Min Grade: B] and ASEM 613 [Min Grade: B] and ASEM 614 [Min Grade: B] and ASEM 615 [Min Grade: B] and ASEM 616 [Min Grade: B] and ASEM 617 [Min Grade: B] and ASEM 618 [Min Grade: B] and ASEM 628 [Min Grade: B](Can be taken Concurrently)

ASEM 620. Capstone Project - Part 2. 3 Hours.

Students complete the development of their comprehensive, advanced safety engineering and management (ASEM) plan, including background information of the project, an ASEM plan (management and employee participation, planning, implementation and operation, evaluation and corrective action and management review), and rollout strategy. Students must submit completed report with detailed attachments, and orally present project highlights to the class in a live online classroom setting. Live participation in a quarterly 1.25 hour online forum is required.

Prerequisites: ASEM 610 [Min Grade: B] and ASEM 611 [Min Grade: B] and ASEM 612 [Min Grade: B] and ASEM 613 [Min Grade: B] and ASEM 614 [Min Grade: B] and ASEM 615 [Min Grade: B] and ASEM 616 [Min Grade: B] and ASEM 617 [Min Grade: B] and ASEM 618 [Min Grade: B] and ASEM 628 [Min Grade: B](Can be taken Concurrently)
ASEM 626. Learning-Based Response to Organizational Accidents and Incidents. 3 Hours.
Accident investigations are an inevitable part of most industries, yet most analysis is based on models that were developed many decades—or even a century ago. In our current world, not everything fits into a specific model—this is especially true of human factors in complex systems. Current research indicates that 80% of accidents are attributed to human error. Yet few tools or processes are designed to make sense of the human contribution to accidents and incidents. When we look at human involvement, we find that actions and decisions are consequences of conditions extant in the system, and are not, themselves, causes of the event. The goal of this course is to discover the importance of dedicating time and resources to understanding why humans are integral to complex systems. Students will benefit from learning both the theory and practical application of accident/incident analysis, including new ideas that expand the ability of organizations to learn from events. Examined or introduces are consistent with modern advances in event learning and accident prevention. Students will explore the history of accident investigation, its influence on culture, the importance of context in the evaluation of human actions, the inclusion of complex narratives in reports, and how to present their findings to leadership and the field. Overall, students should come away with a more practical ability to help their organization learn from events. The course structure is focused on case study analysis, peer to peer learning and research. Questions are designed to challenge current understanding of the human contribution to accidents and why actions or decisions made sense to those involved at the time.

ASEM 627. Communication in Safety Systems. 3 Hours.
Communication plays a powerful role in creating safety in the work environment. Effective language increases communication and can lead to individual and organizational learning during safety training, real-time work, and post-mission analysis. However, the meaning of our language is not constant—it changes based on the experience of the worker, the context of the event, and the culture that surrounds the work environment. Language can become ineffective, or even damaging, when meanings differ or go unchallenged. This can occur when definitions are assumed, linguistic shortcuts are taken, or when language bias demands a singular interpretation. Engineers work with mechanical systems, which can be defined by a specific language: e.g., binary oppositions, like turning a switch ‘on’ or ‘off’. However, engineers also work with other people and must take human factors into account, including effective communication. This is the case with safety specialists, who help create the system architecture and develop practical training for workers in risk and safety. These specialists may be expected to participate in accident investigations or incident reviews, which can be unintentionally biased by the language used, which lead away from learning opportunities.

ASEM 628. Electrical Systems Safety. 3 Hours.
There is a subset of occupational hazards characterized as low frequency, but with very high consequence (potential for catastrophic loss, fatality or permanent disabling injury). A mishap involving unintentional exposure or contact with electrical energy is one of the low frequency/high consequence exposures. We live in an electrical world, with electrical hazards embedded in nearly every aspect of daily living—home, at work, in public places, and in recreational activities. This course explores hazards, risks and context of electrical mishaps coupled with a systems safety engineering approach to manage the risks. Course content is presented within the framework of real-world case studies from a variety of industry sectors, including, but not limited to, manufacturing, utilities, and health care and includes several guest lectures by leaders in the profession. Students apply course content to their own business environment. Live participation in a weekly 1.5 hour online forum is required.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 630. Machinery Safety Management System. 3 Hours.
Safeguarding technology and requirements have come a long way since the Industrial Revolution. Despite this progress, the lack of machine guarding has continuously been named on OSHA’S top most-cited violations. The goal of this course is to equip the student with working knowledge of machinery safety and to develop an ANSI Z10 safety management system so that safety is incorporated into the equipment lifecycle. Students will evaluate their current machine management systems to evaluate obstacles, best practices, and solutions to further gain knowledge in machinery technology and management. Students will gain an understanding of hazard identification, task-based risk assessment, utilizing the hierarchy of control to select risk reduction measures, verifying selected safeguards to mitigate risks to a tolerable level, and ensuring that the process is documented, maintained, and audited. Students will demonstrate their knowledge through evaluating their current machine safety program system gaps, conducting a task-based risk assessment, and developing a Machinery Safety Management System outline to be used at their site or within a company.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 640. Introduction to Model-based Safety Assessments. 3 Hours.
This course provides students an introduction to model-based engineering and methods to assess holistic safety risks in their own company. These tools include requirements development, functional decomposition, design architecture, probabilistic risk assessment (PRA) measures, including, failure mode effects and criticality analysis (FMECA), fault tree analysis (FTA), and other safety engineering concepts. The role of a structured, formalized model-based engineering process, used to identify and mitigate hazards, is explored. Students engage in a rigorous model-based safety analysis project.
Prerequisites: ASEM 610 [Min Grade: B] or ASEM 611 [Min Grade: B] or ASEM 612 [Min Grade: B]

ASEM 690. Special Topics in (Area). 1-6 Hour.
Special Topics.

ASEM 691. Individual Study in (Area). 1-6 Hour.
Individual study.

BME-Biomedical Engineering Courses

BME 520. Implant-Tissue Interactions. 3 Hours.
An overview of implant biocompatibility including tissue histology, histopathology of implant response and the regulatory process for medical devices.
BME 524. Current Topics in Stem Cell Engineering. 3 Hours.
This course is designed for students interested in the field of stem cells, regenerative medicine, and tissue engineering using stem cells and stem cell derived cells. The course will introduce the role of stem cells in tissue growth and development, the theory behind the design and in vitro construction of tissue and organ replacements, and the applications of biomedical engineering principles to the treatment of tissue-specific diseases. Students will have hands on experience on culturing and analyzing stem cells, stem cell differentiation, analysis of functional and physiological properties of differentiated cells, and fabricating basic engineered-tissues.

BME 535. Tissue Engineering. 3 Hours.
Principles underlying strategies for regenerative medicine such as stem cell based therapy, scaffold design, proteins or genes delivery, roles of extracellular matrix, cell-materials interactions, angiogenesis, tissue transplantation, mechanical stimulus and nanotechnology.

BME 543. Medical Image Processing. 3 Hours.
Fundamental topics of medical image processing to practical applications using conventional computer software.

BME 544. Machine Learning for Biomedical Engineering Applications. 3 Hours.
This course provides the introduction to the practical aspects of machine learning such that the students can apply some basic machine learning techniques in simple biomedical engineering problems. The course also provides the principle of machine learning ‘thinking process’ for the next machine learning – AI courses and more in-depth machine learning studies. By ‘thinking process’, at the beginning, it is better to view machine learning like human learning. Students who have experience with Data Mining may further understand the fundamental differences between Machine Learning and Data Mining, although these two fields share many concepts and techniques. Also, the student will learn fundamental theories in machine learning to be able to develop new machine learning techniques and research machine learning in biomedical engineering.

BME 550. Computational Neuroscience. 3 Hours.
This course examines the computational principles used by the nervous system. Topics include: biophysics of axon and synapse, sensory coding (with an emphasis on vision and audition), planning and decision-making, and synthesis of motor responses. There will be an emphasis on a systems approach throughout. Homework includes simulations.

BME 561. Bioelectric Phenomena. 3 Hours.
Quantitative methods in the electrophysiology of neural, cardiac and skeletal muscle systems.

BME 562. Cardiac Electrophysiology. 3 Hours.
Experimental and computational methods in cardiac electrophysiology, ionic currents, action potentials, electrical propagation, the electrocardiogram, electromechanical coupling, cardiac arrhythmias, effects of electric fields in cardiac tissue, defibrillation, and ablation.

BME 571. Continuum Mechanics of Solids. 3 Hours.
Matrix and tensor mathematics, fundamentals of stress, momentum principles, Cauchy and Piola-Kirchoff stress tensors, static equilibrium, invariance, measures of strain, Lagrangian and Eulerian formulations, Green and Almansi strain, deformation gradient tensor, infinitesimal strain, constitutive equations, finite strain elasticity, strain energy methods, 2-D Elasticity, Airy Method, viscoelasticity, mechanical behavior of polymers.

BME 572. Industrial Bioprocessing and Biomanufacturing. 3 Hours.
This course will introduces students to the growing industries related to biomedical, biopharmaceutical and biotechnology. It is targeted to offer the students marketable skills to work in a vital area of economic growth and also convey some of the challenges and opportunities awaiting.

BME 590. Special Topic in Biomedical Engineering. 1-3 Hour.
Special Topic in Biomedical Engineering.

BME 591. Individual Study in Biomedical Engineering. 1-6 Hour.
Individual Study in Biomedical Engineering.

BME 601. Seminar in Biomedical Engineering. 1 Hour.
Current topics in biomedical engineering technology and applications.

BME 617. Engineering Analysis. 3 Hours.
Advanced ordinary differential equations, transform techniques, scalar and vector field theory, partial differential equations (heat, wave, Laplace). Students who register for this course are expected to have successfully completed courses in calculus and ordinary differential equations.

BME 623. Skin and Bone Regeneration. 3 Hours.
Study of principles of healing, methods to enhance, and clinical applications.

BME 630. Engineering Design and Commercialization. 3 Hours.
The purpose of this course is to introduce students to the process of innovating medical technologies and better prepare them for a career in the medical technology industry. Students will learn aspects of biomedical product development from needs finding, invention, intellectual property, and regulatory processes.

BME 634. Dynamical Biological Systems. 3 Hours.
This course considers the dynamics of biological systems at a variety of levels from the cell/molecular to the circuit and system levels. Biological systems are typically nonlinear and their behavior is not usually analytically solvable. Yet it is possible to use the tools of nonlinear dynamical systems theory to approach understanding. In addition, it is important to understand how robust control theory can be applied to describe systems for which an exact mathematical model does not exist. The goal of this course is to examine a number of examples in some detail to gain insight into the dynamics of regulation in biology.

BME 643. Biomedical Imaging-Oncology. 3 Hours.
Advanced and quantitative medical imaging and image processing to understand biological processes related to cancer biology. Medical imaging technology will include molecular, functional and anatomical imaging related to the hallmarks of cancer.

BME 664. Neural Computation. 3 Hours.
This course examines the principal theoretical underpinnings of computation in neural networks. Emphasis will be placed on understanding the relationship between the different approaches: dynamical systems, statistical mechanics, logic, Kalman filters, and likelihood/Bayesian estimation.

BME 665. Computational Vision. 3 Hours.
This course approaches the study of biological and artificial vision from a theoretical perspective beginning with a comparative survey of visual systems and then examining vision algorithms and architectures.
BME 670. Quantitative Physiology. 3 Hours.
Study of physiological problems using advanced mathematical techniques. Topics covered include: mechanics, fluid dynamics, transport, electrophysiology of cell membranes, and control systems.
Prerequisites: BME 517 [Min Grade: C] or BME 617 [Min Grade: C] or BME 717 [Min Grade: C] or ME 661 [Min Grade: C] or ME 761 [Min Grade: C]

BME 672. Cellular Therapy. 3 Hours.
Introduction to research in cellular therapy, its clinical applications, and its potential for commercialization. Students will learn fundamental mechanisms, become familiar with the progress of several successful therapies that use human T cells and stem cells, and learn the challenges and opportunities for future biopharmaceutical and biotechnology industries.

BME 673. Lab Rotation. 3 Hours.
Entering BME graduate students will work in the laboratories of 2 or 3 potential research mentors. The duration of each rotation period will be by mutual agreement between student and faculty but must be at least 4 weeks. The goal is for students to match with their primary research mentor by the end of the course.

BME 680. Biomolecular Modeling. 3 Hours.
Molecular modeling principles and applications. Students will perform hands-on exercises using molecular modeling tools and software. Students will learn the critical relationships among structure, function, and thermodynamic driving forces in structural biology and become able to utilize molecular modeling techniques to explore biological phenomena at the molecular level.

BME 690. Special Topics in Biomedical Engineering. 1-6 Hour.
Special Topics in Biomedical Engineering.

BME 691. Individual Study in Biomedical Engineering. 1-6 Hour.
Individual Study in Biomedical Engineering.

BME 693. Internship in Biomedical Engineering. 1-6 Hour.

BME 697. Journal Club. 1-3 Hour.
Journal Club.

Prerequisites: GAC M

BME 701. Seminar in Biomedical Engineering. 1 Hour.
Current topics in biomedical engineering technology and applications.

BME 717. Engineering Analysis. 3 Hours.
Advanced ordinary differential equations, transform techniques, scalar and vector field theory, partial differential equations (heat, wave, Laplace).

BME 723. Skin and Bone Regeneration. 3 Hours.
Study of principles of healing, methods to enhance, and clinical applications.

BME 734. Dynamical Biological Systems. 3 Hours.
This course considers the dynamics of biological systems at a variety of levels from the cell/molecular to the circuit and system levels. Biological systems are typically nonlinear and their behavior is not usually analytically solvable. Yet it is possible to use the tools of nonlinear dynamical systems theory to approach understanding. In addition, it is important to understand how robust control theory can be applied to describe systems for which an exact mathematical model does not exist. The goal of this course is to examine a number of examples in some detail to gain insight into the dynamics of regulation in biology.

BME 743. Biomedical Imaging-Oncology. 3 Hours.
Advanced and quantitative medical imaging and image processing to understand biological processes related to cancer biology. Medical imaging technology will include molecular, functional and anatomical imaging related to the hallmarks of cancer.

BME 744. Neural Computation. 3 Hours.
This course examines the principal theoretical underpinnings of computation in neural networks. Emphasis will be placed on understanding the relationship between the different approaches: dynamical systems, statistical mechanics, logic, Kalman filters, and likelihood/Bayesian estimation.

BME 755. Computational Vision. 3 Hours.
This course approaches the study of biological and artificial vision from a theoretical perspective. We begin with a comparative survey of visual systems, and will examine vision algorithms and architectures.

BME 770. Quantitative Physiology. 3 Hours.
Study of physiological problems using advanced mathematical techniques. Topics covered include: mechanics, fluid dynamics, transport, electrophysiology of cell membranes, and control systems.
Prerequisites: BME 517 [Min Grade: C] or BME 617 [Min Grade: C] or BME 717 [Min Grade: C] or ME 661 [Min Grade: C] or ME 761 [Min Grade: C]

BME 772. Cellular Therapy. 3 Hours.
Introduction to research in cellular therapy, its clinical applications, and its potential for commercialization. Students will learn fundamental mechanisms, become familiar with the progress of several successful therapies that use human T cells and stem cells, and learn the challenges and opportunities for future biopharmaceutical and biotechnology industries.

BME 773. Lab Rotation. 3 Hours.
Entering BME graduate students will work in the laboratories of 2 or 3 potential research mentors. The duration of each rotation period will be by mutual agreement between student and faculty but must be at least 4 weeks. The goal is for students to match with their primary research mentor by the end of the course.

BME 780. Biomolecular Modeling. 3 Hours.
Molecular modeling principles and applications. Students will perform hands-on exercises using molecular modeling tools and software. Students will learn the critical relationships among structure, function, and thermodynamic driving forces in structural biology and become able to utilize molecular modeling techniques to explore biological phenomena at the molecular level.

BME 790. Special Topics in Biomedical Engineering. 1-6 Hour.
Special Topics in Biomedical Engineering.

BME 791. Individual Study in Biomedical Engineering. 1-6 Hour.
Individual Study in Biomedical Engineering.

BME 793. Internship in Biomedical Engineering. 1-6 Hour.

BME 797. Journal Club. 1-3 Hour.
Journal Club.

BME 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z
CE-Civil Engineering Courses

CE 515. Building Information Modeling (BIM). 3 Hours.
This class provides an introduction to the virtual world of design and construction. Topics covered include uses for technology, what is BIM, and have a focus on AutoCAD and Revit Software. An emphasis is placed on the use of these tools and their practical applications to the real world environment. Students are provided with the software through the Autodesk Student community and are required to complete a Multi-Step term Project.

CE 516. Mechanical Vibrations. 3 Hours.

CE 520. Advanced Mechanics. 3 Hours.
Variation of stress at point including determination of principal and maximum shear stresses. Basic problems involving symmetrical deformation; thickwall cylinders, spheres, and rotating disk. Torsions of noncircular sections. Curved beams. Failure Theories. Unsymmetrical bending and shear center.

CE 526. Foundation Engineering. 3 Hours.
Application of principles of soil mechanics to: determine bearing capacity and settlement of spread footings, mats, single piles and pile groups; site investigation, evaluate data from field and laboratory tests; estimation of stresses in soil masses; lateral resistance of piles and pile groups; retaining walls, sheetpiles and coffer-dams.

CE 530. Water Supply/Drainage Design. 3 Hours.
Water requirements; wastewater characteristics. Hydraulics and design of sewers; distribution, and reuse of water. Development of water supplies; design considerations.

CE 530L. Water Supply and Drainage Lab. 0 Hours.
The laboratory exercises are designed to assist the student in the investigation of water supply and drainage design including the analysis of water networks, pipe network design, storm-water and sewer collection network design, flow path visualization, hydraulic jump, flow over weirs, channel design, and basin modeling. Companion lab to CE 530 and must be taken concurrently.

CE 531. Energy Resources. 3 Hours.
Overview of the various energy resources: oil, natural gas, coal, nuclear, hydro, solar, geothermal, biomass, wind, and ocean energy resources, in terms of supply, distribution, recovery and conversion, environmental impacts, economies, policy, and technology. Concepts and opportunities for energy conservation; including electric power generation, changing role of electric utilities, transportation applications, and energy use in developing countries. Field trips.

CE 533. Solid and Hazardous Wastes Management. 3 Hours.
Overview of waste characterizations, regulations, and management options.

CE 534. Air Quality Modeling and Monitoring. 3 Hours.
Atmospheric pollutants; effects, reactions, and sources. Air pollution meteorology and dispersion modeling. Ambient monitoring.

CE 537. Environmental Experimental Design and Field Sampling. 3 Hours.
Experimental design, sensitivity analyses, water sampling, and flow monitoring. Receiving water chemical reactions. Field investigations.

CE 537L. Environmental Experimental Design and Field Sampling Lab. 0 Hours.
Lab experiences in environmental experimental design and field sampling.

CE 542. Highway Materials and Construction. 3 Hours.
Properties of materials used in highway construction. Construction methods and management.

CE 543. Pavement Design & Construction. 3 Hours.
Analysis of stresses and strains in pavement systems. Design and construction of flexible and rigid pavements, base courses and subgrades. Effects of loading on pavement life.

CE 544. Civil Engineering Analysis II. 3 Hours.

CE 545. Engineering the Built Environment. 3 Hours.
This service learning course explores the effects the built environment has on urban function, connectivity, community health, and the well-being of its residents. Students work directly in Birmingham neighborhoods learning how to assess different components of the built environment, including transportation, green spaces, lighting, and blight, and to estimate their impacts on community health and well-being. Students then work with representatives from the city, neighborhoods, and local industry to propose engineering solutions, develop realistic cost estimates, assess potential benefits, and develop implementation plans.

CE 546. Green Infrastructure and Transportation. 3 Hours.
This course covers policy and technical issues related to sustainable transportation. The course begins by discussing the concepts, viewpoints, and fundamentals essential for understanding sustainable transportation planning. Tools used to assess sustainability of transportation facilities and neighborhoods are introduced next. The course also presents design options in support of green infrastructure and transportation, including livable street design, and traffic calming applications. The course is expected to expand students’ knowledge base on sustainable transportation issues and help them understand the concept of sustainable transportation toward the development of sustainable smart cities.

CE 547. Principles of Sustainable Development. 3 Hours.
The course presents the concepts, viewpoints and fundamentals essential for understanding the urban sustainable development agenda. Students will review basic earth sciences to better evaluate the impact our anthropogenic activities have on the natural environment and therefore how to minimize adverse future outcomes. Throughout the course case studies of sustainable developments will be used to illustrate the value, challenges and limitations of this concept. In the end, students will possess the knowledge base needed to help advance sustainable smart cities development.

CE 553. Design of Wood Structures. 3 Hours.
This course will give students an understanding of structural wood materials, both sawn lumber and a number of engineered wood materials. The main objective of the course is to learn how to design wood structures using these materials, including the design of beams, columns, connections, roof diaphragms, and shear walls. The requirement of the National Design Specification for Wood Structures will be addressed.
CE 554. Design of Masonry Structures. 3 Hours.
Design and detailing of masonry structures. Nomenclature, properties, and specifications for components. Design of assemblages, simple masonry structures, unreinforced and reinforced elements, and complex masonry structures.

CE 556. Prestressed Concrete Design. 3 Hours.
Principles and concepts of design in prestressed concrete including elastic and ultimate strength analysis for flexural, shear, bond, and deflections. Principles of concordance and linear transformation for indeterminate prestressed structures.

CE 557. Concrete Technology. 3 Hours.

CE 560. Structural Mechanics. 3 Hours.
Elastic beam deflections, beam columns, lateral torsional buckling, column stability, plastic design, plate bending, yield line theory.

CE 561. Introduction to the Finite Element Method. 3 Hours.
Concepts and applications of the finite element method. Development and applications of basic finite elements. Software use.

CE 562. Advanced Structural Analysis. 3 Hours.
Analysis of indeterminate structures using classical and matrix methods. Use of large-scale computer programs.

CE 564. Structural Dynamics. 3 Hours.

CE 565. CE Construction Documents. 3 Hours.
Introduction to Civil Engineering design and construction documents including drawings, specifications, contracts, and testing reports. Overview of civil infrastructure and project types, including the civil engineer's role in the preparation, certification, and use of construction documents. Construction topics include measurement, quantity estimating, and engineering budgets.

CE 567. Wind and Seismic Loads. 3 Hours.
Methods for calculating loads on structures caused by extreme winds and earthquakes. Calculation of wind loads on various types of structures according to theory and codes. Determination of earthquake loads on structures using structural dynamics and codes.

CE 568. Bridge Engineering. 3 Hours.
Bridge loads, steel beam bridges, composite beam bridges, bridge bearings, reinforced and prestressed concrete slab and T-beam bridges, bridge evaluations and ratings, upgrade methodologies, computer applications.

CE 570. International Research Experience. 3 Hours.
The International Research Experience for Students (IRES) program provides the opportunity for undergraduate and graduate students to participate in hands-on engineering research in an international setting. Students perform research on an approved topic related to civil engineering design in an international environment. Students select a topic, perform a detailed literature review, and work with mentors from UAB and the international host institution to develop research objectives and a detailed research plan. The course will culminate in a 6-8 week visit to the international host institution, during which time students will conduct hands-on research with their mentors and prepare final reports.

CE 575. Construction Safety and Health Management. 3 Hours.
This course covers various causes of construction accidents and the adopted strategies to prevent worksite injuries and illnesses. Other topics covered include workers' compensation, OSHA standards for the construction industry, economics of construction safety management, temporary structures, system safety, ergonomic applications, health hazards, and the development of a safety program.

CE 580. Introduction to Water and Wastewater Treatment. 3 Hours.
Physical unit operations, and chemical/biological unit processes for water and wastewater treatment. Design of facilities for treatment. Treatment and disposal of sludge.

CE 585. Engineering Hydrology. 3 Hours.
Hydrologic principles including hydrology cycle, precipitation data, and stream-flow measurements. Applications to engineering problems; stream-flow analysis and watershed management.

CE 590. Special Topics in Civil Engineering. 1-6 Hour.
Special Topic in Civil Engineering.

CE 591. Individual Study in Civil Engineering. 1-6 Hour.
Individual Study in Civil Engineering.

CE 597. Construction Engineering Management. 3 Hours.
Study of construction management services that include: project planning, scheduling, estimating, budgeting, contract administration, agreements, and ethics. Emphasis is made on the management of manpower, materials, money and machinery.

CE 600. Sustainable Construction. 3 Hours.
Study of sustainable construction techniques and best practices. Provides an understanding of the interdependencies between planning, designing, building, operating, and demolishing the built environment and their impacts on the natural environment. Course topics will include: (1) issues of recourse efficiency, economics, ethics, waste, human health, environmental justice, and industrial ecology; (2) alternative practices that significantly reduce adverse environmental impacts of built infrastructure, and (3) explore past and present thinking of engineering practitioners in this newly emerging discipline.

CE 605. Project Management. 3 Hours.
Presents the theory and practice of project management as a distinct discipline with applications in time, cost, and performance management. Managerial, organizational, behavioral and cost benefit aspects of project management are covered, as well as various applied models for organizing, executing, and monitoring a project. Basic estimating techniques to determine cost and time for construction work packages are discussed followed by scheduling model techniques to include the Critical Path Method (CPM), Precedence Diagramming Method (PDM), Program Evaluation and Review Technique (PERT), and Gantt charts.
CE 607. Engineering Entrepreneurship. 3 Hours.
Course focuses on the entrepreneurial engineer—a new type of engineer who needs a broad range of business skills and knowledge above and beyond a strong science and engineering background. The course will introduce engineering students to the key aspects of engineering entrepreneurship including business planning, solving problems, risk taking, financing, marketing, and entrepreneurial leadership. The students will also be introduced to the many opportunities and challenges that accompany starting and operating an entrepreneurial venture. Entrepreneurial company leaders will present their experiences and share their leadership styles as part of the course.

CE 608. Green Building Design. 3 Hours.
Quantitative introduction to the principles of “Green Building Design”. Provides students an understanding of the interdependencies between economics, technology, design, building occupation and the subsequent impact on the natural environment. Course will emphasize green building materials, new technologies, and sustainable construction methods. Course also includes LEED Case Studies (industrial, commercial, residential, and institutional examples).

CE 610. The Engineered Environment. 3 Hours.
Fundamentals of environmental engineering as they apply to the construction of the built environment and contemporary issues faced by engineers in developing nations such as Egypt. Topics include air pollution, solid waste management, water treatment, environmental ethics, etc.

CE 612. Theory of Elasticity. 3 Hours.
Equations of linear reduction to plane stress, plane strain, and generalized plane strain. Argy and love stress functions in solution of problems.

CE 615. Theory of Elastic Stability. 3 Hours.

CE 617. Theory of Plates and Shells. 3 Hours.

CE 621. Transportation Engineering Seminar. 1 Hour.
Seminar focusing on student research and guest presentations of various topics of interest to graduate transportation engineering students.

CE 622. Traffic Flow Theory. 3 Hours.
Microscopic and macroscopic traffic flow characteristics. Traffic flow analytical techniques including car-following models, traffic stream models, shock wave analysis, queueing analysis and gap acceptance. Simulation models for network analysis.

CE 623. Non-Motorized Transportation Design and Planning. 3 Hours.
Urban planning principles that support non-motorized transportation, local bicycle or pedestrian plans, non-motorized transportation safety related considerations, non-motorized transportation design including traffic calming techniques, procedures for capacity analysis of pedestrian facilities.

CE 624. Simulation Models for Transportation Applications. 3 Hours.
Basic concepts of simulation models for analysis and optimization of transportation systems. Experimentation with planning simulation models and traffic models for signal timing and capacity analysis.

CE 625. Intelligent Transportation Systems. 3 Hours.
Legal, institutional and planning issues related to intelligent transportation systems. System architecture, communication techniques, advanced user services, intermodal systems, connected and autonomous vehicles applications.

CE 631. Environmental Law. 3 Hours.
Law as it applies to the practicing environmental engineer. New and emerging regulations.

CE 632. Industrial Waste and Wastewater Treatment. 3 Hours.
Solid wastes and wastewaters from various industries. Assessment of treatability, system design, and equipment selection.

CE 633. Solid and Hazardous Waste Management. 3 Hours.
Provides students a quantitative introduction to solid and hazardous waste characterizations, international regulations, and management options. Course topics to include (1) Solid waste management hierarchy (reduce, reuse, recycle, recovery, responsible disposal); (2) Dry tomb landfill design; and (3) Hazardous waste identification and treatment/disposal.

CE 636. Stormwater Pollution Management. 3 Hours.
Quality and quantity of stormwater. Receiving water problems and sources of pollutants. Runoff quality and quantity characterizations. Erosion control. Selection and design of controls; regulations.

CE 638. Water and Wastewater Chemistry. 3 Hours.

CE 639. Sediment Sources and Controls. 3 Hours.
Erosion and sediment transport areas; design of common erosion control practices.

CE 640. Wastewater Treatment Engineering. 3 Hours.
Wastewater sources and characteristics. Design and operation of wastewater treatment facilities, including grit removal, oil and grease removal, dissolved air flotation, activated sludge process, trickling filters, and rotating biological contractors, stabilization ponds and aerated lagoons, anaerobic processes for wastewater treatment and sludge digestion. Ultimate disposal of wastewater residues and considerations of discharge criteria.

CE 643. Pavement Design and Construction. 3 Hours.
Design and construction of flexible and rigid pavements. Topics include stress and strain responses, design parameters, AASHTO and NAPA design procedures, pavement construction, pavement rehabilitation, and maintenance techniques.

CE 646. Traffic Engineering Operations. 3 Hours.
Highway and intersection capacity analysis, traffic signal timing and phasing, signal coordination, freeway operations, non-signalized traffic control techniques.

CE 648. Urban and Transportation Planning. 3 Hours.
Land use planning for transportation systems; trip generation, trip distribution, modal split, and traffic assignment.

CE 649. Engineering Liability. 3 Hours.
Laws related to liability for engineering design in the context of product liability and construction projects; roles and liabilities between various parties involved in construction projects.

CE 650. Advanced Structural Steel. 3 Hours.
Beams, columns, tension members, and connections; current research.

CE 655. Advanced Reinforced Concrete. 3 Hours.
Beam, column, and slab actions; current research.
CE 658. Engineering Management. 3 Hours.
Management techniques for the practicing engineer.

CE 663. Finite Element Methods. 3 Hours.
Theory and applications in structural mechanics. Plane stress, plane strain, axisymmetric problems, solids, plates, shells, nonlinear systems.

CE 681. Environmental Chemistry. 3 Hours.
Chemical equilibrium, acid/base, chemical concepts in pollutant behavior. Chemical kinetics, redox system, hydrolysis, pesticides, chemical wastes.

CE 682. Water Treatment Engineering. 3 Hours.
Water sources and characteristics. Design and operations of water treatment facilities. Topics include lime softening operations, coagulation, flocculation, clarification dissolved air flotation, filtration, disinfection, absorption, ion exchange and sludge management.

CE 683. Water and Wastewater Treatment Processes Lab. 3 Hours.
Construction and evaluation of bench-scale treatment processes. Treatability of water and wastewater. Coagulation of sedimentation, settleability of biological sludge, aerobic biological treatment, chemical treatment, water softening toxicity, disinfection, and sludge treatment processes.

CE 685. Engineering Hydrology. 3 Hours.
Hydrologic principles including hydrologic cycle, precipitation data, and stream-flow measurements. Applications to engineering problems; stream-flow analysis and watershed management.

CE 686. Engineering Hydrogeology. 3 Hours.

CE 687. Stormwater Detention Pond Design. 3 Hours.
Stormwater problems and control methods. Urban hydrology prediction procedures for drainage and water quality studies. Detention pond design basics, limitations and multiple benefits.

CE 688. Strategic Management and Leadership Applications in a Global Environment. 3 Hours.
This course is designed to prepare students to face the demanding management and leadership challenges facing construction and engineering industry leaders as competition becomes ever more globalized. The necessity to personally remain trained and relevant in the changing business environment is emphasized. Strategic planning, management and leadership in the built environment requires savvy leaders with exceptionally developed analytical and communications skills suitable for multi-disciplinary and multi-national ventures. Every individual and organization must continually innovate and reinvent to stay competitive. In a competitive environment, a strong working knowledge of the financial markets is essential and students are exposed to multiple lessons presented by financial industry practitioners. Students participate in a group project designed to reinforce the methodology associated with preparing and presenting a dynamic business plan. This course provides the opportunity for students to discuss and research these concepts and to recognize the necessity to think independently, challenge conventional thinking, and visualize alternatives.
Prerequisites: CE 669 [Min Grade: C]

CE 689. Building Information modeling (BIM) Techniques. 3 Hours.
This course provides students with an overview of the evolution of BIM technology in the construction industry followed by hands-on training in the basic application of contemporary BIM software. Students will learn basic modeling skills and how to produce graphical presentations. Advanced applications of BIM technology are discussed and demonstrated. Students will be provided with BIM software and are required to complete a multi-step BIM model as a term project.

CE 690. Special Topics in (Area). 1-3 Hour.
Special Topics (Area).

CE 691. Individual Study in (Area). 1-4 Hour.
Individual Study (Area).

CE 692. CE Capstone Project. 3 Hours.
This course covers specific contemporary topics related to civil engineering practice and knowledge. Capstone project using case studies to apply skills, knowledge, techniques, and concepts developed in prior courses.

CE 693. Applied Research in Civil, Construction, and Environmental Engineering. 3-9 Hours.
Research tools, including elements of experimental design and proposal preparation. Effective communication, literature searches, and exploratory data analysis.

CE 695. International Construction Contracts/Liability. 3 Hours.
Provides an overview of the fundamental aspects of the law that affects construction and engineering companies as well as the project owners. Particular emphasis is placed on contract forms and provisions related to liability for engineering design and construction companies, the roles of the typical participation in the process, and dispute resolution.

CE 697. Master's Project. 3-9 Hours.
A UAB Master's Project must demonstrate evidence of scholarly study and writing that ultimately contributes to the scientific knowledge base. This course is designed to allow students the opportunity to develop original ideas or seek to advance knowledge through theory, conceptualization, design, testing of tools, instruments, or procedures relevant to the practice of civil engineering.

Prerequisites: GAC M

CE 712. Theory of Elasticity. 3 Hours.
Equations of linear reduction to plane stress, plane strain, and generalized plane strain. Airy and love stress functions in solution of problems.

CE 715. Theory of Elastic Stability. 3 Hours.

CE 717. Theory of Plates and Shells. 3 Hours.

CE 721. Transportation Engineering Seminar. 1 Hour.
Seminar focusing on student research and guest presentation of various topics of interest to graduate transportation engineering students.
CE 722. Traffic Flow Theory. 3 Hours.
Microscopic and macroscopic traffic flow characteristics. Traffic flow analytical techniques including car-following models, traffic stream models, shock wave analysis, queueing analysis and gap acceptance. Simulation models for network analysis.

CE 723. Non-Motorized Transportation Design and Planning. 3 Hours.
Urban planning principles that support non-motorized transportation, local bicycle or pedestrian plans, non-motorized transportation safety related considerations, non-motorized transportation design including traffic calming techniques, procedures for capacity analysis of pedestrian facilities.

CE 724. Simulation Models for Transportation Applications. 3 Hours.
Basic concepts of simulation models for analysis and optimization of transportation systems. Experimentation with planning simulation models and traffic models for signal timing and capacity analysis.

CE 725. Intelligent Transportation Systems. 3 Hours.
Legal, institutional and planning issues related to intelligent transportation systems. System architecture, communication techniques, advanced user services, intermodal systems, connected and autonomous vehicles applications.

CE 731. Environmental Law. 3 Hours.
Law as it applies to the practicing environmental engineer. New and emerging regulations.

CE 732. Industrial Waste and Wastewater Treatment. 3 Hours.
Solid wastes and waste waters from various industries; assessment of treatability, system design, and equipment selection.

CE 736. Stormwater Pollution Management. 3 Hours.
Quality and quantity of stormwater. Receiving water problems and sources of pollutants. Runoff quality and quantity characteristics. Erosion control. Selection and design of controls; regulations.

CE 738. Water and Wastewater Chemistry. 3 Hours.

CE 739. Sediment Sources and Controls. 3 Hours.
Erosion and sediment transport in urban areas, design of common erosion control practices.

CE 740. Wastewater Treatment Engineering. 3 Hours.
Wastewater sources and characteristics. Design and operation of wastewater treatment facilities, including grit removal, oil and grease removal, dissolved air flotation, activated sludge process, trickling filters, and rotating biological contractors, stabilization ponds and aerated lagoons, anaerobic processes for wastewater treatment and sludge digestion. Ultimate disposal of wastewater residues and considerations of discharge criteria.

CE 749. Engineering Liability. 3 Hours.
Laws related to liability for engineering design in the context of product liability and construction projects; roles and liabilities between various parties involved in construction projects.

CE 750. Advanced Structural Steel. 3 Hours.
Beams, columns, tension members, and connections; current research.

CE 755. Advanced Reinforced Concrete. 3 Hours.
Beam, column, and slab actions; current research.

CE 758. Engineering Management. 3 Hours.
Management techniques for practicing engineers.

CE 763. Finite Element Methods. 3 Hours.
Theory and applications in structural mechanics. Plane stress, plane strain, axisymmetric problems, solids, plates, shells, nonlinear systems.

CE 781. Environmental Chemistry. 3 Hours.
Chemical equilibrium, acid/base, chemical concepts in pollutant behavior. Chemical kinetics, redox system, hydrolysis, pesticides, chemical wastes.

CE 782. Water Treatment Engineering. 3 Hours.
Water sources and characteristics. Design and operation of water treatment facilities including lime softening operations, coagulation, flocculation, clarification, dissolved air flotation, filtration, disinfection, absorption, ion exchange, and sludge disposal.

CE 783. Water and Wastewater Treatment Processes Lab. 3 Hours.
Construction and evaluation of bench-scale treatment processes. Treatability of water and wastewater. Coagulation of sedimentation, settleability of biological sludge, aerobic biological treatment, chemical treatment, water softening toxicity, disinfection, and sludge treatment processes.

CE 786. Engineering Hydrogeology. 3 Hours.

CE 787. Stormwater Detention Pond Design. 3 Hours.
Stormwater problems and control methods. Urban hydraulics prediction procedures for drainage and water quality studies. Detention pond design basics, limitations and multiple benefits.

CE 790. Special Topics in (Area). 1-3 Hour.
Special Topics in (Area).

CE 791. Individual Studies (In Area). 1-4 Hour.
Individual Studies in (Area).

CE 793. Applied Research in Civil and Environmental Engineering. 3 Hours.
Research tools, including elements of experimental design and proposal preparation. Effective communication, literature searches, and exploratory data analysis.

CE 797. Civil, Construction, and Environmental Engineering Internship. 6 Hours.
Off-campus internship experience working with industries, utilities, or government agencies. Students taking this course will not be allowed to apply Special Topics or Individual Studies courses toward degree requirements.

CE 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z
CECM-Construction Egr Mgmnt Courses

CECM 669. Advanced Project Management. 3 Hours.
Skills generally required for sound project management in a variety of management settings are studied in addition to specific management issues typically associated with engineering and construction companies. Students are introduced to the Project Management Institute's Body of Knowledge (PMBOK). A discussion of corporate organizational structures and the evolving use of project management processes helps establish an appreciation for the role of a Project Manager. The elements of a project and the role and responsibilities of the Project Manager are studied in depth. Students are also acquainted with risk management concepts, financial, labor, safety, equipment, and contracting issues facing managers in the engineering and construction environment. Particular emphasis is placed on individual management strengths and weaknesses, team building, and characteristics of successful companies. One of the primary vehicles for discussion will be small case studies from real companies and the outside reading of one or two relevant topical books.

CECM 670. Construction Estimating and Bidding. 3 Hours.
Provides an overview of typical construction delivery systems and the planning and contracting associated with each. A broad study of estimating methodologies ranging from rough "ball park" estimates to detailed unit pricing is presented focusing on labor, equipment, materials, subcontractors, job conditions, location, overhead, and profit. This course is intended to establish a basic understanding of the estimating process; and therefore, substantial course focus will be placed on the term group project.

CECM 671. Construction Liability & Contracts. 3 Hours.
This course provides an overview of the fundamental aspects of the laws that affect construction and engineering companies as well as the project owners. Particular emphasis is placed on contract forms and provisions related to liability for engineering design and construction companies, the roles of the typical participation in the process, and dispute resolution. Students will learn the importance of contract language negotiations and the impact of project risk transfer.

CECM 672. Construction Methods and Equipment. 3 Hours.
This course provides students a big-picture understanding of the construction methods employed to bring the concepts and designs of architects and engineers to physical reality. The importance of building codes is presented in the course material. Detailed study of typical building materials, design details, and construction methods are presented in a logical sequence. Students will understand the planning and deployment of equipment, materials, labor, and subcontractors using a variety of building material and system types. This course provides a necessary baseline of knowledge, vocabulary, and understanding of the role and activities of the designers, engineers, material suppliers, inspectors, and constructors in the commercial building process.

CECM 673. Project Planning and Control. 3 Hours.
This course provides a thorough understanding of the project scheduling process in construction planning and control. Students learn the relationship between the work breakdown structure, organization breakdown structure, and the activities used in developing project schedules. The Critical Path Method (CPM), Precedence Diagram Method (PDM), Program Evaluation and Review Technique (PERT), and Line of Balance (LOB) scheduling methods are discussed in detail to include hand calculations and powerful computer software products. The use of scheduling techniques for project control, resources constraint management, cash flow management, risk management, and project completion date management are investigated as is the importance of communications in the planning and monitoring/controlling processes. Students will experience hands on use with Primavera scheduling software.

CECM 674. Green Building Design/Construction. 3 Hours.
The course addresses the key concepts, viewpoints and fundamentals essential for understanding green building and construction. Materials are focused on how key stakeholders and their future collaborations can begin to incorporate sustainable construction practices for the betterment of the project (new construction and inventory rehabilitation). The course will include instruction suitable to prepare students for the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED®) Green Associates certification exam.

CECM 675. Advanced Construction and Engineering Economics. 3 Hours.
This course provides an extensive overview of financial and managerial accounting concepts for non-financial managers. Students will learn the basic elements of accounting (Generally Accepted Accounting Practices (GAAP)). They will understand how typical financial records and financial statements are established for companies. Once the basics are understood, students will study how financial data is used for internal cost controlling, planning, and budgeting. Fundamental financial calculations associated with the time value of money, debt instruments, taxes, inflation, and cash flow estimates are emphasized. Students will be expected to demonstrate proficiency in the use of Excel business functions in solving financial problems.

CECM 676. Construction Project Risk Management. 3 Hours.
This course addresses the methodologies employed in the engineering and construction industries to assist in rational decision-making in the face of uncertainty. The course reviews the fundamentals of common probabilistic theories and models, data sampling, hypothesis testing and the basics of Bayesian Decision Theory. In addition, basic financial analysis tools will be reviewed. Theoretical models will then be applied to specific examples encountered in engineering and construction decision making with emphasis on engineering economics applications.
CECM 688. Construction Management and Leadership Challenges in the Global Environment. 3 Hours.
This course is designed to prepare students to face the demanding management and leadership challenges facing construction and engineering industry leaders as competition becomes ever more globalized. The necessity to personally remain trained and relevant in the changing business environment is emphasized. Strategic planning, management and leadership in the built environment requires savvy leaders with exceptionally developed analytical and communications skills suitable for multi-disciplinary and multi-national ventures. Every individual and organization must continually innovate and reinvent to stay competitive. Students participate in a group project designed to reinforce the methodology associated with preparing and presenting a dynamic business plan. This course will provide the opportunity for students to discuss and research these concepts and to recognize the necessity to think independently, challenge conventional thinking, and visualize alternatives.

CECM 689. Building Information Modeling (BIM) Techniques. 3 Hours.
This course provides students with an overview of the evolution of BIM technology in the construction industry followed by hands-on training in the basic application of contemporary BIM software. Students will learn basic modeling skills and how to produce graphical presentations. Advanced applications of BIM technology will be discussed and demonstrated. Students will be provided with BIM software and will be required to complete a multi-step BIM model as a term project.

CESC-Sustainable Smart Cities Courses

CESC 600. Principles of Sustainable Development. 3 Hours.
The course will begin by discussing the concepts, viewpoints and fundamentals essential for understanding urban sustainable development agenda. This will be followed by the evaluation of international conferences and action items proposed by the scientific / professional community to advance sustainable smart cities development. You will review basic earth sciences to better evaluate the impact our anthropogenic activities have on the natural environment and therefore how to minimize adverse future outcomes. Throughout the course case studies of sustainable developments will be used to illustrate the value, challenges and limitations of this concept. In the end, you will possess the knowledge base needed to help advance sustainable smart cities development.

CESC 602. Introduction to Sustainable Smart Cities. 3 Hours.
This course introduces the issues surrounding sustainable development within cities and explores how the smart city concept can contribute to the urban sustainable development agenda. The course begins by considering the key characteristics of contemporary urbanization and the issues and challenges that these present for sustainability and urban environmental management. The meaning and nature of sustainability for cities will be discussed, followed by a consideration of the definitions of a smart city and a discussion of the key elements of a smart city including its contribution to both urban governance and the more effective and efficient management of natural resources. With reference to case studies the final part of the course will explore and evaluate the role that smart city processes and applications can play in enhancing the social, economic and environmental aspects of sustainable development within urban areas.

CESC 604. Low-Carbon and Renewable Energy Systems for Smart Cities. 3 Hours.
As the energy infrastructure is arguably the most important feature in any city energy efficiency and integration of renewable energy sources within urban areas are central to the smart city concept. This course will firstly explore why there is a need for the greater use of low carbon and renewable energy systems within cities, followed by an introduction to the range of low carbon and renewable energy technologies currently available. The course will then move on to introduce the concept of the smart grid and then explore the potential to integrate low carbon and renewable energy systems into smart grids in order to move towards cost-effective, efficient and more environmentally friendly energy provision within cities. Challenges and issues associated with the greater integration of low carbon and renewable energy systems into energy infrastructure within large urban areas will also be considered.

CESC 606. Managing Natural Resources and Sustainable Smart Cities. 3 Hours.
The course examines the challenges of resource use and management within the context of an urbanizing world, exploring how new concepts within the smart and sustainable city agenda may contribute to addressing these challenges. The course begins by considering contemporary patterns of resource use created by cities in the modern world at a variety of scales from the local to the global. New approaches in the form of ecosystem services and urban metabolism in relation to natural resource management are examined in terms of their contribution to developing a smart and sustainable city agenda. The course continues by exploring a selection of key natural resources challenges (e.g. water, energy, air quality and climate) and the development of new management approaches and strategies in these areas. The course concludes by examining the development of integrated environmental management systems and governance structures within which these new approaches can be implemented with reference to a series of case studies.

CESC 608. Green Infrastructure and Transportation. 3 Hours.
The course covers policy and technical issues related to sustainable transportation. The course begins by discussing the concepts, viewpoints and fundamentals essential for understanding sustainable transportation planning. Tools used to assess sustainability of transportation facilities and neighborhoods are introduced next. The course also presents design options in support of green infrastructure and transportation, including livable street design, and traffic calming applications. The course is expected to expand students’ knowledge base on sustainable transportation issues and help them understand the concept of sustainable transportation toward the development of sustainable smart cities.

CESC 610. Health and Liveability. 3 Hours.
This course will address the multidisciplinary aspects of urban environmental quality and its impact on human well-being. It will provide a critical appreciation of the factors which influence health, well-being and quality of life within contemporary urban environments, demonstrate the importance of genomics and health informatics in developing strategies for improving the health and well-being of urban citizens, explore the importance of urban design and the contribution of the development of food smart cities in improving both urban health and liveability, and understand the increasingly important role of Information and Communications Technology (ICT) in facilitating delivery of effective and responsive urban health, well-being, and quality of life strategies.
CESC 612. Green Buildings. 3 Hours.
The course will begin by discussing the concepts, viewpoints and fundamentals essential for understanding green building and construction. Discussions will then be focused on how key stakeholders and their future collaborations can begin to incorporate sustainable construction practices for the betterment of the project (new construction and inventory rehabilitation). This will be followed by the evaluation of sustainable construction rating systems (LEED, BREEAM, etc.) and how they can be applied to occupied buildings throughout an urban environment. Modular case studies of sustainable construction projects (individual structures to entire community developments) will be used to illustrate the value, challenges and limitations of this concept. In the end, students will possess an expanded knowledge base needed to help advance sustainable smart cities development.

CESC 614. Smart Cities Technologies. 3 Hours.
This course gives students the opportunity to study emerging smart technologies that can be deployed and integrated together with the aim of improving overall building / city performance. The course provides an overview of technologies that can be used to: sense and measure physical parameters; acquire, process, and analyze various datasets; and make appropriate decisions / gives suitable instructions based on all available information. Specific technologies addressed include Data Acquisition, Telecommunications, Wireless Sensor Networks, and the Internet of Things. The course will also explore and evaluate how these emerging technologies can contribute to various smart cities / buildings priorities, namely Energy Management, Health, Safety, and Security.

CESC 616. Big Data and Smart Cities. 3 Hours.
The world is becoming increasingly digitally interconnected and this instrumentation, data collection, interconnection, storage, and analysis can provide the capacity to radically transform how cities monitor, manage and enhance their environmental quality and livability. This course will provide an introduction to what big data is and how it can contribute to the smarter, more sustainable management of cities. The course will begin by discussing the concepts of big data and the big data revolution, and an overview of the ways in which data can be captured, stored and analyzed. This will be followed by a consideration of how big data can be used by city managers to optimize: their use of physical and digital infrastructures; their sustainable use of natural resources; citizen service delivery; and citizen engagement, participation and urban governance. You will also be introduced to some of the challenges presented by big data, both the technological challenges and the ethical and social implications associated with collecting, storing and using big data. Throughout the course case studies of big data in action will be used to illustrate the value, challenges and limitations of big data in the smarter, more sustainable management of cities.

CESC 618. Research Methods and Project Planning. 3 Hours.
As a student of smart city processes and urban environmental management you need to understand the research process which enables you to take the knowledge and skills which you have learned and apply it to a specific urban sustainability / environmental management issue. This course is not intended to provide a training in research techniques, but rather to make you aware of a wide range of investigative and analytical methods and techniques using examples drawn from the areas of smart city approaches, urban sustainability and environmental management. Both quantitative and qualitative methodologies and primary and secondary data collection will be covered. You will be encouraged to reflect on the research process and its outcomes by critiquing research papers written from methodological standpoints. You will then apply this knowledge to create a viable research proposal for your own Sustainable Smart Cities Masters project. This proposal will require you to identify and justify for your chosen topic: (i) appropriate research questions, (ii) methodologies and data sampling / collection techniques, (iii) ethical and health and safety implications and, (iv) a timetable of action.

CESC 620. Sustainable Smart Cities Research Project. 0 Hours.
This course will develop skills in both research and technical writing in the area of applying and/or evaluating sustainable smart cities processes and policies to a specific urban environmental or sustainability issue. The research proposal produced as part of the Research Methods and Project Planning course will be implemented. This will involve further research into the relevant background and context of a chosen project topic, implementation and evaluation of appropriate methods for collecting and analyzing data, observations and information, the ability to present findings clearly and concisely, and appreciate their significance in relation to the smart city and sustainable urban management agendas. Research should be at the forefront of student's chosen sustainable smart cities research topic and be at a level similar to that required for acceptance and presentation at a national level conference or symposium on smart and sustainable cities. For students in relevant employment, projects may be carried out in your place of work subject to discussions between you, your employer/line manager, and your project supervisor.

CESE - Structural Engineering Courses

CESE 653. Wood and Masonry Design. 3 Hours.
Design of wood structures to meet the requirements of the National Design Specification including beams, columns, and shear walls. Design and detailing of masonry structures. Nomenclature, properties, and specifications for components. Design of assemblages and masonry elements in simple masonry structures.

CESE 656. Advanced Mechanics of Materials for Structural Engineering. 3 Hours.
This course will review the basic fundamentals of mechanics of materials and will extend the concepts to include 3-dimensional stress and strain, plastic behavior, energy methods, nonlinear behavior, fatigue and fracture, rectangular linear elastic plates, indeterminate structures and stability.

CESE 657. Advanced Design of Steel Structures. 3 Hours.
Design of major components in steel-framed buildings, including composite beams and slabs, beam-columns, moments connections, bracing members, bracing connections, and column base plates.

CESE 659. Advanced Reinforced Concrete. 3 Hours.
In this course students will study the behavior and design of continuous reinforced concrete structures submitted to gravity and lateral loads. The study will include biaxial loading of columns, continuous one-way beams and slabs, two-way floor systems, and torsion loading.
CESE 660. Prestressed Concrete Behavior and Design. 3 Hours.
The course will explore the characteristics and design of pre-stressed concrete structural components to include elastic and ultimate strength analyses for flexural, shear, torsion, deflection, strand bond, and pre-stress loss.

CESE 662. Advanced Structural Analysis. 3 Hours.
This course explores the structural analysis of indeterminate structures using classical and approximate methods and structural analysis software. Specific emphasis is placed on the determination of forces in typical multistory, rectilinear frames subject to gravity and lateral loads. In addition to first order analysis, the course included analysis for second order effects and plastic analysis.

CESE 664. Bridge Engineering. 3 Hours.
This course includes the study of bridge loads, including moving load analysis; methods for approximate structural analysis, preliminary bridge design methods, and the structural design of bridge decks and girders.

CESE 665. Structural Dynamics and Earthquake Engineering. 3 Hours.
This course includes the study of earthquake-induced vibrations of single and multi-degree-of-freedom systems, such as single and multistory frames. Emphasis will be placed on structural steel and reinforced concrete building frames. Response spectrum analysis will be investigated as well as building codes and static and dynamic lateral load force procedures.

CESE 676. Design of Structural Steel Connections. 3 Hours.
Design of bolted and welded steel connections, including shear, moment and brace connections using the AISC Specifications requirements and fundamental engineering principals. Design procedures will be discussed for various structural steel connections. The background and limitations of the design procedures will be reviewed and practical solutions will be provided.

CESE 690. Special Topics (Area). 1-3 Hour.
Special Topics (Area).

CESE 698. Non Thesis Research. 3 Hours.
No syllabus for non-thesis research hours.

EE-Electrical Computer Egr Courses

EE 512. Practical Computer Vision. 3 Hours.
This course covers the fundamentals and application of image analysis. Topics include: image pre-processing, detection, segmentation, classification and recognition, visual tracking, and deep learning.

EE 518. Wireless Communications. 3 Hours.
This course covers the principles and current applications of wireless technology. Topics include propagation models, modulation, multiple access, and channel and signal coding. Applications of wireless for cellular and Internet of Things (IoT) will also be covered.

EE 521. Communication Systems. 3 Hours.
This course covers the mathematics of modulation and demodulation of radio signals to transmit and receive information. It focuses on various forms of amplitude modulation (AM), phase and frequency modulation (FM). This course builds on the mathematics from signals and systems course to study how to represent and manipulate these signals in both time and frequency domain. It also studies the effects of sampling, and how these systems operate in the presence of noise.

EE 523. Digital Signal Processing. 3 Hours.
This course covers the theory and practice of using computers to process and analyze signals. The topics include: digital filter analysis and design; Fast Fourier Transform (FFT) algorithms; applications of digital signal processing in engineering problems such as data acquisition and control.

EE 526. Control Systems. 3 Hours.
This course covers modeling and control of mechanisms or circuits to satisfy stability and performance criteria. Topics include: theory of linear feedback control systems using complex frequency techniques, block diagram manipulation, performance measures, stability, analysis and design using root locus, and Z-transform methods.

EE 527. Industrial Control. 3 Hours.
This course covers power control devices and applications, relay logic and translation to other forms, programmable logic controllers (PLCs), proportional-integral-derivative (PID) and other methods for process control, modern laboratory instrumentation, and human-machine interface (HMI) software.

EE 531. Analog Integrated Electronics. 4 Hours.
This course covers advanced analysis and design using op-amps, differential amplifier, half-circuit analysis, error analysis and compensation. Applications include signal conditioning for instrumentation, instrumentation amplifiers, nonlinear and computational circuits, analog filter design, voltage regulator design, and oscillators, circuit configurations for A-to-D and D-to-A conversion methods. Laboratory exercises emphasize design techniques for projects in areas such as Internet-of-Things (IoT).

EE 532. Introduction to Computer Networking. 3 Hours.
This course covers the fundamentals of modern computer networks including current applications such as Internet of Things (IoT). Topics include: hardware and software level network protocols, network architecture and topology including WANs and LANs, client-server relationships, distributed computing, data transfer, security, virtualization of hardware, multi-tier network configuration examples, and certifications will be addressed.

Prerequisites: EE 134 [Min Grade: C] and EE 210 [Min Grade: C]

EE 533. Engineering Software Solutions. 3 Hours.
This course covers the fundamentals of software design, architecture, and implementation for future software engineers. Topics include: customer-focused requirements gathering, project planning, team tools, architectural patterns, environment and component selection, quality assurance, sustainability, and versioning. Various development methodologies are discussed with a project demonstrating at least one release cycle.

EE 534. Power Semiconductor Electronics. 3 Hours.
This course covers the fundamentals of power electronics such as principles of static power conversions, basic power converter architectures, power semiconductor switches, steady-state equivalent circuit modeling, DC transformer model, basic AC equivalent circuit modeling, linearization and perturbation. Pulse width modulation and controller design, circuit design considerations, and applications of power electronics. The course project emphasizes computer-aided analysis and design of power electronic circuits.

EE 537. Introduction to Embedded Systems. 3 Hours.
This course provides an applied introduction to the design of embedded systems, including hardware and software aspects. Topics include: various embedded hardware platforms, interfacing industrial bus systems, sensors, actuators, low-power wireless communication, and the application of the Internet of Things (IoT).
EE 538. Computer Architecture. 3 Hours.
Advanced microprocessor topics include a comparison of advanced contemporary microprocessors, cache design, pipelining, superscalar architecture, design of control units, microcoding, and parallel processors. Basic knowledge of microprocessors is recommended.

EE 544. Real-Time Process & Protocols. 3 Hours.
This course covers hands-on laboratory topics in real-time computer systems, such as algorithms, state-machine implementations, communication protocols, instrumentation, and hardware interfaces.

EE 547. Internet/Intranet Application Development. 3 Hours.
This course covers development of software models and applications using Internet/Intranet technologies. Topics include: web client-server relationships, multi-tier design models, scripting and validation, basic TCP/IP networking, separation of concerns, markup and data description languages. Projects will allow the opportunity for the use of a range of tools and development platforms.
Prerequisites: EE 233 [Min Grade: C]

EE 548. Software Engineering Projects. 3 Hours.
This course covers practical applications of software engineering including the development of applications for the Internet of Things (IoT). Topics include: requirements gathering, design matrices, environment selection, relevant architectural patterns, networking basics, databases, service endpoints, embedded systems selection and security. Projects with a software emphasis will be utilized to demonstrate the principles of IoT applications.
Prerequisites: EE 333 [Min Grade: C]

EE 552. Digital Systems Design. 3 Hours.
This course covers the design of customized complex digital systems using Field Programmable Gate Array (FPGA) based platforms, using modern design tools for simulation, synthesis, and implementation. Topics include hardware design and development languages such as Verilog or VHDL.

EE 558. Medical Instrumentation. 3 Hours.
This course covers the fundamental operating principles, applications, safety, and design of electronic instrumentation used in the measurement of physiological parameters.

EE 561. Machinery II. 3 Hours.
Physical principles of DC machines. Mathematical analysis of generator designs using equivalent circuits and magnetization curves. Calculation of motor speed, torque, power, efficiency, and starting requirements. Solid-state speed control systems.

EE 563. Medical Image Analysis. 3 Hours.
A lab-based introduction to processing, analysis, and display techniques for medical imaging.

EE 567. Brain Machine Interface. 3 Hours.
This course explores the brain-machine interfaces, particularly the technologies that directly stimulate and/or record neural activity. This course is divided into three major components: 1) neuroscience and electrode interfaces, 2) brain recording and stimulating front-end circuits, and 3) circuit modeling, simulation, and optimization.

EE 571. Power Systems I. 3 Hours.
Components of power systems. Performance of modern interconnected power system under normal and abnormal conditions. Calculation of inductive and capacitive reactances of three-phase transmission lines in a steady state.

EE 572. Power Systems II. 3 Hours.

EE 573. Protective Relaying of Power Systems. 3 Hours.
Operating principles of protective relays. Protection of transmission lines, generators, motors, transformers, and buses.

EE 585. Engineering Operations. 3 Hours.
This course covers the principles and standard of engineering design from ideation to final design. Topics include: product development process, problem definition and need identification, embodiment and detail design, design for specific criterion, modeling and cost evaluation. Emphasis is placed on ethics and civil responsibilities in design including environmental, social issues, liability, sustainability and reliability through the lenses of engineering design.

EE 590. Special Topics in Electrical and Computer Engineering. 1-3 Hour.
Special Topic in Electrical or Computer Engineering.

EE 591. Individual Study in Electrical and Computer Engineering. 1-6 Hour.
Individual Study in Electrical Engineering.

EE 601. Electrical and Computer Engineering Seminar. 1-3 Hour.
This course consists of research presentations delivered by faculty, research assistants, and invited guests in various state-of-the-art and popular topics related to Electrical and Computer Engineering.

EE 610. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 616. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational transconductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation, and chip layout of an analog integrated circuit design project. Fundamental knowledge of electronics is required.

EE 621. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.
Prerequisites: EE 421 [Min Grade: C]

EE 622. Advanced Communication Theory. 3 Hours.
Analysis of the performance of analog modulation techniques in presence of noise.
Prerequisites: EE 621 [Min Grade: C]

EE 623. Computer Vision. 3 Hours.
Advanced topics in computer vision: image segmentation, registration, and visual tracking; Applications of deep learning to image analysis.

EE 624. Digital Communications. 3 Hours.
Design and analysis of digital communications modulation techniques and systems and their performance in the presence of noise.
Prerequisites: EE 622 [Min Grade: C]
EE 625. Information Theory and Coding. 3 Hours.
Channel models and block codes, block code ensemble performance analysis, convolutional codes and ensemble performance, sequential decoding of convolutional codes.
Prerequisites: EE 621 [Min Grade: C]

EE 626. Digital Image Processing. 3 Hours.
The course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.

EE 627. Wireless Communications. 3 Hours.
Wireless communication system topics such as propagation, modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 630. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 632. Introduction to Computer Networking. 3 Hours.

EE 633. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of a series of programs to explore the details of network protocols and network application models.

EE 634. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), applications and limitations of neural networks, and designing networks specific uses.

EE 636. Advanced Digital Design. 3 Hours.
This course covers the design of Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs). Topics include the design, simulation, and testing of digital systems using a hardware description language and FPGA/CPLD development boards with programmable logic devices.

EE 637. Design of Modern Computer with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 638. Neural Time Series Data Analysis. 3 Hours.
This course covers the theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 639. Embedded Systems. 3 Hours.
This course covers both hardware and software trends in advanced embedded system design, including artificial intelligence (AI) and optimized hardware platforms for machine learning (ML). The fundamental algorithms of AI and ML are discussed. Various process acceleration techniques for improving the computational efficiency of ML kernels are implemented on FPGA/CPLD development boards and FPGA/CPLD chips.

EE 640. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.

EE 641. Modern Control Theory. 3 Hours.
This course covers state variable models for continuous-time and discrete time systems, state feedback and pole placement, and state estimation. Knowledge of basic control systems is recommended.

EE 642. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 643. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include numerical calculus, linear algebra, and optimization. Students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 650. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 651. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 653. Electronic Power Switching Circuits. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 654. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and back-end services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 655. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 656. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.
EE 658. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.

EE 660. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 667. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience and interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 682. Electromagnetic Field Theory I. 3 Hours.
This course covers the modeling of materials and environments through the simulation of electromagnetic fields. It includes a wide variety of applications, including biomedical and the Internet of Things (IoT). Topics include boundary-value problems and scattering.

EE 690. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for master’s students.

EE 691. Individual Study in (Area). 1-6 Hour.
Individual study selected by faculty for master’s students.

EE 697. Graduate Project. 3 Hours.
Graduate project for Plan II Masters students.

Individual research in selected area by faculty for master’s students.

EE 699. Thesis Research. 1-12 Hour.
Thesis research.

EE 701. Electrical and Computer Engineering Seminar. 1-3 Hour.
This course consists of research presentations delivered by faculty, research assistants, and invited guests in various state-of-the-art and popular topics related to Electrical and Computer Engineering.

EE 710. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 716. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational trans conductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation and chip layout of an analog integrated circuit design project. Fundamental knowledge in electronics is required.

EE 721. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.

EE 723. Computer Vision. 3 Hours.
Advanced topics in computer vision: Image segmentation, registration, and visual tracking. Applications of deep learning to image analysis.
EE 740. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include: object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.

EE 742. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 743. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include Using numerical calculus, linear algebra, and optimization students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation with active contours, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 750. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 751. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 752. Software Engineering Large Systems - II. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 754. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and backend services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 755. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 756. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 758. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.

EE 760. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 767. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 790. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for PhD students.

EE 791. Individual Study in (Area). 1-6 Hour.
Individual study in an area selected by faculty for PhD students.

EE 798. Non-Dissertation Research. 1-12 Hour.
Individual research in selected problem by faculty for PhD students.

EE 799. Dissertation Research. 1-12 Hour.
PhD dissertation research.

Prerequisites: GAC 2

EGR-Engineering Courses

EGR 500. Special Topics in (Study Away). 0-9 Hours.
Independent studies in various subject and/or service areas outside the state of Alabama or the continental United States.

EGR 510. ESL in Education. 1-6 Hour.
Course provides students an opportunity to help students in K-12 to analyze and solve problems using engineering concepts and design process to engage and excite them about engineering, science, and technology.

EGR 520. Engineers in Service and Learning in EiSAL. 0-6 Hours.
This course will allow engineering students the opportunity to communicate and live in other cultural environments allowing them to share interdisciplinary engineering design and analysis in a real-world setting. It will also allow them the opportunity to work in multi-cultural groups to solve a common problem.

EGR 540. Social Responsibility. 1 Hour.
This course provides students with an understanding of key social and economic concepts of global health that, together with an understanding of interprofessional collaboration and community partnerships, will enable them to participate in developing and implementing sustainable global health projects in collaboration with local and international community partners. The course is open to undergraduate and graduate students who are enrolled in two co-requisite courses that are requirements for students participating in the interprofessional global health service learning program at the University of Alabama at Birmingham.

EGR 541. Interprofessional Collaboration (IPC) and Community Partnerships in Global Health. 1 Hour.
This course provides students with an understanding of principles of interprofessional collaboration and community partnerships that, together with key social and economic concepts of global health, enables them to participate in developing and implementing sustainable global health projects in collaboration with local and international community partners.

EGR 542. EGR Service Learning: Interprofessional Global Health Service Learning I: Project Planning. 1 Hour.
This course provides students with an opportunity to apply principles of interprofessional collaboration, community partnerships, and global health in the development of a plan to address a global health problem in collaboration with a community partner. The course is open to undergraduate and graduate students who are enrolled in two co-requisite courses that are requirements for students participating in the global health service learning program at the University of Alabama at Birmingham.
EGR 550. Engineering Service Learning: Teaching Experiences. 1 Hour.
This course provides engineering students the opportunity to assist engineering faculty and students in a tutorial environment by serving as teaching assistants in engineering service courses.

EGR 590. Special Topics in Engineering. 1-3 Hour.
Special Topics in Engineering.

EGR 591. Individual Study in Engineering. 1-6 Hour.
Individual Study in Engineering.

EGR 602. Methods for Engineering Practice I. 3 Hours.
First of two course sequence oriented toward introducing the student to modern methods in engineering practice including design methodologies to project management and risk analysis; mathematical and statistical methods; data analysis; reliability; fault detection and analysis; and safety analysis methods.

EGR 603. Methods for Engineering Practice II. 3 Hours.
Second of a practical two course sequence that are oriented toward introducing the student to modern methods in engineering practice including design methodologies to project management and risk analysis; mathematical and statistical methods; data analysis; reliability; fault detection and analysis; and safety analysis methods.

EGR 610. Introduction to System Safety - Prevention through Design. 3 Hours.
Best practice in any business sector requires the pursuit of a triple bottom line - protecting people, planet, and profit. This course provides an overview of system safety in general and Prevention through Design in particular and explores their efficacy in helping companies achieve a bottom line that is socially, environmentally, and financially rewarding.
Topics of inquiry include the processes of hazard analysis and risk assessment, the concept of "acceptable" risk, the safety decision hierarchy of controls, safety standards (the mandatory minimum vs. the voluntary best practice), safety as a cost control strategy, and the critical elements of a comprehensive, advanced safety program. Course content is presented within the framework of real-world case studies from a variety of industry sectors, including, but not limited to, manufacturing, utilities, and health care and includes several guest lectures by leaders in the profession. Students apply course content to their own business environment. Live participation in a weekly 1.5 hour online forum is required. The EGR 610 forum is typically held on Sunday from 1:30-3:00 CDT. EGR 610 must be taken during the first semester.

EGR 614. Engineering Ethics & Acceptable Risk. 3 Hours.
This course explores the economic, social, and political consequences of safety risk and considers provocative real world dilemmas: What is acceptable risk? Are the fundamental canons of engineering ethics contrary to the concept of acceptable risk? What is the worth of human life? Students will conduct critical reviews of corporate safety and ethics policies from market leaders in all major industries as well as their own company. Real-world case studies provide the framework for exercises in resolving conflicts of interest and avoiding the dilemma of "whistle blowing." Live participation in a weekly 1.5 hour online forum is required. The EGR 614 forum is typically held on Sunday from 3:00-4:30 CDT.
Prerequisites: EGR 610 (Min Grade: C)(Can be taken Concurrently)

EGR 642. Technical Entrepreneurship. 3 Hours.

EGR 690. Special Topics. 1-4 Hour.

EGR 692. Engineering Graduate Project. 3 Hours.
Students will conduct research and complete project for Plan II MS degree.

EGR 695. Innovation-Commercialization Project. 3 Hours.
Through hands on activities, as well as mentorship by professional engineers and local industrial designers, the students will develop products ready for mass production.

EGR 696. Internship in Design and Commercialization. 3 Hours.
An internship is designed to provide real world experiences in a profession of interest. It enables correlation of classroom learning with application in industry; broadens understanding of the types of employment available in the field; helps students discover their individual interests; builds resume credentials for the students; and develops relationships between UAB and industry.

EGR 697. Engineering Grad Internship. 0-6 Hours.
Student works in a professional environment reflective of research interests pursuant to graduate degree.

Research allows the student to explore a topic of interest under the close supervision of a faculty member. The course may include directed readings, applied work, in addition to carrying out individual research in selected area.

Research allows the student to explore a topic of interest under the close supervision of a faculty member. The course may include directed readings, applied work, in addition to carrying out individual research in selected area.

EGR 710. Intro to Interdisciplinary EGR. 3 Hours.
Introduces current trends and cutting-edge research in areas related to engineering that require interdisciplinary approaches.

EGR 711. Methodology for IEG Research. 3 Hours.
Presents a detailed perspective on methods of approach for interdisciplinary problems, including experimental design, laboratory experimentation, physical modeling, simulation, and analysis.

EGR 790. Special Topics. 1-4 Hour.

EGR 791. Independent Study. 1-6 Hour.
Independent Study in Engineering.

EGR 792. Interdisciplinary EGR Seminar. 1 Hour.
Discussions and presentations of research involving engineering in a number of disciplines. Required for graduate students in the interdisciplinary engineering Ph.D. program.

EGR 796. Journal Club in Interdisciplinary Engineering. 1 Hour.
Journal club to discuss current research and investigations in areas of interdisciplinary engineering.

EGR 797. Interdisciplinary Engineering Internship. 1-6 Hour.
Student works in a professional environment reflective of research interests pursuant to doctoral degree.

EGR 798. Non-Dissertation Research. 0-12 Hours.

EGR 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

IEM-Information Egr Mgmt Courses

IEM 601. Introduction to IEM. 1 Hour.
This course is an introduction to Information Engineering and Management with a focus on readiness for graduate study. Program requirements and expectations will be presented. Software and collaboration tools will be introduced. Library access and resources will be reviewed and teams will perform learning exercises to demonstrate proficiency with the available tools.
IEM 602. Leading Collaborative Teams. 1 Hour.
This course will focus on building, leading, and evaluating collaborative teams. Topics will include managing geographically-dispersed teams, team communication, accountability, running effective meetings, facilitation skills, building consensus, and handling common problems.
Prerequisites: IEM 601 [Min Grade: C]

IEM 603. Communication for Technology Executives. 1 Hour.
This course will address communication issues unique to organizational executives. Topics will include functioning as the public face of the organization, working with the media, when to seek professional advice, and effective crisis management.
Prerequisites: IEM 602 [Min Grade: C]

IEM 610. Communication for Technology Professionals. 3 Hours.
This course focuses on recognizing, developing, and putting into practice effective communication skills. Lectures provide insights into presentation structure, style, and content. Self-evaluation exercises combined with personal coaching will help clients improve their professional speaking and presentation skills.

IEM 611. Leading Technical Organizations. 3 Hours.
This course will use case studies, assigned readings, guest lecturers, research projects, and discussion of current issues in technology to develop executive-level behaviors and thought-processes as preparation for starting or leading a technology organization.

IEM 612. Project Leadership. 3 Hours.
This course teaches the fundamental concepts of leading projects. The course will consider all aspects of project leadership including the use of standard methodologies. Best practices will be reviewed along with practical insights based on real-world project leadership experience.

IEM 620. Technical Entrepreneurship. 3 Hours.
This course is an introduction to entrepreneurship that begins with the development of personal insights and work habits that are fundamental to success within any organization.

IEM 625. Technology and Innovation. 3 Hours.
This course examines technological innovation as an element of organizational strategy. Topics include the nature and management of innovation, aligning technical teams with overall organizational strategy, and the role of innovation in launching and sustaining technology ventures.

IEM 630. Systems Engineering. 3 Hours.
This course focuses on the systems engineering lifecycle and its application to the design of complex systems. Topics include systems thinking, managing complexity, problem definition, solution design, solution implementation, quality assurance, and measuring effectiveness.

IEM 631. Operational Decision-Making. 3 Hours.
This course focuses on the critical role of information and analytical methods in optimizing operational decisions. A core set of analytical tools will be presented and discussed. Topics will include decision analysis, optimization, modeling, simulation, and data analysis.

IEM 645. Financial Concepts for Entrepreneurs. 3 Hours.
This course introduces financial concepts including the interpretation of financial statements, managing cash flow, time value of money, capital budgeting, and investment analysis.

IEM 646. Strategic Planning. 3 Hours.
This course will examine the nature of strategic thinking and the challenges of achieving strategic alignment. Topics will include the strategic planning process and methods for assessing strategic success.

IEM 690. Special Topics in Area. 1-3 Hour.
Special Topics in (Area).

IEM 695. IEM Design Project. 3 Hours.
This course is focused upon a final design project that incorporates the technical and entrepreneurial coursework taken previously. Projects will be assessed based on their technical design and financial justification.

IEM 696. IEM Internship. 1-3 Hour.
This course is available for students needing to register for an internship course while enrolled in the IEM program.

ME-Mechanical Engineering Courses

ME 511. Intermediate Fluid Mechanics. 3 Hours.
Applications of fluid dynamic principles to engineering flow problems such as turbo-machinery flow and one-dimensional compressible flow. Vorticity, potential flow, viscous flow, Navier-Stokes solutions, and boundary layers. Introduction to Fluid Mechanics or equivalent is a recommended prerequisite for this course.

ME 521. Introduction to Computational Fluid Dynamics Basics. 3 Hours.
Governing equations for fluid flows, classifications of flow regimes, and approaches to analyze fluid flow problems. Introduction to Computational Fluid Dynamics (CFD), mesh generation, boundary conditions, numerical solution of equations governing fluid flows, and visualization. Hands-on exercises using a commercial CFD solver.

ME 530. Vehicular Dynamics. 3 Hours.
Introduction to the fundamentals of mechanics and analytical methods for modeling vehicle dynamics and performance. Topics include tire-road interaction modeling, vehicle longitudinal dynamics and traction performance, lateral dynamics, handling, stability of motion and rollover, as well as, contribution of the drivetrain system, steering system and suspension configurations to the dynamics of a vehicle. Software applications, projects, and exposure to hardware and systems are used to reinforce concepts. Dynamics or equivalent is a recommended prerequisite for this course.

ME 531. Introduction to Vehicle Drive Systems Engineering. 3 Hours.
Engineering fundamentals of mechanical and mechatronic, hybrid-electric, and electric drive systems. Applications to passenger cars and commercial vehicles. Drive system and component design, including main clutches and torque converters, transmissions, transfer cases, and drive axles. Introduction to plug-in hybrid-electric vehicles.
Prerequisites: ME 215 [Min Grade: C] and ME 370 [Min Grade: C] (Can be taken Concurrently)

ME 532. Introduction to Electric Vehicles. 3 Hours.
Introduction to fully electric and hybrid vehicle engineering. Mechatronic system and component design. Batteries and energy storage devices. Plug-in hybrid electric vehicles.

ME 545. Combustion. 3 Hours.
Evaluation of the impact of fuel characteristics and operating conditions on the performance of coal-fired electric utility steam-raising plant and the prospects for continued reliance on coal as fuel for electric power generation. The phenomena emphasized are the behavior of turbulent jets; ignition, devolatilization and combustion of coal particles; radiative heat transfer and the effect of ash deposits on heat transfer; formation of air pollutants and their removal from combustion products; integrated gasification combined cycle; and capture and sequestration of carbon dioxide. Thermodynamics II, Introduction to Fluid Mechanics, and Introduction to Heat Transfer or equivalents are recommended prerequisites for this course.
ME 547. Internal Combustion Engines. 3 Hours.
Fundamentals of reciprocating internal combustion engines: engine types, engine components, engine design and operating parameters, thermochemistry of fuel-air mixtures, properties of working fluids, ideal models of engine cycles, engine operating characteristics, gas-exchange processes, fuel metering, charge motion within the cylinder, combustion in spark-ignition and compression ignition engines.

ME 549. Power Generation. 3 Hours.
Application of thermodynamics, fluid mechanics, and heat transfer to conversion of useful energy. Includes terrestrial and thermodynamic limitations, fossil fuel power plants, renewable energy sources, and direct energy direct energy conversion. Thermodynamics II or equivalent is a recommended prerequisite for this course.

ME 554. Heating, Ventilating & AC. 3 Hours.
Fundamentals and practice associated with heating, ventilating, and air conditioning; study of heat and moisture flow in structures, energy consumption, and design of practical systems. Introduction to Heat Transfer or equivalent is a recommended prerequisite for this course.

ME 555. Thermal-Fluid Systems Design. 3 Hours.
Comprehensive design problems requiring engineering decisions and code/Standard compliance. Emphasis on energy system components: piping networks, pumps, heat exchangers. Includes fluid transients and system modeling. Introduction to Heat Transfer is a recommended prerequisite for this course.

ME 556. Building Energy Modeling and Analysis. 3 Hours.
Computer modeling of energy use and thermal comfort in buildings using several software tools. Interpretation and analysis of the results. Implementing energy efficiency measures in the model and studying the effects on energy use. Students registering for this course should have successfully completed (grade of C or better) ME 242 Thermodynamics II and ME 322 Introduction to Heat Transfer or equivalents.

ME 564. Introduction to Finite Element Method. 3 Hours.
Concepts and applications of finite element method. Development and applications of basic elements used in engineering mechanics. Use of finite element analysis software. Application of finite element concept to several areas of mechanics. Mechanics of Solids or equivalent is a recommended prerequisite for this course.

ME 575. Mechanical Vibrations. 3 Hours.

ME 577. Mechanical Vibrations. 3 Hours.

ME 580. Instrumentation and Measurements. 3 Hours.
Thorough exploration of fundamental measurement concepts and techniques for data acquisition and validation. Explanation of important selection criteria for the identification and configuration of commercially available data acquisition devices. Students will get hands on experience following best practices for data acquisition (high speed vs low speed) relevant to their field of study or career. Many types of sensors, their underlying technology, and measurement techniques will be discussed (i.e. accelerometers, load cells, Digital Image Correlation, etc.) to demonstrate best practices for sensor selection for a wide range of specialized applications.

ME 590. Special Topics in Mechanical Engineering. 1-3 Hour.
Special Topics in Mechanical Engineering.

ME 591. Individual Study in Mechanical Engineering. 1-6 Hour.
Individual Study in Mechanical Engineering.

ME 611. Advanced Fluid Mechanics. 3 Hours.
Fundamental laws of motion for viscous fluid, classical solutions of the Navier-Stokes equations, inviscid flow solutions, laminar boundary layers, and stability criteria.

ME 613. Introduction to Computational Fluid Dynamics. 3 Hours.
Review of governing equations of fluid dynamics, mathematical behavior of partial differential equations, basic aspects of discretization, basic CFD techniques, basic grid generation, coordinate transformations, advanced numerical schemes, future CFD methodology. A knowledge of a computer language is required.

ME 614. Advanced Computational Fluid Dynamics. 3 Hours.

ME 615. Introduction to Turbulent Flows. 3 Hours.
Characteristics of turbulence, length and time scales, energy cascade, vorticity stretching, Reynolds averaging technique, Closure problem, Boussinesq hypothesis, Eddy viscosity concepts, introduction to zero-, one-, and two-equation models, Reynolds stress model.

ME 631. Dynamics and Mobility of Vehicles: Modeling and Simulation. 3 Hours.
The main goal of the course is to present advanced research and engineering knowledge in recent vehicle dynamics of road and off-road wheeled and track vehicles with an emphasis on vehicle longitudinal/ lateral mobility and energy efficiency. Applications include vehicles for personal transportation, military vehicles, construction equipment and farm tractors. A unique feature of this course is its inverse vehicle dynamics approach. Another distinctive feature of the course is a mechatronics-based approach to modeling and simulation of multi-domain systems that include mechanical, electrical and electronics components such as sensors and actuators. Coupled and interactive dynamics of vehicle systems is presented, and a modeling process of vehicle operational properties is based on various equations of analytical and adaptive dynamics. Students will gain knowledge and analytical hands-on skills through innovative homework and a research project. Skills in one of programming software/languages are required (e.g., MATLAB/Simulink, ADAMS/Car, LabVIEW, etc.).

ME 578. Automated Manufacturing. 3 Hours.
Introduction to automated manufacturing technology. Components of automated systems (controllers, sensors and actuators) and automated manufacturing sub-systems (3D printer, CNC, robot and computer vision) will be studied in a lecture/lab environment with hands on activities. A basic understanding of engineering graphics and computer methods at the undergraduate level is required for this course.
The main goal of this course is to give detailed understanding, analytical knowledge and engineering experience in research, design and experimental study of autonomous wheel power management systems (AWPMS). The AWPMS are autonomous mechatronic and autonomously operated mechanical systems that distribute power among the drive wheels of vehicles. AWPMS include various configurations of torque vectoring systems, limited slip differentials and hydraulically controlled differentials, electronically-locking differentials, and positive engagement of the wheels. AWPMS that are operationally integrated with steering and suspension systems are also presented in the course. Characteristics of wheel power management systems for a specific vehicle application are proved in the course by using inverse vehicle dynamics formulation and requirements to vehicle energy efficiency, mobility, stability of motion, and turnability. Students will learn mechanical design principles for mechatronic systems and methods for developing control algorithms. Methods for experimental study of wheel power management systems and vehicles are also presented in the course; including 4x4 vehicle chassis dynamometer with individual wheel control and test setups. Students will exercise analytical skills and gain hands-on experience through innovative homework and a research project.

ME 640. Heat Conduction. 3 Hours.
Introduction to methods of solution for heat conduction problems. Topics include separation of variables in rectangular, cylindrical and spherical coordinates, solution to the heat equation on semi-infinite and infinite domains, Duhamel's Theorem, use of Green's Function, and use of the Laplace Transform. A basic understanding of heat transfer at the undergraduate level is required for this course.

ME 641. Radiation Heat Transfer. 3 Hours.
Introduction to radiation heat transfer. Topics include radiation from black bodies and nonblack opaque surfaces, configuration factors for diffuse surfaces, radiation exchange in enclosures of diffuse-grey and specularly reflecting surfaces, radiation combined with conduction and convection, and energy transfer for absorbing, emitting and scattering media. A basic understanding of heat transfer at the undergraduate level is required for this course.

ME 650. Transport Phenomena. 3 Hours.
Laminar flow transports: momentum transfer (Couette/Poiseuille flows), energy transfer (free/forced convections and conduction), and mass transfer; equation of state, turbulence, chemical reactions, and numerical methods solving transport equations. Introduction to Fluid Mechanics and Introduction to Heat Transfer or equivalents are recommended prerequisites for this course.

ME 661. Math Methods in EGR I. 3 Hours.
Mathematical theory and solutions methods to problems in engineering including advanced ordinary differential equations; eugenvale problems; multi-variable calculus and implicit functions; curve, surface ad volume representation and integration; Fourier integrals and transforms; separation of variables and transform techniques for solution of partial differential equations. Differential Equations or equivalent is recommended as a prerequisite for this course.

ME 662. Math Methods in EGR II. 3 Hours.
Mathematical theory and solution methods to problems in engineering including Scalar and vector field theory advanced partial differential equations, analysis using complex variables, conformal mapping, complex integral calculus, Green's functions, perturbation methods, and variational calculus. Math Methods in EGR I or equivalent is recommended as a prerequisite for this course.

ME 663. Engineering Statistics. 3 Hours.
Introduction to applied statistics and probability for engineering and the physical sciences. Topics include introduction to probability, discrete and random variables and their distributions, joint probability distributions, hypothesis testing, statistical inference, linear regression and correlation, design of experiments, and statistical quality control. A basic understanding of calculus and matrix algebra at the undergraduate level is required for this course.

ME 665. Computational Methods in EGR. 3 Hours.
Applications of computers to solution of problems in engineering, including matrices, roots of equations, solution of simultaneous equations, curve fitting by least squares, differentiation and integration, differential and partial differential equations. Differential Equations and Computational Engineering or equivalents are recommended prerequisites for this course.

ME 670. Intro to Continuum Mechanics. 3 Hours.
Fundamentals and application of mechanics principles to problems in continuous media. Matrix and tensor mathematics, fundamentals of stress, kinematics and deformation of motion, conservation equations, constitutive equations and invariance, linear and nonlinear elasticity, classical fluids, linear viscoelasticity. Mechanics of Solids and Differential Equations or equivalents are recommended prerequisites for this course.

ME 672. Advanced Dynamics. 3 Hours.
Advanced topics in dynamics including complex motion analysis, generalized kinematic parameters, quasivelocities, and virtual displacements, direct and inverse dynamics approach, and fundamentals of systems with variable masses. Introduction to the modeling of mechatronic systems is presented through a consideration of mechanical, electrical and electronics components. Analytical and adaptive dynamics principles are taught as a basis for control algorithm development and mechatronic system design.

ME 679. Advanced Finite Element Analysis. 3 Hours.

ME 688. Fluid-Structure Interactions. 3 Hours.
Modeling and simulation of fluid-structure interaction (FSI) phenomena using computational methods: The Arbitrary Lagrangian Eulerian (ALE) formulation, a variety of interpolation methods, mesh movement and time mapping algorithms. Solution of FSI problems using interface codes.

ME 690. Special Topics in (Area). 1-6 Hour.
Special Topics in (Area).

ME 691. Individual Study in (Area). 1-6 Hour.
Individual Study In (Area).

ME 694. Seminars in Mechanical Engineering. 1 Hour.
Seminar.

ME 698. Non-Thesis Research. 1-12 Hour.

ME 699. Thesis Research. 1-12 Hour.
Prerequisites: GAC M

ME 711. Advanced Fluid Mechanics. 3 Hours.
Fundamental laws of motion for viscous fluid, classical solutions of the Navier-Stokes equations, inviscid flow solutions, laminar boundary layers, and stability criteria.
ME 713. Introduction to Computational Fluid Dynamics. 3 Hours.
Review of governing equations of fluid dynamics, mathematical behavior
of partial differential equations, basic aspects of discretization, basic
CFD techniques, basic grid generation, coordinate transformation,
advanced numerical schemes, future CFD methodology. A knowledge of
a computer language is required.

ME 714. Advanced Computational Fluid Dynamics. 3 Hours.
Finite Volume Scheme, Eigenvalues and Eigenvectors, Method of
Characteristics, Upwind Schemes, Flux Vector Splitting, Flux Difference
Splitting, Explicit and Implicit Schemes, Flux Jacobians. Newton Method,
Boundary Conditions, Weak Solutions, TVD, PISO Methods.

ME 715. Introduction to Turbulent Flows. 3 Hours.
Characteristics of turbulence, length and time scales, energy cascade,
convctivity stretching, Reynolds averaging techniques. Closure problem,
Boussinesq hypothesis, Eddy viscosity concepts, introduction to zero-,
one-and two-equation models, Reynolds stress model.

ME 731. Dynamics and Mobility in Vehicles: Modeling and
Simulation. 3 Hours.
The main goal of the course is to present advanced research and
engineering knowledge in recent vehicle dynamics of road and off-road
wheeled and track vehicles with an emphasis on vehicle longitudinal/
lateral mobility and energy efficiency. Applications include vehicles
for personal transportation, military vehicles, construction equipment
and farm tractors. A unique feature of this course is its inverse vehicle
dynamics approach. Another distinctive feature of the course is a
mechatronics-based approach to modeling and simulation of multi-
domain systems that include mechanical, electrical and electronics
components such as sensors and actuators. Coupled and interactive
dynamics of vehicle systems is presented, and a modeling process of
vehicle operational properties is based on various equations of analytical
and adaptive dynamics. Students will gain knowledge and analytical
hands-on skills through innovative homework and a research project.
Skills in one of programming software/languages are required (e.g.,
MATLAB/Simulink, ADAMS/Car, LabVIEW, etc.).

and Design. 3 Hours.
The main goal of this course is to give detailed understanding, analytical
knowledge and engineering experience in research, design and
experimental study of autonomous wheel power management systems
(AWPMS). The AWPMS are autonomous mechatronic and autonomously
operated mechanical systems that distribute power among the drive
wheels of vehicles. AWPMS include various configurations of torque
vectoring systems, limited slip differentials and hydraulically controlled
differentials, electronically-locking differentials, and positive engagement
of the wheels. AWPMS that are operationally integrated with steering and
suspension systems are also presented in the course. Characteristics
of wheel power management systems for a specific vehicle application
are proved in the course by using inverse vehicle dynamics formulation
and requirements to vehicle energy efficiency, mobility, stability of motion,
and turnability. Students will learn mechanical design principles for
mechatronic systems and methods for developing control algorithms.
Methods for experimental study of wheel power management systems
and vehicles are also presented in the course; including 4x4 vehicle
chassis dynamometer with individual wheel control and test setups.
Students will exercise analytical skills and gain hands-on experience
through innovative homework and a research project.

ME 740. Heat Conduction. 3 Hours.
Introduction to methods of solution for heat conduction problems. Topics
include separation of variables in rectangular, cylindrical and spherical
coordinates, solution to the heat equation on semi-infinite and infinite
domains, Duhamel's Theorem, use of Green's Function, and use of
the Laplace Transform. A basic understanding of heat transfer at the
undergraduate level is required for this course.

ME 741. Radiation Heat Transfer. 3 Hours.
Introduction to radiation heat transfer. Topics include radiation from black
bodies and nonblack opaque surfaces, configuration factors for diffuse
surfaces, radiation exchange in enclosures of diffuse-grey and specularly
reflecting surfaces, radiation combined with conduction and convection,
and energy transfer for absorbing, emitting and scattering media. A basic
understanding of heat transfer at the undergraduate level is required.

ME 750. Transport Phenomena. 3 Hours.
Laminar flow transports: momentum transfer (Couette/Poiseuille flows),
ergy transfer (free/forced convections and conductions), and mass
transfer; equation of state, turbulence, chemical reactions, and numerical
methods solving transport equations.

ME 761. Math Methods in EGR I. 3 Hours.
Mathematical theory and solutions methods to problems in engineering
including advanced ordinary differential equations; eigenvalue
problems; multi-variable calculus and implicit functions; curve, surface
ad volume representation and integration; Fourier integrals and
transforms; separation of variables and transform techniques for solution
of partial differential equations. Differential Equations or equivalent is
recommended as a prerequisite for this course.

ME 762. Math Methods in EGR II. 3 Hours.
Mathematical theory and solution methods to problems in engineering
including Scalar and vector field theory advanced partial differential
equations, analysis using complex variables, conformal mapping,
complex integral calculus, Green's functions, perturbation methods,
and variational calculus. Math Methods in EGR I or equivalent is a
recommended prerequisite for this course.

ME 763. Engineering Statistics. 3 Hours.
Introduction to applied statistics and probability for engineering and
the physical sciences. Topics include introduction to probability,
discrete and random variables and their distributions, joint probability
distributions, hypothesis testing, statistical inference, linear regression
and correlation, design of experiments, and statistical quality control. A
basic understanding of calculus and matrix algebra at the undergraduate
level is required for this course.

ME 765. Computational Methods in EGR. 3 Hours.
Applications of computers to solution of problems in engineering,
including matrices, roots of equations, solution of simultaneous
equations, curve fitting by least squares, differentiation and integration,
differential and partial differential equations. Differential Equations
and Computational Engineering or equivalents are recommended
prerequisites for this course.

ME 770. Intro to Continuum Mechanics. 3 Hours.
Fundamentals and application of mechanics principles to problems in
continuous media. Matrix and tensor mathematics, fundamentals of
stress, kinematics and deformation of motion, conservation equations,
constitutive equations and invariance, linear and nonlinear elasticity,
classical fluids, linear viscoelasticity. Mechanics of Solids and Differential
Equations or equivalents are recommended prerequisites for this course.
ME 772. Advanced Dynamics. 3 Hours.
Advanced topics in dynamics including complex motion analysis, generalized kinematic parameters, quasivelocities and virtual displacements, direct and inverse dynamics approaches, and fundamentals of systems with variable masses. Introduction to the modeling of mechatronic systems is presented through a consideration of mechanical, electrical, and electronics components. Analytical and adaptive dynamics principles are taught as a basis for control algorithm development and mechatronic system design. Students are expected to have a working knowledge of dynamics prior to registering for this course.

ME 779. Advanced Finite Element Analysis. 3 Hours.

ME 788. Fluid-Structure Interactions. 3 Hours.
Modeling and simulation of fluid-structure interaction (FSI) phenomena using computational methods. The Arbitrary Lagrangian Eulerian (ALE) formulation, a variety of interpolation methods, mesh movement and time mapping algorithms. Solution of FSI problems using interface codes.

ME 790. Special Topics in ME. 1-6 Hour.
Special Topics in (Area).

ME 791. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

ME 794. Seminars in Mechanical EGR. 1 Hour.
Seminars in areas of mechanical engineering.

ME 796. IEGR Journal Club. 1 Hour.
Journal club to discuss current research and investigations in areas of interdisciplinary engineering.

ME 798. Non-Dissertation Research. 1-12 Hour.
Research.

ME 799. Dissertation Research. 1-12 Hour.
Research.
Prerequisites: GAC Z

MSE-Material Science Egr Courses

MSE 501. Materials Processing. 3 Hours.
Processing of metals, glasses, ceramics, and composites. Powder casting, welding, rapid solidification, and other advanced approaches.

MSE 505. Frontiers of Automotive Materials. 3 Hours.
Advanced lightweight automotive materials, manufacturing and modeling techniques. Technology advancements in cost-effective carbon, glass and related reinforcements; "green" and sustainable materials, crashworthiness and injury protection of occupants and pedestrians, metal castings, heavy truck, mass transit, fuel cell and hybrid vehicles. Students taking this class will receive a GATE certificate of training in automotive materials technologies upon successful completion.

MSE 508. Nanobiomaterials. 3 Hours.
Basic tools of nanotechnology, building blocks of nanostructured materials. Behavior of materials with nanoscale structures and their technological applications, including automotive, medical, and electronic applications. Introduction to biomaterials and nanobiomaterials, nanotoxicity and how to work safely with nanomaterials. Concepts in tissue engineering with special focus on nanoscaffolds and nanoparticles in drug delivery.

MSE 509. Principles of Metal Casting. 3 Hours.
Production and evaluation of cast ferrous metals (gray iron, ductile iron, steel) and non-ferrous metals (brass, bronze, aluminum). Design of castings and molds. Laboratory on the gating, risering and molten metal treatment, analysis and handling techniques required to produce high quality castings. It is recommended that students who register for this course have successfully completed MSE 280 Engineering Materials or an equivalent course.

MSE 509L. Principles of Metal Casting. 0 Hours.
Laboratory component of MSE 509 and must be taken concurrently.

MSE 513. Composite Materials. 3 Hours.
Processing, structure, and properties of metal-, ceramic-, and polymer-matrix composite materials. Roles of interfacial bond strength, reinforcement type and orientation and matrix selection in physical and mechanical properties of composite materials.

MSE 525. Statistics and Quality. 3 Hours.
This course is arranged to reflect the sequential steps an engineer or scientist take to assess process capability and implement process improvement studies. There is a focus on connecting the theoretical equations to practical examples as well as interpreting and communicating of statistical results.

MSE 530. Polymeric Materials. 3 Hours.
Processing methods, structure/engineering/property relationships, and applications of polymeric materials.

MSE 530L. Polymeric Materials Lab. 0 Hours.
Laboratory component of MSE 530 and must be taken concurrently.

MSE 533. Nondestructive Evaluation of Materials. 3 Hours.
Principles, applications, and limitations of ultrasonic vibrations, acoustic emission, radiographic, magnetic particle, eddy current, and other nondestructive testing methods. Intelligent sensors and health monitoring of real structures.

MSE 545. The Evolution of Engineering Materials. 3 Hours.
Past, present and future of engineering materials; how new materials and processing methods have impacted human society, from the Stone Age until today. Taught as a 3-week study abroad course in Germany, with visits to universities, industrial facilities, research labs, museums and selected cultural sites.

MSE 552. Composites Manufacturing. 3 Hours.
Principles of manufacturing and processing of polymeric matrix composites. Production techniques including filament winding, pultrusion, and liquid infusion techniques combined with design, environmental and manufacturing issues of polymer matrix composites.

MSE 564. Metals and Alloys. 4 Hours.
Microstructures, properties, heat treatment, and processing of ferrous and nonferrous materials.

MSE 564L. Metals and Alloys Lab. 0 Hours.
Laboratory component of MSE 564 and must be taken concurrently.
MSE 565. Characterization of Materials. 4 Hours.
Theory and practice of materials characterization, with emphasis on optical metallurgy, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 565L. Characterization of Materials Laboratory. 0 Hours.
Laboratory component of MSE 565 and must be taken concurrently with MSE 565.

MSE 570. Ceramic Materials. 4 Hours.
Structure, processing, properties, and uses of ceramic compounds and glasses. Mechanical, thermal, and electrical behavior of ceramic materials in terms of microstructure and processing variables.

MSE 570L. Ceramic Materials Laboratory. 0 Hours.
Laboratory component of MSE 570 and must be taken concurrently.

MSE 574. Metals and Alloys II. 3 Hours.
Production and physical metallurgy of ferrous and non-ferrous alloys including: steel alloys, inoculation and production of ductile, gray, compacted and malleable iron; advanced heat treatments of steel and iron; conventional and ultra-high strength aluminum alloys; wrought and cast copper alloys; wrought and cast magnesium alloys.

MSE 590. Special Topics in Materials Science & Engineering. 1-3 Hour.
Special Topics in Materials Science & Engineering.

MSE 591. Individual Study in Materials Science & Engineering. 1-6 Hour.
Individual Study in Materials Science & Engineering.

MSE 601. Materials Science and Engineering Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to materials students.

MSE 602. Intro to Thermodynamics and Mechanics of Materials. 3 Hours.
This course is a survey of undergraduate level theory and application of the fundamental principles of mechanics of materials and thermodynamics. Understanding is based on the explanation of the physical behavior of materials under load and then modeling this behavior to develop the theory. Intended to provide the students with both the theory and application of the fundamental principles of thermodynamics of materials. Students must be graduate student in engineering, chemistry or physics.

MSE 603. Thermodynamics of Materials. 3 Hours.
Atomistic and classical approaches to the understanding of the thermodynamics of solids, phase transformations, chemical reactions, and alloy systems.

MSE 605. Introduction to Physical Materials. 3 Hours.
Overview of fundamental concepts of materials science and engineering, focusing on chemical and physical properties such as bonding, crystal structure and defects, diffusion, and phase diagrams.

MSE 606. Introduction to Manufacturing Engineering. 3 Hours.
Manufacturing is the process of transforming raw materials into products. Even the most optimized and controlled industrial processes are fraught with variability and inefficiencies, both of which can have a negative impact on profitability. This course will introduce students to the proven tools to characterize and optimize industrial processes. In addition, students will learn the statistical techniques to quantitative assess and detect changes to a process and make data-driven decisions to improve that process.

MSE 607. Measurement Systems Analysis. 3 Hours.
Whether in a manufacturing process, research & development lab or quality control, assessment and analysis of data used for decision making has roots in the equipment and procedures that make up a measurement system. Students will learn to critically assess the capability of measurements systems, gauges and analytical equipment used to collect data. Students will learn metrology, best practices, and statistical tools to quantitatively assess, as well as procedures to implement a Gage R&R study to improve a measurement system. In addition, students will learn effective communication strategies for presenting the results of statistical analysis.

MSE 608. Process Characterization and Advanced Statistical Analysis. 3 Hours.
This course centers on manufacturing processes and the inherent variability of all products. Product variability has origins at all input points in a process; raw materials, energy, time, human, etc. This course will expose engineers to the statistics to quantify and assess variability. In addition to statistical tools, we will delve deep into all phases of the DMAIC (Define, Measure, Analysis, Improve, and Control) methodology and the Lean/Six Sigma tools to identify, implement and document process improvements. An emphasis will be placed on the communication of these often-complicated statistics in an industrial setting. We will put these concepts into practice through completion of a final term paper. Students will be required to choose an industrial process and apply and communicate the concepts learned in this course.

MSE 610. Advanced Materials, Manufacturing and Applications Development. 3 Hours.
Introduction to advanced materials by design, near net-shape cost-effective manufacturing, synergistic knowledge of material properties, durability and function. Hands on activities related to extrusion-compression, fiber spinning, thermostet/theromelastic materials, metal grade materials, intermediate forms and hybrid manufacturing. Integrated process and product development methodology. Student projects will involve manufacturing processes associated with mass production.

MSE 613. Mechanical Behavior of Materials. 3 Hours.
Microstructural effects on the deformation mechanisms responsible for mechanical behavior of engineering materials.

MSE 614. Process Quality Engineering. 3 Hours.
Application of the concepts and tools of total quality to develop, implement, and maintain an effective quality assurance system in a materials processing and manufacturing environment. Students will be exposed to probability models, statistical tools, linear and multiple regression, DOE, TQM and six sigma.

MSE 624. Physical Metallurgy. 3 Hours.
Course will consider the fundamental thermodynamic and kinetic principles governing the behavior of metals and alloys, particularly with respect to their influence the formation and evolution of microstructure. Topics will include liquid-solid and solid-state phase transformations, nucleation, growth, solidification and diffusion.

MSE 628. Thermal Characterization. 3 Hours.
This lab-oriented course will be focused to give graduate students the theory and hands-on experience in operation, data acquisition and interpretation of widely used thermal characterization techniques such as differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), Simultaneous TGA-DTA, Thermo mechanical analyzer (TMA), Dynamic mechanic analyzer (DMA) and rheological and viscosity analyses of polymeric resins and composite materials. Exposure to the surface characterization techniques such as contact angle goniometer for wettability, Fourier Transform infrared spectrometer (FT-IR).
MSE 628L. Thermal Characterization Lab. 0 Hours.
Laboratory component of MSE 628 and must be taken concurrently.

MSE 629. Polymer Structure and Morphology. 3 Hours.
Polymer structures and morphology and its relationships with applications, multicomponent polymer systems (polymer blends, copolymers, micro and nanocomposites), liquid crystalline polymers, polymer crystals, oriented polymers, morphological aspects of deformation and advances in polymers (biomimetic and bioinspired polymer systems).

MSE 633. Advanced Mechanics of Deformation. 3 Hours.
Basics and intermediate mechanics of deflection of beams and columns, mechanics of impact, failure theories, plastic deformation of materials, fracture mechanics, fatigue, creep and vibration. The topics will be supported by industry relevant case studies. Suggested prerequisites included Mechanics of Solids (CE 220) and Mechanical Behavior (MSE 382).

MSE 635. Advanced Mechanics of Composites. 3 Hours.
Classical lamination theory, analysis and failure of reinforced composite material systems, anisotropic elasticity, stress analysis and design of laminated composites including 3D effects, stress concentrations, free-edge effects, hygrothermal behavior, adhesive and mechanical connections.

MSE 636. Engineering Fibers. 3 Hours.
Processing-microstructure-properties of different fibrous materials: natural polymeric fibers (jute, sisal, silk, etc.), synthetic polymeric fibers (aramid and polyethylene, etc.), metallic fibers, and high performance ceramic fibers (alumina and silicon carbide). Application of Weibull statistics to strength of fibrous materials, techniques of mechanical testing of fibers and applications of fibers in various fields.

MSE 638. Degradation of Materials. 3 Hours.
Basics of materials degradation- thermodynamics and kinetics - Pourbaix diagram, chemical and electrochemical reactions; Degradation types and mechanisms; Degradation of different material systems: Metals, alloys, ceramics and glasses, polymers and composites for versatile applications- structural, functional, energy and biomedical; Impact on materials properties; Investigation for materials degradation; Protection from degradation and materials design;Environmental and biological aspects; Societal impact.

MSE 667. Process Modeling/Simulation. 3 Hours.
Theory and practice of analytical methods and computational modeling for manufacturing processes of metals, ceramics, polymers and composites. Applications on processes such as metal cutting, welding, casting, massive forming, solidification, rapid prototyping, injection molding and resin transfer molding.

MSE 668. Applied Finite Element Analysis. 3 Hours.
Finite Element Analysis (FEA) is used widely for design optimization and failure prediction in automobile, energy, aerospace, and other industries. This course primarily looks at how practically to set up static structural models and get meaningful results. The focus will be on applying loading and boundary conditions, good meshes, convergence of results, and correct interpretation of results. Students will learn how to set up models using programs such as Pro/Engineer and ANSYS.

MSE 670. Physical Characterization. 3 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 670L. Physical Characterization Lab. 0 Hours.
Laboratory component of MSE 670 and must be taken concurrently.

MSE 690. Special Topics In (Area). 1-6 Hour.
Special Topics in (Area).

MSE 690L. Special Topics in (Area) Laboratory. 0 Hours.
Special Topics in (Area) laboratory.

MSE 691. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

Prerequisites: GAC M

MSE 701. Materials Science and Engineering Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to materials students.

MSE 702. Intro to Thermodynamics and Mechanics of Materials. 3 Hours.
This course is a survey of undergraduate level theory and application of the fundamental principles of mechanics of materials and thermodynamics. Understanding is based on the explanation of the physical behavior of materials under load and then modeling this behavior to develop the theory. Intended to provide the students with both the theory and application of the fundamental principles of thermodynamics of materials. Students must be graduate student in engineering, chemistry or physics.

MSE 703. Thermodynamics of Materials. 3 Hours.
Atomistic and classical approaches to the understanding of the thermodynamics of solids, phase transformations, chemical reactions, and alloy systems.

MSE 705. Introduction to Physical Materials. 3 Hours.
Overview of fundamental concepts of materials science and engineering, focusing on chemical and physical properties such as bonding, crystal structure and defects, diffusion, and phase diagrams.

MSE 710. Advanced Materials, Manufacturing and Applications Development. 3 Hours.
Introduction to advanced materials by design, near net-shape cost-effective manufacturing, synergistic knowledge of material properties, durability and function. Hands on activities related to extrusion-compression, fiber spinning, thermoset/thermoplastic materials, medical grade materials, intermediate forms and hybrid manufacturing. Integrated process and product development methodology. Student projects will involve manufacturing processes associated with mass production.

MSE 714. Process Quality Engineering. 3 Hours.
Application of the concepts and tools of total quality to develop, implement, and maintain an effective quality assurance system in a materials processing and manufacturing environment. Students will be exposed to probability models, statistical tools, linear and multiple regression, DOE, TQM and six sigma.

MSE 724. Physical Metallurgy. 3 Hours.
Course will consider the fundamental thermodynamic and kinetic principles governing the behavior of metals and alloys, particularly with respect to their influence the formation and evolution of microstructure. Topics will include liquid-solid and solid-state phase transformations, nucleation, growth, solidification and diffusion.
MSE 728. Thermal Characterization. 3 Hours.
This lab-oriented course will be focused to give graduate students the theory and hands-on experience in operation, data acquisition and interpretation of widely used thermal characterization techniques such as differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), Simultaneous TGA-DTA, Thermo mechanical analyzer (TMA), Dynamic mechanic analyzer (DMA) and rheological and viscosity analyses of polymeric resins and composite materials. Exposure to the surface characterizations techniques such as contact angle goniometer for wettability, and Fourier Transform infrared spectrometer (FT-IR).

MSE 728L. Thermal Characterization Lab. 0 Hours.
Laboratory component of MSE 728 and must be taken concurrently.

MSE 729. Polymer Structure and Morphology. 3 Hours.
Polymer structures and morphology and it’s relationships with applications, multicomponent polymer systems (polymer blends, copolymers, micro and nanocomposites), liquid crystalline polymers, polymer crystals, oriented polymers, morphological aspects of deformation and advances in polymers (biomimetic and bioinspired polymer systems).

MSE 733. Advanced Mechanics of Deformation. 3 Hours.
Basics and intermediate mechanics of deflection of beams and columns, mechanics of impact, failure theories, plastic deformation of materials, fracture mechanics, fatigue, creep and vibration. The topics will be supported by industry relevant case studies. Suggested prerequisites included Mechanics of Solids (CE 220) and Mechanical Behavior (MSE 382).

MSE 735. Advanced Mechanics of Composites. 3 Hours.
Classical lamination theory, analysis and failure of reinforced composite material systems, anisotropic elasticity, stress analysis and design of laminated composites including 3D effects, stress concentrations, free-edge effects, hygrothermal behavior, adhesive and mechanical connections.

MSE 736. Engineering Fibers. 3 Hours.
Processing-microstructure-properties of different fibrous materials: natural polymeric fibers (jute, sisal, silk, etc.) synthetic polymeric fibers (aramid and polyethylene, etc.), metallic fibers, and high performance ceramic fibers (alumina and silicon carbide). Application of Weibull statistics to strength of fibrous materials, techniques of mechanical testing of fibers and applications of fibers in various fields.

MSE 738. Degradation of Materials. 3 Hours.
Basics of materials degradation- thermodynamics and kinetics - Pourbaix diagram, chemical and electrochemical reactions; Degradation types and mechanisms; Degradation of different material systems: Metals, alloys, ceramics and glasses, polymers and composites for versatile applications- structural, functional, energy and biomedical; Impact on materials properties; Investigation for materials degradation; Protection from degradation and materials design; Environmental and biological aspects; Societal impact.

MSE 767. Process Modeling/Simulation. 3 Hours.
Theory and practice of analytical methods and computation modeling for manufacturing processes of metals, ceramics, polymers and composites. Applications on processes such as metal cutting, welding, casting, massive forming, solidification, rapid prototyping, injection molding, and resin transfer molding.

MSE 768. Applied Finite Element Analysis. 3 Hours.
Finite Element Analysis (FEA) is used widely for design optimization and failure prediction in automobile, energy, aerospace, and other industries. This course primarily looks at how practically to set up static structural models and get meaningful results. The focus will be on applying loading and boundary conditions, material properties, meshing, convergence, and correct interpretation of results. Students will learn how to set up models using programs such as Solidworks and ANSYS.

MSE 770. Physical Characterization. 3 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 770L. Physical Characterization Lab. 0 Hours.
Laboratory component of MSE 770 and must be taken concurrently.

MSE 790. Special Topics in (Area). 1-6 Hour.
Special Topics In (Area).
MSE 790L. Special Topics in (Area) Laboratory. 0 Hours.
Special Topics in (Area) Laboratory.
MSE 791. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).
MSE 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

MSEM-Engineering Management Courses

MSEM 590. Special Topics in Engineering Management. 1-3 Hour.
Special Topics in Engineering Management.

MSEM 591. Individual Study in Engineering Management. 1-6 Hour.
Individual Study in Engineering Management.

MSEM 640. Systems Engineering. 3 Hours.
This course will explore systems engineering and systems thinking. Students will learn key topics related to engineering products and design, including requirements development, the project life cycle, system hierarchy, risk analysis, and cost analysis. They will learn that systems engineering is iterative and will develop judgment that will allow them to compare and evaluate engineering alternatives. They will learn to discuss systems engineering methods and processes as well as engage in systems thinking.

MSEM 650. Technical Project Management. 3 Hours.
Students will learn the common methodologies used to manage complex projects in technology organizations. They will learn how to successfully plan, schedule, budget, and complete projects. Topics will include the PMP, Six Sigma, Lean, and other methodologies. Students will take part in several class exercises that will allow them to use different project management skills. The format of the class will consist of lecture and general discussion. There will also be significant portions of class time dedicated to project based activities.

MSEM 660. Professional Development for Engineers. 3 Hours.
This course prepares students to make the transition from student to working engineer. Students will develop skills in personal branding, career planning, strategic career search, networking, teamwork, leadership, professional communications, time management, measuring value, and professional etiquette. In addition, students will learn how to find and develop opportunities and how to use social media to enhance and protect their personal brand.
MSEM 695. Engineering Management Design Project. 3 Hours.
This course is for students who already have a relevant job or internship and are part of the Master of Engineering Management program. The purpose of this course is to be a capstone program where the skills and concepts learned in the MSEM are applied to a real industry issue. This project will be performed in partnership with your current employer by defining a project on the job and working with MSEM faculty to meet core deliverables.

MSEM 696. Engineering Management Internship. 3 Hours.
This course is an internship and will be conducted in cooperation with an employer and the School of Engineering’s Director of Career Services. Students will work with an industry partner and then provide a final report.

Interdisciplinary Engineering (PhD)

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Interdisciplinary Engineering PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>https://www.uab.edu/engineering/home/graduate/interdisciplinary-phd</td>
</tr>
<tr>
<td>Program Director</td>
<td>Gregg M. Janowski, PhD</td>
</tr>
<tr>
<td>Email</td>
<td>janowski@uab.edu</td>
</tr>
<tr>
<td>Program Administrator</td>
<td>Kristy Barlow, MPA</td>
</tr>
<tr>
<td>Email</td>
<td>kbarlow@uab.edu</td>
</tr>
</tbody>
</table>

Program Objectives

Today’s professional must constantly change, adapt, focus, and navigate among disciplines to keep up with rapid market shifts and technological advances. Because of these market trends, industries are particularly interested in interdisciplinary graduate education that emphasize both breadth of knowledge and depth in a particular field. The premise of interdisciplinary programs is that students must be educated in multiple related subject areas to remain competitive and have successful careers in academia or industry. The PhD Program in Interdisciplinary Engineering provides a rigorous academic curriculum including coursework in two or more disciplines and unique opportunities for interdisciplinary research.

The Interdisciplinary Engineering PhD program draws upon strengths of the five departments in the School of Engineering: Biomedical Engineering; Civil, Construction, and Environmental Engineering; Electrical and Computer Engineering; Materials Science and Engineering; and Mechanical Engineering. Students enrolled in the Interdisciplinary Engineering PhD program will gain the skills to succeed as independent and productive investigators in multidisciplinary analysis and design, with applications over a wide spectrum of science, engineering, health, and medical fields.

The program provides unique opportunities for interdisciplinary research and fosters interdisciplinary collaborative interactions between students and faculty in the School of Engineering, the Schools of Business, Medicine, and Public Health and the College of Arts and Sciences. Interdisciplinary Engineering students have opportunities to develop a plan of study and a dissertation research topic that incorporates coursework and faculty expertise from two or more of disciplines across UAB.

The interdisciplinary program will:

- Provide a rigorous academic curriculum including coursework in two or more disciplines
- Provide collaborative interactions with students and faculty from a variety of disciplines
- Provide unique opportunities for interdisciplinary research
- Facilitate continued development of high-quality research programs supported by external funding.

Admission Requirements

Admission decisions are made on the basis of prior education, GPA, test scores, personal statement, professional experience, and recommendations.

In addition to the Graduate School admission requirements, admission to the Interdisciplinary Engineering PhD program includes the following:

- Undergraduate or graduate degree in Engineering. Applicants who do not meet this criterion but who have an outstanding academic record in a related field may be admitted but will be required to complete a sequence of undergraduate courses (including prerequisites as appropriate) in addition to the normal requirements of the IE PhD degree
- Minimum GPA of 3.0 on a 4.0 scale on most recent degree
- GRE is not required
- Personal statement identifying research interest
- CV/Résumé
- 3 academic or professional recommendations
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process);

<table>
<thead>
<tr>
<th>Deadline for Entry Term(s):</th>
<th>Fall: August 1; Spring: December 1; Summer: May 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office:</td>
<td>Seven days before term begins</td>
</tr>
</tbody>
</table>

Degree Requirements

Graduate Committee

Because of the interdisciplinary nature of the program, the graduate study committee (dissertation committee) is important. The committee will oversee the selection of courses and direction of research. Students must form a graduate committee within the first year of study and must meet with the committee no less than once per academic year. Committees must have at least five members selected from at least two different Schools/Colleges, with a minimum of two faculty with primary appointment in the School of Engineering.

Coursework

The IE PhD promotes a research-based curriculum with a set of core courses required of all students in the program. Additional coursework is directed by the student’s graduate study committee based on the
student's area of interest. The planned curriculum must result in training in two or more disciplines, which is defined as courses offered outside the School of Engineering.

Students entering the PhD program with a baccalaureate degree must, in keeping with UAB Graduate School policies, complete at least 48 hours of coursework prior to admission to candidacy. Up to 16 of the 48 credits can be non-dissertation research, and up to 10 credits can be a combination of laboratory rotations, seminars, and directed study.

Students entering the PhD program with a Master's degree in a related field, MD, DMD, etc., must complete at least 27 credit hours of coursework prior to candidacy. Up to 6 credits of the 27 can be non-dissertation research credits, and up to 6 credits can be as lab rotations, seminars, or directed study credits.

For all students, at least 24 hours of dissertation research are required and must be taken over at least two semesters after admission to candidacy.

All students in the IE PhD program must complete the following core courses:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 710 Intro to Interdisciplinary EGR</td>
<td>3</td>
</tr>
<tr>
<td>EGR 711 Methodology for IEGR Research</td>
<td>3</td>
</tr>
<tr>
<td>Journal Club - 4 enrollments of 1 hour each</td>
<td>4</td>
</tr>
<tr>
<td>EGR 796 Journal Club in Interdisciplinary Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Students may substitute a different graduate-level seminar/journal club with permission of his/her faculty mentor and the program director.

In addition to the IE PhD program core courses (above), course selection is based on the research and career goals of the student, and curricula will vary between students. Students are guided by their faculty mentor (committee chair) and a graduate study committee composed of faculty representing an interdisciplinary team in the student's area of research interest. The coursework must include courses from at least two disciplines.

These courses will be completed under the guidance of the student's faculty mentor (graduate study committee chair). Non-dissertation research and dissertation research hours will be taken through the department of the student's faculty mentor.

Comprehensive Examination

Interdisciplinary Engineering PhD students are required to pass a comprehensive examination, which includes both written and oral components, and a dissertation proposal. The examination is administered by the student's graduate study committee. Upon successful completion of the examination and at least 39 hours of coursework if entering with a baccalaureate degree or 18 hours of coursework if entering with a Master's degree, a student may apply for doctoral candidacy. All doctoral students must successfully complete GRD 717 prior to admission to candidacy.

Research and Dissertation

The dissertation is the summation of the doctoral studies and must demonstrate the ability to conduct, analyze, and defend independent research consistent with the dissertation proposal. The graduate study committee must provide feedback on the dissertation draft prior to scheduling the defense. Doctoral candidates present and defend their work before their graduate study committee and the public as their final examination. See the UAB Graduate School website for formatting guidelines and deadlines.

Additional Requirements

Students are required to present research at a local, regional, national, or international technical conferences and publish research findings in at least two peer-reviewed journals. The IE PhD program director will not approve the student's application for degree without evidence that the articles were published, are in press, or have been submitted.

PhD students are required to complete the degree within 7 years, per Graduate School requirement. Any student who does not meet this requirement must appeal to the Graduate School for an extension.

Additional Academic Policies

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the Interdisciplinary Engineering PhD without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Students admitted into the Interdisciplinary Engineering PhD program are not permitted to transfer to another program within the School of Engineering.

Master of Science in Engineering Management (M.S.E.M.)

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Science in Engineering Management (MSEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>https://www.uab.edu/engineering/mme/graduate/ms-materials</td>
</tr>
<tr>
<td>Director</td>
<td>Dale W. Callahan, PhD, PE</td>
</tr>
<tr>
<td>Program Manager</td>
<td>Maria Whitmire</td>
</tr>
<tr>
<td>Phone</td>
<td>(205) 934-8480</td>
</tr>
</tbody>
</table>

The Master of Science in Engineering Management (MSEM) is a joint degree between the School of Engineering and the Collat School of Business. The MSEM will further develop the technical, managerial, and professional capabilities of engineering graduates, preparing them for earlier entry into positions of leadership within a wide variety of industries and organizational types. The technical engineering coursework emphasizes a systems-oriented, multidisciplinary approach to solving complex problems. The managerial and professional coursework develops essential business acumen, an ability to think strategically, and a commitment to professional work habits that are the hallmark of excellence in engineering.

Graduates will be well-prepared for positions as engineers, project managers, program managers, product managers, consultants,
technical sales representatives, technical sales support specialists, and engineering managers. They will have the knowledge and skills to manage an organization’s relationship with technology vendors, evaluate technical proposals, develop internal technical training and education programs, or bring both a business and a technical perspective to cross-functional teams focused on strategic alignment or evaluation of emerging technologies. Graduates will also be prepared to pursue advanced degrees.

Master of Science in Engineering Management

Admissions Requirements

Applicants to the program are expected to have one of the following:

- An undergraduate engineering degree with a minimum GPA of 3.0 on a 4.0 scale, or
- Junior or senior standing in good standing with a minimum GPA of 3.0 on a 4.0 scale in an engineering undergraduate degree program (undergraduate degree must be earned prior to matriculation)

International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement: [Click here for details](https://www.uab.edu/)

Application Deadlines

<table>
<thead>
<tr>
<th>Entry Term</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Submission Deadline for Application</td>
<td>Fall: August 1; Spring: December 1; Summer: May 1</td>
</tr>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School office</td>
<td>Seven business days before term begins (see UAB academic calendar - https://www.uab.edu/students/academics/academic-calendar)</td>
</tr>
</tbody>
</table>

Curriculum

The MSEM degree consists of 18 hours of core courses, 3 hours of capstone or internship, and 12 hours of student-selected coursework with guidance from the Program Director.

The MSEM degree allows the student to have both professional management knowledge and in-depth technical knowledge of the chosen field of study (biomedical, civil, construction, environmental, electrical, computer, materials, mechanical, or structural engineering).

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the MSEM without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 601 Accounting and Finance for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MBA 651 Marketing Strategy</td>
<td>3</td>
</tr>
<tr>
<td>MBA 681 From Idea to IPO</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Coursework</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 credit hours of engineering coursework focused on student’s chosen area of learning</td>
<td>33</td>
</tr>
</tbody>
</table>

Masters of Engineering (M.Eng.)

In an effort to meet increasing industry demands for highly skilled workers, the School of Engineering offers a professional Master of Engineering program with a variety of concentrations. The following concentrations are designed to benefit working professionals who seek to increase their qualifications:

- ASEM: Advanced Safety Engineering and Management
- CECM: Construction Engineering Management
- CESC: Sustainable Smart Cities
- CESE: Structural Engineering
- IEM: Information Engineering Management

UAB, a world-class, regionally accredited (SACSCOC) university, provides a wide-ranging fully online engineering program with five distinct, in-demand concentrations designed for working professionals. All courses are comprised of real-world, practical knowledge and content to help our graduates advance in their careers.

All Master of Engineering concentrations are 100% online and are comprised of real-world, practical knowledge and content to help our graduates advance in their careers. There are no campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Students are provided 24/7 support throughout the program.

Advanced Safety Engineering and Management Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes.

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.uab.edu/asem</td>
</tr>
<tr>
<td>Director</td>
<td>Donald S. Burke, PhD</td>
</tr>
<tr>
<td>Email</td>
<td>dburke3@uab.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>205-975-3891</td>
</tr>
<tr>
<td>Address</td>
<td>UAB School of Engineering, HOEN 370</td>
</tr>
<tr>
<td></td>
<td>1720 2nd Avenue South, Birmingham, AL 35294-4440</td>
</tr>
</tbody>
</table>

The Master of Engineering with a concentration in Advanced Safety Engineering and Management is designed for students to explore injury
and catastrophe prevention through a different paradigm. Through a “Prevention through Design” approach, ASEM students examine error-provocative environments as a means to design away risk. By teaching students both the language of engineering as well as safety concepts, graduates are able to bridge the divide between design engineers and occupational safety and health professionals.

Admission Requirements
In addition to the Graduate School admission requirements, admission to the UAB MEng-ASEM program includes the following:

1. Undergraduate degree from a regionally-accredited school
2. Experience in safety or a related field
3. Three letters of recommendation from professional contacts which speak to your character, work ethic, and why the writer believes you will succeed in graduate school
4. Personal essay detailing motivation for earning the degree
5. Résumé/CV
6. NO GRE REQUIRED
7. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details

Applicants not holding a degree from a regionally accredited school may receive admission with contingencies, subject to assessment and recommendation of the program director.

To apply, visit the UAB Graduate School website.

Application Deadlines
Fall: August 1; Spring: December 1; Summer: May 1

Deadline for All Application Materials to be in the Graduate School Office
Fall: August 1; Spring: December 1; Summer: May 1

The MEng-ASEM graduate program is taught by a team of practicing safety and health professionals and engineers with Dr. Donald Burke serving as Program Director. Practitioner-Scholars facilitate online discussions on key topics of interest in their industry sector and provide industry-specific case studies. Students participate in peer-to-peer learning activities discussing current issues in the safety profession and real world experiences using online discussion boards.

Master of Engineering with a concentration in Advanced Safety Engineering and Management

Students must earn a B or better in two attempts to meet graduation requirements.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>ASEM 601 ASEM Seminar ¹</td>
<td>0</td>
</tr>
<tr>
<td>ASEM 610 Introduction to System Safety - Prevention through Design</td>
<td>3</td>
</tr>
<tr>
<td>ASEM 619 Capstone Project - Part 1</td>
<td>3</td>
</tr>
<tr>
<td>ASEM 620 Capstone Project - Part 2</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
<tr>
<td>ASEM 611 Hazard Analysis and Waste Elimination</td>
<td></td>
</tr>
<tr>
<td>ASEM 612 Engineering Risk</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEM 613 Human Performance and Engineering Design</td>
<td></td>
</tr>
<tr>
<td>ASEM 614 Engineering Ethics and Acceptable Risk</td>
<td></td>
</tr>
<tr>
<td>ASEM 615 Leading through Climates of Change</td>
<td></td>
</tr>
<tr>
<td>ASEM 616 Policy Issues in Prevention through Design</td>
<td></td>
</tr>
<tr>
<td>ASEM 617 Crisis Leadership</td>
<td></td>
</tr>
<tr>
<td>ASEM 626 Learning-Based Response to Organizational Accidents and Incidents</td>
<td></td>
</tr>
<tr>
<td>ASEM 627 Communication in Safety Systems</td>
<td></td>
</tr>
<tr>
<td>ASEM 628 Electrical Systems Safety</td>
<td></td>
</tr>
<tr>
<td>ASEM 630 Machinery Safety Management System</td>
<td></td>
</tr>
<tr>
<td>ASEM 690 Special Topics in (Area) ²</td>
<td></td>
</tr>
<tr>
<td>ASEM 691 Individual Study in (Area) ²</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 33

¹ Must be taken each semester
² With Director approval; no more than 6 combined credit hours of ASEM 690 and ASEM 691 may be applied to the degree

Coordinated ASEM/MBA Program

The UAB School of Engineering and the Collat School of Business have partnered to offer a coordinated Advanced Safety Engineering Management/MBA degree.

Application Process

Students interested in pursuing the dual ASEM/MBA degree must complete a separate MBA application through the UAB Graduate School’s application system. Deadline for applications will be as follows:

<table>
<thead>
<tr>
<th>Required Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Résumé/CV</td>
</tr>
<tr>
<td>• Statement of purpose</td>
</tr>
<tr>
<td>• Three letters of recommendation from professional contacts¹</td>
</tr>
<tr>
<td>• Transcripts from all colleges and universities attended²</td>
</tr>
<tr>
<td>• The TOEFL and GMAT requirement will be waived for applicants admitted to the ASEM program.</td>
</tr>
</tbody>
</table>

¹ Students may use the same references as used for ASEM application.
² Transcripts submitted for the ASEM application are sufficient.

Degree Requirements

Students will have 5 years from term of entry to complete the degree. Courses older than 5 years may be used towards the degree if revalidated by the Graduate School of Management. The MBA degree consists of 12 required courses (36 semester hours). Six hours of elective credit will be waived with completion of comparable courses in the ASEM program.

The curriculum for the MBA degree as part of the dual ASEM/MBA degree is:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 601 Accounting and Finance for Managers</td>
<td>3</td>
</tr>
<tr>
<td>MBA 662 Quantitative Analysis for Business Managers</td>
<td>3</td>
</tr>
<tr>
<td>MBA 631 Management and Organizations</td>
<td>3</td>
</tr>
</tbody>
</table>
The UAB MEng-CEM includes the following:

In addition to the Graduate School admission requirements, admission to the Master of Engineering with a concentration in Construction Engineering Management (MEng-CEM) is designed to enhance the business qualifications of working professionals interested in project and company/corporate management.

Completion of Degree

Students must file an application for degree with the MBA advising office during the term preceding their final semester. The MBA degree will be awarded at the completion of the ASEM and MBA degree requirements.

Construction Engineering Management Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no on-campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Proper computer equipment and high-speed internet direct access are required to be successful.

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.uab.edu/engineering/cem</td>
</tr>
<tr>
<td>Director</td>
<td>Wesley Zech, PhD, LEED AP</td>
</tr>
<tr>
<td>Email</td>
<td>zechweg@uab.edu</td>
</tr>
<tr>
<td>Director of CEM Student Affairs</td>
<td>Dianne Gilmer, MEng, PMP</td>
</tr>
<tr>
<td>Email</td>
<td>digilmer@uab.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>205-975-5848</td>
</tr>
<tr>
<td>Address</td>
<td>UAB School of Engineering, HOEN 130B</td>
</tr>
<tr>
<td></td>
<td>1720 2nd Avenue South, Birmingham, AL 35294-4440</td>
</tr>
</tbody>
</table>

The Master of Engineering with a concentration in Construction Engineering Management (MEng-CEM) is designed to enhance the construction engineering management and business qualifications of working professionals interested in project and company/corporate management.

Admission Requirements

In addition to the Graduate School admission requirements, admission to the UAB MEng-CEM includes the following:

1. Bachelor's degree (any discipline) from a regionally accredited US college or university. CEM promotes a multi-discipline learning experience and therefore an engineering undergraduate degree is not required;
2. An undergraduate GPA of 3.0 or higher (individuals not meeting this requirement but who have a strong professional background, references, and interview may be admitted);
3. No GRE required;

4. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details;
5. Original transcripts sent directly to the UAB Graduate School per their policy for degree-seeking students (detailed instructions are included during the online application process);
6. Two years of relevant construction industry work experience or a bachelor's degree in engineering or a science-related field;
7. Personal interview with the Director of CEM Student Affairs (schedule the interview prior to submitting an application);
8. Three letters of recommendation from professional contacts;
9. Personal essay detailing motivation and career aspirations for earning the degree; and
10. Résumé/Curriculum Vitae

To apply: Visit the UAB Graduate School website and click the ‘Apply Now’ button. Choose MEng - Construction Engineering Management in the Program Applying To section.

Pre-Defined Table

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CECM 669 Advanced Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CECM 670 Construction Estimating and Bidding</td>
<td>3</td>
</tr>
<tr>
<td>CECM 671 Construction Liability & Contracts</td>
<td>3</td>
</tr>
<tr>
<td>CECM 672 Construction Methods and Equipment</td>
<td>3</td>
</tr>
<tr>
<td>CECM 673 Project Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>CECM 674 Green Building Design/Construction</td>
<td>3</td>
</tr>
<tr>
<td>CECM 675 Advanced Construction and Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>CECM 676 Construction Project Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>CECM 688 Construction Management and Leadership Challenges in the Global Environment</td>
<td>3</td>
</tr>
<tr>
<td>CECM 689 Building Information Modeling (BIM) Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 30

Sustainable Smart Cities Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no on-campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Proper computer equipment and high-speed internet direct access are required to be successful.

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.uab.edu/engineering/</td>
</tr>
<tr>
<td>Director</td>
<td>Jason T. Kirby, PhD</td>
</tr>
<tr>
<td>E-mail</td>
<td>jtkirby@uab.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>205-934-8479</td>
</tr>
<tr>
<td>Address</td>
<td>UAB School of Engineering, HOEN 340</td>
</tr>
<tr>
<td></td>
<td>1720 2nd Avenue South, Birmingham, AL 35294-4440</td>
</tr>
</tbody>
</table>
Admission Requirements
In addition to the Graduate School admission requirements, requirements for admission to the UAB MEng-SSC program includes the following:

1. **Bachelor’s degree** (any discipline) from a regionally accredited US college or university. SSC promotes a multi-discipline learning experience and therefore an engineering undergraduate degree is not required;

2. An **undergraduate GPA** of 3.0 or higher (individuals not meeting this requirement but who have a strong professional background, references, and interview may be admitted);

3. **No GRE required**

4. International applicants must submit **English proficiency scores** in accordance with UAB Graduate School requirement. Click here for details;

5. **Original transcripts** sent directly to the UAB Graduate School per their policy for degree-seeking students (detailed instructions are included during the online application process);

6. Two years of **relevant construction industry work experience** or a bachelor's degree in engineering or a science-related field;

7. **Personal interview** with the Director of SSC (schedule the interview prior to submitting a application);

8. Three **letters of recommendation** from professional contacts;

9. **Personal essay** detailing academic motivation and and career aspirations in SSC; and

10. **Résumé/Curriculum Vitae**

| Application Submission Deadline for Fall: August 1; Spring: December 1; Entry Term(s) | Summer: May 1 |
| Deadline for All Application Materials to be in the Graduate School Office | Seven business days before term begins (see UAB academic calendar - https://www.uab.edu/students/academics/academic-calendar) |

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESC 600</td>
<td>3</td>
</tr>
<tr>
<td>CESC 602</td>
<td>3</td>
</tr>
<tr>
<td>CESC 604</td>
<td>3</td>
</tr>
<tr>
<td>CESC 606</td>
<td>3</td>
</tr>
<tr>
<td>CESC 608</td>
<td>3</td>
</tr>
<tr>
<td>CESC 610</td>
<td>3</td>
</tr>
<tr>
<td>CESC 612</td>
<td>3</td>
</tr>
<tr>
<td>CESC 614</td>
<td>3</td>
</tr>
<tr>
<td>CESC 616</td>
<td>3</td>
</tr>
<tr>
<td>CESC 618</td>
<td>3</td>
</tr>
<tr>
<td>CESC 620</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

Structural Engineering Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no on-campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Proper computer equipment and high-speed internet direct access are required to be successful.

The Master of Engineering with a concentration in Structural Engineering is designed to increase the technical knowledge of engineering professionals working in or desiring to work in the broad field of structural engineering.

Admission Requirements
In addition to the Graduate School admission requirements, requirements for admission to the UAB MEng-STR program include the following:

1. An **undergraduate degree** in civil or mechanical engineering from an ABET accredited program. Applicants who have a Bachelor’s degree and an outstanding academic record from an ABET accredited program other than civil or mechanical engineering or from an unaccredited engineering or applied science program may be admitted at program discretion;

2. An **undergraduate GPA** of 3.0 or higher (individuals not meeting this requirement but who have a strong professional background, references, and interview may be admitted);

3. **No GRE required**;

4. International applicants must submit **English proficiency scores** in accordance with UAB Graduate School requirement. Click here for details;

5. **Original transcripts** sent directly to the UAB Graduate School per their policy for degree-seeking students (detailed instructions are included during the online application process);

6. Minimum undergraduate prerequisites or equivalent (students missing undergraduate prerequisites may be admitted but will be restricted from taking certain courses until the needed prerequisites are satisfied:
 a. Structural Analysis of Elastic Structures
 b. Reinforced Concrete Design
 c. Principles of Steel Design

7. **Personal interview** with the program director (schedule the interview prior to submitting an application);

8. Three **letters of recommendation** from professional contacts;

9. **Personal essay** detailing academic motivation and career aspirations for earning the degree; and

10. **Résumé/Curriculum Vitae**

 To apply: Visit the UAB Graduate School website and click the ‘Apply Now’ button. Choose MEng - Construction Engineering Management in the Program Applying To section.

 Application Submission Deadline for Fall: August 1; Spring: December 1; Entry Term(s) | Summer: May 1
Deadline for All Application Materials to be in the Graduate School Office: Seven business days before term begins (see UAB academic calendar - https://www.uab.edu/students/academic-calendar)

Requirements

Hours

<table>
<thead>
<tr>
<th>Select a minimum of 21 hours</th>
<th>21-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESE 653</td>
<td>Wood and Masonry Design</td>
</tr>
<tr>
<td>CESE 656</td>
<td>Advanced Mechanics of Materials for Structural Engineering</td>
</tr>
<tr>
<td>CESE 657</td>
<td>Advanced Design of Steel Structures</td>
</tr>
<tr>
<td>CESE 659</td>
<td>Advanced Reinforced Concrete</td>
</tr>
<tr>
<td>CESE 660</td>
<td>Prestressed Concrete Behavior and Design</td>
</tr>
<tr>
<td>CESE 662</td>
<td>Advanced Structural Analysis</td>
</tr>
<tr>
<td>CESE 664</td>
<td>Bridge Engineering</td>
</tr>
<tr>
<td>CESE 665</td>
<td>Structural Dynamics and Earthquake Engineering</td>
</tr>
<tr>
<td>CESE 676</td>
<td>Design of Structural Steel Connections</td>
</tr>
<tr>
<td>CESE 690</td>
<td>Special Topics (Area)</td>
</tr>
</tbody>
</table>

Select a maximum of 9 hours

| 0-9 |
CECM 669	Advanced Project Management
CECM 671	Construction Liability & Contracts
CECM 673	Project Planning and Control
CECM 674	Green Building Design/Construction
CECM 675	Advanced Construction and Engineering Economics
CECM 676	Construction Project Risk Management
CECM 689	Building Information Modeling (BIM) Techniques

1 Up to 12 hours of CE course offerings can be substituted for CESE or CECM courses with prior approval from the Program Director.

Curriculum

Requirements

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must complete a minimum of 30 hours with the classes listed below</td>
</tr>
<tr>
<td>All CESE courses at the 600 level</td>
</tr>
<tr>
<td>All CECM courses with advisor-approval 600-791 (maximum of 9 hours)</td>
</tr>
<tr>
<td>All CE courses with advisor-approval 500-791 (maximum of 12 hours)</td>
</tr>
</tbody>
</table>

Total Hours: 30

Information Engineering Management Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes.

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.uab.edu/iem</td>
</tr>
<tr>
<td>Director</td>
<td>Dale W. Callahan, PhD, PE</td>
</tr>
<tr>
<td>Email</td>
<td>iem@uab.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>(205) 934-8480</td>
</tr>
<tr>
<td>Address</td>
<td>UAB School of Engineering, HOEN 370</td>
</tr>
<tr>
<td></td>
<td>1720 2nd Avenue South, Birmingham, AL 35294-4440</td>
</tr>
</tbody>
</table>

Admission Requirements

In addition to the Graduate School admission requirements, admission to the UAB MEng-IEM program includes the following:

1. An undergraduate degree from a regionally accredited university; preference is given to engineering, math, science or technical-related undergraduate degrees
2. Official transcripts from every college/university attended
3. Résumé/CV showing relevant industry work experience
4. Three letters of recommendation from professional contacts
5. An essay answering the questions listed on the IEM website Apply Now page
6. An interview with the IEM admissions committee
7. No GMAT/GRE required for admission to IEM
8. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details

To Apply:

Visit the UAB Graduate School website and click the ‘Apply Now’ button to complete an application.

Application Submission Deadline for Fall: August 1; **Spring:** December 1; **Summer:** April 15

Deadline for All Application Materials to be in the Graduate School Office: Six weeks before term begins (see UAB academic calendar - https://www.uab.edu/students/academic-calendar)

Late Applicants

Applicants who miss the Graduate School’s deadline for admission may apply as “non-degree seeking” and pay an additional application fee. Late applicants are still required to submit the paperwork outlined above. The non-degree seeking deadline is typically 2-4 weeks before classes begin.

Curriculum

Requirements

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEM 601</td>
</tr>
<tr>
<td>IEM 602</td>
</tr>
<tr>
<td>IEM 603</td>
</tr>
<tr>
<td>IEM 610</td>
</tr>
<tr>
<td>IEM 611</td>
</tr>
<tr>
<td>IEM 612</td>
</tr>
<tr>
<td>IEM 620</td>
</tr>
<tr>
<td>IEM 625</td>
</tr>
<tr>
<td>IEM 630</td>
</tr>
<tr>
<td>IEM 631</td>
</tr>
<tr>
<td>IEM 645</td>
</tr>
<tr>
<td>IEM 646</td>
</tr>
<tr>
<td>IEM 695</td>
</tr>
</tbody>
</table>

Total Hours: 33
ASEM-Adv Safety Engineering Courses

ASEM 601. ASEM Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to safety and risk management engineers and safety professionals.

ASEM 610. Introduction to System Safety - Prevention through Design. 3 Hours.
Best practice in any business sector requires the pursuit of a triple bottom line - protecting people, planet, and profit. This course provides an overview of system safety in general and Prevention through Design in particular and explores their efficacy in helping companies achieve a bottom line that is socially, environmentally, and financially rewarding. Topics of inquiry include the processes of hazard analysis and risk assessment, the concept of "acceptable" risk, the safety decision hierarchy of controls, safety standards (the mandatory minimum vs. the voluntary best practice), safety as a cost control strategy, and the critical elements of a comprehensive, advanced safety program. Course content is presented within the framework of real-world case studies from a variety of industry sectors, including, but not limited to, manufacturing, utilities, and health care and includes several guest lectures by leaders in the profession. Students apply course content to their own business environment. Guest lecturers from diverse backgrounds will discuss their experiences in managing safety in the workplace. Live participation in a weekly 1.5 hour online forum is required. Course must be taken during the first semester.

ASEM 611. Hazard Analysis and Waste Elimination. 3 Hours.
Hazard analysis is a process that begins with the identification of a hazard and proceeds into an estimate of the severity of harm or damage that could result if the potential is realized and a hazard-related incident occurs (ASSE TR-Z790.001 – 2009). This course examines engineering techniques utilized to systematically and logically identify and analyze hazards in the workplace. These techniques include preliminary hazard list (PHL), preliminary hazard analysis (PHA), system hazard analysis (SHA), subsystem hazard analysis (SSHA) and others. Students work in teams to use these techniques to retrospectively analyze a real-world disaster.

ASEM 612. Engineering Risk. 3 Hours.
Engineering risk is defined both quantitatively and qualitatively as an estimate of the probability that a hazard-related incident will occur and of the severity of harm or damage that could result. This course provides students with tools to assess and reduce safety risks in their own company. These tools include risk assessment matrices, probabilistic risk assessment (PRA) measures, including event tree analysis, fault tree analysis, and other prevention through design concepts. The role of a structured, formalized decision analysis process in preventing serious injuries and fatalities is also explored. Students engage in a risk mitigation decision analysis project, which is specific to their company and/or business sector. Guest lecturers from diverse industries discuss their experiences in assessing and managing risk. Live participation in a weekly 1.5 hour online forum is required.

ASEM 613. Human Performance and Engineering Design. 3 Hours.
Companies can miss important opportunities to eliminate waste if they rely primarily on training to prevent human error. This course explores the historical perspective on human error and serious injury. The course material will provide a solid understanding of the principles of occupational biomechanics and human tolerance to injury with focus on human anthropometry and mechanical work capacity. This course also includes studies of human reliability, static analysis of systems in equilibrium and mechanical systems, design and performance. Due to the quantity of back related injuries and related lost time in the workplace, back pain and injury is studied along with the effect of vibration on the human body. Real-world case studies provide for application of the engineering hierarchy of controls: hazard elimination, hazard substitution, engineering controls, warnings, administrative behavior controls, and personal protective equipment. The course also examines the design aspects of ergonomics, the biomechanical engineering basis of injury prevention, and the long term economic consequences of seemingly minor injuries. In semester projects, students perform incident investigations using biomechanical and other data. After gathering and analyzing data to determine injury causation, they will identify and re-design error-provocative environments in their own workplaces. Guest lecturers from diverse backgrounds will discuss their experiences with human performance and/or biomechanics. Live participation in a weekly 1.5 hour online forum is required.

ASEM 614. Engineering Ethics and Acceptable Risk. 3 Hours.
This course explores the economic, social, and political consequences of safety risk and considers provocative real world dilemmas: What is acceptable risk? Are the fundamental canons of engineering ethics contrary to the concept of acceptable risk? What is the worth of human life? Students will conduct critical reviews of corporate safety and ethics policies from market leaders in all major industries as well as their own company. Real-world case studies provide the framework for exercises in resolving conflicts of interest and avoiding the dilemma of "whistle blowing." Guest lecturers from diverse backgrounds will discuss their experiences with ethics in the workplace. Live participation in a weekly 1.5 hour online forum is required.

ASEM 615. Leading through Climates of Change. 3 Hours.
All progressive companies are moving toward greater sustainability - protecting people, planet, and profits. To guide their companies through these changes and integrate safety into the priorities at the executive level, safety engineers and professionals must have strong leadership skills. This course explores engineering leadership best practices, including the eight steps of transformational leadership - creating a sense of urgency, creating a guiding coalition, developing a vision and strategies, communicating the vision, empowering broad-based action, generating short term wins, consolidating gains and anchoring the culture. This course also explores the concept of Resilience Engineering and helps students understand the impacts of socio-technical risks. Guest lecturers from diverse industries discuss their experiences in managing change in today's global business environment. Live participation in a weekly 1.5 hour online forum is required.

Prerequisites: ASEM 610 [Min Grade: B]
ASEM 616. Policy Issues in Prevention through Design. 3 Hours.
This course provides an overview of best practices in four major policy areas: (1) cost-benefit analysis; (2) corporate culture and the "HR Department"; (3) standards, codes, and regulations; and (4) strategic alliance development. Case studies are used to illuminate both the role of engineers and other safety professionals in shaping public policy on the local, national and international levels and the ethical challenges they encounter. The significance of an organization's corporate culture in developing and implementing advanced safety management plans is also explored. Students conduct "gap analyses" of their company's policies by comparing them to best practices and identifying unintended consequences of poor safety policy in their own business and industry sector. Students will engage in discussion board posts on contemporary policy issues and participate in exercises related to federal rulemaking. Guest lecturers from diverse backgrounds will discuss their experiences with policy issues. Live participation in a weekly 1.5 hour online forum is required.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 617. Crisis Leadership. 3 Hours.
Leadership requires more than the predication, control, and management of the vast network of influences that make up our work, especially in times of crisis. By its nature, a crisis is an unpredicted event that requires sensemaking and innovation to go beyond immediate recovery, to step forward into learning. We can only do this when we value, trust, and communicate with the people in our systems. This course will explore why complex adaptive systems are different and may be understood and influenced by leadership at all levels before, during, or after a crisis. Students will assess their own organizational culture through the artifacts, espoused values, and deep assumptions and learn to shape these through relationships, sensemaking, and divergent thinking. This course includes two-week long learning modules based on a combination of written discussion boards that emphasize academic rigor, small group dialogues, network mindmapping, and dynamic online Zoom classes with the professors.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 619. Capstone Project - Part 1. 3 Hours.
Bringing to bear the competencies acquired through the program, students develop a proposal, outline, schedule and rough draft of a comprehensive, advanced safety engineering and management plan for their business unit/specialty area that is consistent with the ANSI/ AIHA Z10-2005, Occupational Health and Safety Management Systems standard. Judicious selection of the Capstone topic and of projects throughout the ASEM curriculum allows students to build on and use earlier course products to support their Capstone report. Live participation in a quarterly 1.25 hour online forum is required. Must be taken during the penultimate or final semester.
Prerequisites: ASEM 610 [Min Grade: B] and ASEM 611 [Min Grade: B] and ASEM 612 [Min Grade: B] and ASEM 613 [Min Grade: B] and ASEM 614 [Min Grade: B] and ASEM 615 [Min Grade: B] and ASEM 616 [Min Grade: B] and ASEM 617 [Min Grade: B] and ASEM 618 [Min Grade: B] and ASEM 628 [Min Grade: B](Can be taken Concurrently)

ASEM 620. Capstone Project - Part 2. 3 Hours.
Students complete the development of their comprehensive, advanced safety engineering and management (ASEM) plan, including background information of the project, an ASEM plan (management and employee participation, planning, implementation and operation, evaluation and corrective action and management review), and rollout strategy. Students must submit completed report with detailed attachments, and orally present project highlights to the class in a live online classroom setting. Live participation in a quarterly 1.25 hour online forum is required.
Prerequisites: ASEM 610 [Min Grade: B] and ASEM 611 [Min Grade: B] and ASEM 612 [Min Grade: B] and ASEM 613 [Min Grade: B] and ASEM 614 [Min Grade: B] and ASEM 615 [Min Grade: B] and ASEM 616 [Min Grade: B] and ASEM 617 [Min Grade: B] and ASEM 618 [Min Grade: B] and ASEM 628 [Min Grade: B](Can be taken Concurrently)

ASEM 626. Learning-Based Response to Organizational Accidents and Incidents. 3 Hours.
Accident investigations are an inevitable part of most industries, yet most analysis is based on models that were developed many decades – or even a century ago. In our current world, not everything fits into a specific model – this is especially true of human factors in complex systems. Current research indicates that 80% of accidents are attributed to human error. Yet few tools or processes are designed to make sense of the human contribution to accidents and incidents. When we look at human involvement, we find that actions and decisions are consequences of conditions extant in the system, and are not, themselves, causes of the event. The goal of this course is to discover the importance of dedicated time and resources to understanding why humans are integral to complex systems. Students will benefit from learning both the theory and practical application of accident/incident analysis, including new ideas that expand the ability of organizations to learn from events. Approached examined or introduces are consistent with modern advances in event learning and accident prevention. Students will explore the history of accident investigation, its influence on culture, the importance of context in the evaluation of human actions, the inclusion of complex narratives in reports, and how to present their findings to leadership and the field. Overall, students should come away with a more practical ability to help their organization learn from events. The course structure is focused on case study analysis, peer to peer learning and research. Questions are designed to challenge current understanding of the human contribution to accidents and why actions or decisions made sense to those involved at the time.

ASEM 627. Communication in Safety Systems. 3 Hours.
Communication plays a powerful role in creating safety in the work environment. Effective language increases communication and can lead to individual and organizational learning during safety training, real-time work, and post-mission analysis. However, the meaning of our language is not constant – it changes based on the experience of the worker, the context of the event, and the culture that surrounds the work environment. Language can become ineffective, or even damaging, when meanings differ or go unchallenged. This can occur when definitions are assumed, linguistic shortcuts are taken, or when language bias demands a singular interpretation. Engineers work with mechanical systems, which can be defined by a specific language: e.g. binary oppositions, like turning a switch ‘on’ or ‘off’. However, engineers also work with other people and must take human factors into account, including effective communication. This is the case with safety specialists, who help create the system architecture and develop practical training for workers in risk and safety. These specialists may be expected to participate in accident investigations or incident reviews, which can be unintentionally biased by the language used, which lead away from learning opportunities.
CECM-Construction Egr Mgmnt Courses

ASEM 628. Electrical Systems Safety. 3 Hours.
There is a subset of occupational hazards characterized as low frequency, but with very high consequence (potential for catastrophic loss, fatality or permanent disabling injury). A mishap involving unintentional exposure or contact with electrical energy is one of the low frequency/high consequence exposures. We live in an electrical world, with electrical hazards embedded in nearly every aspect of daily living – at home, at work, in public places, and in recreational activities. This course explores hazards, risks and context of electrical mishaps coupled with a systems safety engineering approach to manage the risks. Course content is presented within the framework of real-world case studies from a variety of industry sectors, including, but not limited to, manufacturing, utilities, and health care and includes several guest lectures by leaders in the profession. Students apply course content to their own business environment. Live participation in a weekly 1.5 hour online forum is required.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 630. Machinery Safety Management System. 3 Hours.
Safeguarding technology and requirements have come a long way since the Industrial Revolution. Despite this progress, the lack of machine guarding has continuously been named on OSHA’s top most-cited violations. The goal of this course is to equip the student with working knowledge of machinery safety and to develop an ANSI Z10 safety management system so that safety is incorporated into the equipment lifecycle. Students will evaluate their current machine management systems to evaluate obstacles, best practices, and solutions to further gain knowledge in machinery technology and management. Students will gain an understanding of hazard identification, task-based risk assessment, utilizing the hierarchy of control to select risk reduction measures, verifying selected safeguards to mitigate risks to a tolerable level, and ensuring that the process is documented, maintained, and audited. Students will demonstrate their knowledge through evaluating their current machine safety program system gaps, conducting a task-based risk assessment, and developing a Machinery Safety Management System outline to be used at their site or within a company.
Prerequisites: ASEM 610 [Min Grade: B]

ASEM 640. Introduction to Model-based Safety Assessments. 3 Hours.
This course provides students an introduction to model-based engineering and methods to assess holistic safety risks in their own company. These tools include requirements development, functional decomposition, design architecture, probabilistic risk assessment (PRA) measures, including, failure mode effects and criticality analysis (FMECA), fault tree analysis (FTA), and other safety engineering concepts. The role of a structured, formalized model-based engineering process, used to identify and mitigate hazards, is explored. Students engage in a rigorous model-based safety analysis project.
Prerequisites: ASEM 610 [Min Grade: B] or ASEM 611 [Min Grade: B] or ASEM 612 [Min Grade: B]

ASEM 690. Special Topics in (Area). 1-6 Hour.
Special Topics.

ASEM 691. Individual Study in (Area). 1-6 Hour.
Individual study.
CECM 673. Project Planning and Control. 3 Hours.

This course provides a thorough understanding of the project scheduling process in construction planning and control. Students learn the relationship between the work breakdown structure, organization breakdown structure, and the activities used in developing project schedules. The Critical Path Method (CPM), Precedence Diagram Method (PDM), Program Evaluation and Review Technique (PERT), and Line of Balance (LOB) scheduling methods are discussed in detail to include hand calculations and powerful computer software products. The use of scheduling techniques for project control, resources constraint management, cash flow management, risk management, and project completion date management are investigated as is the importance of communications in the planning and monitoring/controlling processes. Students will experience hands on use with Primavera scheduling software.

CECM 674. Green Building Design/Construction. 3 Hours.

The course addresses the key concepts, viewpoints and fundamentals essential for understanding green building and construction. Materials are focused on how key stakeholders and their future collaborations can begin to incorporate sustainable construction practices for the betterment of the project (new construction and inventory rehabilitation). The course will include instruction suitable to prepare students for the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED®) Green Associates certification exam.

CECM 675. Advanced Construction and Engineering Economics. 3 Hours.

This course provides an extensive overview of financial and managerial accounting concepts for non-financial managers. Students will learn the basic elements of accounting (Generally Accepted Accounting Practices (GAAP)). They will understand how typical financial records and financial statements are established for companies. Once the basics are understood, students will study how financial data is used for internal cost controlling, planning, and budgeting. Fundamental financial calculations associated with the time value of money, debt instruments, taxes, inflation, and cash flow estimates are emphasized. Students will be expected to demonstrate proficiency in the use of Excel business functions in solving financial problems.

CECM 676. Construction Project Risk Management. 3 Hours.

This course addresses the methodologies employed in the engineering and construction industries to assist in rational decision-making in the face of uncertainty. The course reviews the fundamentals of common probabilistic theories and models, data sampling, hypothesis testing and the basics of Bayesian Decision Theory. In addition, basic financial analysis tools will be reviewed. Theoretical models will then be applied to specific examples encountered in engineering and construction decision making with emphasis on engineering economics applications.

CECM 677. Construction Management and Leadership Challenges in the Global Environment. 3 Hours.

This course is designed to prepare students to face the demanding management and leadership challenges facing construction and engineering industry leaders as competition becomes ever more globalized. The necessity to personally remain trained and relevant in the changing business environment is emphasized. Strategic planning, management and leadership in the built environment requires savvy leaders with exceptionally developed analytical and communications skills suitable for multi-disciplinary and multi-national ventures. Every individual and organization must continually innovate and reinvent to stay competitive. Students participate in a group project designed to reinforce the methodology associated with preparing and presenting a dynamic business plan. This course will provide the opportunity for students to discuss and research these concepts and to recognize the necessity to think independently, challenge conventional thinking, and visualize alternatives.

CECM 678. Building Information Modeling (BIM) Techniques. 3 Hours.

The course provides students with an overview of the evolution of BIM technology in the construction industry followed by hands-on training in the basic application of contemporary BIM software. Students will learn basic modeling skills and how to produce graphical presentations. Advanced applications of BIM technology will be discussed and demonstrated. Students will be provided with BIM software and will be required to complete a multi-step BIM model as a term project.

CESC-Sustainable Smart Cities Courses

CESC 600. Principles of Sustainable Development. 3 Hours.

The course will begin by discussing the concepts, viewpoints and fundamentals essential for understanding urban sustainable development agenda. This will be followed by the evaluation of international conferences and action items proposed by the scientific / professional community to advance sustainable smart cities development. You will review basic earth sciences to better evaluate the impact our anthropogenic activities have on the natural environment and therefore how to minimize adverse future outcomes. Throughout the course case studies of sustainable developments will be used to illustrate the value, challenges and limitations of this concept. In the end, you will possess the knowledge base needed to help advance sustainable smart cities development.

CESC 602. Introduction to Sustainable Smart Cities. 3 Hours.

This course introduces the issues surrounding sustainable development within cities and explores how the smart city concept can contribute to the urban sustainable development agenda. The course begins by considering the key characteristics of contemporary urbanization and the issues and challenges that these present for sustainability and urban environmental management. The meaning and nature of sustainability for cities will be discussed, followed by a consideration of the definitions of a smart city and a discussion of the key elements of a smart city including its contribution to both urban governance and the more effective and efficient management of natural resources. With reference to case studies the final part of the course will explore and evaluate the role that smart city processes and applications can play in enhancing the social, economic and environmental aspects of sustainable development within urban areas.
CESC 604. Low-Carbon and Renewable Energy Systems for Smart Cities. 3 Hours.
As the energy infrastructure is arguably the most important feature in any city's energy efficiency and integration of renewable energy sources within urban areas are central to the smart city concept. This course will first explore why there is a need for the greater use of low carbon and renewable energy systems within cities, followed by an introduction to the range of low carbon and renewable energy technologies currently available. The course will then move on to introduce the concept of the smart grid and then explore the potential to integrate low carbon and renewable energy systems into smart grids in order to move towards cost-effective, efficient, and more environmentally friendly energy provision within cities. Challenges and issues associated with the greater integration of low carbon and renewable energy systems into energy infrastructure within large urban areas will also be considered.

CESC 606. Managing Natural Resources and Sustainable Smart Cities. 3 Hours.
The course examines the challenges of resource use and management within the context of an urbanizing world, exploring how new concepts within the smart and sustainable city agenda may contribute to addressing these challenges. The course begins by considering contemporary patterns of resource use created by cities in the modern world at a variety of scales from the local to the global. New approaches in the form of ecosystem services and urban metabolism in relation to natural resource management are examined in terms of their contribution to developing a sustainable city agenda. The course continues by examining the development of key natural resources challenges (e.g., water, energy, air quality, and climate) and the development of new management approaches and strategies in these areas. The course concludes by examining the development of integrated environmental management systems and governance structures within which these new approaches can be implemented with reference to a series of case studies.

CESC 608. Green Infrastructure and Transportation. 3 Hours.
The course covers policy and technical issues related to sustainable transportation. The course begins by discussing the concepts, viewpoints, and fundamentals essential for understanding sustainable transportation planning. Tools used to assess sustainability of transportation facilities and neighborhoods are introduced next. The course also presents design options in support of green infrastructure and transportation, including livable street design, and traffic calming applications. The course is expected to expand students' knowledge base on sustainable transportation issues and help them understand the concept of sustainable transportation toward the development of sustainable smart cities.

CESC 610. Health and Liveability. 3 Hours.
This course will address the multidisciplinary aspects of urban environmental quality and its impact on human well-being. It will provide a critical appreciation of the factors which influence health, well-being, and quality of life within contemporary urban environments, demonstrate the importance of genomics and health informatics in developing strategies for improving the health and well-being of urban citizens, explore the importance of urban design and the contribution of the development of food smart cities in improving both urban health and liveability, and understand the increasingly important role of Information and Communications Technology (ICT) in facilitating delivery of effective and responsive urban health, well-being, and quality of life strategies.
CSEC 618. Research Methods and Project Planning. 3 Hours.
As a student of smart city processes and urban environmental management you need to understand the research process which enables you to take the knowledge and skills which you have learned and apply it to a specific urban sustainability / environmental management issue. This course is not intended to provide a training in research techniques, but rather to make you aware of a wide range of investigative and analytical methods and techniques using examples drawn from the areas of smart city approaches, urban sustainability and environmental management. Both quantitative and qualitative methodologies and primary and secondary data collection will be covered. You will be encouraged to reflect on the research process and its outcomes by critiquing research papers written from methodological standpoints. You will then apply this knowledge to create a viable research proposal for your own Sustainable Smart Cities Masters project. This proposal will require you to identify and justify for your chosen topic: (i) appropriate research questions, (ii) methodologies and data sampling / collection techniques, (iii) ethical and health and safety implications and, (iv) a timetable of action.

CSEC 620. Sustainable Smart Cities Research Project. 0 Hours.
This course will develop skills in both research and technical writing in the area of applying and/or evaluating sustainable smart cities processes and policies to a specific urban environmental or sustainability issue. The research proposal produced as part of the Research Methods and Project Planning course will be implemented. This will involve further research into the relevant background and context of a chosen project topic, implementation and evaluation of appropriate methods for collecting and analyzing data, observations and information, the ability to present findings clearly and concisely, and appreciate their significance in relation to the smart city and sustainable urban management agendas. Research should be at the forefront of student's chosen sustainable smart cities research topic and be at a level similar to that required for acceptance and presentation at a national level conference or symposium on smart and sustainable cities. For students in relevant employment, projects may be carried out in your place of work subject to discussions between you, your employer/line manager, and your project supervisor.

CESE - Structural Engineering Courses

CESE 653. Wood and Masonry Design. 3 Hours.
Design of wood structures to meet the requirements of the National Design Specification including beams, columns, and shear walls. Design and detailing of masonry structures. Nomenclature, properties, and specifications for components. Design of assemblages and masonry elements in simple masonry structures.

CESE 656. Advanced Mechanics of Materials for Structural Engineering. 3 Hours.
This course will review the basic fundamentals of mechanics of materials and will extend the concepts to include 3-dimensional stress and strain, plastic behavior, energy methods, nonlinear behavior, fatigue and fracture, rectangular linear elastic plates, indeterminate structures and stability.

CESE 657. Advanced Design of Steel Structures. 3 Hours.
Design of major components in steel-framed buildings, including composite beams and slabs, beam-columns, moments connections, bracing members, bracing connections, and column base plates.

CESE 659. Advanced Reinforced Concrete. 3 Hours.
In this course students will study the behavior and design of continuous reinforced concrete structures submitted to gravity and lateral loads. The study will include biaxial loading of columns, continuous one-way beams and slabs, two-way floor systems, and torsion loading.

CESE 660. Prestressed Concrete Behavior and Design. 3 Hours.
The course will explore the characteristics and design of prestressed concrete structural components to include elastic and ultimate strength analyses for flexural, shear, torsion, deflection, strand bond, and pre-stress loss.

CESE 662. Advanced Structural Analysis. 3 Hours.
This course explores the structural analysis of indeterminate structures using classical and approximate methods and structural analysis software. Specific emphasis is placed on the determination of forces in typical multistory, rectilinear frames subject to gravity and lateral loads. In addition to first order analysis, the course included analysis for second order effects and plastic analysis.

CESE 664. Bridge Engineering. 3 Hours.
This course includes the study of bridge loads, including moving load analysis; methods for approximate structural analysis, preliminary bridge design methods, and the structural design of bridge decks and girders.

CESE 665. Structural Dynamics and Earthquake Engineering. 3 Hours.
This course includes the study of earthquake-induced vibrations of single and multi-degree-of-freedom systems, such as single and multistory frames. Emphasis will be placed on structural steel and reinforced concrete building frames. Response spectrum analysis will be investigated as well as building codes and static and dynamic lateral load force procedures.

CESE 676. Design of Structural Steel Connections. 3 Hours.
Design of bolted and welded steel connections, including shear, moment and brace connections using the AISC Specifications requirements and fundamental engineering principals. Design procedures will be discussed for various structural steel connections. The background and limitations of the design procedures will be reviewed and practical solutions will be provided.

CESE 690. Special Topics (Area). 1-3 Hour.
Special Topics (Area).

CESE 698. Non Thesis Research. 3 Hours.
No syllabus for non-thesis research hours.

IEM-Information Egr Mgmt Courses

IEM 601. Introduction to IEM. 1 Hour.
This course is an introduction to Information Engineering and Management with a focus on readiness for graduate study. Program requirements and expectations will be presented. Software and collaboration tools will be introduced. Library access and resources will be reviewed and teams will perform learning exercises to demonstrate proficiency with the available tools.

IEM 602. Leading Collaborative Teams. 1 Hour.
This course will focus on building, leading, and evaluating collaborative teams. Topics will include managing geographically-dispersed teams, team communication, accountability, running effective meetings, facilitation skills, building consensus, and handling common problems.

Prerequisites: IEM 601 [Min Grade: C]

IEM 603. Communication for Technology Executives. 1 Hour.
This course will address communication issues unique to organizational executives. Topics will include functioning as the public face of the organization, working with the media, when to seek professional advice, and effective crisis management.

Prerequisites: IEM 602 [Min Grade: C]
IEM 610. Communication for Technology Professionals. 3 Hours.
This course focuses on recognizing, developing, and putting into practice effective communication skills. Lectures provide insights into presentation structure, style, and content. Self-evaluation exercises combined with personal coaching will help clients improve their professional speaking and presentation skills.

IEM 611. Leading Technical Organizations. 3 Hours.
This course will use case studies, assigned readings, guest lecturers, research projects, and discussion of current issues in technology to develop executive-level behaviors and thought-processes as preparation for starting or leading a technology organization.

IEM 612. Project Leadership. 3 Hours.
This course teaches the fundamental concepts of leading projects. The course will consider all aspects of project leadership including the use of standard methodologies. Best practices will be reviewed along with practical insights based on real-world project leadership experience.

IEM 620. Technical Entrepreneurship. 3 Hours.
This course is an introduction to entrepreneurship that begins with the development of personal insights and work habits that are fundamental to success within any organization.

IEM 625. Technology and Innovation. 3 Hours.
This course examines technological innovation as an element of organizational strategy. Topics include the nature and management of innovation, aligning technical teams with overall organizational strategy, and the role of innovation in launching and sustaining technology ventures.

IEM 630. Systems Engineering. 3 Hours.
This course focuses on the systems engineering lifecycle and its application to the design of complex systems. Topics include systems thinking, managing complexity, problem definition, solution design, solution implementation, quality assurance, and measuring effectiveness.

IEM 631. Operational Decision-Making. 3 Hours.
This course focuses on the critical role of information and analytical methods in optimizing operational decisions. A core set of analytical tools will be presented and discussed. Topics will include decision analysis, optimization, modeling, simulation, and data analysis.

IEM 645. Financial Concepts for Entrepreneurs. 3 Hours.
This course introduces financial concepts including the interpretation of financial statements, managing cash flow, time value of money, capital budgeting, and investment analysis.

IEM 646. Strategic Planning. 3 Hours.
This course will examine the nature of strategic thinking and the challenges of achieving strategic alignment. Topics will include the strategic planning process and methods for assessing strategic success.

IEM 690. Special Topics in Area. 1-3 Hour.
Special Topics in (Area).

IEM 695. IEM Design Project. 3 Hours.
This course is focused upon a final design project that incorporates the technical and entrepreneurial coursework taken previously. Projects will be assessed based on their technical design and financial justification.

IEM 696. IEM Internship. 1-3 Hour.
This course is available for students needing to register for an internship course while enrolled in the IEM program.

Neuroengineering

Degrees Offered: PhD
Website: www.uab.edu/engineering/home/neuroengineering

Program Co-Director: Lynn Dobrunz, PhD
Program Co-Director: Gregg Janowski, PhD
Program Associate Director: Mark Bolding, PhD
Program Administrator: Kristy Barlow, MPA
E-mail: neuroeng@uab.edu

Admissions Requirements

- BS, MS, or be currently enrolled in the DMD/PhD or MD/PhD program at UAB*
- Minimum GPA of 3.0 on a 4.0 scale on most recent degree
- GRE is not required
- Personal statement identifying research interest
- CV/Résumé
- 3 academic or professional recommendations
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details:
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)

* PhD students normally have earned a bachelor's degree in an engineering discipline or a closely-related field. Students with undergraduate degrees in the computer science, neuroscience, physical sciences, life sciences, or mathematics will also be considered for admission; however, such students must demonstrate preparation for the NE graduate curriculum. Admission to the NE PhD program is competitive.

Students admitted to the doctoral program typically receive a competitive stipend that includes payment of tuition. In addition to completing coursework requirements (see below), doctoral students must form a Graduate Dissertation Committee consisting of at least five faculty members, including the primary research mentor. At least one committee member must have a primary appointment in the School of Engineering and one must have a primary appointment in the School of Medicine. A written dissertation proposal must be orally presented to the committee and approved, at which time the student is admitted to candidacy. Admission to Candidacy must take place at least two semesters before the student may graduate. A written dissertation embodying the results of the student's original research must then be publicly defended, approved by the committee, and submitted to the Graduate School.

Publication Requirement. Original peer-reviewed research articles in reputable journals are the standard for demonstrating scientific productivity. The research conducted by NE doctoral students is expected to result in such publications. Before their degree is awarded, students are required to have at least one “first-author” journal article that has been published (or accepted for publication) and a second that has been submitted to a journal. Typically, a student’s doctoral research will result in at least three first-author articles. Many students will be co-authors on collaborative research articles and may also share authorship on review articles, book chapters, conference proceedings,
and other forms of scientific communication. Although these works bolster the student's scientific credentials, they do not count toward the NE publication requirement. In some cases, first-authorship of an article is shared among multiple individuals. In these cases, the article may count toward the publication requirement of only one doctoral student.

Additional Academic Policies

Special Topics courses and independent/individual study courses are reviewed for degree applicability to the degree. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied toward the publication requirement of only one doctoral student.

Ph.D. in Neuroengineering

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 717</td>
<td>Principles of Scientific Integrity</td>
</tr>
<tr>
<td>IDNE 701</td>
<td>Topics in Neuroengineering I</td>
</tr>
<tr>
<td>IDNE 702</td>
<td>Topics in Neuroengineering II</td>
</tr>
<tr>
<td>IDNE 720</td>
<td>Applications in Data Science</td>
</tr>
<tr>
<td>IDNE 796</td>
<td>Neuroengineering Journal Club</td>
</tr>
<tr>
<td>BST 621</td>
<td>Statistical Methods I</td>
</tr>
<tr>
<td>or GRD 770</td>
<td>Intro to Biostats</td>
</tr>
<tr>
<td>BST 622</td>
<td>Statistical Methods II</td>
</tr>
<tr>
<td>BME 717</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>or ME 761</td>
<td>Math Methods in EGR I</td>
</tr>
<tr>
<td>NBL 655</td>
<td>Synapses, Neurons and Brains</td>
</tr>
<tr>
<td>NBL 656</td>
<td>From Systems to Cog Neuro</td>
</tr>
<tr>
<td>EGR/CS Elective</td>
<td>2</td>
</tr>
<tr>
<td>NS/LS Elective</td>
<td>3</td>
</tr>
<tr>
<td>Other Electives</td>
<td>4</td>
</tr>
<tr>
<td>IDNE 773</td>
<td>Lab Rotation</td>
</tr>
<tr>
<td>IDNE 798</td>
<td>Non-Dissertation Research</td>
</tr>
<tr>
<td>IDNE 799</td>
<td>Dissertation Research</td>
</tr>
</tbody>
</table>

Total Hours 60

1 Students must register for a minimum of 6 semesters; may also select another 700-level 1 hour Journal Club with Program Director approval.
2 Choose one from the following: CS 757, CS 760, CS 767, CS 773, CS 775, CS 785, EE 621, EE 641, EE 734, EE 738, EE 756, EE 758, ME 665.
3 Choose one from the following: GBS 714, GBSC 744, GBSC 718, GBSC 721, NBL 700, NBL 707, NBL 735, NBL 740, NBL 743, PY 707, PY 693, VIS 743, VIS 756, VIS 757.
4 Choose three from the following: GBS 714, GBSC 722, GBSC 744, GBSC 718, NBL 740, NBL 743, PY 707, VIS 743, VIS 756, VIS 757, CS 760, CS 767, CS 773, CS 775, CS 785, EE 621, EE 641, EE 734, EE 738, EE 756, EE 758, ME 665, BST 623, BST 660, BST 680, BST 723.
5 Students who were not admitted directly into a lab register for a maximum of 4 rotations.

Biomedical Engineering

Degrees Offered MSBME, PhD
Website www.uab.edu/bme
Program Director Prasanna Krishnamurthy, PhD
Program Administrator Julie Calma
E-mail uabbmegrad@uab.edu

Biomedical engineering (BME) is the application of engineering principles and technology to the solution of problems in the life sciences and medicine. UAB is a top-25 institution for NIH funding, and BME graduate students have many opportunities to conduct cutting-edge multidisciplinary research. BME researchers enjoy collaborations across UAB’s very active medical and dental schools as well as with researchers across the United States and beyond.

The BME Department offers Master of Science and PhD degrees. Students enrolled in UAB’s MD/PhD or DMD/PhD programs may receive the PhD portion of their training in the Biomedical Engineering department. Students in any BME graduate program who are interested in the commercialization of biomedical technology are encouraged to complete the 12-hour Graduate Certificate in Technology Commercialization and Entrepreneurship offered by the Collat School of Business.

Admitted students begin Fall term, with rare exceptions for other start dates. For full consideration, applications should be submitted by the priority deadline of January 15. Applications submitted as late as the UAB Graduate School’s Fall deadline may be considered depending on the availability of positions.

A minimum score of 80 on the TOEFL (minimum of 18 on each subscore) or 6.5 on the IELTS is required for international students whose native language is not English. Additional details on the BME graduate programs are available in the current BME Graduate Student Handbook available at uab.edu/bme.

Students entering the MSBME program normally have earned a bachelor’s degree in Biomedical Engineering, another engineering discipline, or a closely-related field. Students with undergraduate degrees in the physical sciences, life sciences, or mathematics will also be considered for admission; however, such students must demonstrate preparation for the BME graduate curriculum.

Admission to the MS program is competitive. Successful applicants typically have an undergraduate GPA of at least 3.5 (on a 4-point scale). However, applications are reviewed holistically and applicants with lower grades may be admitted based on factors such as strong GRE scores, research experience, or professional experience. Scores on the GRE General Test are not required but are accepted.

Fast Track Master’s of Science in Biomedical Engineering

UAB BME undergraduate students with significant research experience may begin work toward their MSBME degree while still undergraduates. To be considered for this program, students must have junior-level standing (more than 60 hours completed), have completed at least 3 of the required junior-level BME courses, and have a UAB GPA of at least 3.5. Applicants are expected to have already selected a research mentor for their graduate studies, which will typically be a continuation of their undergraduate research. Application to the program is through...
the normal UAB Graduate School application portal. One of the letters of recommendation must be from the research mentor. Once enrolled in the program, before completing their undergraduate degree, students may take graduate courses that will be applied to the MSBME degree. Note that coursework may not be applied toward both the undergraduate and graduate degrees. Students may pursue either the Plan I or Plan II MSBME option.

Additional Academic Policies

Students must maintain an overall GPA of 3.20 to remain in good academic standing in the BME Graduate Program.

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the MSBME without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

MSBME Plan I (Thesis Option)

The Plan I Master’s degree requires completion of at least 30 semester hours of graduate work.

A Graduate Study Committee consisting of at least three faculty members should be formed. At least one committee member must have a primary appointment within BME and one must have a primary appointment outside of BME. A student is eligible for admission to candidacy after: (1) a written thesis proposal has been orally presented to the committee and approved and (2) completion of Responsible Conduct of Research (RCR) training. Admission to candidacy must take place at least one semester before the student may graduate. A written thesis embodying the results of the student’s original research must then be publicly defended, approved by the committee, and submitted to the Graduate School.

Upon completing a Plan I MSBME degree, a student may petition to continue their graduate training in the BME PhD program. This does not require a new application to the UAB Graduate School.

Master of Science in Biomedical Engineering

MSBME Plan I (Thesis Option) - 30 hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 617</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>or ME 661</td>
<td>Math Methods in EGR I</td>
</tr>
<tr>
<td>BME 670</td>
<td>Quantitative Physiology</td>
</tr>
<tr>
<td>BST 621</td>
<td>Statistical Methods I</td>
</tr>
<tr>
<td>BME Elective 500-697</td>
<td>3</td>
</tr>
<tr>
<td>Life Science Elective at the 500+ level</td>
<td>3</td>
</tr>
<tr>
<td>BME/EGR/Math/Life Science Elective at the 500+ level</td>
<td>3</td>
</tr>
<tr>
<td>BME 601</td>
<td>Seminar in Biomedical Engineering (Must be taken three times)</td>
</tr>
<tr>
<td>BME 601</td>
<td>Seminar in Biomedical Engineering</td>
</tr>
<tr>
<td>BME 601</td>
<td>Seminar in Biomedical Engineering</td>
</tr>
</tbody>
</table>

Total Hours 30

1. One 3 hour course from another discipline (e.g., MBA) may substitute with approval of the BME Graduate Program Director
2. Students in the Graduate Certificate in Technology Commercialization and Entrepreneurship program are encouraged to choose BME 630 Engineering Design and Commercialization as an elective
3. An additional 3 hour BME/EGR/Science Elective (500+ level) may substitute
4. Taken after admission to candidacy

MSBME Plan II (Non-Thesis Option) - 33 hours

The Plan II Master’s degree requires completion of at least 33 semester hours of graduate-level work. It also requires completion of a research project and submission of a written project report approved by student’s research advisor. Submission of the project report to the Graduate School is not required.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 617 or ME 661</td>
<td>Engineering Analysis</td>
</tr>
<tr>
<td>BME 670</td>
<td>Quantitative Physiology</td>
</tr>
<tr>
<td>BST 621</td>
<td>Statistical Methods I</td>
</tr>
<tr>
<td>BME Elective 500-697</td>
<td>3</td>
</tr>
<tr>
<td>BME/EGR/MA/Life Science Elective at the 500+ level</td>
<td>3</td>
</tr>
<tr>
<td>Life Science 500+ level</td>
<td>3</td>
</tr>
<tr>
<td>BME 601</td>
<td>Seminar in Biomedical Engineering (Must be taken three times)</td>
</tr>
<tr>
<td>BME 601</td>
<td>Seminar in Biomedical Engineering</td>
</tr>
<tr>
<td>BME 601</td>
<td>Seminar in Biomedical Engineering</td>
</tr>
<tr>
<td>BME 698</td>
<td>Non-Thesis Research</td>
</tr>
</tbody>
</table>

Total Hours 33

1. One 3 hour course from another discipline (e.g., MBA) may substitute for 3 of these hours with approval of the BME Graduate Program Director
2. Students in the Graduate Certificate in Technology Commercialization and Entrepreneurship program are encouraged to choose BME 630 Engineering Design and Commercialization as an elective
3. An additional BME/EGR/Science Elective (500+ level) may substitute for 3 of these hours

PhD Program

Students entering the doctoral program will possess a BS, MS, or be currently enrolled in the DMD/PhD or MD/PhD program at UAB.

PhD students normally have earned a bachelor’s degree in Biomedical Engineering, another engineering discipline, or a closely-related field. Students with undergraduate degrees in the physical sciences, life sciences, or mathematics will also be considered for admission; however, such students must demonstrate preparation for the BME graduate curriculum.
Admission to the BME PhD program is competitive. Successful applicants have a 3.5 or greater GPA from their previous degree(s) (on a 4-point scale) and significant research experience. Scores on the GRE General Test are not required but are accepted.

Students admitted to the doctoral program typically receive a competitive stipend that includes payment of tuition.

In addition to completing coursework requirements (see below), doctoral students must form a Graduate Dissertation Committee consisting of at least five faculty members, including the primary research mentor. At least one committee member must have a primary BME appointment and two must have a primary appointment outside of BME. A written dissertation proposal must be orally presented to the committee and approved, at which time the student is admitted to candidacy. This must take place at least two semesters before the student may graduate. A written dissertation embodying the results of the student’s original research must then be publicly defended, approved by the committee, and submitted to the Graduate School.

Publication Requirement. Original peer-reviewed research articles in reputable journals are the standard for demonstrating scientific productivity. The research conducted by BME doctoral students is expected to result in such publications. Before the degree is awarded, students are required to have at least one “first-author” journal article that has been published (or accepted for publication) and a second that has been submitted to a journal. Typically, a student’s doctoral research will result in at least three first-author articles. Many students will be co-authors on collaborative research articles and may also share authorship on review articles, book chapters, conference proceedings, and other forms of scientific communication. Although these works bolster the student’s scientific credentials, they do not count toward the BME publication requirement. In some cases, first-authorship of an article is shared among multiple individuals. In these cases, the article may count toward the publication requirement of only one BME doctoral student.

Additional Academic Policies

Students must maintain an overall GPA of 3.20 to remain in good academic standing in the BME Graduate Program.

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the PhD without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Coursework for PhD After BS Degree

Students entering the PhD program with a BS degree are required to complete at least 72 semester hours of graduate work.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 717</td>
<td>3</td>
</tr>
<tr>
<td>or ME 761</td>
<td></td>
</tr>
<tr>
<td>BME 770</td>
<td>3</td>
</tr>
<tr>
<td>BST 621</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717</td>
<td>3</td>
</tr>
</tbody>
</table>

Coursework for PhD After MS Degree

Students entering the PhD program with an MS degree or those entering the PhD portion of the DMD/PhD or MD/PhD program are required to complete at least 51 additional semester hours of graduate work.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 717</td>
<td>3</td>
</tr>
<tr>
<td>or ME 761</td>
<td></td>
</tr>
<tr>
<td>BME 770</td>
<td>3</td>
</tr>
<tr>
<td>BST 621</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717</td>
<td>3</td>
</tr>
<tr>
<td>BME 773</td>
<td>3</td>
</tr>
<tr>
<td>BME Elective 500+ level</td>
<td>3</td>
</tr>
</tbody>
</table>
| BME/EGR/Science Elective 500+ level | | 2
| Biomedical Engineering Requirement | 3 |
| BME 701 | 6 |
| BME 798 | 9 |
| BME 799 | 6 |

Total Hours 72

1 One 3 hour course from another discipline (e.g., MBA) may substitute for 3 of these hours with approval of the BME Graduate Program Director
2 Students in the Graduate Certificate in Technology Commercialization and Entrepreneurship program are encouraged to choose BME 630 Engineering Design and Commercialization as an elective
3 BME/EGR/Science Electives (500+ level) may substitute
4 12 hours may be substituted with BME 798 hours taken before candidacy. 12 hours must be taken after admission to candidacy over at least two semesters
Coursework for PhD, Bioinformatics Track after BS Degree

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Required Courses</td>
<td></td>
</tr>
<tr>
<td>BME 717 Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or ME 761 Math Methods in EGR I</td>
<td></td>
</tr>
<tr>
<td>BME 701 Seminar in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 770 Quantitative Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 773 Lab Rotation</td>
<td>3</td>
</tr>
<tr>
<td>BST 621 Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>BME 799 Dissertation Research</td>
<td>24</td>
</tr>
</tbody>
</table>

Required Bioinformatics Courses

INFO 701 Introduction to Bioinformatics	3
INFO 702 Algorithms in Bioinformatics	3
INFO 703 Biological Data Management	3
INFO 704 Next-generation Sequencing Data Analysis	3
INFO 791 Bioinformatics Seminar	3
INFO 793 Bioinformatics Journal Club	6
BME/EGR/Life Science Electives	9

Total Hours 72

1. Students will register for BME 701 for at least 3 terms
2. Students with post-graduate equivalence of the INFO courses, the program may allow substitution of up to 6 credits with BME/Data Science electives
3. Students will register for INFO 791 for at least 3 terms
4. Electives must be approved by the program director prior to registration in order to be applied to the degree

Coursework for PhD, Bioinformatics Track after MS Degree

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Required Courses</td>
<td></td>
</tr>
<tr>
<td>BME 717 Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>or ME 761 Math Methods in EGR I</td>
<td></td>
</tr>
<tr>
<td>BME 701 Seminar in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>BME 799 Dissertation Research</td>
<td>24</td>
</tr>
</tbody>
</table>

Required Bioinformatics Courses

INFO 701 Introduction to Bioinformatics	3
INFO 702 Algorithms in Bioinformatics	3
INFO 703 Biological Data Management	3
INFO 704 Next-generation Sequencing Data Analysis	3
INFO 791 Bioinformatics Seminar	3
INFO 793 Bioinformatics Journal Club	2
BME/Data Science Elective	3

Total Hours 51

1. Dissertation research must be conducted over at least 2 terms

Courses

BME 520. Implant-Tissue Interactions. 3 Hours.
An overview of implant biocompatibility, including tissue histology, histopathology of implant response and the regulatory process for medical devices.

BME 524. Current Topics in Stem Cell Engineering. 3 Hours.
This course is designed for students interested in the field of stem cells, regenerative medicine, and tissue engineering using stem cells and stem cell derived cells. The course will introduce the role of stem cells in tissue growth and development, the theory behind the design and in vitro construction of tissue and organ replacements, and the applications of biomedical engineering principles to the treatment of tissue-specific diseases. Students will have hands on experience on culturing and analyzing stem cells, stem cell differentiation, analysis of functional and physiological properties of differentiated cells, and fabricating basic engineered-tissues.

BME 535. Tissue Engineering. 3 Hours.
Principles underlying strategies for regenerative medicine such as stem cell based therapy, scaffold design, proteins or genes delivery, roles of extracelluar matrix, cell-materials interactions, angiogenesis, tissue transplantation, mechanical stimulus and nanotechnology.

BME 543. Medical Image Processing. 3 Hours.
Fundamental topics of medical image processing to practical applications using conventional computer software.

BME 544. Machine Learning for Biomedical Engineering Applications. 3 Hours.
This course provides the introduction to the practical aspects of machine learning such that the students can apply some basic machine learning techniques in simple biomedical engineering problems. The course also provides the principles of machine learning ‘thinking process’ for the next machine learning – AI courses and more in-depth machine learning studies. By ‘thinking process’, at the beginning, it is better to view machine learning like human learning. Students who have experience with Data Mining may further understand the fundamental differences between Machine Learning and Data Mining, although these two fields share many concepts and techniques. Also, the student will learn fundamental theories in machine learning to be able to develop new machine learning techniques and research machine learning in biomedical engineering.

BME 550. Computational Neuroscience. 3 Hours.
This course examines the computational principles used by the nervous system. Topics include: biophysics of axon and synapse, sensory coding (with an emphasis on vision and audition), planning and decision-making, and synthesis of motor responses. There will be an emphasis on a systems approach throughout. Homework includes simulations.

BME 561. Bioelectric Phenomena. 3 Hours.
Quantitative methods in the electrophysiology of neural, cardiac and skeletal muscle systems.
BME 562. Cardiac Electrophysiology. 3 Hours.
Experimental and computational methods in cardiac electrophysiology, ionic currents, action potentials, electrical propagation, the electrocardiogram, electromechanical coupling, cardiac arrhythmias, effects of electric fields in cardiac tissue, defibrillation, and ablation.

BME 571. Continuum Mechanics of Solids. 3 Hours.
Matrix and tensor mathematics, fundamentals of stress, momentum principles, Cauchy and Piola-Kirchhoff stress tensors, static equilibrium, invariance, measures of strain, Lagrangian and Eulerian formulations, Green and Almans strain, deformation gradient tensor, infinitesimal strain, constitutive equations, finite strain elasticity, strain energy methods. 2-D Elasticity, Airy Method, viscoelasticity, mechanical behavior of polymers.

BME 572. Industrial Bioprocessing and Biomanufacturing. 3 Hours.
This course will introduces students to the growing industries related to biomedical, biopharmaceutical and biotechnology. It is targeted to offer the students marketable skills to work in a vital area of economic growth and also convey some of the challenges and opportunities awaiting.

BME 590. Special Topic in Biomedical Engineering. 1-3 Hour.
Special Topic in Biomedical Engineering.

BME 591. Individual Study in Biomedical Engineering. 1-6 Hour.
Individual Study in Biomedical Engineering.

BME 601. Seminar in Biomedical Engineering. 1 Hour.
Current topics in biomedical engineering technology and applications.

BME 617. Engineering Analysis. 3 Hours.
Advanced ordinary differential equations, transform techniques, scalar and vector field theory, partial differential equations (heat, wave, Laplace). Students who register for this course are expected to have successfully completed courses in calculus and ordinary differential equations.

BME 623. Skin and Bone Regeneration. 3 Hours.
Study of principles of healing, methods to enhance, and clinical applications.

BME 630. Engineering Design and Commercialization. 3 Hours.
The purpose of this course is to introduce students to the process of innovating medical technologies and better prepare them for a career in the medical technology industry. Students will learn aspects of biomedical product development from needs finding, invention, intellectual property, and regulatory processes.

BME 634. Dynamical Biological Systems. 3 Hours.
This course considers the dynamics of biological systems at a variety of levels from the cell/molecular to the circuit and system levels. Biological systems are typically nonlinear and their behavior is not usually analytically solvable. Yet it is possible to use the tools of nonlinear dynamical systems theory to approach understanding. In addition, it is important to understand how robust control theory can be applied to describe systems for which an exact mathematical model does not exist. The goal of this course is to examine a number of examples in some detail to gain insight into the dynamics of regulation in biology.

BME 643. Biomedical Imaging-Oncology. 3 Hours.
Advanced and quantitative medical imaging and image processing to understand biological processes related to cancer biology. Medical imaging technology will include molecular, functional and anatomical imaging related to the hallmarks of cancer.

BME 664. Neural Computation. 3 Hours.
This course examines the principal theoretical underpinnings of computation in neural networks. Emphasis will be placed on understanding the relationship between the different approaches: dynamical systems, statistical mechanics, logic, Kalman filters, and likelihood/Bayesian estimation.

BME 665. Computational Vision. 3 Hours.
This course approaches the study of biological and artificial vision from a theoretical perspective beginning with a comparative survey of visual systems and then examining vision algorithms and architectures.

BME 670. Quantitative Physiology. 3 Hours.
Study of physiological problems using advanced mathematical techniques. Topics covered include: mechanics, fluid dynamics, transport, electrophysiology of cell membranes, and control systems.
Prerequisites: BME 517 [Min Grade: C] or BME 617 [Min Grade: C] or BME 717 [Min Grade: C] or ME 661 [Min Grade: C] or ME 761 [Min Grade: C]

BME 672. Cellular Therapy. 3 Hours.
Introduction to research in cellular therapy, its clinical applications, and its potential for commercialization. Students will learn fundamental mechanisms, become familiar with the progress of several successful therapies that use human T cells and stem cells, and learn the challenges and opportunities for future biopharmaceutical and biotechnology industries.

BME 673. Lab Rotation. 3 Hours.
Entering BME graduate students will work in the laboratories of 2 or 3 potential research mentors. The duration of each rotation period will be by mutual agreement between student and faculty but must be at least 4 weeks. The goal is for students to match with their primary research mentor by the end of the course.

BME 680. Biomolecular Modeling. 3 Hours.
Molecular modeling principles and applications. Students will perform hands-on exercises using molecular modeling tools and software. Students will learn the critical relationships among structure, function, and thermodynamic driving forces in structural biology and become able to utilize molecular modeling techniques to explore biological phenomena at the molecular level.

BME 690. Special Topics in Biomedical Engineering. 1-6 Hour.
Special Topics in Biomedical Engineering.

BME 691. Individual Study in Biomedical Engineering. 1-6 Hour.
Individual Study in Biomedical Engineering.

BME 693. Internship in Biomedical Engineering. 1-6 Hour.
Journal Club. 1-3 Hour.

Prerequisites: GAC M

BME 701. Seminar in Biomedical Engineering. 1 Hour.
Current topics in biomedical engineering technology and applications.

BME 717. Engineering Analysis. 3 Hours.
Advanced ordinary differential equations, transform techniques, scalar and vector field theory, partial differential equations (heat, wave, Laplace).

BME 723. Skin and Bone Regeneration. 3 Hours.
Study of principles of healing, methods to enhance, and clinical applications.
BME 734. Dynamical Biological Systems. 3 Hours.
This course considers the dynamics of biological systems at a variety of levels from the cell/molecular to the circuit and system levels. Biological systems are typically nonlinear and their behavior is not usually analytically solvable. Yet it is possible to use the tools of nonlinear dynamical systems theory to approach understanding. In addition, it is important to understand how robust control theory can be applied to describe systems for which an exact mathematical model does not exist. The goal of this course is to examine a number of examples in some detail to gain insight into the dynamics of regulation in biology.

BME 743. Biomedical Imaging-Oncology. 3 Hours.
Advanced and quantitative medical imaging and image processing to understand biological processes related to cancer biology. Medical imaging technology will include molecular, functional and anatomical imaging related to the hallmarks of cancer.

BME 764. Neural Computation. 3 Hours.
This course examines the principal theoretical underpinnings of computational in neural networks. Emphasis will be placed on understanding the relationship between the different approaches: dynamical systems, statistical mechanics, logic, Kalman filters, and likelihood/Bayesian estimation.

BME 765. Computational Vision. 3 Hours.
This course approaches the study of biological and artificial vision from a theoretical perspective. We begin with a comparative survey of visual systems, and will examine vision algorithms and architectures.

BME 770. Quantitative Physiology. 3 Hours.
Study of physiological problems using advanced mathematical techniques. Topics covered include: mechanics, fluid dynamics, transport, electrophysiology of cell membranes, and control systems.
Prerequisites: BME 517 [Min Grade: C] or BME 617 [Min Grade: C] or BME 717 [Min Grade: C] or ME 661 [Min Grade: C] or ME 761 [Min Grade: C]

BME 772. Cellular Therapy. 3 Hours.
Introduction to research in cellular therapy, its clinical applications, and its potential for commercialization. Students will learn fundamental mechanisms, become familiar with the progress of several successful therapies that use human T cells and stem cells, and learn the challenges and opportunities for future biopharmaceutical and biotechnology industries.

BME 773. Lab Rotation. 3 Hours.
Entering BME graduate students will work in the laboratories of 2 or 3 potential research mentors. The duration of each rotation period will be by mutual agreement between student and faculty, but must be at least 4 weeks. The goal is for students to match with their primary research mentor by the end of the course.

BME 780. Biomolecular Modeling. 3 Hours.
Molecular modeling principles and applications. Students will perform hands-on exercises using molecular modeling tools and software. Students will learn the critical relationships among structure, function, and thermodynamic driving forces in structural biology and become able to utilize molecular modeling techniques to explore biological phenomena at the molecular level.

BME 790. Special Topics in Biomedical Engineering. 1-6 Hour.
Special Topics in Biomedical Engineering.

BME 791. Individual Study in Biomedical Engineering. 1-6 Hour.
Individual Study in Biomedical Engineering.

BME 793. Internship in Biomedical Engineering. 1-6 Hour.

BME 797. Journal Club. 1-3 Hour.
Journal Club.

BME 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

Civil Engineering

The Department of Civil, Construction, and Environmental Engineering (CCEE) offers master's and doctoral level programs as well as graduate certificates. Graduate students are exposed to cutting-edge research covering various facets of civil engineering theory and practice. Knowledgeable and experienced faculty members work closely with students to provide them with the tools required to succeed professionally in globally-competitive work environments.

<table>
<thead>
<tr>
<th>Program</th>
<th>Coordinator</th>
<th>Room</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificates</td>
<td>Wesley C. Zech,</td>
<td>Hoehn Engineering</td>
<td>(205) 934-1685; zechwes@uab.edu</td>
</tr>
<tr>
<td></td>
<td>PhD</td>
<td>Building, Room 140</td>
<td></td>
</tr>
</tbody>
</table>

Category A certificates are offered by the Department of Civil, Construction, and Environmental Engineering. Any undergraduate or graduate student in good standing who is pursuing a Civil Engineering degree (BSCE, MSCE, or PhD) may elect to simultaneously complete the requirements of his or her degree program and the Certificate Program. These certificates are listed on student transcripts and in the university graduation bulletin. Certificates can be earned in:

- Construction Engineering Management
- Environmental Engineering
- Geotechnical Engineering
- Structural Engineering
- Sustainable Engineering
- Transportation Engineering

Civil Engineering (BSCE) graduates who complete the Certificate Program will have greater depth in a specific technical area. The certificates also allow a means for practicing engineers to acquire expertise beyond a Bachelor's degree, and have it formally recognized without completing a program leading to a Master's degree. This technical expertise will enhance their proficiency and marketability. Up to 12 graduate level credit hours taken for a certificate may be applied toward the MSCE degree.

The requirements are as follows:

- Students must be admitted to the Department as either undergraduate (BSCE) or graduate (MSCE) students in Civil, Construction, and Environmental Engineering or hold a BS in Civil Engineering or a closely related field from an accredited institution.
- Certificates require a minimum of 15 credit hours consisting of five graduate level elective courses in the area of specialization. Certificates for undergraduate students will be awarded upon completion of the BSCE degree.
- Graduate level elective courses taken may be applied to the certificate as well as a MSCE degree.
One course, up to three credit hours, may be transferred from another institution.

Courses taken from University of Alabama, University of South Alabama, and University of Alabama in Huntsville via Intercampus Interactive Telecommunications System (IITS) may be applied to certificates with prior approval of the certificate program director.

Elective course may be taken at the 500, 600, or 700 level. Special topics courses (CE 590, CE 690, CE 790) may be applied to certificates with prior approval of the certificate program director.

Certificate in Construction Engineering Management

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite Course</td>
<td></td>
</tr>
<tr>
<td>CE 497</td>
<td>Construction Engineering Management (or equivalent)</td>
</tr>
</tbody>
</table>

Select 15 credits from the following:

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

- CE 575 Construction Safety and Health Management
- CE 600 Sustainable Construction
- CECM 669 Advanced Project Management
- CECM 670 Construction Estimating and Bidding
- CECM 671 Construction Liability & Contracts
- CECM 672 Construction Methods and Equipment
- CECM 673 Project Planning and Control
- CECM 674 Green Building Design/Construction
- CECM 675 Advanced Construction and Engineering Economics
- CECM 676 Construction Project Risk Management
- CECM 688 Construction Management and Leadership Challenges in the Global Environment
- CECM 689 Building Information Modeling (BIM) Techniques

Certificate in Environmental Engineering

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite Course</td>
<td></td>
</tr>
<tr>
<td>CE 236</td>
<td>Environmental Engineering (or equivalent)</td>
</tr>
<tr>
<td>CE 337</td>
<td>Hydraulics (or equivalent)</td>
</tr>
</tbody>
</table>

Select 15 credits from the following:

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

- CE 530 Water Supply/Drainage Design
- CE 533 Solid and Hazardous Wastes Management
- CE 534 Air Quality Modeling and Monitoring
- CE 580 Introduction to Water and Wastewater Treatment
- CE 608 Green Building Design
- CE 640 Wastewater Treatment Engineering
- CE 685 Engineering Hydrology
- CESC 600 Principles of Sustainable Development
- CESC 602 Introduction to Sustainable Smart Cities

Certificate in Geotechnical Engineering

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite Course</td>
<td></td>
</tr>
<tr>
<td>CE 332</td>
<td>Soil Engineering (or equivalent)</td>
</tr>
<tr>
<td>CE 332L</td>
<td>Soil Engineering Laboratory (or equivalent)</td>
</tr>
</tbody>
</table>

Select 15 credits from the following:

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

- CE 516 Mechanical Vibrations
- CE 520 Advanced Mechanics
- CE 526 Foundation Engineering
- CE 560 Structural Mechanics
- CE 562 Advanced Structural Analysis
- CE 567 Wind and Seismic Loads
- CE 690 Special Topics in (Area) ¹
- CECM 669 Advanced Project Management
- CECM 671 Construction Liability & Contracts

¹ Must be approved by certificate program director prior to registration

Certificate in Structural Engineering

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite Course</td>
<td></td>
</tr>
<tr>
<td>CE 360</td>
<td>Structural Analysis (or equivalent)</td>
</tr>
</tbody>
</table>

Select 15 credits from the following:

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

- CE 516 Mechanical Vibrations
- CE 520 Advanced Mechanics
- CE 526 Foundation Engineering
- CE 553 Design of Wood Structures
- CE 556 Prestressed Concrete Design
- CE 561 Introduction to the Finite Element Method
- CE 562 Advanced Structural Analysis
- CE 564 Structural Dynamics
- CE 567 Wind and Seismic Loads
- CE 588 Bridge Engineering
- CE 650 Advanced Structural Steel
- CE 655 Advanced Reinforced Concrete
- CE 653 Wood and Masonry Design
- CE 656 Advanced Mechanics of Materials for Structural Engineering
- CE 659 Advanced Reinforced Concrete
- CE 660 Prestressed Concrete Behavior and Design
- CE 662 Advanced Structural Analysis
- CE 664 Bridge Engineering
- CE 665 Structural Dynamics and Earthquake Engineering
- CE 676 Design of Structural Steel Connections
- CESC 602 Introduction to Sustainable Smart Cities
- CESC 608 Green Infrastructure and Transportation
- CESC 610 Smart Cities Technologies
- CESC 614 Smart Cities Technologies
- CESC 616 Big Data and Smart Cities

¹ Only one of these courses can be applied to this certificate

Certificate in Sustainable Engineering Management

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite Course</td>
<td></td>
</tr>
<tr>
<td>CE 497</td>
<td>Construction Engineering Management (or equivalent)</td>
</tr>
</tbody>
</table>

Select 15 credits from the following:

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

- CE 600 Sustainable Construction
- CE 608 Green Building Design
- CESC 600 Principles of Sustainable Development
- CESC 602 Introduction to Sustainable Smart Cities
- CESC 608 Green Infrastructure and Transportation
- CESC 610 Health and Liveability
- CESC 614 Smart Cities Technologies
- CESC 616 Big Data and Smart Cities
Certificate in Transportation Engineering

Requirements

<table>
<thead>
<tr>
<th>Prerequisite Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 345</td>
<td>Transportation Engineering (or equivalent)</td>
</tr>
</tbody>
</table>

Select 15 credits from the following:

- CE 543 Pavement Design & Construction
- CE 622 Traffic Flow Theory
- CE 623 Non-Motorized Transportation Design and Planning
- CE 624 Simulation Models for Transportation Applications
- CE 625 Intelligent Transportation Systems
- CE 646 Traffic Engineering Operations
- CE 648 Urban and Transportation Planning
- CE 690 Special Topics in (Area) ¹
- CECM 669 Advanced Project Management ²
- CECM 671 Construction Liability & Contracts ²
- CESC 600 Principles of Sustainable Development ²
- CESC 602 Introduction to Sustainable Smart Cities ²
- CESC 608 Green Infrastructure and Transportation ²

¹ Must be approved by certificate program director prior to registration
² Only one of these courses can be applied to this certificate

Please Note: All Master of Engineering concentrations are 100% online. There are no on-campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Proper computer equipment and high-speed internet direct access are required to be successful.

Construction Engineering Management Concentration

The following three concentrations in the online Master in Engineering program are offered through the Department of Civil, Construction, and Environmental Engineering:

- Construction Engineering Management
- Structural Engineering
- Sustainable Smart Cities

Admission Requirements

In addition to the Graduate School admission requirements, admission to the UAB MEng-CEM includes the following:

1. Bachelor’s degree (any discipline) from a regionally accredited US college or university. CEM promotes a multi-discipline learning experience and therefore an engineering undergraduate degree is not required;
2. An undergraduate GPA of 3.0 or higher (individuals not meeting this requirement but who have a strong professional background, references, and interview may be admitted);
3. No GRE required;
4. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details;
5. Original transcripts sent directly to the UAB Graduate School per their policy for degree-seeking students (detailed instructions are included during the online application process);
6. Two years of relevant construction industry work experience or a bachelor’s degree in engineering or a science-related field;
7. Personal interview with the Director of CEM Student Affairs (schedule the interview prior to submitting a application);
8. Three letters of recommendation from professional contacts;
9. Personal essay detailing motivation and career aspirations for earning the degree; and
10. Résumé/Curriculum Vitae

To apply: Visit the UAB Graduate School website and click the ‘Apply Now’ button. Choose MEng - Construction Engineering Management in the Program Applying To section.

Pre-Defined Table

Deadline for Entry Term(s) | Fall: August 1; Spring: December 1; Summer: May 1
 Deadline for All Application Materials to be in the Graduate School Office | Seven business days before term begins (see https://www.uab.edu/students/academics/academic-calendar)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CECM 669 Advanced Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CECM 670 Construction Estimating and Bidding</td>
<td>3</td>
</tr>
<tr>
<td>CECM 671 Construction Liability & Contracts</td>
<td>3</td>
</tr>
<tr>
<td>CECM 672 Construction Methods and Equipment</td>
<td>3</td>
</tr>
<tr>
<td>CECM 673 Project Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>CECM 674 Green Building Design/Construction</td>
<td>3</td>
</tr>
<tr>
<td>CECM 675 Advanced Construction and Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>CECM 676 Construction Project Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>CECM 688 Construction Management and Leadership Challenges in the Global Environment</td>
<td>3</td>
</tr>
<tr>
<td>CECM 689 Building Information Modeling (BIM) Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours | 30
Sustainable Smart Cities Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no on-campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Proper computer equipment and high-speed internet direct access are required to be successful.

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.uab.edu/engineering/</td>
</tr>
<tr>
<td>Director</td>
<td>Jason T. Kirby, PhD</td>
</tr>
<tr>
<td>E-mail</td>
<td>jtkirby@uab.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>205-934-8479</td>
</tr>
<tr>
<td>Address</td>
<td>UAB School of Engineering, HOEN 340</td>
</tr>
<tr>
<td></td>
<td>1720 2nd Avenue South, Birmingham, AL 35294-4440</td>
</tr>
</tbody>
</table>

Admission Requirements

In addition to the Graduate School admission requirements, requirements for admission to the UAB MEng-SSC program includes the following:

1. **Bachelor’s degree** (any discipline) from a regionally accredited US college or university. SSC promotes a multi-discipline learning experience and therefore an engineering undergraduate degree is not required;
2. An **undergraduate GPA** of 3.0 or higher (individuals not meeting this requirement but who have a strong professional background, references, and interview may be admitted);
3. **No GRE required**
4. International applicants must submit **English proficiency scores** in accordance with UAB Graduate School requirement. [Click here for details];
5. **Original transcripts** sent directly to the UAB Graduate School per their policy for degree-seeking students (detailed instructions are included during the online application process);
6. Two years of **relevant construction industry work experience** or a bachelor's degree in engineering or a science-related field;
7. **Personal interview** with the Director of SSC (schedule the interview prior to submitting a application);
8. Three **letters of recommendation** from professional contacts;
9. **Personal essay** detailing academic motivation and and career aspirations in SSC; and
10. **Résumé/Curriculum Vitae**

Application Submission Deadline for	Fall: August 1; Spring: December 1;
Entry Term(s)	Summer: May 1
Deadline for All Application	Seven business days before term begins (see UAB academic calendar - https://www.uab.edu/students/academics/academic-calendar)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESC 600 Príciples of Sustainable Development</td>
<td>3</td>
</tr>
<tr>
<td>CESC 620 Introduction to Sustainable Smart Cities</td>
<td>3</td>
</tr>
<tr>
<td>CESC 614 Low-Carbon and Renewable Energy Systems for Smart Cities</td>
<td>3</td>
</tr>
<tr>
<td>CESC 606 Managing Natural Resources and Sustainable Smart Cities</td>
<td>3</td>
</tr>
<tr>
<td>CESC 608 Green Infrastructure and Transportation</td>
<td>3</td>
</tr>
<tr>
<td>CESC 610 Health and Liveability</td>
<td>3</td>
</tr>
<tr>
<td>CESC 612 Green Buildings</td>
<td>3</td>
</tr>
<tr>
<td>CESC 614 Smart Cities Technologies</td>
<td>3</td>
</tr>
<tr>
<td>CESC 616 Big Data and Smart Cities</td>
<td>3</td>
</tr>
<tr>
<td>CESC 618 Research Methods and Project Planning</td>
<td>3</td>
</tr>
<tr>
<td>CESC 620 Sustainable Smart Cities Research Project</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Hours 30

Structural Engineering Concentration

Please Note: All Master of Engineering concentrations are 100% online. There are no on-campus classes or required on-campus meetings or activities. Course delivery includes asynchronous and synchronous learning modes. Proper computer equipment and high-speed internet direct access are required to be successful.

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>http://www.uab.edu/engineering/</td>
</tr>
<tr>
<td>Director</td>
<td>Christopher Waldron, PhD, PE</td>
</tr>
<tr>
<td>E-mail</td>
<td>cwaldron@uab.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>205-934-8435</td>
</tr>
<tr>
<td>Address</td>
<td>UAB School of Engineering, HOEN 130B</td>
</tr>
<tr>
<td></td>
<td>1720 2nd Avenue South, Birmingham, AL 35294-4440</td>
</tr>
</tbody>
</table>

The Master of Engineering with a concentration in Structural Engineering is designed to increase the technical knowledge of engineering professionals working in or desiring to work in the broad field of structural engineering.

Admission Requirements

In addition to the Graduate School admission requirements, requirements for admission to the UAB MEng-STR program include the following:

1. An **undergraduate degree** in civil or mechanical engineering from an ABET accredited program. Applicants who have a Bachelor's degree and an outstanding academic record from an ABET accredited program other than civil or mechanical engineering or from an unaccredited engineering or applied science program may be admitted at program discretion;
2. An **undergraduate GPA** of 3.0 or higher (individuals not meeting this requirement but who have a strong professional background, references, and interview may be admitted);
3. **No GRE required**;
4. International applicants must submit **English proficiency scores** in accordance with UAB Graduate School requirement. [Click here for details];
5. **Original transcripts** sent directly to the UAB Graduate School per their policy for degree-seeking students (detailed instructions are included during the online application process);
6. Minimum undergraduate prerequisites or equivalent (students missing undergraduate prerequisites may be admitted but will be restricted from taking certain courses until the needed prerequisites are satisfied:
 a. Structural Analysis of Elastic Structures
 b. Reinforced Concrete Design
 c. Principles of Steel Design
7. **Personal interview** with the program director (schedule the interview prior to submitting an application);

8. Three **letters of recommendation** from professional contacts;

9. **Personal essay** detailing academic motivation and and career aspirations for earning the degree; and

10. **Résumé/Curriculum Vitae**

To apply: Visit the [UAB Graduate School website](https://www.uab.edu/) and click the ‘Apply Now’ button. Choose MEng - Construction Engineering Management in the **Program Applying To** section.

Application Submission Deadline

- **Fall**: August 1; **Spring**: December 1; **Summer**: May 1
- **Deadline for All Application Materials to be in the Graduate School Office**

- Seven business days before term begins (see UAB academic calendar - https://www.uab.edu/students/academic-calendar)

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a minimum of 21 hours</td>
<td>21-30</td>
</tr>
<tr>
<td>CESE 653 Wood and Masonry Design</td>
<td></td>
</tr>
<tr>
<td>CESE 656 Advanced Mechanics of Materials for Structural Engineering</td>
<td></td>
</tr>
<tr>
<td>CESE 657 Advanced Design of Steel Structures</td>
<td></td>
</tr>
<tr>
<td>CESE 659 Advanced Reinforced Concrete</td>
<td></td>
</tr>
<tr>
<td>CESE 660 Prestressed Concrete Behavior and Design</td>
<td></td>
</tr>
<tr>
<td>CESE 662 Advanced Structural Analysis</td>
<td></td>
</tr>
<tr>
<td>CESE 664 Bridge Engineering</td>
<td></td>
</tr>
<tr>
<td>CESE 665 Structural Dynamics and Earthquake Engineering</td>
<td></td>
</tr>
<tr>
<td>CESE 676 Design of Structural Steel Connections</td>
<td></td>
</tr>
<tr>
<td>CESE 690 Special Topics (Area)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select a maximum of 9 hours</th>
<th>0-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CECM 669 Advanced Project Management</td>
<td></td>
</tr>
<tr>
<td>CECM 671 Construction Liability & Contracts</td>
<td></td>
</tr>
<tr>
<td>CECM 673 Project Planning and Control</td>
<td></td>
</tr>
<tr>
<td>CECM 674 Green Building Design/Construction</td>
<td></td>
</tr>
<tr>
<td>CECM 675 Advanced Construction and Engineering Economics</td>
<td></td>
</tr>
<tr>
<td>CECM 676 Construction Project Risk Management</td>
<td></td>
</tr>
<tr>
<td>CECM 689 Building Information Modeling (BIM) Techniques</td>
<td></td>
</tr>
</tbody>
</table>

1. Up to 12 hours of CE course offerings can be substituted for CESE or CECM courses with prior approval from the Program Director

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must complete a minimum of 30 hours with the classes listed below</td>
<td>30</td>
</tr>
<tr>
<td>All CESE courses at the 600 level</td>
<td></td>
</tr>
<tr>
<td>All CECM courses with advisor-approval 600-791 (maximum of 9 hours)</td>
<td></td>
</tr>
<tr>
<td>All CE courses with advisor-approval 500-791 (maximum of 12 hours)</td>
<td></td>
</tr>
</tbody>
</table>

| Total Hours | 30 |

Admission Requirements

In addition to the UAB Graduate School admission requirements, admission to the Master’s of Science in Civil Engineering degree include the following five criteria:

1. An undergraduate engineering degree from an ABET accredited engineering program or applied science program. Applicants who have an outstanding academic record in an unaccredited engineering or applied science degree program may be admitted at program discretion. Students admitted from this category may be required to complete a sequence of undergraduate courses in addition to the normal requirements of the MSCE degree. This set of extra requirements will be specified in writing at the time of admission to the program.

2. GPA of 3.0 or better on a 4.0 scale in all undergraduate degree major courses attempted;

3. Three letters of recommendation concerning the applicant's previous academic and professional work;

4. Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)

5. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. [Click here for details](https://www.uab.edu)

Program Requirements

The following minimum requirements apply to the plan of study for a student who has earned a baccalaureate degree in civil engineering. A student with an undergraduate degree in another field may also be accepted into the civil engineering program but will normally have to take additional preparatory coursework as part of an expanded plan of study. Continuous enrollment for at least 3 credit hours per term is required. Students receiving a research assistantship are required to be enrolled as full-time students. A full-time student is one who is enrolled in at least 9 credit hours per semester.

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined credit hours of Special Topics and/or Independent Study courses will be applied to the MSCE degree without appeal to and approval from the Program Director.

Master of Science in Civil Engineering

Plan I (Thesis Option)

When a Plan I student successfully completes required coursework, the student should apply to enter candidacy. Once a master's candidate, the student must complete a minimum of 9 credit hours of thesis research (CE 699) over the course of at least two semesters. Prior to admission of candidacy, the student can take research credit hours in the form of non-thesis research (CE 698). These non-thesis research credit hours cannot be converted from non-thesis research credits into thesis research credits.

1. The student must successfully complete at least 22 credit hours of graduate credit, including:
a. A minimum of 18 credit hours in civil engineering;
b. Up to 6 credit hours in disciplines outside civil engineering, such as other engineering disciplines, mathematics, chemistry, computer science, earth science, physics, urban affairs, public administration, or public health; and
c. A minimum of 9 credit hours of CE 699 Thesis Research under the direction of the graduate study committee chair resulting in a successful oral defense and committee approved thesis.
2. All Plan I Master's students are required to complete online modules covering the 9 topic areas of Responsible Conduct of Research (RCR) research integrity. The modules can be accessed online at https://www.citiprogram.org.

Plan II (Non-Thesis Option):
The student must successfully complete at least 33 credit hours of graduate credit including:

1. A minimum of 24 credit hours in civil engineering;
2. Up to 6 credit hours in disciplines outside civil engineering, such as other engineering disciplines, mathematics, chemistry, computer science, earth science, physics, urban affairs, public administration, or public health; and
3. A minimum of 3 credit hours of CE 698 Non-Thesis Research under the direction of the graduate study committee chair resulting in a successful oral defense and committee approved written report.

Areas of Specialization
The department offers specialization programs in the fields of construction engineering management, environmental engineering, structural engineering/structural mechanics, and transportation engineering. Supporting courses are offered in geotechnical engineering, optimization, engineering law, and other areas. If a student chooses to declare a concentration, the student must choose from the courses listed below the appropriate concentration to fulfill the required 18 credit hours (Plan I) or 24 credit hours (Plan II) within civil engineering.

Concentration in Construction Engineering Management

Requirements Hours
Select 18 credits hours for Plan I or 24 credit hours for Plan II from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 515</td>
<td></td>
</tr>
<tr>
<td>CE 575</td>
<td></td>
</tr>
<tr>
<td>CE 597</td>
<td></td>
</tr>
<tr>
<td>CE 600</td>
<td></td>
</tr>
<tr>
<td>CE 690</td>
<td></td>
</tr>
<tr>
<td>CE 691</td>
<td></td>
</tr>
<tr>
<td>CECM 669</td>
<td></td>
</tr>
<tr>
<td>CECM 670</td>
<td></td>
</tr>
<tr>
<td>CECM 671</td>
<td></td>
</tr>
<tr>
<td>CECM 672</td>
<td></td>
</tr>
<tr>
<td>CECM 673</td>
<td></td>
</tr>
<tr>
<td>CECM 674</td>
<td></td>
</tr>
<tr>
<td>CECM 675</td>
<td></td>
</tr>
<tr>
<td>CECM 676</td>
<td></td>
</tr>
</tbody>
</table>

CECM 688 Construction Management and Leadership Challenges in the Global Environment
CECM 689 Building Information Modeling (BIM) Techniques

1. Only one of these courses can be applied to this degree
2. or any CE 590/690 IITS course offerings from UA, USA, or UAH campuses with prior approval of the Program Director. Please note: all special topics and individual study courses must have prior approval of the program director in order to apply to degree or concentration requirements; no more than a combined 6 hours of special topics or individual study can be applied to the degree without prior program director approval
3. MEng courses (i.e., CECM, CESE, and CESC) can be applied toward MSCE degree requirements

Concentration in Environmental Engineering

Requirements Hours
Select 18 credit hours for Plan I or 24 credit hours for Plan II from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 530</td>
<td></td>
</tr>
<tr>
<td>CE 531</td>
<td></td>
</tr>
<tr>
<td>CE 533</td>
<td></td>
</tr>
<tr>
<td>CE 534</td>
<td></td>
</tr>
<tr>
<td>CE 537</td>
<td></td>
</tr>
<tr>
<td>CE 580</td>
<td></td>
</tr>
<tr>
<td>CE 585</td>
<td></td>
</tr>
<tr>
<td>CE 690</td>
<td></td>
</tr>
<tr>
<td>CE 691</td>
<td></td>
</tr>
<tr>
<td>CESC 600</td>
<td></td>
</tr>
<tr>
<td>CESC 602</td>
<td></td>
</tr>
<tr>
<td>CESC 608</td>
<td></td>
</tr>
</tbody>
</table>

CE 530 Water Supply/Drainage Design
CE 531 Energy Resources
CE 533 Solid and Hazardous Wastes Management
CE 534 Air Quality Monitoring and Monitoring
CE 537 Environmental Experimental Design and Field Sampling
CE 580 Introduction to Water and Wastewater Treatment
CE 585 Engineering Hydrology
CE 690 Special Topics in (Area) 2
CE 691 Individual Study in (Area) 1

1. or any CE 590/690 IITS course offerings from UA, USA, or UAH campuses with prior approval of the Program Director. Please note: all special topics and individual study courses must have prior approval of the program director in order to apply to degree or concentration requirements; no more than a combined 6 hours of special topics or individual study can be applied to the degree without prior program director approval
2. MEng courses (i.e., CECM, CESC, CESE) can be applied toward MSCE degree requirements
3. Only one of these courses can be applied to this degree

Concentration in Structural Engineering

Requirements Hours
Select 18 credit hours for Plan I or 24 credit hours for Plan II from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 516</td>
<td></td>
</tr>
<tr>
<td>CE 520</td>
<td></td>
</tr>
<tr>
<td>CE 526</td>
<td></td>
</tr>
<tr>
<td>CE 544</td>
<td></td>
</tr>
<tr>
<td>CE 553</td>
<td></td>
</tr>
</tbody>
</table>

CE 516 Mechanical Vibrations
CE 520 Advanced Mechanics
CE 526 Foundation Engineering
CE 544 Civil Engineering Analysis II
CE 553 Design of Wood Structures
the Master of Science in Civil Engineering, which makes it difficult to
The Department offers a variety of courses due to the focus areas under

1 Concentration in Transportation Engineering

Select 18 credit hours for Plan I or 24 credit hours for Plan II from
the following: 1

<table>
<thead>
<tr>
<th>Hours</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CE 543 Pavement Design & Construction (Select 18 credit hours for Plan I or 24 credit hours for Plan II from the following:)</td>
</tr>
<tr>
<td></td>
<td>CE 590 Special Topics in Civil Engineering 2</td>
</tr>
<tr>
<td></td>
<td>CE 621 Transportation Engineering Seminar 1</td>
</tr>
<tr>
<td></td>
<td>CE 622 Traffic Flow Theory</td>
</tr>
<tr>
<td></td>
<td>CE 624 Simulation Models for Transportation Applications</td>
</tr>
<tr>
<td></td>
<td>CE 625 Intelligent Transportation Systems</td>
</tr>
<tr>
<td></td>
<td>CE 646 Traffic Engineering Operations</td>
</tr>
<tr>
<td></td>
<td>CE 648 Urban and Transportation Planning</td>
</tr>
<tr>
<td></td>
<td>CE 690 Special Topics in (Area) 2</td>
</tr>
<tr>
<td></td>
<td>CE 691 Individual Study in (Area) 1</td>
</tr>
</tbody>
</table>

1 or any CE 590/690 IITS course offerings from UA, USA, or UAH campuses with prior approval of the Program Director. Please note: all special topics and individual study courses must have prior approval of the program director in order to apply to degree or concentration requirements; no more than a combined 6 hours of special topics or individual study can be applied to the degree without prior program director approval

2 MEng courses (i.e., CECM, CESC, CESE) can be applied to MSCE degree requirements

The Department offers a variety of courses due to the focus areas under the Master of Science in Civil Engineering, which makes it difficult to designate all the courses in which students may enroll. Therefore, the lists above are not all-inclusive.

Admission Requirements

The coordinated Environmental Engineering/Public Health degree program is offered through the UAB School of Engineering (SOE) and UAB School of Public Health (SOPH). Earning these two advanced degrees prepares students for a broad range of careers in urban planning, urban sustainability, healthy and livable city design, the management of air, water, and land resources, and creating healthy communities. Students in this coordinated program earn a Master of Public Health (M.P.H.) with a concentration in Population Health. In this concentration, students gain a solid foundation in public health through completion of the M.P.H. core (based on the Evidence-based Public Health framework), an Applied Practice Experience (Internship), and an Integrative Learning Experience (Capstone). Students also complete environmental health sciences courses focusing on urban health issues including air and water pollution, occupational safety, and assessing and managing environmental risks. In addition, in this coordinated degree program students earn a Master of Science in Civil Engineering (MSCE) with a specialization in environmental engineering focusing green building and water supply design, drainage and stormwater runoff design, and energy resources. The program offers a broad curriculum covering health aspects of engineering designs, resilient and sustainable urban development, low carbon and renewable energy systems, green infrastructure, natural resource management, health and livability, transportation and mobility, big data analytics, and smart technologies. Graduates of this coordinated degree program will shape our modern cities into human habitats that are safe, clean, and sustainable addressing issues such as the growing stressors of energy security, population growth and health, food supply, waste disposal, climate change, and future infrastructure demands. This program is aimed at leaders and professionals in public and private sector organizations who seek to design, develop, and deliver smart, healthy and sustainable environmental solutions.

In addition to the UAB Graduate School admission requirements, admission to the dual Master’s of Science in Civil Engineering (MSCE)/Master’s of Public Health (MPH) degree include the following five criteria:

1. An undergraduate engineering degree from an ABET accredited engineering program, applied science program, or similar. Applicants who have a degree from an unaccredited program but demonstrate an outstanding academic record may be admitted provisionally at the CCEE Graduate Program Director’s discretion. Students admitted from this category may be required to complete a sequence of undergraduate courses in addition to the regular requirements of the MSCE degree. This set of extra requirements will be specified in writing at the time of admission to the program.

2. An undergraduate GPA of 3.0 or higher on a 4.0 scale in all undergraduate degree major courses attempted. Individuals not meeting this requirement but who have a strong professional background and excellent references may be admitted.

3. Three (3) letters of recommendation concerning the applicant’s previous academic and professional work.

4. No GRE required.

5. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details.
6. Verification of registration by examination as a Professional Engineer (PE) will satisfy criterion 2 above.

Master of Science in Civil Engineering/Master of Public Health Program Requirements

The following minimum requirements apply to the plan of study for a student who has earned a baccalaureate degree in civil engineering (BSCE). The MSCE/MPH degree plan contains 42-44 MPH credit hours meeting the Council on Education for Public Health (CEPH) MPH requirements and include PUH 610 Population Health meeting the SOE MPH requirement for the MPH in Population Health. 2) The MSCE/MPH degree plan contains 33 MSCE credit hours meeting the SOE MSCE requirements and have at least 30 credit hours unique to each Master’s degree satisfying the UAB Graduate School requirements.

A student with an undergraduate degree in another field may also be accepted into the civil engineering program but will normally have to take additional preparatory coursework as part of an expanded plan of study. Continuous enrollment for at least 3 credit hours per semester is required. Students receiving a research assistantship are required to be enrolled as full-time students. A full-time student is one who is enrolled in at least 9 credit hours per semester.

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined credit hours of Special Topics and/or Independent Study courses will be applied to the MSCE degree without appeal to and approval from the Program Director.

The SOE offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600 level course, respectively.

When the graduate student successfully completes required coursework, the student opted for Plan I (Thesis Option) should apply to enter candidacy. Once a master’s candidate, the student must complete a minimum of 9 credit hours of thesis research (CE 699) over the course of at least two semesters. Prior to admission of candidacy, the student can take research credit hours in the form of non-thesis research credit hours (CE 698). These non-thesis research credit hours cannot be converted from non-thesis research credits into thesis research credits.

MSCE/MPH Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements</td>
<td>14</td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td></td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td></td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td></td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td></td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td></td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td></td>
</tr>
<tr>
<td>MPH Degree Requirement</td>
<td>1</td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td></td>
</tr>
<tr>
<td>Population Health Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td></td>
</tr>
<tr>
<td>Environmental Health Sciences Recommended Courses</td>
<td>7</td>
</tr>
<tr>
<td>ENH 600 Fundamentals of Environmental Health Science</td>
<td></td>
</tr>
</tbody>
</table>

MPH Applied Practice Experience

1. Assessing & Managing Environmental Risks
2. Environmental Health Perspectives

MPH Integrative Learning Experience

1. Environmental Health Sciences Integrative Learning Experience

Total Hours Earned for MPH Degree: 30

MPH Shared Hours from MSCE Curriculum

1. Assesses & Managing Environmental Risks
2. Fundamentals of Air and Water Pollution
3. Public Health Internship

Total Hours Earned for MSCE Degree: 7

Total Hours Completed for MSCE/MPH Degree: 8

1. Students may substitute ENH courses to meet their educational objectives with consent of advisor (7 credit hours minimum required)
2. Meets UAB Graduate School requirements of a minimum 30 hours of graduate work
3. Meets the CEPH MPH requirements of a minimum of 42 semester hours
4. Course substitutions may be made with consent of advisor
5. EHS faculty will serve on thesis committee
6. For Thesis students; Non-Thesis students will register for a total of 6 credit hours of CE electives and 3 credit hours of CE 698 Non-Thesis Research
7. Master of Science in Engineering
8. Assumes the recommended Environmental Health Sciences courses plus PUH 610 Population Health (12 credit hours)

Admission Requirements

In addition to the UAB Graduate School admission requirements, requirements for admission to the program leading to the Doctorate of Philosophy in Civil Engineering degree include the following five criteria:

1. An undergraduate engineering degree from an ABET accredited program or a master’s degree in engineering. Applicants who do not meet this criterion but who have an outstanding academic record in an engineering degree program not accredited by ABET, or in a baccalaureate or master’s degree program in a related field, may be admitted on probation. Students admitted in this category will be required to complete a sequence of undergraduate or graduate courses in addition to the regular requirements of the MSCE degree. This set of extra requirements will be specified in writing at the time of admission to the program;

2. An undergraduate GPA of 3.0 or higher on a scale of 4.0 in all undergraduate degree major courses attempted. Individuals not meeting this requirement but who have a strong professional background and excellent references may be admitted;
3. Three (3) letters of recommendation concerning the applicant's previous academic and professional work;
4. No GRE required
5. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details;
6. Verification of registration by examination as a Professional Engineer (PE) will satisfy criterion 2.

Doctor of Philosophy in Civil Engineering Program Requirements

This is a joint program with the University of Alabama in Huntsville (UAH). A typical student entering the program will already have an undergraduate degree in Civil Engineering from a program accredited by the Engineering Accreditation Commission of ABET. Students with outstanding records in related fields or from a non-accredited engineering program will be considered for admission with contingencies and must remedy deficiencies in their preparation after the start of their academic program. These requirements will be defined in writing at the time of admission.

The program requires 48 credit hours of coursework beyond the baccalaureate level or 27 credit hours of coursework beyond the master's degree, plus a minimum of 24 credit hours of dissertation research (CE 799 Dissertation Research).

A minimum of 6 credit hours must be taken from the UAH campus. The student has two options
1. Register at UAH and then have the credits transferred to UAB or
2. Register at UAB for an equivalent course and have the UAH instructor send the grade to UAB.

The courses may be taken through the Intercampus Interactive Telecommunications System (IITS) at UAB, Distance Learning (DL), or web-based instruction for UAH.

Special Topics (690/790) courses and Individual Study (691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined credit hours of Special Topics and/or Independent Study courses will be applied to the degree without appeal to and prior approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Doctoral students are also required to successfully complete GRD 717 Principles of Scientific Integrity prior to admission to candidacy.

A Graduate Study Committee must be established by the doctoral student and must include a minimum of five graduate faculty members, at least one of which must be from UAH. A comprehensive examination is required of all doctoral candidates. This examination is conducted by the Graduate Study Committee after all coursework is successfully completed. The examination has both written and oral components. During the oral portion of the examination, the student also presents the dissertation proposal to the Graduate Study Committee. The comprehensive examination may only be taken twice.

When the graduate student successfully passes the comprehensive examination, including the dissertation proposal, the student should apply to enter candidacy. Once a doctoral candidate, the student must complete a minimum of 24 credit hours of dissertation research (CE 799 Dissertation Research) over the course of at least two semesters. Prior to admission of candidacy, the student can take research hours in the form of non-dissertation credit hours (CE 798 Non-Dissertation Research); these non-dissertation credit research hours cannot be converted from non-dissertation research credit hours into dissertation research credit hours.

After successful completion of a minimum of 24 credit hours of dissertation research, the graduate student must complete the dissertation and submit to the Graduate Study Committee for review. The doctoral candidate must also present an oral public defense of the dissertation. When the graduate student successfully defends the dissertation, the student then has ten working days to complete revisions and submit the approved document to the Graduate School.

Required coursework must be selected from the list below. PhD students are encouraged to take the highest level available (700 level rather than 600 level; 600 or 700 level rather than 500 level). Students are only allowed to take 500 level courses if there is no equivalent 600 or 700 level course available. A minimum of 50 percent of the required coursework must be at the graduate level of 600 or above.

Additional graduate courses can be counted towards the PhD degree, as long as those courses were taken above and beyond the requirements for a BS or MS degree. To do so requires that the student must petition the department to have those courses counted toward an advanced degree. The graduate program director would make a recommendation on the petition (and would consider the UAB equivalent course description if the course was taken from another university). The maximum credit hours from an outside institution that could be applied toward an advanced degree at UAB is 12 credit hours.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>CE 799 Dissertation Research</td>
<td>24</td>
</tr>
</tbody>
</table>

Construction Engineering Management Courses 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 515</td>
<td>Building Information Modeling (BIM)</td>
</tr>
<tr>
<td>CE 575</td>
<td>Construction Safety and Health Management</td>
</tr>
<tr>
<td>CE 597</td>
<td>Construction Engineering Management</td>
</tr>
<tr>
<td>CE 600</td>
<td>Sustainable Construction</td>
</tr>
<tr>
<td>CE 790</td>
<td>Special Topics in (Area)</td>
</tr>
<tr>
<td>CE 791</td>
<td>Individual Studies (In Area)</td>
</tr>
<tr>
<td>CECM 669</td>
<td>Advanced Project Management</td>
</tr>
<tr>
<td>CECM 670</td>
<td>Construction Estimating and Bidding</td>
</tr>
<tr>
<td>CECM 671</td>
<td>Construction Liability & Contracts</td>
</tr>
<tr>
<td>CECM 672</td>
<td>Construction Methods and Equipment</td>
</tr>
<tr>
<td>CECM 673</td>
<td>Project Planning and Control</td>
</tr>
<tr>
<td>CECM 674</td>
<td>Green Building Design/Construction</td>
</tr>
<tr>
<td>CECM 675</td>
<td>Advanced Construction and Engineering Economics</td>
</tr>
<tr>
<td>CECM 676</td>
<td>Construction Project Risk Management</td>
</tr>
<tr>
<td>CECM 688</td>
<td>Construction Management and Leadership Challenges in the Global Environment</td>
</tr>
<tr>
<td>CECM 689</td>
<td>Building Information Modeling (BIM) Techniques</td>
</tr>
</tbody>
</table>

Structural Engineering Courses 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 516</td>
<td>Mechanical Vibrations</td>
</tr>
<tr>
<td>CE 520</td>
<td>Advanced Mechanics</td>
</tr>
</tbody>
</table>
Environmental Engineering Courses

- CE 530 Water Supply/Drainage Design
- CE 531 Energy Resources
- CE 533 Solid and Hazardous Wastes Management
- CE 534 Air Quality Modeling and Monitoring
- CE 537 Environmental Experimental Design and Field Sampling
- CE 580 Introduction to Water and Wastewater Treatment
- CE 585 Engineering Hydrology
- CE 600 Sustainable Construction
- CE 608 Green Building Design
- CE 610 The Engineered Environment
- CE 636 Stormwater Pollution Management
- CE 640 Wastewater Treatment Engineering
- CE 731 Environmental Law
- CE 732 Industrial Waste and Wastewater Treatment
- CE 736 Stormwater Pollution Management
- CE 738 Water and Wastewater Chemistry
- CE 739 Sediment Sources and Controls
- CE 740 Wastewater Treatment Engineering
- CE 781 Environmental Chemistry
- CE 782 Water Treatment Engineering
- CE 783 Water and Wastewater Treatment Processes Lab
- CE 786 Engineering Hydrogeology
- CE 787 Stormwater Detention Pond Design
- CE 790 Special Topics in (Area)

Transportation Engineering Courses

- CE 543 Pavement Design & Construction
- CE 621 Transportation Engineering Seminar
- CE 622 Traffic Flow Theory
- CE 624 Simulation Models for Transportation Applications
- CE 625 Intelligent Transportation Systems
- CE 646 Traffic Engineering Operations
- CE 648 Urban and Transportation Planning
- CE 721 Transportation Engineering Seminar
- CE 722 Traffic Flow Theory
- CE 723 Non-Motorized Transportation Design and Planning
- CE 724 Simulation Models for Transportation Applications
- CE 725 Intelligent Transportation Systems
- CE 790 Special Topics in (Area)

1. Minimum 24 hours of dissertation research taken over the course of at least two semesters following admission to candidacy
2. MEng courses (i.e., CECM, CESC, CESE) can be applied toward PhD degree requirements
3. Only one of these courses can be applied to the degree
4. Or any CE 690/790 IITS course offerings from UAH, USA, and/or UA campuses with prior approval of Program Director
5. Only one of these courses can be applied to the degree

Admission Requirements

The coordinated Public Health/Civil Engineering degree program is offered through the UAB School of Engineering (SOE) and the School of Public Health (SOPH). Earning these two advanced degrees provides students with a foundation for positions in research, government, as well as private industry. Students in this coordinated program earn a Doctor of Philosophy in Civil Engineering (PhD). The PhD program is intended for students who have achieved high levels of scholarship and are capable of conducting independent and original research. PhD students in civil engineering will work closely with faculty in the Department of Civil, Construction and Environmental Engineering, but they may also work on interdisciplinary teams with faculty from other UAB departments as well as outside industry. The program offers a broad curriculum covering engineering designs, resilient and sustainable urban development, low carbon and renewable energy systems, green infrastructure, natural resource management, health and livability, transport and mobility, big data analytics, and smart technologies. In addition to the MPH, students earn some MEng courses (i.e., CECM, CESC, CESE) can be applied toward PhD degree requirements.

Graduates of this coordinated degree program will conduct research in and create solutions for human habitats that are safe, clean, and sustainable. Students also complete environmental health sciences courses focusing on urban health issues including air and water pollution, occupational safety, and assessing and managing environmental risks. Graduates of this coordinated degree program will conduct research in and create solutions for human habitats that are safe, clean, and sustainable. Students also complete environmental health sciences courses focusing on urban health issues including air and water pollution, occupational safety, and assessing and managing environmental risks.

In addition to the MPH, students earn some MEng courses (i.e., CECM, CESC, CESE) can be applied toward PhD degree requirements. In addition to the UAB Graduate School admission requirements, requirements for admission to the program leading to the Doctor of Philosophy in Civil Engineering degree include the following five criteria:

1. An undergraduate engineering degree from an ABET accredited program or a master’s degree in engineering. Applicants who do not meet this criterion but who have an outstanding academic record...
in an engineering degree program not accredited by ABET, or in a baccalaureate or master's degree program in a related field, may be admitted on probation. Students admitted in this category will be required to complete a sequence of undergraduate or graduate courses in addition to the regular requirements of the MSCE degree. This set of extra requirements will be specified in writing at the time of admission to the program.

2. An undergraduate GPA of 3.0 or higher on a 4.0 scale in all undergraduate degree major courses attempted. Individuals not meeting this requirement but who have a strong professional background and excellent references may be admitted.

3. Three (3) letters of evaluation concerning the applicant's previous academic and professional work; and

4. No GRE required.

5. International students are required to have a bachelor's or master's degree in engineering or a science related field and must submit TOEFL, IELTS, PTEA, IELA, or Duolingo scores. (https://www.uab.edu/graduate/admissions/international-applicants/english-proficiency-exams). Duolingo scores are preferred by the UAB Graduate School.

6. Verification of registration by examination as a Professional Engineer (P.E.) will satisfy criterion 2 above.

Doctor of Philosophy in Civil Engineering and Master of Public Health with a concentration in Population Health

Two curricula have been developed for this coordinated program, one for students entering with a Master's of Science in Civil Engineering (MSCE) or closely related field and another for students entering without an MSCE, most likely with on a baccalaureate degree in Civil Engineering or closely-related field. The curriculum planning grid and a breakdown of coursework by degree program is attached for both options are attached. For students entering with an MSCE degree, a total of 81-83 credit hours of coursework are required for the coordinated PhD/MPH Normally, 42-44 credit hours are required for the MPH; however, because of the coordinated nature of the degree 12 credit hours from the PhD curriculum are credited to the MPH. This allows students to earn both degrees in reduced time and at reduced cost. The PhD program 27 credit hours of coursework beyond the master's degree, plus a minimum of 24 credit hours of dissertation research. For students entering without an MSCE degree, a total of 90-92 credit hours of coursework are required for the coordinated PhD/MPH Normally, 42-44 credit hours are required for the MPH; however, because of the coordinated nature of the degree 12 credit hours from the PhD curriculum are credited to the MPH. Twelve credit hours from the MPH degree are used to meet PhD program requirements. This allows students to earn both degrees in reduced time and at reduced cost. The PhD program requires 48 credit hours of coursework beyond the master's degree, plus a minimum of 24 credit hours of dissertation research. Students may complete the MPH portion of this coordinated degree program totally online, in class or through a mix of online and in-class experiences. Online students pay less than the out-of-state tuition rate for the MPH portion of this coordinated degree.

Curriculum for students entering with an acceptable bachelor's degree

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements</td>
<td>14</td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td></td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td></td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td></td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td></td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td></td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td></td>
</tr>
<tr>
<td>MPH Degree Requirement</td>
<td>1</td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td></td>
</tr>
<tr>
<td>Population Health Degree Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td></td>
</tr>
<tr>
<td>Environmental Health Sciences Recommended Courses</td>
<td>7</td>
</tr>
<tr>
<td>ENH 600 Fundamentals of Environmental Health Science</td>
<td></td>
</tr>
<tr>
<td>ENH 612 Assessing & Managing Environmental Risks</td>
<td></td>
</tr>
<tr>
<td>ENH 660 Fundamentals of Air and Water Pollution</td>
<td></td>
</tr>
<tr>
<td>MPH Applied Practice Experience</td>
<td>3</td>
</tr>
<tr>
<td>PUH 688 Public Health Internship</td>
<td></td>
</tr>
<tr>
<td>MPH Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>ENH 689 Environmental Health Sciences Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>Total Unique S.O.P.H Hours: minimum 30 required</td>
<td></td>
</tr>
<tr>
<td>Shared Hours from PhD in Civil Engineering</td>
<td>12</td>
</tr>
<tr>
<td>CE 630 Water Supply/Drainage Design</td>
<td></td>
</tr>
<tr>
<td>CE 580 Introduction to Water and Wastewater Treatment</td>
<td></td>
</tr>
<tr>
<td>CE 608 Green Building Design</td>
<td></td>
</tr>
<tr>
<td>CE 685 Engineering Hydrology</td>
<td></td>
</tr>
<tr>
<td>CE 608 Green Building Design</td>
<td></td>
</tr>
<tr>
<td>CE 685 Engineering Hydrology</td>
<td></td>
</tr>
<tr>
<td>Total Hours Earned for MPH Degree: 42 hours</td>
<td>3</td>
</tr>
<tr>
<td>Remaining Hours from PhD in Civil Engineering Program Requirements</td>
<td>4</td>
</tr>
<tr>
<td>CE 740 Wastewater Treatment Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 786 Engineering Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>CE 787 Stormwater Detention Pond Design</td>
<td></td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>CE 799 Dissertation Research</td>
<td></td>
</tr>
<tr>
<td>CE Electives</td>
<td>12</td>
</tr>
<tr>
<td>Total Hours Earned for PhD in Civil Engineering: 72 Hours</td>
<td>5</td>
</tr>
<tr>
<td>Total Hours Completed for PhD in Civil Engineering/MPH Degree</td>
<td></td>
</tr>
</tbody>
</table>

1. Student may substitute ENH courses to meet their educational objectives with consent of advisor (7 credit hours minimum required)
2. Meets UAB Graduate School requirements of a minimum 30 hours of graduate work
3. Meets the CEPH MPH requirements of a minimum of 42 semester hours
4. Course substitutions may be made with consent of advisor; Assumes the recommended Environmental Health Sciences courses plus PUH 610 Population Health (12 credit hours); A minimum of 72 total credit hours are required, 48 hours of coursework and 24 hours of dissertation research
5. A minimum of 24 credit hours, taken over at least 2 terms, are required
Curriculum for students entering with an acceptable Master’s degree

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements</td>
<td>14</td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td></td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td></td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td></td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td></td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td></td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td></td>
</tr>
<tr>
<td>MPH Degree Requirement</td>
<td>1</td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td></td>
</tr>
<tr>
<td>Population Health Degree Requirement</td>
<td>3</td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td></td>
</tr>
<tr>
<td>Environmental Health Sciences Recommended Courses</td>
<td>7</td>
</tr>
<tr>
<td>ENH 600 Fundamentals of Environmental Health Science</td>
<td></td>
</tr>
<tr>
<td>ENH 612 Assessing & Managing Environmental Risks</td>
<td></td>
</tr>
<tr>
<td>ENH 660 Fundamentals of Air and Water Pollution</td>
<td></td>
</tr>
<tr>
<td>MPH Applied Practice Experience</td>
<td>3</td>
</tr>
<tr>
<td>PUH 688 Public Health Internship</td>
<td></td>
</tr>
<tr>
<td>MPH Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>ENH 689 Environmental Health Sciences Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>Total Unique SOPH Hours: minimum 30 required</td>
<td></td>
</tr>
<tr>
<td>Shared Hours from PhD in Civil Engineering</td>
<td>12</td>
</tr>
<tr>
<td>CE 530 Water Supply/Drainage Design</td>
<td></td>
</tr>
<tr>
<td>CE 580 Introduction to Water and Wastewater Treatment</td>
<td></td>
</tr>
<tr>
<td>CE 608 Green Building Design</td>
<td></td>
</tr>
<tr>
<td>CE 685 Engineering Hydrology</td>
<td></td>
</tr>
<tr>
<td>Total Hours Earned for MPH Degree: 42 hours</td>
<td></td>
</tr>
<tr>
<td>Remaining Hours from MPH Degree</td>
<td>24</td>
</tr>
<tr>
<td>CE 740 Wastewater Treatment Engineering</td>
<td></td>
</tr>
<tr>
<td>CE 786 Engineering Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>CE 787 Stormwater Detention Pond Design</td>
<td></td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>CE 799 Dissertation Research</td>
<td></td>
</tr>
<tr>
<td>CE Electives</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours Earned for PhD in Civil Engineering: 72 Hours</td>
<td></td>
</tr>
<tr>
<td>Total Hours Completed for PhD in Civil Engineering/MPH Degree</td>
<td></td>
</tr>
</tbody>
</table>

1. Student may substitute ENH courses to meet their educational objectives with consent of advisor (7 credit hours minimum required)
2. Meets UAB Graduate School requirements of a minimum 30 hours of graduate work
3. Meets the CEPH MPH requirements of a minimum of 42 semester hours
4. Course substitutions may be made with consent of advisor
5. A minimum of 24 credit hours, taken over at least 2 terms, are required
6. Assumes the recommended Environmental Health Sciences courses plus PUH 610 Population Health (12 credit hours); A minimum of 72 total credit hours are required, 48 hours of coursework and 24 hours of dissertation research

CE-Civil Engineering Courses

CE 515. Building Information Modeling (BIM). 3 Hours.
This class provides an introduction to the virtual world of design and construction. Topics covered include uses for technology, what is BIM, and have a focus on AutoCAD and Revit Software. An emphasis is placed on the use of these tools and their practical applications to the real world environment. Students are provided with the software through the Autodesk Student community and are required to complete a Multi-Step term Project.

CE 516. Mechanical Vibrations. 3 Hours.

CE 520. Advanced Mechanics. 3 Hours.
Variation of stress at point including determination of principal and maximum shear stresses. Basic problems involving symmetrical deformation; thickwall cylinders, spheres, and rotating disk. Torsions of noncircular sections. Curved beams. Failure Theories. Unsymmetrical bending and shear center.

CE 526. Foundation Engineering. 3 Hours.
Application of principles of soil mechanics to: determine bearing capacity and settlement of spread footings, mats, single piles and pile groups; site investigation, evaluate data from field and laboratory tests; estimation of stresses in soil masses; lateral resistance of piles and pile groups; retaining walls, sheetpiles and coffer-dams.

CE 530. Water Supply/Drainage Design. 3 Hours.
Water requirements; wastewater characteristics. Hydraulics and design of sewers; distribution, and reuse of water. Development of water supplies; design considerations.

CE 530L. Water Supply and Drainage Lab. 0 Hours.
The laboratory exercises are designed to assist the student in the investigation of water supply and drainage design including the analysis of water networks, pipe network design, storm-water and sewer collection network design, flow path visualization, hydraulic jump, flow over weirs, channel design, and basin modeling. Companion lab to CE 530 and must be taken concurrently.

CE 531. Energy Resources. 3 Hours.
Overview of the various energy resources: oil, natural gas, coal, nuclear, hydro, solar, geothermal, biomass, wind, and ocean energy resources, in terms of supply, distribution, recovery and conversion, environmental impacts, economies, policy, and technology. Concepts and opportunities for energy conservation; including electric power generation, changing role of electric utilities, transportation applications, and energy use in developing countries. Field trips.

CE 533. Solid and Hazardous Wastes Management. 3 Hours.
Overview of waste characterizations, regulations, and management options.

CE 534. Air Quality Modeling and Monitoring. 3 Hours.
Atmospheric pollutants; effects, reactions, and sources. Air pollution meteorology and dispersion modeling. Ambient monitoring.

CE 537. Environmental Experimental Design and Field Sampling. 3 Hours.
Experimental design, sensitivity analyses, water sampling, and flow monitoring. Receiving water chemical reactions. Field investigations.
CE 537L. Environmental Experimental Design and Field Sampling Lab. 0 Hours.
Lab experiences in environmental experimental design and field sampling.

CE 542. Highway Materials and Construction. 3 Hours.
Properties of materials used in highway construction. Construction methods and management.

CE 543. Pavement Design & Construction. 3 Hours.
Analysis of stresses and strains in pavement systems. Design and construction of flexible and rigid pavements, base courses and subgrades. Effects of loading on pavement life.

CE 544. Civil Engineering Analysis II. 3 Hours.

CE 545. Engineering the Built Environment. 3 Hours.
This service learning course explores the effects the built environment has on urban function, connectivity, community health, and the well-being of its residents. Students work directly in Birmingham neighborhoods learning how to assess different components of the built environment, including transportation, green spaces, lighting, and blight, and to estimate their impacts on community health and well-being. Students then work with representatives from the city, neighborhoods, and local industry to propose engineering solutions, develop realistic cost estimates, assess potential benefits, and develop implementation plans.

CE 546. Green Infrastructure and Transportation. 3 Hours.
This course covers policy and technical issues related to sustainable transportation. The course begins by discussing the concepts, viewpoints, and fundamentals essential for understanding sustainable transportation planning. Tools used to assess sustainability of transportation facilities and neighborhoods are introduced next. The course also presents design options in support of green infrastructure and transportation, including livable street design, and traffic calming applications. The course is expected to expand students' knowledge base on sustainable transportation issues and help them understand the concept of sustainable transportation toward the development of sustainable smart cities.

CE 547. Principles of Sustainable Development. 3 Hours.
The course presents the concepts, viewpoints and fundamentals essential for understanding the urban sustainable development agenda. Students will review basic earth sciences to better evaluate the impact our anthropogenic activities have on the natural environment and therefore how to minimize adverse future outcomes. Throughout the course case studies of sustainable developments will be used to illustrate the value, challenges and limitations of this concept. In the end, students will possess the knowledge base needed to help advance sustainable smart cities development.

CE 553. Design of Wood Structures. 3 Hours.
This course will give students an understanding of structural wood materials, both sawn lumber and a number of engineered wood materials. The main objective of the course is to learn how to design wood structures using these materials, including the design of beams, columns, connections, roof diaphragms, and shear walls. The requirement of the National Design Specification for Wood Structures will be addressed.

CE 554. Design of Masonry Structures. 3 Hours.
Design and detailing of masonry structures. Nomenclature, properties, and specifications for components. Design of assemblages, simple masonry structures, unreinforced and reinforced elements, and complex masonry structures.

CE 556. Prestressed Concrete Design. 3 Hours.
Principles and concepts of design in prestressed concrete including elastic and ultimate strength analysis for flexural, shear, bond, and deflection. Principles of concordance and linear transformation for indeterminate prestressed structures.

CE 557. Concrete Technology. 3 Hours.

CE 560. Structural Mechanics. 3 Hours.
Elastic beam deflections, beam columns, lateral torsional buckling, column stability, plastic design, plate bending, yield line theory.

CE 561. Introduction to the Finite Element Method. 3 Hours.
Concepts and applications of the finite element method. Development and applications of basic finite elements. Software use.

CE 562. Advanced Structural Analysis. 3 Hours.
Analysis of indeterminate structures using classical and matrix methods. Use of large-scale computer programs.

CE 564. Structural Dynamics. 3 Hours.

CE 565. CE Construction Documents. 3 Hours.
Introduction to Civil Engineering design and construction documents including drawings, specifications, contracts, and testing reports. Overview of civil infrastructure and project types, including the civil engineer's role in the preparation, certification, and use of construction documents. Construction topics include measurement, quantity estimating, and engineering budgets.

CE 567. Wind and Seismic Loads. 3 Hours.
Methods for calculating loads on structures caused by extreme winds and earthquakes. Calculation of wind loads on various types of structures according to theory and codes. Determination of earthquake loads on structures using structural dynamics and codes.

CE 568. Bridge Engineering. 3 Hours.
Bridge loads, steel beam bridges, composite beam bridges, bridge bearings, reinforced and prestressed concrete slab and T-beam bridges, bridge evaluations and ratings, upgrade methodologies, computer applications.
CE 570. International Research Experience. 3 Hours.
The International Research Experience for Students (IRES) program provides the opportunity for undergraduate and graduate students to participate in hands-on engineering research in an international setting. Students perform research on an approved topic related to civil engineering design in an international environment. Students select a topic, perform a detailed literature review, and work with mentors from UAB and the international host institution to develop research objectives and a detailed research plan. The course will culminate in a 6-8 week visit to the international host institution, during which time students will conduct hands-on research with their mentors and prepare final reports.

CE 575. Construction Safety and Health Management. 3 Hours.
This course covers various causes of construction accidents and the adopted strategies to prevent worksite injuries and illnesses. Other topics covered include workers' compensation, OSHA standards for the construction industry, economics of construction safety management, temporary structures, system safety, ergonomic applications, health hazards, and the development of a safety program.

CE 580. Introduction to Water and Wastewater Treatment. 3 Hours.
Physical unit operations, and chemical/biological unit processes for water and wastewater treatment. Design of facilities for treatment. Treatment and disposal of sludge.

CE 585. Engineering Hydrology. 3 Hours.
Hydrologic principles including hydrology cycle, precipitation data, and stream-flow measurements. Applications to engineering problems; stream-flow analysis and watershed management.

CE 590. Special Topics in Civil Engineering. 1-6 Hour.
Special Topic in Civil Engineering.

CE 591. Individual Study in Civil Engineering. 1-6 Hour.
Individual Study in Civil Engineering.

CE 597. Construction Engineering Management. 3 Hours.
Study of construction management services that include: project planning, scheduling, estimating, budgeting, contract administration, agreements, and ethics. Emphasis is made on the management of manpower, materials, money and machinery.

CE 600. Sustainable Construction. 3 Hours.
Study of sustainable construction techniques and best practices. Provides an understanding of the interdependencies between planning, designing, building, operating, and demolishing the built environment and their impacts on the natural environment. Course topics will include: (1) issues of resource efficiency, economics, ethics, waste, human health, environmental justice, and industrial ecology; (2) alternative practices that significantly reduce adverse environmental impacts of built infrastructure, and (3) explore past and present thinking of engineering practitioners in this newly emerging discipline.

CE 605. Project Management. 3 Hours.
Presents the theory and practice of project management as a distinct discipline with applications in time, cost, and performance management. Managerial, organizational, behavioral and cost benefit aspects of project management are covered, as well as various applied models for organizing, executing, and monitoring a project. Basic estimating techniques to determine cost and time for construction work packages are discussed followed by scheduling model techniques to include the Critical Path Method (CPM), Precedence Diagramming Method (PDM), Program Evaluation and Review Technique (PERT), and Gantt charts.

CE 607. Engineering Entrepreneurship. 3 Hours.
Course focuses on the entrepreneurial engineer--a new type of engineer who needs a broad range of business skills and knowledge above and beyond a strong science and engineering background. The course will introduce engineering students to the key aspects of engineering entrepreneurship including business planning, solving problems, risk taking, financing, marketing, and entrepreneurial leadership. The students will also be introduced to the many opportunities and challenges that accompany starting and operating an entrepreneurial venture. Entrepreneurial company leaders will present their experiences and share their leadership styles as part of the course.

CE 608. Green Building Design. 3 Hours.
Quantitative introduction to the principles of "Green Building Design". Provides students an understanding of the interdependencies between economics, technology, design, building occupation and the subsequent impact on the natural environment. Course will emphasize green building materials, new technologies, and sustainable construction methods. Course also includes LEED Case Studies (industrial, commercial, residential, and institutional examples).

CE 610. The Engineered Environment. 3 Hours.
Fundamentals of environmental engineering as they apply to the construction of the built environment and contemporary issues faced by engineers in developing nations such as Egypt. Topics include air pollution, solid waste management, water treatment, environmental ethics, etc.

CE 612. Theory of Elasticity. 3 Hours.
Equations of linear reduction to plane stress, plane strain, and generalized plane strain. airy and lore stress functions in solution of problems.

CE 615. Theory of Elastic Stability. 3 Hours.

CE 617. Theory of Plates and Shells. 3 Hours.

CE 621. Transportation Engineering Seminar. 1 Hour.
Seminar focusing on student research and guest presentations of various topics of interest to graduate transportation engineering students.

CE 622. Traffic Flow Theory. 3 Hours.
Microscopic and macroscopic traffic flow characteristics. Traffic flow analytical techniques including car-following models, traffic stream models, shock wave analysis, queuing analysis and gap acceptance. Simulation models for network analysis.

CE 623. Non-Motorized Transportation Design and Planning. 3 Hours.
Urban planning principles that support non-motorized transportation, local bicycle or pedestrian plans, non-motorized transportation safety related considerations, non-motorized transportation design including traffic calming techniques, procedures for capacity analysis of pedestrian facilities.

CE 624. Simulation Models for Transportation Applications. 3 Hours.
Basic concepts of simulation models for analysis and optimization of transportation systems. Experimentation with planning simulation models and traffic models for signal timing and capacity analysis.
CE 625. Intelligent Transportation Systems. 3 Hours.
Legal, institutional and planning issues related to intelligent transportation systems. System architecture, communication techniques, advanced user services, intermodal systems, connected and autonomous vehicles applications.

CE 631. Environmental Law. 3 Hours.
Law as it applies to the practicing environmental engineer. New and emerging regulations.

CE 632. Industrial Waste and Wastewater Treatment. 3 Hours.
Solid wastes and wastewaters from various industries. Assessment of treatability, system design, and equipment selection.

CE 633. Solid and Hazardous Waste Management. 3 Hours.
Provides students a quantitative introduction to solid and hazardous waste characterizations, international regulations, and management options. Course topics to include (1) Solid waste management hierarchy (reduce, reuse, recycle, responsibility disposal); (2) Dry tomb landfill design; and (3) Hazardous waste identification and treatment/disposal.

CE 636. Stormwater Pollution Management. 3 Hours.
Quality and quantity of stormwater. Receiving water problems and sources of pollutants. Runoff quality and quantity characterizations. Erosion control. Selection and design of controls; regulations.

CE 638. Water and Wastewater Chemistry. 3 Hours.

CE 639. Sediment Sources and Controls. 3 Hours.
Erosion and sediment transport areas; design of common erosion control practices.

CE 640. Wastewater Treatment Engineering. 3 Hours.
Wastewater sources and characteristics. Design and operation of wastewater treatment facilities, including grit removal, oil and grease removal, dissolved air flotation, activated sludge process, trickling filters, and rotating biological contractors, stabilization ponds and aerated lagoons, anaerobic processes for wastewater treatment and sludge digestion. Ultimate disposal of wastewater residues and considerations of discharge criteria.

CE 643. Pavement Design and Construction. 3 Hours.
Design and construction of flexible and rigid pavements. Topics include stress and strain responses, design parameters, AASHTO and NAPA design procedures, pavement construction, pavement rehabilitation, and maintenance techniques.

CE 646. Traffic Engineering Operations. 3 Hours.
Highway and intersection capacity analysis, traffic signal timing and phasing, signal coordination, freeway operations, non-signalized traffic control techniques.

CE 648. Urban and Transportation Planning. 3 Hours.
Land use planning for transportation systems; trip generation, trip distribution, modal split, and traffic assignment.

CE 649. Engineering Liability. 3 Hours.
Laws related to liability for engineering design in the context of product liability and construction projects; roles and liabilities between various parties involved in construction projects.

CE 650. Advanced Structural Steel. 3 Hours.
Beams, columns, tension members, and connections; current research.

CE 655. Advanced Reinforced Concrete. 3 Hours.
Beam, column, and slab actions; current research.

CE 658. Engineering Management. 3 Hours.
Management techniques for the practicing engineer.

CE 663. Finite Element Methods. 3 Hours.
Theory and applications in structural mechanics. Plane stress, plane strain, axisymmetric problems, solids, plates, shells, nonlinear systems.

CE 681. Environmental Chemistry. 3 Hours.
Chemical equilibrium, acid/base, chemical concepts in pollutant behavior. Chemical kinetics, redox system, hydrolysis, pesticides, chemical wastes.

CE 682. Water Treatment Engineering. 3 Hours.
Water sources and characteristics. Design and operations of water treatment facilities. Topics include lime softening operations, coagulation, flocculation, clarification dissolved air flotation, filtration, disinfection, absorption, ion exchange and sludge management.

CE 683. Water and Wastewater Treatment Processes Lab. 3 Hours.
Construction and evaluation of bench-scale treatment processes. Treatability of water and wastewater. Coagulation of sedimentation, settleability of biological sludge, aerobic biological treatment, chemical treatment, water softening toxicity, disinfection, and sludge treatment processes.

CE 685. Engineering Hydrology. 3 Hours.
Hydrologic principles including hydrologic cycle, precipitation data, and stream-flow measurements. Applications to engineering problems; stream-flow analysis and watershed management.

CE 686. Engineering Hydrogeology. 3 Hours.

CE 687. Stormwater Detention Pond Design. 3 Hours.
Stormwater problems and control methods. Urban hydrology prediction procedures for drainage and water quality studies. Detention pond design basics, limitations and multiple benefits.

CE 688. Strategic Management and Leadership Applications in a Global Environment. 3 Hours.
This course is designed to prepare students to face the demanding management and leadership challenges facing construction and engineering industry leaders as competition becomes ever more globalized. The necessity to personally remain trained and relevant in the changing business environment is emphasized. Strategic planning, management and leadership in the built environment requires savvy leaders with exceptionally developed analytical and communications skills suitable for multi-disciplinary and multi-national ventures. Every individual and organization must continually innovate and reinvent to stay competitive. In a competitive environment, a strong working knowledge of the financial markets is essential and students are exposed to multiple lessons presented by financial industry practitioners. Students participate in a group project designed to reinforce the methodology associated with preparing and presenting a dynamic business plan. This course provides the opportunity for students to discuss and research these concepts and to recognize the necessity to think independently, challenge conventional thinking, and visualize alternatives.

Prerequisites: CE 669 [Min Grade: C]
CE 689. Building Information modeling (BIM) Techniques. 3 Hours.
This course provides students with an overview of the evolution of BIM technology in the construction industry followed by hands- on training in the basic application of contemporary BIM software. Students will learn basic modeling skills and how to produce graphical presentations. Advanced applications of BIM technology are discussed and demonstrated. Students will be provided with BIM software and are required to complete a multi-step BIM model as a term project.

CE 690. Special Topics in (Area). 1-3 Hour.
Special Topics (Area).

CE 691. Individual Study in (Area). 1-4 Hour.
Individual Study (Area).

CE 692. CE Capstone Project. 3 Hours.
This course covers specific contemporary topics related to civil engineering practice and knowledge. Capstone project using case studies to apply skills, knowledge, techniques, and concepts developed in prior courses.

CE 693. Applied Research in Civil, Construction, and Environmental Engineering. 3-9 Hours.
Research tools, including elements of experimental design and proposal preparation. Effective communication, literature searches, and exploratory data analysis.

CE 695. International Construction Contracts/Liability. 3 Hours.
Provides an overview of the fundamental aspects of the law that affects construction and engineering companies as well as the project owners. Particular emphasis is placed on contract forms and provisions related to liability for engineering design and construction companies, the roles of the typical participation in the process, and dispute resolution.

CE 697. Master's Project. 3-9 Hours.
A UAB Master's Project must demonstrate evidence of scholarly study and writing that ultimately contributes to the scientific knowledge base. This course is designed to allow students the opportunity to develop original ideas or seek to advance knowledge through theory, conceptualization, design, testing of tools, instruments, or procedures relevant to the practice of civil engineering.

Prerequisites: GAC M

CE 712. Theory of Elasticity. 3 Hours.
Equations of linear reduction to plane stress, plane strain, and generalized plane strain. Airy and love stress functions in solution of problems.

CE 715. Theory of Elastic Stability. 3 Hours.

CE 717. Theory of Plates and Shells. 3 Hours.

CE 721. Transportation Engineering Seminar. 1 Hour.
Seminar focusing on student research and guest presentation of various topics of interest to graduate transportation engineering students.

CE 722. Traffic Flow Theory. 3 Hours.
Microscopic and macroscopic traffic flow characteristics. Traffic flow analytical techniques including car-following models, traffic stream models, shock wave analysis, queuing analysis and gap acceptance. Simulation models for network analysis.

CE 723. Non-Motorized Transportation Design and Planning. 3 Hours.
Urban planning principles that support non-motorized transportation, local bicycle or pedestrian plans, non-motorized transportation safety related considerations, non-motorized transportation design including traffic calming techniques, procedures for capacity analysis of pedestrian facilities.

CE 724. Simulation Models for Transportation Applications. 3 Hours.
Basic concepts of simulation models for analysis and optimization of transportation systems. Experimentation with planning simulation models and traffic models for signal timing and capacity analysis.

CE 725. Intelligent Transportation Systems. 3 Hours.
Legal, institutional and planning issues related to intelligent transportation systems. System architecture, communication techniques, advanced user services, intermodal systems, connected and autonomous vehicles applications.

CE 731. Environmental Law. 3 Hours.
Law as it applies to the practicing environmental engineer. New and emerging regulations.

CE 732. Industrial Waste and Wastewater Treatment. 3 Hours.
Solid wastes and waste waters from various industries; assessment of treatability, system design, and equipment selection.

CE 736. Stormwater Pollution Management. 3 Hours.
Quality and quantity of stormwater. Receiving water problems and sources of pollutants. Runoff quality and quantity characterizations. Erosion control. Selection and design of controls; regulations.

CE 738. Water and Wastewater Chemistry. 3 Hours.

CE 739. Sediment Sources and Controls. 3 Hours.
Erosion and sediment transport in urban areas, design of common erosion control practices.

CE 740. Wastewater Treatment Engineering. 3 Hours.
Wastewater sources and characteristics. Design and operation of wastewater treatment facilities, including grit removal, oil and grease removal, dissolved air flotation, activated sludge process, trickling filters, and rotating biological contractors, stabilization ponds and aerated lagoons, anaerobic processes for wastewater treatment and sludge digestion. Ultimate disposal of wastewater residues and considerations of discharge criteria.

CE 749. Engineering Liability. 3 Hours.
Laws related to liability for engineering design in the context of product liability and construction projects; roles and liabilities between various parties involved in construction projects.

CE 750. Advanced Structural Steel. 3 Hours.
Beams, columns, tension members, and connections; current research.

CE 755. Advanced Reinforced Concrete. 3 Hours.
Beam, column, and slab actions; current research.

CE 758. Engineering Management. 3 Hours.
Management techniques for practicing engineers.
CE 763. Finite Element Methods. 3 Hours.
Theory and applications in structural mechanics. Plane stress, plane strain, axisymmetric problems, solids, plates, shells, nonlinear systems.

CE 781. Environmental Chemistry. 3 Hours.
Chemical equilibrium, acid/base, chemical concepts in pollutant behavior. Chemical kinetics, redox system, hydrolysis, pesticides, chemical wastes.

CE 782. Water Treatment Engineering. 3 Hours.
Water sources and characteristics. Design and operation of water treatment facilities including lime softening operations, coagulation, flocculation, clarification, dissolved air flotation, filtration, disinfection, absorption, ion exchange, and sludge disposal.

CE 783. Water and Wastewater Treatment Processes Lab. 3 Hours.
Construction and evaluation of bench-scale treatment processes. Treatability of water and wastewater. Coagulation of sedimentation, settleability of biological sludge, aerobic biological treatment, chemical treatment, water softening toxicity, disinfection, and sludge treatment processes.

CE 786. Engineering Hydrogeology. 3 Hours.

CE 787. Stormwater Detention Pond Design. 3 Hours.
Stormwater problems and control methods. Urban hydrology prediction procedures for drainage and water quality studies. Detention pond design basics, limitations and multiple benefits.

CE 790. Special Topics in (Area). 1-3 Hour.
Special Topics in (Area).

CE 791. Individual Studies (In Area). 1-4 Hour.
Individual Studies in (Area).

CE 793. Applied Research in Civil and Environmental Engineering. 3 Hours.
Research tools, including elements of experimental design and proposal preparation. Effective communication, literature searches, and exploratory data analysis.

CE 797. Civil, Construction, and Environmental Engineering Internship. 6 Hours.
Off-campus internship experience working with industries, utilities, or government agencies. Students taking this course will not be allowed to apply Special Topics or Individual Studies courses toward degree requirements.

CE 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

CECM-Construction Egr Mgmnt Courses

CECM 669. Advanced Project Management. 3 Hours.
Skills generally required for sound project management in a variety of management settings are studied in addition to specific management issues typically associated with engineering and construction companies. Students are introduced to the Project Management Institute's Body of Knowledge (PMBOK). A discussion of corporate organizational structures and the evolving use of project management processes helps establish an appreciation for the role of a Project Manager. The elements of a project and the role and responsibilities of the Project Manager are studied in depth. Students are also acquainted with risk management concepts, financial, labor, safety, equipment, and contracting issues facing managers in the engineering and construction environment. Particular emphasis is placed on individual management strengths and weaknesses, team building, and characteristics of successful companies. One of the primary vehicles for discussion will be small case studies from real companies and the outside reading of one or two relevant topical books.

CECM 670. Construction Estimating and Bidding. 3 Hours.
Provides an overview of typical construction delivery systems and the planning and contracting associated with each. A broad study of estimating methodologies ranging from rough "ball park" estimates to detailed unit pricing is presented focusing on labor, equipment, materials, subcontractors, job conditions, location, overhead, and profit. This course is intended to establish a basic understanding of the estimating process; and therefore, substantial course focus will be placed on the term group project.

CECM 671. Construction Liability & Contracts. 3 Hours.
This course provides an overview of the fundamental aspects of the laws that affect construction and engineering companies as well as the project owners. Particular emphasis is placed on contract forms and provisions related to liability for engineering design and construction companies, the roles of the typical participation in the process, and dispute resolution. Students will learn the importance of contract language negotiations and the impact of project risk transfer.

CECM 672. Construction Methods and Equipment. 3 Hours.
This course provides students a big-picture understanding of the construction methods employed to bring the concepts and designs of architects and engineers to physical reality. The importance of building codes is presented in the course material. Detailed study of typical building materials, design details, and construction methods are presented in a logical sequence. Students will understand the planning and deployment of equipment, materials, labor, and subcontractors using a variety of building material and system types. This course provides a necessary baseline of knowledge, vocabulary, and understanding of the role and activities of the designers, engineers, material suppliers, inspectors, and constructors in the commercial building process.
CECM 673. Project Planning and Control. 3 Hours.
This course provides a thorough understanding of the project scheduling process in construction planning and control. Students learn the relationship between the work breakdown structure, organization breakdown structure, and the activities used in developing project schedules. The Critical Path Method (CPM), Precedence Diagram Method (PDM), Program Evaluation and Review Technique (PERT), and Line of Balance (LOB) scheduling methods are discussed in detail to include hand calculations and powerful computer software products. The use of scheduling techniques for project control, resources constraint management, cash flow management, risk management, and project completion date management are investigated as is the importance of communications in the planning and monitoring/controlling processes. Students will experience hands on use with Primavera scheduling software.

CECM 674. Green Building Design/Construction. 3 Hours.
The course addresses the key concepts, viewpoints and fundamentals essential for understanding green building and construction. Materials are focused on how key stakeholders and their future collaborations can begin to incorporate sustainable construction practices for the betterment of the project (new construction and inventory rehabilitation). The course will include instruction suitable to prepare students for the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED®) Green Associates certification exam.

CECM 675. Advanced Construction and Engineering Economics. 3 Hours.
This course provides an extensive overview of financial and managerial accounting concepts for non-financial managers. Students will learn the basic elements of accounting (Generally Accepted Accounting Practices (GAAP)). They will understand how typical financial records and financial statements are established for companies. Once the basics are understood, students will study how financial data is used for internal cost controlling, planning, and budgeting. Fundamental financial calculations associated with the time value of money, debt instruments, taxes, inflation, and cash flow estimates are emphasized. Students will be expected to demonstrate proficiency in the use of Excel business functions in solving financial problems.

CECM 676. Construction Project Risk Management. 3 Hours.
This course addresses the methodologies employed in the engineering and construction industries to assist in rational decision-making in the face of uncertainty. The course reviews the fundamentals of common probabilistic theories and models, data sampling, hypothesis testing and the basics of Bayesian Decision Theory. In addition, basic financial analysis tools will be reviewed. Theoretical models will then be applied to specific examples encountered in engineering and construction decision making with emphasis on engineering economics applications.

CECM 677. Urban Economic Development. 3 Hours.
This course introduces the issues surrounding urban sustainable development within cities and explores how the smart city concept can contribute to the urban sustainable development agenda. The course begins by considering the key characteristics of contemporary urbanization and the issues and challenges that these present for sustainability and urban environmental management. The meaning and nature of sustainability for cities will be discussed, followed by a consideration of the definitions of a smart city and a discussion of the key elements of a smart city including its contribution to both urban governance and the more effective and efficient management of natural resources. With reference to case studies the final part of the course will explore and evaluate the role that smart city processes and applications can play in enhancing the social, economic and environmental aspects of sustainable development within urban areas.

CECM 688. Construction Management and Leadership Challenges in the Global Environment. 3 Hours.
This course is designed to prepare students to face the demanding management and leadership challenges facing construction and engineering industry leaders as competition becomes ever more globalized. The necessity to personally remain trained and relevant in the changing business environment is emphasized. Strategic planning, management and leadership in the built environment requires savvy leaders with exceptionally developed analytical and communications skills suitable for multi-disciplinary and multi-national ventures. Every individual and organization must continually innovate and reinvent to stay competitive. Students participate in a group project designed to reinforce the methodology associated with preparing and presenting a dynamic business plan. This course will provide the opportunity for students to discuss and research these concepts and to recognize the necessity to think independently, challenge conventional thinking, and visualize alternatives.

CECM 689. Building Information Modeling (BIM) Techniques. 3 Hours.
This course provides students with an overview of the evolution of BIM technology in the construction industry followed by hands-on training in the basic application of contemporary BIM software. Students will learn basic modeling skills and how to produce graphical presentations. Advanced applications of BIM technology will be discussed and demonstrated. Students will be provided with BIM software and will be required to complete a multi-step BIM model as a term project.

CESC-Sustainable Smart Cities Courses

CESC 600. Principles of Sustainable Development. 3 Hours.
The course will begin by discussing the concepts, viewpoints and fundamentals essential for understanding urban sustainable development agenda. This will be followed by the evaluation of international conferences and action items proposed by the scientific / professional community to advance sustainable smart cities development. You will review basic earth sciences to better evaluate the impact our anthropogenic activities have on the natural environment and therefore how to minimize adverse future outcomes. Throughout the course case studies of sustainable developments will be used to illustrate the value, challenges and limitations of this concept. In the end, you will possess the knowledge base needed to help advance sustainable smart cities development.

CESC 602. Introduction to Sustainable Smart Cities. 3 Hours.
This course introduces the issues surrounding sustainable development within cities and explores how the smart city concept can contribute to the urban sustainable development agenda. The course begins by considering the key characteristics of contemporary urbanization and the issues and challenges that these present for sustainability and urban environmental management. The meaning and nature of sustainability for cities will be discussed, followed by a consideration of the definitions of a smart city and a discussion of the key elements of a smart city including its contribution to both urban governance and the more effective and efficient management of natural resources. With reference to case studies the final part of the course will explore and evaluate the role that smart city processes and applications can play in enhancing the social, economic and environmental aspects of sustainable development within urban areas.
CESC 604. Low-Carbon and Renewable Energy Systems for Smart Cities. 3 Hours.
As the energy infrastructure is arguably the most important feature in any city, energy efficiency and integration of renewable energy sources within urban areas are central to the smart city concept. This course will firstly explore why there is a need for the greater use of low carbon and renewable energy systems within cities, followed by an introduction to the range of low carbon and renewable energy technologies currently available. The course will then move on to introduce the concept of the smart grid and then explore the potential to integrate low carbon and renewable energy systems into smart grids in order to move towards cost-effective, efficient and more environmentally friendly energy provision within cities. Challenges and issues associated with the greater integration of low carbon and renewable energy systems into energy infrastructure within large urban areas will also be considered.

CESC 606. Managing Natural Resources and Sustainable Smart Cities. 3 Hours.
The course examines the challenges of resource use and management within the context of an urbanizing world, exploring how new concepts within the smart and sustainable city agenda may contribute to addressing these challenges. The course begins by considering contemporary patterns of resource use created by cities in the modern world at a variety of scales from the local to the global. New approaches in the form of ecosystem services and urban metabolism in relation to natural resource management are examined in terms of their contribution to developing a smart and sustainable city agenda. The course continues by exploring a selection of key natural resources challenges (e.g., water, energy, air quality, and climate) and the development of new management approaches and strategies in these areas. The course concludes by examining the development of integrated environmental management systems and governance structures within which these new approaches can be implemented with reference to a series of case studies.

CESC 608. Green Infrastructure and Transportation. 3 Hours.
The course covers policy and technical issues related to sustainable transportation. The course begins by discussing the concepts, viewpoints and fundamentals essential for understanding sustainable transportation planning. Tools used to assess sustainability of transportation facilities and neighborhoods are introduced next. The course also presents design options in support of green infrastructure and transportation, including livable street design, and traffic calming applications. The course is expected to expand students' knowledge base on sustainable transportation issues and help them understand the concept of sustainable transportation toward the development of sustainable smart cities.

CESC 610. Health and Liveability. 3 Hours.
This course will address the multidisciplinary aspects of urban environmental quality and its impact on human well-being. It will provide a critical appreciation of the factors which influence health, well-being and quality of life within contemporary urban environments, demonstrate the importance of genomics and health informatics in developing strategies for improving the health and well-being of urban citizens, explore the importance of urban design and the contribution of the development of food smart cities in improving both urban health and liveability, and understand the increasingly important role of Information and Communications Technology (ICT) in facilitating delivery of effective and responsive urban health, well-being, and quality of life strategies.

CESC 612. Green Buildings. 3 Hours.
The course will begin by discussing the concepts, viewpoints and fundamentals essential for understanding green building and construction. Discussions will then be focused on how key stakeholders and their future collaborations can begin to incorporate sustainable construction practices for the betterment of the project (new construction and inventory rehabilitation). This will be followed by the evaluation of sustainable construction rating systems (LEED, BREEAM, etc.) and how they can be applied to occupied buildings throughout an urban environment. Modular case studies of sustainable construction projects (individual structures to entire community developments) will be used to illustrate the value, challenges, and limitations of this concept. In the end, students will possess an expanded knowledge base needed to help advance sustainable smart cities development.

CESC 614. Smart Cities Technologies. 3 Hours.
This course gives students the opportunity to study emerging smart technologies that can be deployed and integrated together with the aim of improving overall building/city performance. The course provides an overview of technologies that can be used to: sense and measure physical parameters; acquire, process, and analyze various datasets; and make appropriate decisions/give suitable instructions based on all available information. Specific technologies addressed include Data Acquisition, Telecommunications, Wireless Sensor Networks, and the Internet of Things. The course will also explore and evaluate how these emerging technologies can contribute to various smart cities/buildings priorities, namely Energy Management, Health, Safety, and Security.

CESC 616. Big Data and Smart Cities. 3 Hours.
The world is becoming increasingly digitally interconnected and this instrumentation, data collection, interconnection, storage, and analysis can provide the capacity to radically transform how cities monitor, manage and enhance their environmental quality and livability. This course will provide an introduction to what big data is and how it can contribute to the smarter, more sustainable management of cities. The course will begin by discussing the concepts of big data and the big data revolution, and an overview of the ways in which data can be captured, stored, and analyzed. This will be followed by a consideration of how big data can be used by city managers to optimize: their use of physical and digital infrastructures; their sustainable use of natural resources; citizen service delivery; and citizen engagement, participation, and urban governance. You will also be introduced to some of the challenges presented by big data, both the technological challenges and the ethical and social implications associated with collecting, storing, and using big data. Throughout the course case studies of big data in action will be used to illustrate the value, challenges, and limitations of big data in the smarter, more sustainable management of cities.
CSEC 618. Research Methods and Project Planning. 3 Hours.
As a student of smart city processes and urban environmental management you need to understand the research process which enables you to take the knowledge and skills which you have learned and apply it to a specific urban sustainability / environmental management issue. This course is not intended to provide a training in research techniques, but rather to make you aware of a wide range of investigative and analytical methods and techniques using examples drawn from the areas of smart city approaches, urban sustainability and environmental management. Both quantitative and qualitative methodologies and primary and secondary data collection will be covered. You will be encouraged to reflect on the research process and its outcomes by critiquing research papers written from methodological standpoints. You will then apply this knowledge to create a viable research proposal for your own Sustainable Smart Cities Masters project. This proposal will require you to identify and justify for your chosen topic: (i) appropriate research questions, (ii) methodologies and data sampling / collection techniques, (iii) ethical and health and safety implications and, (iv) a timetable of action.

CSEC 620. Sustainable Smart Cities Research Project. 0 Hours.
This course will develop skills in both research and technical writing in the area of applying and/or evaluating sustainable smart cities processes and policies to a specific urban environmental or sustainability issue. The research proposal produced as part of the Research Methods and Project Planning course will be implemented. This will involve further research into the relevant background and context of a chosen project topic, implementation and evaluation of appropriate methods for collecting and analyzing data, observations and information, the ability to present findings clearly and concisely, and appreciate their significance in relation to the smart city and sustainable urban management agendas. Research should be at the forefront of student's chosen sustainable smart cities research topic and be at a level similar to that required for acceptance and presentation at a national level conference or symposium on smart and sustainable cities. For students in relevant employment, projects may be carried out in your place of work subject to discussions between you, your employer/line manager, and your project supervisor.

CESE - Structural Engineering Courses
CESE 653. Wood and Masonry Design. 3 Hours.
Design of wood structures to meet the requirements of the National Design Specification including beams, columns, and shear walls. Design and detailing of masonry structures. Nomenclature, properties, and specifications for components. Design of assemblages and masonry elements in simple masonry structures.

CESE 656. Advanced Mechanics of Materials for Structural Engineering. 3 Hours.
This course will review the basic fundamentals of mechanics of materials and will extend the concepts to include 3-dimensional stress and strain, plastic behavior, energy methods, nonlinear behavior, fatigue and fracture, rectangular linear elastic plates, indeterminate structures and stability.

CESE 657. Advanced Design of Steel Structures. 3 Hours.
Design of major components in steel-framed buildings, including composite beams and slabs, beam-columns, moments connections, bracing members, bracing connections, and column base plates.

CESE 659. Advanced Reinforced Concrete. 3 Hours.
In this course students will study the behavior and design of continuous reinforced concrete structures submitted to gravity and lateral loads. The study will include biaxial loading of columns, continuous one-way beams and slabs, two-way floor systems, and torsion loading.

CESE 660. Prestressed Concrete Behavior and Design. 3 Hours.
The course will explore the characteristics and design of pre-stressed concrete structural components to include elastic and ultimate strength analyses for flexural, shear, torsion, deflection, strand bond, and prestress loss.

CESE 662. Advanced Structural Analysis. 3 Hours.
This course explores the structural analysis of indeterminate structures using classical and approximate methods and structural analysis software. Specific emphasis is placed on the determination of forces in typical multistory, rectilinear frames subject to gravity and lateral loads. In addition to first order analysis, the course included analysis for second order effects and plastic analysis.

CESE 664. Bridge Engineering. 3 Hours.
This course includes the study of bridge loads, including moving load analysis; methods for approximate structural analysis, preliminary bridge design methods, and the structural design of bridge decks and girders.

CESE 665. Structural Dynamics and Earthquake Engineering. 3 Hours.
This course includes the study of earthquake-induced vibrations of single and multi-degree-of-freedom systems, such as single and multistory frames. Emphasis will be placed on structural steel and reinforced concrete building frames. Response spectrum analysis will be investigated as well as building codes and static and dynamic lateral load force procedures.

CESE 676. Design of Structural Steel Connections. 3 Hours.
Design of bolted and welded steel connections, including shear, moment and brace connections using the AISC Specifications requirements and fundamental engineering principals. Design procedures will be discussed for various structural steel connections. The background and limitations of the design procedures will be reviewed and practical solutions will be provided.

CESE 698. Non Thesis Research. 3 Hours.
No syllabus for non-thesis research hours.

Electrical and Computer Engineering
The Department of Electrical and Computer Engineering offers a Master of Science in Electrical and Computer Engineering (MSECE) degree and a PhD in Computer Engineering shared with the University of Alabama at Huntsville (UAH) Electrical and Computer Engineering Department.

Courses
EE 512. Practical Computer Vision. 3 Hours.
This course covers the fundamentals and application of image analysis. Topics include: image pre-processing, detection, segmentation, classification and recognition, visual tracking, and deep learning.

EE 518. Wireless Communications. 3 Hours.
This course covers the principles and current applications of wireless technology. Topics include propagation models, modulation, multiple access, and channel and signal coding. Applications of wireless for cellular and Internet of Things (IoT) will also be covered.
EE 521. Communication Systems. 3 Hours.
This course covers the mathematics of modulation and demodulation of radio signals to transmit and receive information. It focuses on various forms of amplitude modulation (AM), phase and frequency modulation (FM). This course builds on the mathematics from signals and systems course to study how to represent and manipulate these signals in both time and frequency domain. It also studies the effects of sampling, and how these systems operate in the presence of noise.

EE 523. Digital Signal Processing. 3 Hours.
This course covers the theory and practice of using computers to process and analyze signals. The topics include: digital filter analysis and design; Fast Fourier Transform (FFT) algorithms; applications of digital signal processing in engineering problems such as data acquisition and control.

EE 526. Control Systems. 3 Hours.
This course covers modeling and control of mechanisms or circuits to satisfy stability and performance criteria. Topics include: theory of linear feedback control systems using complex frequency techniques, block diagram manipulation, performance measures, stability, analysis and design using root locus, and Z-transform methods.

EE 527. Industrial Control. 3 Hours.
This course covers power control devices and applications, relay logic and translation to other forms, programmable logic controllers (PLCs), proportional-integral-derivative (PID) and other methods for process control, modern laboratory instrumentation, and human-machine interface (HMI) software.

EE 531. Analog Integrated Electronics. 4 Hours.
This course covers advanced analysis and design using op-amps, differential amplifier, half-circuit analysis, error analysis and compensation. Applications include signal conditioning for instrumentation, instrumentation amplifiers, nonlinear and computational circuits, analog filter design, voltage regulator design, and oscillators, circuit configurations for A-to-D and D-to-A conversion methods. Laboratory exercises emphasize design techniques for projects in areas such as Internet-of-Things (IoT).

EE 532. Introduction to Computer Networking. 3 Hours.
This course covers the fundamentals of modern computer networks including current applications such as Internet of Things (IoT). Topics include: hardware and software level network protocols, network architecture and topology including WANs and LANs, client-server relationships, distributed computing, data transfer, security, virtualization of hardware, multi-tier network configuration examples, and certifications will be addressed.

Prerequisites: EE 134 [Min Grade: C] and EE 210 [Min Grade: C]

EE 533. Engineering Software Solutions. 3 Hours.
This course covers the fundamentals of software design, architecture, and implementation for future software engineers. Topics include: customer-focused requirements gathering, project planning, team tools, architectural patterns, environment and component selection, quality assurance, sustainability, and versioning. Various development methodologies are discussed with a project demonstrating at least one release cycle.

EE 534. Power Semiconductor Electronics. 3 Hours.
This course covers the fundamentals of power electronics such as principles of static power conversions, basic power converter architectures, power semiconductor switches, steady-state equivalent circuit modeling, DC transformer model, basic AC equivalent circuit modeling, linearization and perturbation. Pulse width modulation and controller design, circuit design considerations, and applications of power electronics. The course project emphasizes computer-aided analysis and design of power electronic circuits.

EE 537. Introduction to Embedded Systems. 3 Hours.
This course provides an applied introduction to the design of embedded systems, including hardware and software aspects. Topics include: various embedded hardware platforms, interfacing industrial bus systems, sensors, actuators, low-power wireless communication, and the application of the Internet of Things (IoT).

EE 538. Computer Architecture. 3 Hours.
Advanced microprocessor topics include a comparison of advanced contemporary microprocessors, cache design, pipelining, superscalar architecture, design of control units, microcoding, and parallel processors. Basic knowledge of microprocessors is recommended.

EE 544. Real-Time Process & Protocols. 3 Hours.
This course covers hands-on laboratory topics in real-time computer systems, such as algorithms, state-machine implementations, communication protocols, instrumentation, and hardware interfaces.

EE 547. Internet/Intranet Application Development. 3 Hours.
This course covers development of software models and applications using Internet/Intranet technologies. Topics include: web client-server relationships, multi-tier design models, scripting and validation, basic TCP/IP networking, separation of concerns, markup and data description languages. Projects will allow the opportunity for the use of a range of tools and development platforms.

Prerequisites: EE 233 [Min Grade: C]

EE 548. Software Engineering Projects. 3 Hours.
This course covers practical applications of software engineering including the development of applications for the Internet of Things (IoT). Topics include: requirements gathering, design matrices, environment selection, relevant architectural patterns, networking basics, databases, service endpoints, embedded systems selection and security. Projects with a software emphasis will be utilized to demonstrate the principles of IoT applications.

Prerequisites: EE 333 [Min Grade: C]

EE 552. Digital Systems Design. 3 Hours.
This course covers the design of customized complex digital systems using Field Programmable Gate Array (FPGA) based platforms, using modern design tools for simulation, synthesis, and implementation. Topics include hardware design and development languages such as Verilog or VHDL.

EE 558. Medical Instrumentation. 3 Hours.
This course covers the fundamental operating principles, applications, safety, and design of electronic instrumentation used in the measurement of physiological parameters.

EE 561. Machinery II. 3 Hours.
Physical principles of DC machines. Mathematical analysis of generator designs using equivalent circuits and magnetization curves. Calculation of motor speed, torque, power, efficiency, and starting requirements. Solid-state speed control systems.
EE 563. Medical Image Analysis. 3 Hours.
A lab-based introduction to processing, analysis, and display techniques for medical imaging.

EE 567. Brain Machine Interface. 3 Hours.
This course explores the brain-machine interfaces, particularly the technologies that directly stimulate and/or record neural activity. This course is divided into three major components: 1) neuroscience and electrode interfaces, 2) brain recording and stimulating front-end circuits, and 3) circuit modeling, simulation, and optimization.

EE 571. Power Systems I. 3 Hours.
Components of power systems. Performance of modern interconnected power system under normal and abnormal conditions. Calculation of inductive and capacitive reactances of three-phase transmission lines in a steady state.

EE 572. Power Systems II. 3 Hours.

EE 573. Protective Relaying of Power Systems. 3 Hours.
Operating principles of protective relays. Protection of transmission lines, generators, motors, transformers, and buses.

EE 585. Engineering Operations. 3 Hours.
This course covers the principles and standard of engineering design from ideation to final design. Topics include: product development process, problem definition and need identification, embodiment and detail design, design for specific criterion, modeling and cost evaluation. Emphasis is placed on ethics and civil responsibilities in design including environmental, social issues, liability, sustainability and reliability through the lends of engineering design.

EE 590. Special Topics in Electrical and Computer Engineering. 1-3 Hour.
Special Topic in Electrical or Computer Engineering.

EE 591. Individual Study in Electrical and Computer Engineering. 1-6 Hour.
Individual Study in Electrical Engineering.

EE 601. Electrical and Computer Engineering Seminar. 1-3 Hour.
This course consists of research presentations delivered by faculty, research assistants, and invited guests in various state-of-the-art and popular topics related to Electrical and Computer Engineering.

EE 610. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 616. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational transconductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation, and chip layout of an analog integrated circuit design project. Fundamental knowledge of electronics is required.

EE 621. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.
Prerequisites: EE 421 [Min Grade: C]

EE 622. Advanced Communication Theory. 3 Hours.
Analysis of the performance of analog modulation techniques in presence of noise.
Prerequisites: EE 621 [Min Grade: C]

EE 623. Computer Vision. 3 Hours.
Advanced topics in computer vision: image segmentation, registration, and visual tracking; Applications of deep learning to image analysis.

EE 624. Digital Communications. 3 Hours.
Design and analysis of digital communications modulation techniques and systems and their performance in the presence of noise.
Prerequisites: EE 622 [Min Grade: C]

EE 625. Information Theory and Coding. 3 Hours.
Channel models and block codes, block code ensemble performance analysis, convolutional codes and ensemble performance, sequential decoding of convolutional codes.
Prerequisites: EE 621 [Min Grade: C]

EE 626. Digital Image Processing. 3 Hours.
The course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.

EE 627. Wireless Communications. 3 Hours.
Wireless communication system topics such as propagation, modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 630. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 632. Introduction to Computer Networking. 3 Hours.

EE 633. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of a series of programs to explore the details of network protocols and network application models.

EE 634. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), applications and limitations of neural networks, and designing networks specific uses.

EE 636. Advanced Digital Design. 3 Hours.
This course covers the design of Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs). Topics include the design, simulation, and testing of digital systems using a hardware description language and FPGA/CPLD development boards with programmable logic devices.
EE 637. Design of Modern Computer with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 638. Neural Time Series Data Analysis. 3 Hours.
This course covers the theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 639. Embedded Systems. 3 Hours.
This course covers both hardware and software trends in advanced embedded system design, including artificial intelligence (AI) and optimized hardware platforms for machine learning (ML). The fundamental algorithms of AI and ML are discussed. Various process acceleration techniques for improving the computational efficiency of ML kernels are implemented on FPGA/CPLD development boards and FPGA/CPLD chips.

EE 640. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.

EE 641. Modern Control Theory. 3 Hours.
This course covers state variable models for continuous-time and discrete time systems, state feedback and pole placement, and state estimation. Knowledge of basic control systems is recommended.

EE 642. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 643. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include numerical calculus, linear algebra, and optimization. Students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 650. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 651. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 653. Electronic Power Switching Circuits. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 654. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and back-end services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 655. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 656. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 658. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.

EE 660. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 661. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience and interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 662. Electromagnetic Field Theory I. 3 Hours.
This course is the study of electromagnetic fields. It includes a wide variety of applications, including biomedical and the Internet of Things (IoT). Topics include boundary-value problems and scattering.

EE 690. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for master's students.

EE 691. Individual Study in (Area). 1-6 Hour.
Individual study selected by faculty for master's students.

EE 697. Graduate Project. 3 Hours.
Graduate project for Plan II Masters students.

Individual research in selected area by faculty for master's students.

EE 699. Thesis Research. 1-12 Hour.
Thesis research.

Prerequisites: GAC M

EE 701. Electrical and Computer Engineering Seminar. 1-3 Hour.
This course consists of research presentations delivered by faculty, research assistants, and invited guests in various state-of-the-art and popular topics related to Electrical and Computer Engineering.
EE 710. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memos, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 716. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational trans-conductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation and chip layout of an analog integrated circuit design project. Fundamental knowledge in electronics is required.

EE 721. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.

EE 723. Computer Vision. 3 Hours.
Advanced topics in computer vision: Image segmentation, registration, and visual tracking. Applications of deep learning to image analysis.

EE 724. Digital Communications. 3 Hours.
Design and analysis of digital communications modulation techniques and systems and their performance in the presence of noise.
Prerequisites: EE 622 (Min Grade: C)

EE 725. Information Theory and Coding. 3 Hours.
Channel models and block codes, block code ensemble performance analysis, convolutional codes and ensemble performance, sequential decoding of convolutional codes.
Prerequisites: EE 621 (Min Grade: C)

EE 726. Digital Image Processing. 3 Hours.
This course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.

EE 727. Wireless Communications. 3 Hours.
Wireless communication system topics such as propagation, modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 730. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 732. Introduction to Computer Networking. 3 Hours.

EE 733. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of series of programs to explore the details of network protocols and network application models.

EE 734. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Applications and limitations of neural networks, and designing networks for specific uses.

EE 737. Design of Modern Computers with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 738. Neural Time Series Data Analysis. 3 Hours.
This course covers theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 742. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 743. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include Using numerical calculus, linear algebra, and optimization students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation with active contours, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 750. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 751. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 752. Software Engineering Large Systems - II. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 754. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and backend services, using advanced integrated development environments. Individual and team projects. Programming required.
EE 755. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 756. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 758. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.

EE 760. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 767. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 790. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for PhD students.

EE 791. Individual Study in (Area). 1-6 Hour.
Individual study in an area selected by faculty for PhD students.

EE 798. Non-Dissertation Research. 1-12 Hour.
Individual research in selected problem by faculty for PhD students.

EE 799. Dissertation Research. 1-12 Hour.
PhD dissertation research.
Prerequisites: GAC Z

Electrical and Computer Engineering

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Master of Science in Electrical and Computer Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>[http://www.uab.edu/engineering/](http://www.uab.edu/engineering/ ece/graduate)</td>
</tr>
<tr>
<td>Director</td>
<td>Leon Jololian, PhD</td>
</tr>
<tr>
<td>Phone</td>
<td>(205) 934-8440</td>
</tr>
<tr>
<td>E-mail</td>
<td>leon@uab.edu</td>
</tr>
</tbody>
</table>

Admission Requirements
Requirements for admission to the Electrical and Computer Engineering Master's degree program include the following:

1. A bachelor's degree in an accredited electrical engineering, computer engineering, electrical and computer engineering or a bachelor's degree acceptable to the graduate faculty in the Department of Electrical and Computer Engineering. Students not having a bachelor's degree in electrical engineering, computer engineering, electrical and computer engineering may be required to complete prerequisite courses based on their prior coursework and their plan of study, which will be defined at the time of admission.
2. A 3.0 or higher on a 4.0 scale;
3. Three letters of recommendation concerning the applicant's previous academic and professional work;
4. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details
5. Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)

Additional Information
Deadline for Entry Term(s)
Fall: August 1; Spring: December 1; Summer: May 1

Deadline for All Application Materials to be in the Graduate School Office
Seven days before the term begins

Master of Science in Electrical and Computer Engineering
The Master of Science in Electrical and Computer Engineering (MSECE) prepares students for a professional career in industry or entry into a doctoral program or professional school. The MSECE program builds upon the broad foundation provided by a Bachelor of Science in Electrical Engineering by supplying depth in specific area of electrical and computer engineering through advanced coursework and a thesis or project experience.

Additional Academic Policies
Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined credit hours of Special Topics and/or Independent Study courses will be applied to the degree without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Fast Track Master of Science in Electrical and Computer Engineering, add
UAB Electrical and Computer Engineering undergraduate students with significant research experience may begin work toward their MSECE degree while still undergraduates. To be considered for this program, students must have junior-level standing (more than 60 hours completed), have completed at least 3 of the required junior-level ECE courses, and have a UAB GPA of at least 3.5. Applicants are expected to have already selected a research mentor for their graduate studies, which will typically be a continuation of their undergraduate research. Application to the program is through the normal UAB Graduate School application portal. One of the letters of recommendation must be from the research mentor. Once enrolled in the program, before completing their undergraduate degree, students may take graduate courses that will be applied to the MSECE degree. Note that coursework may not be applied toward both
the undergraduate and graduate degrees. Students may pursue either the Plan I or Plan II MSECE option.

Plan I (Thesis Option)
The Plan I Master's degree requires completion of at least 33 credit hours of graduate work.

- 18 credit hours of graduate-level courses appropriate to the student's area of technical specialization
- 6 credit hours of courses having a mathematical emphasis;
- 9 credit hours of EE 699 Thesis Research

Students must be admitted to candidacy prior to enrolling in EE 699. A student is eligible for admission to candidacy after (1) a written thesis proposal has been orally presented to the committee and approved and (2) completion of Responsible Conduct of Research (RCR) training. Admission to candidacy must take place at least one semester before the student may graduate.

Plan II (Non-Thesis Option)
The Plan II Master's degree requires completion of at least 33 semester hours of graduate work.

- 24 credit hours of graduate-level courses appropriate to the student's area of technical and professional specialization;
- 6 credit hours of courses having a mathematical emphasis;
- 3 credit hours of EE 697 Graduate Project

Courses

EE 512. Practical Computer Vision. 3 Hours.
This course covers the fundamentals and application of image analysis. Topics include: image pre-processing, detection, segmentation, classification and recognition, visual tracking, and deep learning.

EE 518. Wireless Communications. 3 Hours.
This course covers the principles and current applications of wireless technology. Topics include propagation models, modulation, multiple access, and channel and signal coding. Applications of wireless for cellular and Internet of Things (IoT) will also be covered.

EE 521. Communication Systems. 3 Hours.
This course covers the mathematics of modulation and demodulation of radio signals to transmit and receive information. It focuses on various forms of amplitude modulation (AM), phase and frequency modulation (FM). This course builds on the mathematics from signals and systems course to study how to represent and manipulate these signals in both time and frequency domain. It also studies the effects of sampling, and how these systems operate in the presence of noise.

EE 523. Digital Signal Processing. 3 Hours.
This course covers the theory and practice of using computers to process and analyze signals. The topics include: digital filter analysis and design; Fast Fourier Transform (FFT) algorithms; applications of digital signal processing in engineering problems such as data acquisition and control.

EE 526. Control Systems. 3 Hours.
This course covers modeling and control of mechanisms or circuits to satisfy stability and performance criteria. Topics include: theory of linear feedback control systems using complex frequency techniques, block diagram manipulation, performance measures, stability, analysis and design using root locus, and Z-transform methods.

EE 527. Industrial Control. 3 Hours.
This course covers power control devices and applications, relay logic and translation to other forms, programmable logic controllers (PLCs), proportional-integral-derivative (PID) and other methods for process control, modern laboratory instrumentation, and human-machine interface (HMI) software.

EE 531. Analog Integrated Electronics. 4 Hours.
This course covers advanced analysis and design using op-amps, differential amplifier, half-circuit analysis, error analysis and compensation. Applications include signal conditioning for instrumentation, instrumentation amplifiers, nonlinear and computational circuits, analog filter design, voltage regulator design, and oscillators, circuit configurations for A-to-D and D-to-A conversion methods. Laboratory exercises emphasize design techniques for projects in areas such as Internet-of-Things (IoT).

EE 532. Introduction to Computer Networking. 3 Hours.
This course covers the fundamentals of modern computer networks including current applications such as Internet of Things (IoT). Topics include: hardware and software level network protocols, network architecture and topology including WANs and LANs, client-server relationships, distributed computing, data transfer, security, virtualization of hardware, multi-tier network configuration examples, and certifications will be addressed.
Prerequisites: EE 134 [Min Grade: C] and EE 210 [Min Grade: C]

EE 533. Engineering Software Solutions. 3 Hours.
This course covers the fundamentals of software design, architecture, and implementation for future software engineers. Topics include: customer-focused requirements gathering, project planning, team tools, architectural patterns, environment and component selection, quality assurance, sustainability, and versioning. Various development methodologies are discussed with a project demonstrating at least one release cycle.

EE 534. Power Semiconductor Electronics. 3 Hours.
This course covers the fundamentals of power electronics such as principles of static power conversions, basic power converter architectures, power semiconductor switches, steady-state equivalent circuit modeling, DC transformer model, basic AC equivalent circuit modeling, linearization and perturbation. Pulse width modulation and controller design, circuit design considerations, and applications of power electronics. The course project emphasizes computer-aided analysis and design of power electronic circuits.

EE 537. Introduction to Embedded Systems. 3 Hours.
This course provides an applied introduction to the design of embedded systems, including hardware and software aspects. Topics include: various embedded hardware platforms, interfacing industrial bus systems, sensors, actuators, low-power wireless communication, and the application of the Internet of Things (IoT).

EE 538. Computer Architecture. 3 Hours.
Advanced microprocessor topics include a comparison of advanced contemporary microprocessors, cache design, pipelining, superscalar architecture, design of control units, microcoding, and parallel processors. Basic knowledge of microprocessors is recommended.

EE 544. Real-Time Process & Protocols. 3 Hours.
This course covers hands-on laboratory topics in real-time computer systems, such as algorithms, state-machine implementations, communication protocols, instrumentation, and hardware interfaces.
EE 547. Internet/Intranet Application Development. 3 Hours.
This course covers development of software models and applications using Internet/Intranet technologies. Topics include: web client-server relationships, multi-tier design models, scripting and validation, basic TCP/IP networking, separation of concerns, markup and data description languages. Projects will allow the opportunity for the use of a range of tools and development platforms.
Prerequisites: EE 233 [Min Grade: C]

EE 548. Software Engineering Projects. 3 Hours.
This course covers practical applications of software engineering including the development of applications for the Internet of Things (IoT). Topics include: requirements gathering, design matrices, environment selection, relevant architectural patterns, networking basics, databases, service endpoints, embedded systems selection and security. Projects with a software emphasis will be utilized to demonstrate the principles of IoT applications.
Prerequisites: EE 333 [Min Grade: C]

EE 552. Digital Systems Design. 3 Hours.
This course covers the design of customized complex digital systems using Field Programmable Gate Array (FPGA) based platforms, using modern design tools for simulation, synthesis, and implementation. Topics include hardware design and development languages such as Verilog or VHDL.

EE 558. Medical Instrumentation. 3 Hours.
This course covers the fundamental operating principles, applications, safety, and design of electronic instrumentation used in the measurement of physiological parameters.

EE 561. Machinery II. 3 Hours.
Physical principles of DC machines. Mathematical analysis of generator designs using equivalent circuits and magnetization curves. Calculation of motor speed, torque, power, efficiency, and starting requirements. Solid-state speed control systems.

EE 563. Medical Image Analysis. 3 Hours.
A lab-based introduction to processing, analysis, and display techniques for medical imaging.

EE 567. Brain Machine Interface. 3 Hours.
This course explores the brain-machine interfaces, particularly the technologies that directly stimulate and/or record neural activity. This course is divided into three major components: 1) neuroscience and electrode interfaces, 2) brain recording and stimulating front-end circuits, and 3) circuit modeling, simulation, and optimization.

EE 571. Power Systems I. 3 Hours.
Components of power systems. Performance of modern interconnected power system under normal and abnormal conditions. Calculation of inductive and capacitive reactances of three-phase transmission lines in a steady state.

EE 572. Power Systems II. 3 Hours.

EE 573. Protective Relaying of Power Systems. 3 Hours.
Operating principles of protective relays. Protection of transmission lines, generators, motors, transformers, and buses.

EE 585. Engineering Operations. 3 Hours.
This course covers the principles and standard of engineering design from ideation to final design. Topics include: product development process, problem definition and need identification, embodiment and detail design, design for specific criterion, modeling and cost evaluation. Emphasis is placed on ethics and civil responsibilities in design including environmental, social issues, liability, sustainability and reliability through the lens of engineering design.

EE 590. Special Topics in Electrical and Computer Engineering. 1-3 Hour.
Special Topic in Electrical or Computer Engineering.

EE 591. Individual Study in Electrical and Computer Engineering. 1-6 Hour.
Individual Study in Electrical Engineering.

EE 601. Electrical and Computer Engineering Seminar. 1-3 Hour.
This course consists of research presentations delivered by faculty, research assistants, and invited guests in various state-of-the-art and popular topics related to Electrical and Computer Engineering.

EE 610. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 616. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational transconductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation, and chip layout of an analog integrated circuit design project. Fundamental knowledge of electronics is required.

EE 621. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.
Prerequisites: EE 421 [Min Grade: C]

EE 622. Advanced Communication Theory. 3 Hours.
Analysis of the performance of analog modulation techniques in presence of noise.
Prerequisites: EE 621 [Min Grade: C]

EE 623. Computer Vision. 3 Hours.
Advanced topics in computer vision: image segmentation, registration, and visual tracking; Applications of deep learning to image analysis.

EE 624. Digital Communications. 3 Hours.
Design and analysis of digital communications modulation techniques and systems and their performance in the presence of noise.
Prerequisites: EE 622 [Min Grade: C]

EE 625. Information Theory and Coding. 3 Hours.
Channel models and block codes, block code ensemble performance analysis, convolutional codes and ensemble performance, sequential decoding of convolutional codes.
Prerequisites: EE 621 [Min Grade: C]

EE 626. Digital Image Processing. 3 Hours.
The course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.
EE 627. Wireless Communications. 3 Hours.
Wireless communication system topics such as propagation, modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 630. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 632. Introduction to Computer Networking. 3 Hours.

EE 633. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of a series of programs to explore the details of network protocols and network application models.

EE 634. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), applications and limitations of neural networks, and designing networks specific uses.

EE 636. Advanced Digital Design. 3 Hours.
This course covers the design of Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs). Topics include the design, simulation, and testing of digital systems using a hardware description language and FPGA/CPLD development boards with programmable logic devices.

EE 637. Design of Modern Computer with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 638. Neural Time Series Data Analysis. 3 Hours.
This course covers the theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 639. Embedded Systems. 3 Hours.
This course covers both hardware and software trends in advanced embedded system design, including artificial intelligence (AI) and optimized hardware platforms for machine learning (ML). The fundamental algorithms of AI and ML are discussed. Various process acceleration techniques for improving the computational efficiency of ML kernels are implemented on FPGA/CPLD development boards and FPGA/CPLD chips.

EE 640. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.

EE 641. Modern Control Theory. 3 Hours.
This course covers state variable models for continuous-time and discrete time systems, state feedback and pole placement, and state estimation. Knowledge of basic control systems is recommended.

EE 642. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 643. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include numerical calculus, linear algebra, and optimization. Students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 650. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 651. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 653. Electronic Power Switching Circuits. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 654. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and back-end services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 655. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 656. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 658. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.
EE 660. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 667. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience and interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 682. Electromagnetic Field Theory I. 3 Hours.
This course covers the modeling of materials and environments through the simulation of electromagnetic fields. It includes a wide variety of applications, including biomedical and the Internet of Things (IoT). Topics include boundary-value problems and scattering.

EE 690. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for master's students.

EE 691. Individual Study in (Area). 1-6 Hour.
Individual study selected by faculty for master's students.

EE 697. Graduate Project. 3 Hours.
Graduate project for Plan II Masters students.

Individual research in selected area by faculty for master's students.

EE 699. Thesis Research. 1-12 Hour.
Thesis research.
Prerequisites: GAC M

EE 701. Electrical and Computer Engineering Seminar. 1-3 Hour.
This course consists of research presentations delivered by faculty, research assistants, and invited guests in various state-of-the-art and popular topics related to Electrical and Computer Engineering.

EE 710. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 716. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational trans conductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation and chip layout of an analog integrated circuit design project. Fundamental knowledge in electronics is required.

EE 721. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.

EE 723. Computer Vision. 3 Hours.
Advanced topics in computer vision: Image segmentation, registration, and visual tracking. Applications of deep learning to image analysis.

EE 724. Digital Communications. 3 Hours.
Design and analysis of digital communications modulation techniques and systems and their performance in the presence of noise.
Prerequisites: EE 622 [Min Grade: C]

EE 725. Information Theory and Coding. 3 Hours.
Channel models and block codes, block code ensemble performance analysis, convolutional codes and ensemble performance, sequential decoding of convolutional codes.
Prerequisites: EE 621 [Min Grade: C]

EE 726. Digital Image Processing. 3 Hours.
This course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.

EE 727. Wireless Communications. 3 Hours.
Wireless communication system topics such as modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 730. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 732. Introduction to Computer Networking. 3 Hours.

EE 733. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of series of programs to explore the details of network protocols and network application models.

EE 734. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Applications and limitations of neural networks, and designing networks for specific uses.

EE 737. Design of Modern Computers with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 738. Neural Time Series Data Analysis. 3 Hours.
This course covers theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 740. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include: object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.
EE 742. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 743. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include Using numerical calculus, linear algebra, and optimization students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation with active contours, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 750. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 751. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 752. Software Engineering Large Systems - II. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 754. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and backend services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 755. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 756. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 758. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines(SVM), boosting, and artificial neural networks.

EE 760. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 767. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 790. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for PhD students.

EE 791. Individual Study in (Area). 1-6 Hour.
Individual study in an area selected by faculty for PhD students.

EE 798. Non-Dissertation Research. 1-12 Hour.
Individual research in selected problem by faculty for PhD students.

EE 799. Dissertation Research. 1-12 Hour.
PhD dissertation research.
Prerequisites: GAC Z

Computer Engineering

Degree Offered | PhD in Computer Engineering
Website | https://www.uab.edu/engineering/ece/
Director | Leon Jolijian, PhD
Phone | (205) 934-8440
E-mail | leon@uab.edu

Program Information
The PhD degree prepares students for professional and research careers in industry and academia. The PhD in Computer Engineering is awarded by UAB and is offered through a program shared with the University of Alabama in Huntsville (UAH), allowing both UAB and UAH to contribute to the program.

Admission Requirements
Requirements for admission to the PhD program include the following:

1. A bachelor’s degree in an accredited electrical or computer engineering program or a bachelor’s degree in a related program acceptable to the graduate faculty in Electrical and Computer Engineering; students not having a bachelor’s degree in electrical or computer engineering may be required to complete prerequisite courses, which will be defined at the time of admission.
2. An overall GPA of at least 3.0 on a 4.0 point scale, or at least 3.0 for the last 60 semester hours completed; and
3. Three letters of recommendation concerning the applicant’s previous academic and professional work.
4. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details;
5. Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process);

Financial Support
Fellowships and/or assistantships may be available for well-qualified students admitted into the PhD program. In order to be considered for financial aid for the coming academic year, the completed application materials must usually be received at UAB by April 1.

There are a number of minority fellowships available through the Graduate School. Contact the UAB Graduate School directly for further information.
Additional Information

Deadline for Entry Term(s): Fall: August 1; Spring: December 1; Summer: May 1

Deadline for All Application Materials to be in the Graduate School Office: Seven days before the start of the term

The PhD degree prepares students for professional and research careers in industry and academia. The PhD in Computer Engineering is awarded by UAB and is offered through a program shared with the University of Alabama in Huntsville (UAH), allowing both UAB and UAH to contribute to the program.

Committee and Candidacy Requirements

In addition to completing coursework requirements (see below), doctoral students must form a Graduate Dissertation Committee consisting of at least five faculty members, including the primary research mentor. At least two committee members must have a primary appointment at UAB in the Department of Electrical and Computer Engineering and one must have a primary appointment at UAH in the Electrical and Computer Engineering Department.

A comprehensive examination is required of all doctoral candidates. This exam is given after:

- All coursework is completed,
- Successful completion of GRD 717 Principles of Scientific Integrity, and
- The student’s Graduate Committee, which consists of faculty representatives from both campuses, deems the student to have adequate preparation in the major and minor fields of study.

The examination is conducted by the Graduate Committee and administered on the resident campus. The examination consists of a written part and an oral part. The student presents a dissertation proposal during the oral portion of the examination. The comprehensive examination may only be taken twice.

After successfully passing the exam and defense, the graduate student will then enter into doctoral candidacy. Doctoral candidates must complete a minimum of 24 hours of dissertation research and then develop a dissertation for review by the dissertation committee. The candidate must also present an oral public defense of their dissertation. This must take place at least two semesters before the student may graduate. If the defense is successful, the student then has 10 working days to revise the dissertation and submit its approved form to the Graduate School by the published deadline.

Additional Academic Policies

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined credit hours of Special Topics and/or Independent Study Courses will be applied to the Computer Engineering PhD without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Post Bachelor Requirements

Students entering the PhD program with a bachelor degree are required to complete at least 48 credit hours of coursework followed by 24 credit hours of dissertation research.

- 18 credit hours of approved coursework in computer engineering
- 12 credit hours of approved coursework in electrical or computer engineering
- 9 credit hours of approved coursework in mathematics, theoretical or formal methods as related to computer engineering
- 6 credit hours of approved coursework in fields that support the dissertation research
- 3 credit hours of GRD 717 Principles of Scientific Integrity
- 24 credit hours of EE 799 Dissertation Research

Post Master Coursework Requirements

Students entering the PhD program with a master degree are required to complete at least 27 credit hours of coursework followed by 24 credit hours of dissertation research.

- 9 credit hours of approved coursework in computer engineering
- 6 credit hours of approved coursework in electrical or computer engineering
- 6 credit hours of approved coursework in mathematics, theoretical or formal methods as related to computer engineering
- 3 credit hours of approved coursework in fields that support the dissertation research
- 3 credit hours of GRD 717 Principles of Scientific Integrity
- 24 credit hours of EE 799 Dissertation Research

Courses

EE 512. Practical Computer Vision. 3 Hours.
This course covers the fundamentals and application of image analysis. Topics include: image pre-processing, detection, segmentation, classification and recognition, visual tracking, and deep learning.

EE 518. Wireless Communications. 3 Hours.
This course covers the principles and current applications of wireless technology. Topics include propagation models, modulation, multiple access, and channel and signal coding. Applications of wireless for cellular and Internet of Things (IoT) will also be covered.

EE 521. Communication Systems. 3 Hours.
This course covers the mathematics of modulation and demodulation of radio signals to transmit and receive information. It focuses on various forms of amplitude modulation (AM), phase and frequency modulation (FM). This course builds on the mathematics from signals and systems course to study how to represent and manipulate these signals in both time and frequency domain. It also studies the effects of sampling, and how these systems operate in the presence of noise.

EE 523. Digital Signal Processing. 3 Hours.
This course covers the theory and practice of using computers to process and analyze signals. The topics include: digital filter analysis and design; Fast Fourier Transform (FFT) algorithms; applications of digital signal processing in engineering problems such as data acquisition and control.
EE 526. Control Systems. 3 Hours.
This course covers modeling and control of mechanisms or circuits to satisfy stability and performance criteria. Topics include: theory of linear feedback control systems using complex frequency techniques, block diagram manipulation, performance measures, stability, analysis and design using root locus, and Z-transform methods.

EE 527. Industrial Control. 3 Hours.
This course covers power control devices and applications, relay logic and translation to other forms, programmable logic controllers (PLCs), proportional-integral-derivative (PID) and other methods for process control, modern laboratory instrumentation, and human-machine interface (HMI) software.

EE 531. Analog Integrated Electronics. 4 Hours.
This course covers advanced analysis and design using operational amplifiers, differential amplifiers, half-circuit analysis, error analysis, and compensation. Applications include signal conditioning for instrumentation, instrumentation amplifiers, nonlinear and computational circuits, analog filter design, voltage regulator design, and oscillators. Circuit configurations for A-to-D and D-to-A conversion methods. Laboratory exercises emphasize design techniques for projects in areas such as Internet-of-Things (IoT).

EE 532. Introduction to Computer Networking. 3 Hours.
This course covers the fundamentals of modern computer networks including current applications such as Internet of Things (IoT). Topics include: hardware and software level network protocols, network architecture and topology including WANs and LANs, client-server relationships, distributed computing, data transfer, security, virtualization of hardware, multi-tier network configuration examples, and will be addressed. Laboratory exercises emphasize design techniques for projects in areas such as Internet-of-Things (IoT).

EE 533. Engineering Software Solutions. 3 Hours.
This course covers the fundamentals of software design, architecture, and implementation for future software engineers. Topics include: customer-focused requirements gathering, project planning, team tools, architectural patterns, environment and component selection, quality assurance, sustainability, and versioning. Various development methodologies are discussed with a project demonstrating at least one release cycle.

EE 534. Power Semiconductor Electronics. 3 Hours.
This course covers the fundamentals of power electronics such as principles of static power conversions, basic power converter architectures, power semiconductor switches, steady-state equivalent circuit modeling, DC transformer model, basic AC equivalent circuit modeling, linearization, and perturbation. Pulse width modulation and controller design, circuit design considerations, and applications of power electronics. The course project emphasizes computer-aided analysis and design of power electronic circuits.

EE 537. Introduction to Embedded Systems. 3 Hours.
This course provides an applied introduction to the design of embedded systems, including hardware and software aspects. Topics include: embedded hardware platforms, interfacing industrial bus systems, sensors, actuators, low-power wireless communication, and the application of the Internet of Things (IoT).

EE 538. Computer Architecture. 3 Hours.
Advanced microprocessor topics include a comparison of advanced contemporary microprocessors, cache design, pipelining, superscalar architecture, design of control units, microcoding, and parallel processors. Basic knowledge of microprocessors is recommended.

EE 544. Real-Time Process & Protocols. 3 Hours.
This course covers hands-on laboratory topics in real-time computer systems, such as algorithms, state-machine implementations, communication protocols, instrumentation, and hardware interfaces.

EE 547. Internet/Intranet Application Development. 3 Hours.
This course covers development of software models and applications using Internet/Intranet technologies. Topics include: web client-server relationships, multi-tier design models, scripting and validation, basic TCP/IP networking, separation of concerns, markup and data description languages. Projects will allow the opportunity for the use of a range of tools and development platforms.

Prerequisites: EE 233 [Min Grade: C]

EE 548. Software Engineering Projects. 3 Hours.
This course covers practical applications of software engineering including the development of applications for the Internet of Things (IoT). Topics include: requirements gathering, design matrices, environment and selection, relevant architectural patterns, networking basics, databases, service endpoints, embedded systems selection and security. Projects with a software emphasis will be utilized to demonstrate the principles of IoT applications.

Prerequisites: EE 333 [Min Grade: C]

EE 552. Digital Systems Design. 3 Hours.
This course covers the design of customized complex digital systems using Field Programmable Gate Array (FPGA) based platforms, using modern design tools for simulation, synthesis, and implementation. Topics include hardware design and development languages such as Verilog or VHDL.

EE 555. Medical Instrumentation. 3 Hours.
This course covers the fundamental operating principles, applications, safety, and design of electronic instrumentation used in the measurement of physiological parameters.

EE 561. Machinery II. 3 Hours.
Physical principles of DC machines. Mathematical analysis of generator designs using equivalent circuits and magnetization curves. Calculation of motor speed, torque, power, efficiency, and starting requirements. Solid-state speed control systems.

EE 563. Medical Image Analysis. 3 Hours.
A lab-based introduction to processing, analysis, and display techniques for medical imaging.

EE 564. Brain Machine Interface. 3 Hours.
This course explores the brain-machine interfaces, particularly the technologies that directly stimulate and/or record neural activity. This course is divided into three major components: 1) neuroscience and electrode interfaces, 2) brain recording and stimulating front-end circuits, and 3) circuit modeling, simulation, and optimization.

EE 571. Power Systems I. 3 Hours.
Components of power systems. Performance of modern interconnected power systems under normal and abnormal conditions. Calculation of inductive and capacitive reactances of three-phase transmission lines in a steady state.

EE 572. Power Systems II. 3 Hours.
EE 626. Digital Image Processing. 3 Hours.
The course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.

EE 627. Wireless Communications. 3 Hours.
Wireless communication system topics such as propagation, modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 630. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 632. Introduction to Computer Networking. 3 Hours.

EE 633. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of a series of programs to explore the details of network protocols and network application models.

EE 634. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), applications and limitations of neural networks, and designing networks specific uses.

EE 636. Advanced Digital Design. 3 Hours.
This course covers the design of Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs). Topics include the design, simulation, and testing of digital systems using a hardware description language and FPGA/CPLD development boards with programmable logic devices.

EE 637. Design of Modern Computer with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 638. Neural Time Series Data Analysis. 3 Hours.
This course covers the theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 639. Embedded Systems. 3 Hours.
This course covers both hardware and software trends in advanced embedded system design, including artificial intelligence (AI) and optimized hardware platforms for machine learning (ML). The fundamental algorithms of AI and ML are discussed. Various process acceleration techniques for improving the computational efficiency of ML kernels are implemented on FPGA/CPLD development boards and FPGA/CPLD chips.
EE 640. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.

EE 641. Modern Control Theory. 3 Hours.
This course covers state variable models for continuous-time and discrete time systems, state feedback and pole placement, and state estimation. Knowledge of basic control systems is recommended.

EE 642. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 643. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include numerical calculus, linear algebra, and optimization. Students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 650. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 651. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 653. Electronic Power Switching Circuits. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 654. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and back-end services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 655. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 656. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 658. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.

EE 660. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 667. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience and interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.

EE 682. Electromagnetic Field Theory I. 3 Hours.
This course covers the modeling of materials and environments through the simulation of electromagnetic fields. It includes a wide variety of applications, including biomedical and the Internet of Things (IoT). Topics include boundary-value problems and scattering.

EE 690. Special Topics in (Area). 1-6 Hour.
Special topics selected by faculty for master's students.

EE 691. Thesis Research. 1-12 Hour.
Graduate project for Plan II Masters students.

EE 692. Thesis Research. 1-12 Hour.
Thesis research.

Prerequisites: GAC M

EE 701. Electrical and Computer Engineering Seminar. 1-3 Hour.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 710. Technical Communication for Engineers. 3 Hours.
A workshop-oriented course providing students with the opportunity to produce technical memoranda, a proposal, and a conference and/or refereed journal paper and to make oral presentations related to these work products utilizing appropriate software presentation aids.

EE 716. Design of CMOS Analog Integrated Circuits. 3 Hours.
This course will cover basic building blocks of CMOS analog VLSI design, MOSFET theory, short channel device and nonlinear effects, current mirrors, current-reference generator, operational trans conductance amplifier, switched capacitor architecture, analog-to-digital converter and digital-to-analog converter. Students will be required to develop a computer aided design, simulation and chip layout of an analog integrated circuit design project. Fundamental knowledge in electronics is required.

EE 721. Random Variables and Processes. 3 Hours.
Theory underlying analysis and design of communication, stochastic control, data gathering, and data analysis systems.

EE 723. Computer Vision. 3 Hours.
Advanced topics in computer vision: Image segmentation, registration, and visual tracking. Applications of deep learning to image analysis.

EE 724. Digital Communications. 3 Hours.
Design and analysis of digital communications modulation techniques and systems and their performance in the presence of noise.

Prerequisites: EE 622 [Min Grade: C]
EE 725. Information Theory and Coding. 3 Hours.
Channel models and block codes, block code ensemble performance analysis, convolutional codes and ensemble performance, sequential decoding of convolutional codes.
Prerequisites: EE 621 [Min Grade: C]

EE 726. Digital Image Processing. 3 Hours.
This course covers topics in image transformations, enhancement, restoration, compression, and representation. Introduction to image segmentation.

EE 727. Wireless Communications. 3 Hours.
Wireless communication system topics such as propagation, modulation techniques, multiple access techniques, channel coding, speech and video coding, and wireless computer networks.

EE 730. Short-Range Wireless Systems. 3 Hours.
This course covers the short-range wireless power transmission (WPT), wireless data communication, and wireless sensor technologies. It emphasizes fundamental understanding of the principles and design procedure of short-range wireless power/data transfer systems as well as the various parameters involved in the optimization of wireless power/data transmission systems.

EE 732. Introduction to Computer Networking. 3 Hours.

EE 733. Experiments in Computer Networking. 3 Hours.
Detailed exploration of particular issues in network protocols and network application models. Development of series of programs to explore the details of network protocols and network application models.

EE 734. Introduction to Neural Networks. 3 Hours.
Artificial neural network topologies and training algorithms with an emphasis on back propagation. Deep learning with Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Applications and limitations of neural networks, and designing networks for specific uses.

EE 737. Design of Modern Computers with Digital Integrated Circuits. 3 Hours.
This course covers the design of advanced digital circuits with VLSI components. Topics include synthesis, design, simulation, and testing of advanced digital circuits using a hardware description language and FPGA/CPLD development boards with programmable logic devices. Design examples: switching networks, graphics engine, DSP, Internet of Things (IoT) controller, and programmable logic controller (PLC).

EE 738. Neural Time Series Data Analysis. 3 Hours.
This course covers theory and practice of analyzing brain signals. Students will learn about conceptual, mathematical and implementational (via MATLAB programming) aspects of time-, frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals.

EE 740. Object-Oriented Design. 3 Hours.
This course provides in-depth coverage of object-oriented design principles and methodologies. Topics include: object-oriented design frameworks, use-cases, class-responsibility-collaboration (CRC), design patterns, and software reuse. Knowledge of an object-oriented language is recommended.

EE 742. Intelligent Systems. 3 Hours.
This course covers the organization and characteristics of intelligent systems, optimization, evolutionary algorithms, neural networks, fuzzy logic algorithms, and intelligent control.

EE 743. Numerical Methods in Engineering. 3 Hours.
This course covers the theory and practice of numerical methods for a broad spectrum of engineering applications and data analyses. Topics include Using numerical calculus, linear algebra, and optimization students will be exposed to modern topics such as convolutional neural networks, compressed sensing, eigenfaces, stability, principal component analysis, k-means clustering, image segmentation with active contours, detection of a signal in the noise, and function fitting. This course provides hands-on practical experience with programming numerical analysis algorithms.

EE 750. Software Engineering. 3 Hours.
This course covers the engineering approach to developing software solutions to real-world problems. Topics include an overview of Software Engineering, requirements elicitation, design, implementation, and an overview of software development methods.

EE 751. Software Engineering Large Systems - I. 3 Hours.
This course covers advanced integrated software systems development methods. Adaptive and prescriptive software systems development methods are covered with an in-depth exploration through team projects using current software development methods.

EE 752. Software Engineering Large Systems - II. 3 Hours.
This course covers software development in enterprise environments using Dev-Ops practices such as continuous integration and delivery.

EE 754. Mobile Computing. 3 Hours.
This course covers the fundamentals and advanced concepts in mobile computing. Develop user interface, application logic, and backend services, using advanced integrated development environments. Individual and team projects. Programming required.

EE 755. Cloud Computing. 3 Hours.
This course covers fundamental and advanced concepts in cloud computing, including evaluation of current market offerings. Students will also design and implement systems integrating multiple cloud computing services.

EE 756. Introduction to Big Data Analytics. 3 Hours.
This course covers an introduction to the field of big data analytics, including technologies, challenges, architecture, and hypothesis testing.

EE 758. Machine Learning in Engineering. 3 Hours.
This course covers techniques for developing solutions to complex problems in different engineering domains without having to explicitly program the computers. Topics include supervised and unsupervised learning, classification and regression, support vector machines (SVM), boosting, and artificial neural networks.

EE 760. Medical Signal Processing. 3 Hours.
This course covers the theory and practice of processing and analyzing single-channel and multiple-channel medical signals. The topics include linear and nonlinear filtering, cross-estimation, autoregressive and spectral modeling, entropy, principal component analysis (PCA), classification, and clustering methods.

EE 767. Advanced Brain Machine Interface. 3 Hours.
This course consists of four major parts: 1) neuroscience interfaces, 2) brain imaging technologies, 3) front-end circuit design, 4) power/data links and graphical user interface, and 5) circuit, wireless link, and safety simulating software-learning parts.
Materials Science and Materials Engineering

Degrees Offered:
- Master of Science in Materials Engineering
- PhD in Materials Engineering
- PhD in Materials Science

Program Director: Vinoy Thomas, PhD
Email: vthomas@uab.edu
Phone: (205) 934-8450
Website: https://www.uab.edu/engineering/mse/graduate

Are you passionate about materials innovation for advancing technology? Are you ready for pursuing higher study and research in the materials spectrum? The Department of Materials Science and Engineering offers the opportunity to conduct cutting-edge research in the fields of metals and alloys, polymers and composites, biomaterials and healthcare materials and devices, ceramics and glass, and nanomaterials for a wide array of applications.

Courses

MSE 501. Materials Processing. 3 Hours.
Processing of metals, glasses, ceramics, and composites. Powder, casting, welding, rapid solidification, and other advanced approaches.

MSE 505. Frontiers of Automotive Materials. 3 Hours.
Advanced lightweight automotive materials, manufacturing and modeling techniques. Technology advancements in cost-effective carbon, glass and related reinforcements, "green" and sustainable materials, crashworthiness and injury protection of occupants and pedestrians, metal castings, heavy truck, mass transit, fuel cell and hybrid vehicles. Students taking this class will receive a GATE certificate of training in automotive materials technologies upon successful completion.

MSE 508. Nanobiomaterials. 3 Hours.
Basic tools of nanotechnology, building blocks of nanostructured materials. Behavior of materials with nanoscale structures and their technological applications, including automotive, medical, and electronic applications. Introduction to biomaterials and nanobiomaterials, nanotoxicity and how to work safely with nanomaterials. Concepts in tissue engineering with special focus on nanoscaffolds and nanoparticles in drug delivery.

MSE 509. Principles of Metal Casting. 3 Hours.
Production and evaluation of cast ferrous metals (gray iron, ductile iron, steel) and non-ferrous metals (brass, bronze, aluminum). Design of castings and molds. Laboratory on the gating, risering and molten metal treatment, analysis and handling techniques required to produce high quality castings. It is recommended that students who register for this course have completed MSE 280 Engineering Materials or an equivalent course.

MSE 509L. Principles of Metal Casting. 0 Hours.
Laboratory component of MSE 509 and must be taken concurrently.

MSE 513. Composite Materials. 3 Hours.
Processing, structure, and properties of metal-, ceramic-, and polymer-matrix composite materials. Roles of interfacial bond strength, reinforcement type and orientation and matrix selection in physical and mechanical properties of composite materials.

MSE 525. Statistics and Quality. 3 Hours.
This course is arranged to reflect the sequential steps an engineer or scientist take to assess process capability and implement process improvement studies. There is a focus on connecting the theoretical equations to practical examples as well as interpreting and communicating of statistical results.

MSE 530. Polymeric Materials. 3 Hours.
Processing methods, structure/engineering/property relationships, and applications of polymeric materials.

MSE 530L. Polymeric Materials Lab. 0 Hours.
Laboratory component of MSE 530 and must be taken concurrently.

MSE 533. Nondestructive Evaluation of Materials. 3 Hours.
Principles, applications, and limitations of ultrasonic vibrations, acoustic emission, radiographic, magnetic particle, eddy current, and other nondestructive testing methods. Intelligent sensors and health monitoring of real structures.

MSE 545. The Evolution of Engineering Materials. 3 Hours.
Past, present and future of engineering materials; how new materials and processing methods have impacted human society, from the Stone Age until today. Taught as a 3-week study abroad course in Germany, with visits to universities, industrial facilities, research labs, museums and selected cultural sites.

MSE 552. Composites Manufacturing. 3 Hours.
Principles of manufacturing and processing of polymeric matrix composites. Production techniques including filament winding, pultrusion, and liquid infusion techniques combined with design, environmental and manufacturing issues of polymer matrix composites.

MSE 554. Metals and Alloys. 4 Hours.
Microstructures, properties, heat treatment, and processing of ferrous and nonferrous materials.

MSE 554L. Metals and Alloys Lab. 0 Hours.
Laboratory component of MSE 554 and must be taken concurrently.

MSE 555. Characterization of Materials. 4 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 555L. Characterization of Materials Laboratory. 0 Hours.
Laboratory component of MSE 555 and must be taken concurrently with MSE 555.
MSE 570. Ceramic Materials. 4 Hours.
Structure, processing, properties, and uses of ceramic compounds and glasses. Mechanical, thermal, and electrical behavior of ceramic materials in terms of microstructure and processing variables.

MSE 570L. Ceramic Materials Laboratory. 0 Hours.
Laboratory component of MSE 570 and must be taken concurrently.

MSE 574. Metals and Alloys II. 3 Hours.
Production and physical metallurgy of ferrous and non-ferrous alloys including: steel alloys, inoculation and production of ductile, gray, compacted and malleable iron; advanced heat treatments of steel and iron; conventional and ultra-high strength aluminum alloys; wrought and cast copper alloys; wrought and cast magnesium alloys.

MSE 590. Special Topics in Materials Science & Engineering. 1-3 Hour.
Special Topics in Materials Science & Engineering.

MSE 591. Individual Study in Materials Science & Engineering. 1-6 Hour.
Individual Study in Materials Science & Engineering.

MSE 601. Materials Science and Engineering Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to materials students.

MSE 602. Intro to Thermodynamics and Mechanics of Materials. 3 Hours.
This course is a survey of undergraduate level theory and application of the fundamental principles of mechanics of materials and thermodynamics. Understanding is based on the explanation of the physical behavior of materials under load and then modeling this behavior to develop the theory. Intended to provide the students with both the theory and application of the fundamental principles of thermodynamics of materials. Students must be graduate student in engineering, chemistry or physics.

MSE 603. Thermodynamics of Materials. 3 Hours.
Atomistic and classical approaches to the understanding of the thermodynamics of solids, phase transformations, chemical reactions, and alloy systems.

MSE 605. Introduction to Physical Materials. 3 Hours.
Overview of fundamental concepts of materials science and engineering, focusing on chemical and physical properties such as bonding, crystal structure and defects, diffusion, and phase diagrams.

MSE 606. Introduction to Manufacturing Engineering. 3 Hours.
Manufacturing is the process of transforming raw materials into products. Even the most optimized and controlled industrial processes are fraught with variability and inefficiencies, both of which can have a negative impact on profitability. This course will introduce students to the proven tools to characterize and optimize industrial processes. In addition, students will learn the statistical techniques to quantitative assess and detect changes to a process and make data-driven decisions to improve that process.

MSE 607. Measurement Systems Analysis. 3 Hours.
Whether in a manufacturing process, research & development lab or quality control, assessment and analysis of data used for decision making has roots in the equipment and procedures that make up a measurement system. Students will learn to critically assess the capability of measurements systems, gauges and analytical equipment used to collect data. Students will learn metrology, best practices, and statistical tools to quantitatively assess, as well as procedures to implement a Gage R&R study to improve a measurement system. In addition, students will learn effective communication strategies for presenting the results of statistical analysis.

MSE 608. Process Characterization and Advanced Statistical Analysis. 3 Hours.
This course centers on manufacturing processes and the inherent variability of all products. Product variability has origins at all input points in a process; raw materials, energy, time, human, etc. This course will expose engineers to the statistics to quantify and assess variability. In addition to statistical tools, we will delve deep into all phases of the DMAIC (Define, Measure, Analysis, Improve, and Control) methodology and the Lean/Six Sigma tools to identify, implement and document process improvements. An emphasis will be placed on the communication of these often-complicated statistics in an industrial setting. We will put these concepts into practice through completion of a final term paper. Students will be required to choose an industrial process and apply and communicate the concepts learned in this course.

MSE 610. Advanced Materials, Manufacturing and Applications Development. 3 Hours.
Introduction to advanced materials by design, near net-shape cost-effective manufacturing, synergistic knowledge of material properties, durability and function. Hands on activities related to extrusion-compression, fiber spinning, thermoset/thermoplastic materials, medical grade materials, intermediate forms and hybrid manufacturing. Integrated process and product development methodology. Student projects will involve manufacturing processes associated with mass production.

MSE 613. Mechanical Behavior of Materials. 3 Hours.
Microstructural effects on the deformation mechanisms responsible for mechanical behavior of engineering materials.

MSE 614. Process Quality Engineering. 3 Hours.
Application of the concepts and tools of total quality to develop, implement, and maintain an effective quality assurance system in a materials processing and manufacturing environment. Students will be exposed to probability models, statistical tools, linear and multiple regression, DOE, TQM and six sigma.

MSE 624. Physical Metallurgy. 3 Hours.
Course will consider the fundamental thermodynamic and kinetic principles governing the behavior of metals and alloys, particularly with respect to their influence the formation and evolution of microstructure. Topics will include liquid-solid and solid-state phase transformations, nucleation, growth, solidification and diffusion.

MSE 628. Thermal Characterization. 3 Hours.
This lab-oriented course will be focused to give graduate students the theory and hands-on experience in operation, data acquisition and interpretation of widely used thermal characterization techniques such as differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), Simultaneous TGA-DTA, Thermo mechanical analyzer (TMA), Dynamic mechanic analyzer (DMA) and rheological and viscosity analyses of polymeric resins and composite materials. Exposure to the surface characterization techniques such as contact angle goniometer for wettability, Fourier Transform infrared spectrometer (FT-IR).
MSE 628L. Thermal Characterization Lab. 0 Hours.
Laboratory component of MSE 628 and must be taken concurrently.

MSE 629. Polymer Structure and Morphology. 3 Hours.
Polymer structures and morphology and its relationships with applications, multicomponent polymer systems (polymer blends, copolymers, micro and nanocomposites), liquid crystalline polymers, polymer crystals, oriented polymers, morphological aspects of deformation and advances in polymers (biomimetic and bioinspired polymer systems).

MSE 633. Advanced Mechanics of Deformation. 3 Hours.
Basics and intermediate mechanics of deflection of beams and columns, mechanics of impact, failure theories, plastic deformation of materials, fracture mechanics, fatigue, creep and vibration. The topics will be supported by industry relevant case studies. Suggested prerequisites included Mechanics of Solids (CE 220) and Mechanical Behavior (MSE 382).

MSE 635. Advanced Mechanics of Composites. 3 Hours.
Classical lamination theory, analysis and failure of reinforced composite material systems, anisotropic elasticity, stress analysis and design of laminated composites including 3D effects, stress concentrations, free-edge effects, hygrothermal behavior, adhesive and mechanical connections.

MSE 636. Engineering Fibers. 3 Hours.
Processing-microstructure-properties of different fibrous materials: natural polymeric fibers (jute, sisal, silk, etc.), synthetic polymeric fibers (aramid and polyethylene, etc.), metallic fibers, and high performance ceramic fibers (alumina and silicon carbide). Application of Weibull statistics to strength of fibrous materials, techniques of mechanical testing of fibers and applications of fibers in various fields.

MSE 638. Degradation of Materials. 3 Hours.
Basics of materials degradation- thermodynamics and kinetics - Pourbaix diagram, chemical and electrochemical reactions; Degradation types and mechanisms; Degradation of different material systems: Metals, alloys, ceramics and glasses, polymers and composites for versatile applications- structural, functional, energy and biomedical; Impact on materials properties; Investigation for materials degradation; Protection from degradation and materials design;Environmental and biological aspects; Societal impact.

MSE 667. Process Modeling/Simulation. 3 Hours.
Theory and practice of analytical methods and computational modeling for manufacturing processes of metals, ceramics, polymers and composites. Applications on processes such as metal cutting, welding, casting, massive forming, solidification, rapid prototyping, injection molding and resin transfer molding.

MSE 668. Applied Finite Element Analysis. 3 Hours.
Finite Element Analysis (FEA) is used widely for design optimization and failure prediction in automobile, energy, aerospace, and other industries. This course primarily looks at how practically to set up static structural models and get meaningful results. The focus will be on applying loading and boundary conditions, good meshes, convergence of results, and correct interpretation of results. Students will learn how to set up models using programs such as Pro/Engineer and ANSYS.

MSE 670. Physical Characterization. 3 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 670L. Physical Characterization Lab. 0 Hours.
Laboratory component of MSE 670 and must be taken concurrently.

MSE 690. Special Topics In (Area). 1-6 Hour.
Special Topics in (Area).

MSE 690L. Special Topics in (Area) Laboratory. 0 Hours.
Special Topics in (Area) laboratory.

MSE 691. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

Prerequisites: GAC M

MSE 701. Materials Science and Engineering Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to materials students.

MSE 702. Intro to Thermodynamics and Mechanics of Materials. 3 Hours.
This course is a survey of undergraduate level theory and application of the fundamental principles of mechanics of materials and thermodynamics. Understanding is based on the explanation of the physical behavior of materials under load and then modeling this behavior to develop the theory. Intended to provide the students with both the theory and application of the fundamental principles of thermodynamics of materials. Students must be graduate student in engineering, chemistry or physics.

MSE 703. Thermodynamics of Materials. 3 Hours.
Atomic and classical approaches to the understanding of the thermodynamics of solids, phase transformations, chemical reactions, and alloy systems.

MSE 705. Introduction to Physical Materials. 3 Hours.
Overview of fundamental concepts of materials science and engineering, focusing on chemical and physical properties such as bonding, crystal structure and defects, diffusion, and phase diagrams.

MSE 710. Advanced Materials, Manufacturing and Applications Development. 3 Hours.
Introduction to advanced materials by design, near net-shape cost-effective manufacturing, synergistic knowledge of material properties, durability and function. Hands on activities related to extrusion-compression, fiber spinning, thermoset/thermoplastic materials, medical grade materials, intermediate forms and hybrid manufacturing. Integrated process and product development methodology. Student projects will involve manufacturing processes associated with mass production.

MSE 714. Process Quality Engineering. 3 Hours.
Application of the concepts and tools of total quality to develop, implement, and maintain an effective quality assurance system in a materials processing and manufacturing environment. Students will be exposed to probability models, statistical tools, linear and multiple regression, DOE, TQM and six sigma.

MSE 724. Physical Metallurgy. 3 Hours.
Course will consider the fundamental thermodynamic and kinetic principles governing the behavior of metals and alloys, particularly with respect to their influence the formation and evolution of microstructure. Topics will include liquid-solid and solid-state phase transformations, nucleation, growth, solidification and diffusion.
MSE 728. Thermal Characterization. 3 Hours.
This lab-oriented course will be focused to give graduate students the theory and hands-on experience in operation, data acquisition and interpretation of widely used thermal characterization techniques such as differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), Simultaneous TGA-DTA, Thermo mechanical analyzer (TMA), Dynamic mechanic analyzer (DMA) and rheological and viscosity analyses of polymeric resins and composite materials. Exposure to the surface characterizations techniques such as contact angle goniometer for wettability, and Fourier Transform infrared spectrometer (FT-IR).

MSE 729. Polymer Structure and Morphology. 3 Hours.
Polymer structures and morphology and it's relationships with applications, multicomponent polymer systems (polymer blends, copolymers, micro and nanocomposites), liquid crystalline polymers, polymer crystals, oriented polymers, morphological aspects of deformation and advances in polymers (biomimetic and bioinspired polymer systems).

MSE 733. Advanced Mechanics of Deformation. 3 Hours.
Basics and intermediate mechanics of deflection of beams and columns, mechanics of impact, failure theories, plastic deformation of materials, fracture mechanics, fatigue, creep and vibration. The topics will be supported by industry relevant case studies. Suggested prerequisites included Mechanics of Solids (CE 220) and Mechanical Behavior (MSE 382).

MSE 735. Advanced Mechanics of Composites. 3 Hours.
Classical lamination theory, analysis and failure of reinforced composite material systems, anisotropic elasticity, stress analysis and design of laminated composites including 3D effects, stress concentrations, free-edge effects, hygrothermal behavior, adhesive and mechanical connections.

MSE 736. Engineering Fibers. 3 Hours.
Processing-microstructure-properties of different fibrous materials: natural polymeric fibers (jute, sisal, silk, etc.) synthetic polymeric fibers (aramid and polyethylene, etc.), metallic fibers, and high performance ceramic fibers (alumina and silicon carbide). Application of Weibull statistics to strength of fibrous materials, techniques of mechanical testing of fibers and applications of fibers in various fields.

MSE 738. Degradation of Materials. 3 Hours.
Basics of materials degradation- thermodynamics and kinetics - Pourbaix diagram, chemical and electrochemical reactions; Degradation types and mechanisms; Degradation of different material systems: Metals, alloys, ceramics and glasses, polymers and composites for versatile applications- structural, functional, energy and biomedical; Impact on materials properties; Investigation for materials degradation; Protection from degradation and materials design;Environmental and biological aspects; Societal impact.

MSE 767. Process Modeling/Simulation. 3 Hours.
Theory and practice of analytical methods and computation modeling for manufacturing processes of metals, ceramics, polymers and composites. Applications on processes such as metal cutting, welding, casting, massive forming, solidification, rapid prototyping, injection molding, and resin transfer molding.

MSE 768. Applied Finite Element Analysis. 3 Hours.
Finite Element Analysis (FEA) is used widely for design optimization and failure prediction in automobile, energy, aerospace, and other industries. This course primarily looks at how practically to set up static structural models and get meaningful results. The focus will be on applying loading and boundary conditions, material properties, meshing, convergence, and correct interpretation of results. Students will learn how to set up models using programs such as Solidworks and ANSYS.

MSE 770. Physical Characterization. 3 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 790. Special Topics in (Area). 1-6 Hour.
Special Topics In (Area).

MSE 790L. Special Topics in (Area) Laboratory. 0 Hours.
Special Topics in (Area) Laboratory.

MSE 791. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

MSE 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

Materials Engineering

Degrees Offered
MSMIE, Materials Engineering PhD

Website
https://www.uab.edu/engineering/
mse/graduate

Program Director
Vinoy Thomas, PhD
Email
vthomas@uab.edu
Phone
(205) 934-8450

Materials engineering involves the development, production, modification, and application of engineering materials to meet the specific needs of society. It is based on an understanding of the structures and forces that control the engineering properties of metals, ceramics, polymers, and composites. Through the development of this understanding, the student learns how to control the properties of materials through various industrial manufacturing processes, how to select the optimum material and predict its behavior under various environmental and service conditions, and how to alter this behavior through materials design, research, and development. Materials Engineers are employed in every major industry, including aerospace, chemical, automotive, metals casting, biomedical, and microelectronics.

Master of Science in Materials Engineering

Admission Requirements
In addition to the general Graduate School admission requirements, requirements for admission to the Master of Science in Materials Engineering (MSMIE) include the following:

1. A baccalaureate degree in materials or metallurgical engineering or in a similarly named engineering program. A student with an
undergraduate degree in another field of engineering or in the physical sciences may also be accepted into the MSME program.

2. An undergraduate GPA of 3.0 or better on a 4.0 scale on all degree major courses attempted

3. International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details

Early Acceptance

Early Acceptance programs are designed for academically superior high school students. Early Acceptance programs allow high achieving students to be admitted to the Materials Engineering program at the same time they are admitted to an undergraduate program.

Eligible students are required to maintain a 3.5 UAB undergraduate GPA and complete the following per-requisite courses: EGR 265 or MA 227, MSE 280, MSE 281, MSE 380, MSE 381, MSE 382.

For more information about Early Acceptance opportunities, click here.

Preparation Requirements

All students will be required to demonstrate competence at the undergraduate level in engineering materials, physical behavior of materials, thermodynamics, and mechanical behavior of materials as well as in fields of study that emphasize the interrelationship among structure, processing, performance, and properties of materials. Students may be exempted from individual courses or examination if they demonstrate that they possess the knowledge from that course, usually with a grade of a B or better. However, the burden of proof is on the student. He/she may accomplish this by passing a prerequisite examination on the portion of the following course content depending on the student's academic background or by one of the two options be.

This can be accomplished by one of the methods described below.

2. Successful completion (minimum grade of B) of a prerequisite examination on the content of the courses listed above; or

3. Successful completion (minimum grade of B) of MSE 602 Intro to Thermodynamics and Mechanics of Materials and MSE 605 Introduction to Physical Materials

Additional Academic Policies

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the MSME without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Plan I (Thesis Option)

The Plan I MSME degree requires completion of at least 33 credit hours of graduate work as well as research integrity training according to the following guidelines:

- Up to 9 credit hours of Materials Science and Engineering courses (MSE) at the 500+ level
- Up to 6 credit hours of approved mathematics, physical sciences, another engineering discipline or management courses (a maximum of 3 credit hours in a management course is allowed)
- A full time graduate student is required to be registered for MSE 601 Materials Science and Engineering Seminar a minimum of two semesters
- The remaining hours of coursework must be Materials Science and Engineering courses (MSE) at the 602+ level in consultation with the student's thesis committee
- Online modules covering the 9 topic areas of Responsible Conduct of Research (RCR) research integrity, which can be accessed online at https://www.citiprogram.org
- 9 credit hours of MSE 699 Thesis Research after admission to candidacy

A Graduate Thesis Committee consisting of at least three faculty members should be formed. A student is eligible for admission to candidacy after (1) a written thesis proposal following the NSF Proposal Preparation and Submission Guidelines and examination on topics related to the student’s research has been orally presented to the committee and approved and (2) completion of Responsible Conduct of Research (RCR) training. Admission to candidacy must take place at least one semester before the student may graduate. A written thesis embodying the results of the student’s original research must then be publicly defended, approved by the committee, sent to a department-approved proofreader, and submitted to the Graduate School with edits incorporated.

Plan II (Non-Thesis Option): Research/Design Emphasis

The student must successfully complete at least 33 credit hours of (primarily) materials engineering graduate work including 30 credit hours of courses and 3 credit hours of MSE 698 Non-Thesis Research

- 3 to 6 credit hours of approved courses in mathematics, physical sciences, another engineering discipline, or management (a maximum of 3 hours are allowed in management)
- Up to 9 credit hours may be at the MSE 500 level
- A full time graduate student is required to be registered for MSE 601 Materials Science and Engineering Seminar a minimum of two semesters
- The student must complete 3 credit hours of MSE 698 Non-Thesis Research, involving an on-site research project (usually taken after completion of all coursework)
- The remaining hours must be Materials Science and Engineering courses (MSE) at the 602+ level in consultation with the Program Director
Plan II (Non-Thesis Option): Fast Track
This plan is open to undergraduate students in materials engineering within 48 credit hours of graduation with at least 15 credit hours of coursework completed at UAB. The student must successfully complete at least 35 credit hours of (primarily) materials engineering graduate work. Students are expected to complete 6 credit hours of graduate level coursework prior to completing their bachelor degree.

- 15 to 21 credit hours are required within the MSE department at the graduate level
- 9 to 12 credit hours of business related courses – students may focus these courses in several areas; business administration, management, entrepreneurship, or engineering liability/law
- Up to 6 credit hours may be completed by participation in an internship opportunity. This is an option and not a requirement. If internships are conducted for credit, each discipline will have requirements associated with the internship.
- A full time graduate student is required to be registered for MSE 601 Materials Science and Engineering Seminar each fall and spring semester
- The remaining hours must be Materials Science and Engineering courses (MSE) at the 602+ level in consultation with the Program Director

PhD Program
The PhD program in Materials Engineering is offered jointly with the Department of Metallurgical and Materials Engineering at the University of Alabama (Tuscaloosa).

Admission Requirements
In addition to the general Graduate School admission requirements, requirements for admission to the Materials Engineering PhD program include the following:

- A baccalaureate degree in materials or metallurgical engineering or in a similarly named engineering program. A student with an undergraduate degree in another field of engineering or in the physical sciences may also be accepted.
- An undergraduate GPA of 3.0 or better on a 4.0 scale on all degree major courses attempted
- Personal statement identifying research interest
- CV/Résumé
- 3 recommendations from academic or professional contacts
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details

Preparation Requirements
All students will be required to demonstrate competence at the undergraduate level in engineering materials, physical behavior of materials, thermodynamics, and mechanical behavior of materials as well as in fields of study that emphasize the interrelationship among structure, processing, performance, and properties of materials. Students may be exempted from individual courses or examination if they demonstrate that they possess the knowledge from that course, usually with a grade of a B or better. However, the burden of proof is on the student. He/she may accomplish this by passing a prerequisite examination on the portion of the following course content depending on the student's academic background or by one of the two options be.

This can be accomplished by one of the methods described below.

2. Successful completion (minimum grade of B) of a prerequisite examination on the content of the courses listed above; or
3. Successful completion (minimum grade of B) of MSE 602 Introduction to Thermodynamics and Mechanics of Materials and MSE 605 Introduction to Physical Materials

Additional Academic Policies
Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the PhD without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Coursework for Students with a BS
It is expected that students entering the PhD program with a BS degree will also earn a Plan II masters degree after completing the required coursework.

PhD students must complete 72 credit hours of (primarily) materials engineering graduate work as a requirement when entering with a BS degree according to the guidelines below:

- A minimum of 48 credit hours of approved graduate coursework in metallurgical engineering, materials engineering, or approved supportive fields
 - 15 credit hours may be at the 500-level
 - At least 6 credit hours but no more than 12 must be in supportive fields, which must include GRD 717 Principles of Scientific Integrity (a maximum of 6 credit hours can be in management)
 - A student may apply 6 credit hours of MSE 798 Non-Dissertation Research toward the coursework requirement
- A full time graduate student is required to be registered for MSE 701 Materials Science and Engineering Seminar a minimum of 4 terms
- Additional coursework may be required at the discretion of the dissertation committee
A minimum of 24 credit hours in MSE 799 Dissertation Research after admission to candidacy

Coursework for Students with an MS

The PhD student must complete 51 credit hours of materials engineering graduate work as a requirement when entering with a MS degree in Materials Engineering or a closely related field according to the guidelines below:

- A minimum of 27 credit hours of approved graduate course work in metallurgical engineering, materials engineering, or fields supportive of these
 - 6 credit hours may be at the 500-level
 - At least 3 credit hours but no more than 6 must be in supportive fields, which must include GRD 717 Principles of Scientific Integrity
 - A student may apply 6 credit hours of MSE 798 Non-Dissertation Research toward the coursework requirement
 - A full time graduate student is required to be registered for MSE 701 Materials Science and Engineering Seminar a minimum of 4 terms
- A minimum of 24 credit hours in MSE 799 Dissertation Research after admission to candidacy

Graduation Requirements

In addition to completing coursework requirements (above), doctoral students must form a Graduate Dissertation Committee consisting of at least five faculty members, one of whom must be from the Department of Metallurgical and Materials Engineering at the University of Alabama (Tuscaloosa). Admission to candidacy must take place at least two semesters before the student may graduate. A student is eligible for admission to candidacy after successfully completing the following:

1. A written examination on topics related to the student’s research
2. An oral dissertation proposal
3. A written dissertation proposal (following the NSF Proposal Preparation and Submission Guidelines),

A written dissertation embodying the results of the student’s original research must then be publicly defended, approved by the committee, sent to a department-approved proofreader, and submitted to the Graduate School with edits incorporated.

Materials Science

<table>
<thead>
<tr>
<th>Degree Offered</th>
<th>Materials Science PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>https://www.uab.edu/engineering/mse/graduate/tri-campus-phd-program</td>
</tr>
</tbody>
</table>

PhD Program

UAB participates in the tri-campus Materials Science PhD program, an interdisciplinary, interdepartmental, and intercampus doctoral program linking the three universities that comprise the University of Alabama System—the University of Alabama (Tuscaloosa), the University of Alabama at Birmingham, and the University of Alabama in Huntsville. This program is separate from the PhD in Materials Engineering offered by UAB’s Materials Science and Engineering department, providing flexibility for students who may wish to study materials science while based in another department.

Admission Requirements

In addition to the general Graduate School admission requirements, requirements for admission to the Materials Science PhD program include the following:

- A baccalaureate degree in materials, metallurgical, or ceramics engineering or in a similarly named engineering program. A student with an undergraduate degree in another field of engineering or in the sciences may also be accepted into the Materials Science program.
- An undergraduate GPA of 3.0 or better on a 4.0 scale on all degree major courses attempted
- CV/Résumé
- 3 recommendations from academic or professional contacts
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. [Click here for details](https://www.uab.edu/graduate/grad-proficiency).

Additional Academic Policies

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the PhD without appeal to and approval from the Program Director.

UAB offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Coursework for Students with a BS

It is expected that students entering the PhD program with a BS degree will also earn a Plan II masters degree after completing the required coursework.

For a student entering with a BS degree from an undergraduate program in engineering or the physical sciences, a minimum of 72 credit hours of graduate credit are required according to the following guidelines:

- A minimum of 48 credit hours of approved graduate coursework related to materials science or a supportive field is required
 - No more than 15 hours may be at the 500 level; all remaining credits must be at the 700-level.
 - Because of the broad and interdisciplinary nature of Materials Science, there is no set list of required courses for all students. Students must take at least two courses in each of the three topic areas below (such that the course credits sum to at least 18 credits) within the first 24 months of enrollment. Students must take courses which address the three fundamental areas:
Graduation Requirements

In addition to completing coursework requirements (above), doctoral students must form a Graduate Dissertation Committee consisting of at least five faculty members, the majority of which should be Materials Science faculty. At least one member must be Materials Science faculty from the University of Alabama (Tuscaloosa) or University of Alabama in Huntsville. Admission to candidacy must take place at least two semesters before the student may graduate. A student is eligible for admission to candidacy after successfully completing the following:

1. A written examination on topics related to the student’s research
2. An oral dissertation proposal
3. A written dissertation proposal (following the NSF Proposal Preparation and Submission Guidelines)

A written dissertation embodying the results of the student’s original research must then be publicly defended, approved by the committee, sent to a department-approved proofreader, and submitted to the Graduate School with edits incorporated.

Courses

MSE 501. Materials Processing. 3 Hours.
Processing of metals, glasses, ceramics, and composites. Powder, casting, welding, rapid solidification, and other advanced approaches.

MSE 505. Frontiers of Automotive Materials. 3 Hours.
Advanced lightweight automotive materials, manufacturing and modeling techniques. Technology advancements in cost-effective carbon, glass and related reinforcements; “green” and sustainable materials, crashworthiness and injury protection of occupants and pedestrians, metal castings, heavy truck, mass transit, fuel cell and hybrid vehicles. Students taking this class will receive a GATE certificate of training in automotive materials technologies upon successful completion.

MSE 508. Nanobiomaterials. 3 Hours.
Basic tools of nanotechnology, building blocks of nanostructured materials. Behavior of materials with nanoscale structures and their technological applications, including automotive, medical, and electronic applications. Introduction to biomaterials and nanobiomaterials, nanotoxicity and how to work safely with nanomaterials. Concepts in tissue engineering with special focus on nanoscaffolds and nanoparticles in drug delivery.

MSE 509. Principles of Metal Casting. 3 Hours.
Production and evaluation of cast ferrous metals (gray iron, ductile iron, steel) and non-ferrous metals (brass, bronze, aluminum). Design of castings and molds. Laboratory on the gating, risering and molten metal treatment, analysis and handling techniques required to produce high quality castings. It is recommended that students who register for this course have successfully completed MSE 280 Engineering Materials or an equivalent course.
MSE 509L. Principles of Metal Casting. 0 Hours.
Laboratory component of MSE 509 and must be taken concurrently.

MSE 513. Composite Materials. 3 Hours.
Processing, structure, and properties of metal-, ceramic-, and polymer-matrix composite materials. Roles of interfacial bond strength, reinforcement type and orientation and matrix selection in physical and mechanical properties of composite materials.

MSE 525. Statistics and Quality. 3 Hours.
This course is arranged to reflect the sequential steps an engineer or scientist take to assess process capability and implement process improvement studies. There is a focus on connecting the theoretical equations to practical examples as well as interpreting and communicating of statistical results.

MSE 530. Polymeric Materials. 3 Hours.
Processing methods, structure/engineering/property relationships, and applications of polymeric materials.

MSE 530L. Polymeric Materials Lab. 0 Hours.
Laboratory component of MSE 530 and must be taken concurrently.

MSE 533. Nondestructive Evaluation of Materials. 3 Hours.
Principles, applications, and limitations of ultrasonic vibrations, acoustic emission, radiographic, magnetic particle, eddy current, and other nondestructive testing methods. Intelligent sensors and health monitoring of real structures.

MSE 545. The Evolution of Engineering Materials. 3 Hours.
Past, present and future of engineering materials; how new materials and processing methods have impacted human society, from the Stone Age until today. Taught as a 3-week study abroad course in Germany, with visits to universities, industrial facilities, research labs, museums and selected cultural sites.

MSE 562. Composites Manufacturing. 3 Hours.
Principles of manufacturing and processing of polymeric matrix composites. Production techniques including filament winding, pultrusion, and liquid infusion techniques combined with design, environmental and manufacturing issues of polymer matrix composites.

MSE 564. Metals and Alloys. 4 Hours.
Microstructures, properties, heat treatment, and processing of ferrous and nonferrous materials.

MSE 564L. Metals and Alloys Lab. 0 Hours.
Laboratory component of MSE 564 and must be taken concurrently.

MSE 565. Characterization of Materials. 4 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 565L. Characterization of Materials Laboratory. 0 Hours.
Laboratory component of MSE 565 and must be taken concurrently with MSE 565.

MSE 570. Ceramic Materials. 4 Hours.
Structure, processing, properties, and uses of ceramic compounds and glasses. Mechanical, thermal, and electrical behavior of ceramic materials in terms of microstructure and processing variables.

MSE 570L. Ceramic Materials Laboratory. 0 Hours.
Laboratory component of MSE 570 and must be taken concurrently.

MSE 574. Metals and Alloys II. 3 Hours.
Production and physical metallurgy of ferrous and non-ferrous alloys including: steel alloys, inoculation and production of ductile, gray, compacted and malleable iron; advanced heat treatments of steel and iron; conventional and ultra-high strength aluminum alloys; wrought and cast copper alloys; wrought and cast magnesium alloys.

MSE 590. Special Topics in Materials Science & Engineering. 1-3 Hour.
Special Topics in Materials Science & Engineering.

MSE 591. Individual Study in Materials Science & Engineering. 1-6 Hour.
Individual Study in Materials Science & Engineering.

MSE 601. Materials Science and Engineering Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to materials students.

MSE 602. Intro to Thermodynamics and Mechanics of Materials. 3 Hours.
This course is a survey of undergraduate level theory and application of the fundamental principles of mechanics of materials and thermodynamics. Understanding is based on the explanation of the physical behavior of materials under load and then modeling this behavior to develop the theory. Intended to provide the students with both the theory and application of the fundamental principles of thermodynamics of materials. Students must be graduate student in engineering, chemistry or physics.

MSE 603. Thermodynamics of Materials. 3 Hours.
Atomistic and classical approaches to the understanding of the thermodynamics of solids, phase transformations, chemical reactions, and alloy systems.

MSE 605. Introduction to Physical Materials. 3 Hours.
Overview of fundamental concepts of materials science and engineering, focusing on chemical and physical properties such as bonding, crystal structure and defects, diffusion, and phase diagrams.

MSE 606. Introduction to Manufacturing Engineering. 3 Hours.
Manufacturing is the process of transforming raw materials into products. Even the most optimized and controlled industrial processes are fraught with variability and inefficiencies, both of which can have a negative impact on profitability. This course will introduce students to the proven tools to characterize and optimize industrial processes. In addition, students will learn the statistical techniques to quantitatively assess and detect changes to a process and make data-driven decisions to improve that process.

MSE 607. Measurement Systems Analysis. 3 Hours.
Whether in a manufacturing process, research & development lab or quality control, assessment and analysis of data used for decision making has roots in the equipment and procedures that make up a measurement system. Students will learn to critically assess the capability of measurements systems, gauges and analytical equipment used to collect data. Students will learn metrology, best practices, and statistical tools to quantitatively assess, as well as procedures to implement a Gage R&R study to improve a measurement system. In addition, students will learn effective communication strategies for presenting the results of statistical analysis.
MSE 608. Process Characterization and Advanced Statistical Analysis. 3 Hours.
This course centers on manufacturing processes and the inherent variability of all products. Product variability has origins at all input points in a process; raw materials, energy, time, human, etc. This course will expose engineers to the statistics to quantify and assess variability. In addition to statistical tools, we will delve deep into all phases of the DMAIC (Define, Measure, Analyze, Improve, and Control) methodology and the Lean/Six Sigma tools to identify, implement and document process improvements. An emphasis will be placed on the communication of these often-complicated statistics in an industrial setting. We will put these concepts into practice through completion of a final term paper. Students will be required to choose an industrial process and apply and communicate the concepts learned in this course.

MSE 610. Advanced Materials, Manufacturing and Applications Development. 3 Hours.
Introduction to advanced materials by design, near net-shape cost-effective manufacturing, synergistic knowledge of material properties, durability and function. Hands on activities related to extrusion-compression, fiber spinning, thermostet/thermoplastic materials, medical grade materials, intermediate forms and hybrid manufacturing. Integrated process and product development methodology. Student projects will involve manufacturing processes associated with mass production.

MSE 613. Mechanical Behavior of Materials. 3 Hours.
Microstructural effects on the deformation mechanisms responsible for mechanical behavior of engineering materials.

MSE 614. Process Quality Engineering. 3 Hours.
Application of the concepts and tools of total quality to develop, implement, and maintain an effective quality assurance system in a materials processing and manufacturing environment. Students will be exposed to probability models, statistical tools, linear and multiple regression, DOE, TQM and six sigma.

MSE 624. Physical Metallurgy. 3 Hours.
Course will consider the fundamental thermodynamic and kinetic principles governing the behavior of metals and alloys, particularly with respect to their influence the formation and evolution of microstructure. Topics will include liquid-solid and solid-state phase transformations, nucleation, growth, solidification and diffusion.

MSE 628. Thermal Characterization. 3 Hours.
This lab-oriented course will be focused to give graduate students the theory and hands-on experience in operation, data acquisition and interpretation of widely used thermal characterization techniques such as differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), Simultaneous TGA-DTA, Thermo mechanical analyzer (TMA), Dynamic mechanic analyzer (DMA) and rheological and viscosity analyses of polymeric resins and composite materials. Exposure to the surface characterizations techniques such as contact angle goniometer for wettability, Fourier Transform infrared spectrometer (FT-IR).

MSE 628L. Thermal Characterization Lab. 0 Hours.
Laboratory component of MSE 628 and must be taken concurrently.

MSE 629. Polymer Structure and Morphology. 3 Hours.
Polymer structures and morphology and it’s relationships with applications, multicomponent polymer systems (polymer blends, copolymers, micro and nanocomposites), liquid crystalline polymers, polymer crystals, oriented polymers, morphological aspects of deformation and advances in polymers (biomimetic and bioinspired polymer systems).

MSE 633. Advanced Mechanics of Deformation. 3 Hours.
Basics and intermediate mechanics of deflection of beams and columns, mechanics of impact, failure theories, plastic deformation of materials, fracture mechanics, fatigue, creep and vibration. The topics will be supported by industry relevant case studies. Suggested prerequisites included Mechanics of Solids (CE 220) and Mechanical Behavior (MSE 382).

MSE 635. Advanced Mechanics of Composites. 3 Hours.
Classical lamination theory, analysis and failure of reinforced composite material systems, anisotropic elasticity, stress analysis and design of laminated composites including 3D effects, stress concentrations, free-edge effects, hygrothermal behavior, adhesive and mechanical connections.

MSE 636. Engineering Fibers. 3 Hours.
Processing-microstructure-properties of different fibrous materials: natural polymeric fibers (jute, sisal, silk, etc.), synthetic polymeric fibers (aramid and polyethylene, etc.), metallic fibers, and high performance ceramic fibers (alumina and silicon carbide). Application of Weibull statistics to strength of fibrous materials, techniques of mechanical testing of fibers and applications of fibers in various fields.

MSE 638. Degradation of Materials. 3 Hours.
Basics of materials degradation- thermodynamics and kinetics - Pourbaix diagram, chemical and electrochemical reactions; Degradation types and mechanisms; Degradation of different material systems: Metals, alloys, ceramics and glasses, polymers and composites for versatile applications- structural, functional, energy and biomedical; Impact on materials properties; Investigation for materials degradation; Protection from degradation and materials design;Environmental and biological aspects; Societal impact.

MSE 667. Process Modeling/Simulation. 3 Hours.
Theory and practice of analytical methods and computational modeling for manufacturing processes of metals, ceramics, polymers and composites. Applications on processes such as metal cutting, welding, casting, massive forming, solidification, rapid prototyping, injection molding and resin transfer molding.

MSE 668. Applied Finite Element Analysis. 3 Hours.
Finite Element Analysis (FEA) is used widely for design optimization and failure prediction in automobile, energy, aerospace, and other industries. This course primarily looks at how practically to set up static structural models and get meaningful results. The focus will be on applying loading and boundary conditions, good meshes, convergence of results, and correct interpretation of results. Students will learn how to set up models using programs such as Pro/Engineer and ANSYS.

MSE 670. Physical Characterization. 3 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 670L. Physical Characterization Lab. 0 Hours.
Laboratory component of MSE 670 and must be taken concurrently.

MSE 690. Special Topics In (Area). 1-6 Hour.
Special Topics in (Area).

MSE 690L. Special Topics in (Area) Laboratory. 0 Hours.
Special Topics in (Area) laboratory.

MSE 691. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

Prerequisites: GAC M

MSE 701. Materials Science and Engineering Seminar. 0 Hours.
Seminar focusing on student research and guest presentations of various topics of interest to materials students.

MSE 702. Intro to Thermodynamics and Mechanics of Materials. 3 Hours.
This course is a survey of undergraduate level theory and application of the fundamental principles of mechanics of materials and thermodynamics. Understanding is based on the explanation of the physical behavior of materials under load and then modeling this behavior to develop the theory. Intended to provide the students with both the theory and application of the fundamental principles of thermodynamics of materials. Students must be graduate student in engineering, chemistry or physics.

MSE 703. Thermodynamics of Materials. 3 Hours.
Atomistic and classical approaches to the understanding of the thermodynamics of solids, phase transformations, chemical reactions, and alloy systems.

MSE 705. Introduction to Physical Materials. 3 Hours.
Overview of fundamental concepts of materials science and engineering, focusing on chemical and physical properties such as bonding, crystal structure and defects, diffusion, and phase diagrams.

MSE 710. Advanced Materials, Manufacturing and Applications Development. 3 Hours.
Introduction to advanced materials by design, near net-shape cost-effective manufacturing, synergistic knowledge of material properties, durability and function. Hands on activities related to extrusion-compression, fiber spinning, thermoset/thermoplastic materials, medical grade materials, intermediate forms and hybrid manufacturing. Integrated process and product development methodology. Student projects will involve manufacturing processes associated with mass production.

MSE 714. Process Quality Engineering. 3 Hours.
Application of the concepts and tools of total quality to develop, implement, and maintain an effective quality assurance system in a materials processing and manufacturing environment. Students will be exposed to probability models, statistical tools, linear and multiple regression, DOE, TQM and six sigma.

MSE 724. Physical Metallurgy. 3 Hours.
Course will consider the fundamental thermodynamic and kinetic principles governing the behavior of metals and alloys, particularly with respect to their influence the formation and evolution of microstructure. Topics will include liquid-solid and solid-state phase transformations, nucleation, growth, solidification and diffusion.

MSE 728. Thermal Characterization. 3 Hours.
This lab-oriented course will be focused to give graduate students the theory and hands-on experience in operation, data acquisition and interpretation of widely used thermal characterization techniques such as differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), Simultaneous TGA-DTA, Thermo mechanical analyzer (TMA), Dynamic mechanic analyzer (DMA) and rheological and viscosity analyses of polymeric resins and composite materials. Exposure to the surface characterizations techniques such as contact angle goniometer for wettability, and Fourier Transform infrared spectrometer (FT-IR).

MSE 728L. Thermal Characterization Lab. 0 Hours.
Laboratory component of MSE 728 and must be taken concurrently.

MSE 729. Polymer Structure and Morphology. 3 Hours.
Polymer structures and morphology and it's relationships with applications, multicomponent polymer systems (polymer blends, copolymers, micro and nanocomposites), liquid crystalline polymers, polymer crystals, oriented polymers, morphological aspects of deformation and advances in polymers (biomimetic and bioinspired polymer systems).

MSE 733. Advanced Mechanics of Deformation. 3 Hours.
Basics and intermediate mechanics of deflection of beams and columns, mechanics of impact, failure theories, plastic deformation of materials, fracture mechanics, fatigue, creep and vibration. The topics will be supported by industry relevant case studies. Suggested prerequisites included Mechanics of Solids (CE 220) and Mechanical Behavior (MSE 382).

MSE 735. Advanced Mechanics of Composites. 3 Hours.
Classical lamination theory, analysis and failure of reinforced composite materials systems, anisotropic elasticity, stress analysis and design of laminated composites including 3D effects, stress concentrations, free-edge effects, hygrothermal behavior, adhesive and mechanical connections.

MSE 736. Engineering Fibers. 3 Hours.
Processing-microstructure-properties of different fibrous materials: natural polymeric fibers (jute, sisal, silk, etc.) synthetic polymeric fibers (aramid and polyethylene, etc.), metallic fibers, and high performance ceramic fibers (alumina and silicon carbide), Application of Weibull statistics to strength of fibrous materials, techniques of mechanical testing of fibers and applications of fibers in various fields.

MSE 738. Degradation of Materials. 3 Hours.
Basics of materials degradation- thermodynamics and kinetics - Pourbaix diagram, chemical and electrochemical reactions; Degradation types and mechanisms; Degradation of different material systems: Metals, alloys, ceramics and glasses, polymers and composites for versatile applications- structural, functional, energy and biomedical; Impact on materials properties; Investigation for materials degradation; Protection from degradation and materials design;Environmental and biological aspects; Societal impact.

MSE 767. Process Modeling/Simulation. 3 Hours.
Theory and practice of analytical methods and computation modeling for manufacturing processes of metals, ceramics, polymers and composites. Applications on processes such as metal cutting, welding, casting, massive forming, solidification, rapid prototyping, injection molding, and resin transfer molding.

MSE 768. Applied Finite Element Analysis. 3 Hours.
Finite Element Analysis (FEA) is used widely for design optimization and failure prediction in automobile, energy, aerospace, and other industries. This course primarily looks at how practically to set up static structural models and get meaningful results. The focus will be on applying loading and boundary conditions, material properties, meshing, convergence, and correct interpretation of results. Students will learn how to set up models using programs such as Solidworks and ANSYS.

MSE 770. Physical Characterization. 3 Hours.
Theory and practice of materials characterization, with emphasis on optical metallography, quantitative metallography, scanning electron microscopy, crystallography, and x-ray diffraction. Specific application in metals and ceramics considered.

MSE 770L. Physical Characterization Lab. 0 Hours.
Laboratory component of MSE 770 and must be taken concurrently.
MSE 790. Special Topics in (Area). 1-6 Hour.
Special Topics in (Area).

MSE 790L. Special Topics in (Area) Laboratory. 0 Hours.
Special Topics in (Area) Laboratory.

MSE 791. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

MSE 799. Dissertation Research. 1-12 Hour.
Prerequisites: GAC Z

Mechanical Engineering

Degree Offered: Master of Science in Mechanical Engineering
Website: https://www.uab.edu/engineering/mme/graduate/ms-mechanical
Director: David Littlefield, PhD
Phone: (205) 934-8460
E-mail: littlefield@uab.edu

Mechanical engineering is a broad-based discipline, and graduate students will have opportunities to explore a number of research areas where they will work alongside nationally and internationally known faculty mentors. The ME department offers a Master of Science in Mechanical Engineering degree, including both Thesis and Non-Thesis options.

Additional Information

Deadline for Entry Term(s):
Fall: August 1; Spring: December 1; Summer: May 1

Deadline for All Application Materials to be in the Graduate School Office: Six weeks before term begins

Master of Science in Mechanical Engineering Admissions Requirements

- A bachelor's degree from an accredited (or equivalent) program in engineering or the physical sciences is required for admission to graduate study in mechanical engineering with not less than B-level scholarship overall or over the last 60 semester hours of earned credit.
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process)

A student with an undergraduate degree in a field of engineering other than mechanical or in the physical sciences may also be accepted into the mechanical engineering program. However, such a student will normally have to take additional, preparatory coursework as part of an expanded plan of study (see “Preparatory Courses” later in this section).

Special Topics (590/690/790) courses and Independent Study (591/691/791) courses are reviewed for degree applicability for each program in the School of Engineering. No more than 6 combined hours of Special Topics and/or Independent Study courses will be applied to the degree without appeal to and approval from the Program Director.

The School of Engineering offers similar courses at the 400/500 and 600/700 levels. While the higher numbered course has more advanced content, there is a significant overlap in topics. Therefore, students are not allowed to take a 500-level or 700-level course for credit if they have previously taken the related 400-level or 600-level course, respectively.

Plan I (Thesis Option)

1. Upon admission to the program, the Graduate Program Director will advise the student on courses for the first semester. During the first semester, the student will be assigned a Committee Chair, based on research interest, who will assist the student in forming their graduate study committee. The committee will consist of the Chair and two graduate faculty members with experience or expertise related to the student's thesis topic. The Chair, in coordination with the committee, will aid the student in course selection.

2. In addition to the general Graduate School requirements, the student must successfully complete at least 24 semester hours of coursework, including:
 - 6 semester hours in committee-approved mathematics courses
 - 18 semester hours in committee-approved mechanical engineering courses or approved related courses, including at least 2 semester hours of ME 694 Seminar in Mechanical Engineering and 3 semester hours in a course outside the student's research or specialization area.

3. A student is eligible for admission to candidacy after (1) a written thesis has been orally presented to and approved by the committee and (2) successful completion of Responsible Conduct in Research training.

4. After admission to candidacy, the student must register for at least 6 hours of ME 699 Thesis Research in addition to the 24 semester hours of coursework.

5. The student must successfully complete and defend a thesis.

Plan II (Non-thesis Option)

Generally, Plan II will be approved for students working full-time and attending UAB on a part-time basis or when the student demonstrates that Plan II offers superior educational benefits. After 15 credit hours of coursework are completed, the student should select a project director and begin work on the final project. The election of Plan II must be approved by the student's graduate advisor.

1. The student must successfully complete at least 33 semester hours of coursework, including:
 - 6 semester hours in approved mathematics courses
 - A minimum of 27 semester hours in approved mechanical engineering courses or approved related courses. Of these 27 semester hours, students must enroll in:
 - at least 3 semester hours in a course outside the student's research or specialization area
 - at least 2 semester hours of ME 694 Seminar in Mechanical Engineering
 - at least 3 hours of ME 698 Non-Thesis Research involving design or research

2. The student must make a presentation on the research project and submit a final report which must be approved by the project director.
Early Acceptance

Early Acceptance Programs are designed for academically superior high school students. Early Acceptance Programs allow high-achieving students to be conditionally admitted into a graduate program at the same time they are admitted to an undergraduate program.

Eligible students are required to maintain a 3.50 undergraduate GPA and complete the following prerequisite courses: ME 241, ME 321, ME 364, and ME 371.

Preparatory Courses

The following courses and their prerequisites are required preparation for the graduate program in mechanical engineering. Students will be required to successfully complete the courses below or present equivalent prior coursework. Additional courses may be required depending on the research interest.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 241 Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ME 321 Introduction to Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 322 Introduction to Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>ME 360 Introduction to Mechatronic Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 370 Kinematics and Dynamics of Machinery</td>
<td>3</td>
</tr>
<tr>
<td>ME 371 Machine Design</td>
<td>3</td>
</tr>
<tr>
<td>CE 220 Mechanics of Solids</td>
<td>3</td>
</tr>
</tbody>
</table>

Degree Offered

Mechanical Engineering PhD

Website

https://www.uab.edu/engineering/mme/graduate/phd-mechanical-engineering

Program Director

David L. Littlefield, PhD

Email

littlefield@uab.edu

Program Administrator

Sherrye Watson

Email

sswatson@uab.edu

Program Objectives

The proposed PhD in Mechanical Engineering degree program will prepare students to become productive engineering researchers in industry, academia, government, or other organizations. Students will be equipped with the skills necessary to define, formulate and solve novel problems in the mechanical engineering field. The program will emphasize the mechanical engineering sciences with a strong foundation in mathematics. Graduates will be well prepared for research roles to serve their organizations, their communities, and contribute to the UAB mission of having an economic impact in the region.

Graduates will be well prepared for positions as academic, government and industrial researchers. They will be equipped with the knowledge and skills to develop quality research proposals and carry out research to develop new and innovative theories, models, products and ideas in mechanical engineering intended to advance the state-of-the-art. Entry-level roles at academic institutions would include assistant professor or research engineer, and in government and industry research engineer or laboratory associate. Graduates will also be well prepared to compete for post-doctoral studies at other universities and laboratories across the world.

Students in the Mechanical Engineering PhD program will:

- Develop the ability to identify, formulate and solve complex Mechanical Engineering problems by applying principles of engineering, science and mathematics.
- Be able to explain experimental/theoretical approaches and limitations associated with his/her dissertation project.
- Be able to summarize the relevant literature, identify its limitations, and formulate an original research plan.
- Be able to communicate and defend his/her research results and conclusions in oral and written form.

Admission Requirements

Admission decisions are made on the basis of prior education, GPA, test scores, personal statement, professional experience, and recommendations.

In addition to the Graduate School admission requirements, admission to the Mechanical Engineering PhD program includes the following:

- Undergraduate or graduate degree in Mechanical Engineering or related engineering field from an ABET (or equivalent) accredited program. Applicants who do not meet this criterion but who have an outstanding academic record in a related field outside of engineering may be admitted, but will be required to complete a sequence of undergraduate courses (including prerequisites as appropriate) in addition to the normal requirements of the ME PhD degree
- Minimum GPA of 3.0 on a 4.0 scale for most recent degree
- GRE is not required
- Personal statement identifying research interest
- CV/Résumé
- 3 academic or professional recommendations
- International applicants must submit English proficiency scores in accordance with UAB Graduate School requirement. Click here for details
- Original transcripts from all colleges and universities attended since high school must be sent directly to the UAB Graduate School (detailed instructions are included during the online application process);

Entry Term

Deadline for Entry Term(s)

Fall: August 1; Spring: December 1; Summer: May 1

Deadline for All Application Materials to be in the Graduate School Office

Seven days before term begins

Degree Requirements

Graduate Committee

The graduate study committee (dissertation committee) is an important part of the student’s program. The committee will oversee the selection of courses and direction of research. Students must form a graduate committee within the first year of study and must meet with the committee no less than once per academic year. Committees must have at least five members. A minimum of three committee members must have a primary appointment in the School of Engineering. It is recommended that at least one committee member have an appointment outside of the engineering field.

Coursework
The ME PhD promotes a research-based curriculum with a set of core courses required of all students in the program. Additional coursework is directed by the student's graduate study committee based on the student's area of interest.

Students entering the PhD program with a baccalaureate degree must, in keeping with UAB Graduate School policies, complete at least 48 hours of coursework prior to admission to candidacy. Up to 16 of the 48 credits can be non-dissertation research, and up to 10 credits can be a combination of laboratory rotations, seminars, and directed study.

Students entering the PhD program with a Master's degree in ME or a related field must complete at least 27 credit hours of coursework prior to candidacy. Up to 6 credits of the 27 can be non-dissertation research credits, and up to 6 credits can be as lab rotations, seminars, or directed study credits.

For all students, at least 24 hours of dissertation research are required and must be taken over at least two semesters after admission to candidacy.

Curriculum

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>ME 661 Math Methods in EGR I</td>
<td>3</td>
</tr>
<tr>
<td>ME 662 Math Methods in EGR II</td>
<td>3</td>
</tr>
<tr>
<td>ME 694 Seminars in Mechanical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ME 799 Dissertation Research (Program Electives)</td>
<td>24</td>
</tr>
<tr>
<td>Program Electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>72</td>
</tr>
</tbody>
</table>

1. 4 enrollments of 1 hour each; Students may substitute a different graduate-level seminar/journal club with permission of his/her faculty mentor and the program director
2. Dissertation hours must be taken over a minimum of 2 terms
3. Elective options include: ME 511, ME 521, ME 530, ME 531, ME 547, ME 575, ME 580, ME 611, ME 613, ME 614, ME 615, ME 650, ME 665, ME 670, ME 672, ME 677, ME 679, ME 688, ME 731, ME 732, ASEM 610, ASEM 611, ASEM 612, ASEM 613, ASEM 615, ASEM 617, ASEM 628, MSE 635
4. Students who have earned a Master of Science in Mechanical Engineering are required to successfully complete 14 credit hours of electives from the list above

In addition to the ME PhD program core courses (above), course selection is based on the research and career goals of the student, and curricula will vary between students. Students are guided by their faculty mentor (committee chair) and a graduate study committee composed of faculty representing a transdisciplinary team in the student's area of research interest. Non-dissertation research and dissertation research hours will be taken through the department of the student's faculty mentor.

Specifics of coursework would be tailored to the individual research thrusts of the student and may differ from the lists given below. While no formal options/concentrations are listed as part of the program, the specifics of the student's curriculum (beyond the core requirements) will be tailored to the individual. Please contact the program director for more information about specific areas of specialization.

Courses

ME 511. Intermediate Fluid Mechanics. 3 Hours.
Applications of fluid dynamic principles to engineering flow problems such as turbo-machinery flow and one-dimensional compressible flow. Vorticity, potential flow, viscous flow, Navier-Stokes solutions, and boundary layers. Introduction to Fluid Mechanics or equivalent is a recommended prerequisite for this course.

ME 521. Introduction to Computational Fluid Dynamics Basics. 3 Hours.
Governing equations for fluid flows, classifications of flow regimes, and approaches to analyze fluid flow problems. Introduction to Computational Fluid Dynamics (CFD), mesh generation, boundary conditions, numerical solution of equations governing fluid flows, and visualization. Hands-on exercises using a commercial CFD solver.

ME 530. Vehicular Dynamics. 3 Hours.
Introduction to the fundamentals of mechanics and analytical methods for modeling vehicle dynamics and performance. Topics include tire-road interaction modeling, vehicle longitudinal dynamics and traction performance, lateral dynamics, handling, stability of motion and rollover, as well as, contribution of the drivetrain system, steering system and suspension configurations to the dynamics of a vehicle. Software applications, projects, and exposure to hardware and systems are used to reinforce concepts. Dynamics or equivalent is a recommended prerequisite for this course.

ME 531. Introduction to Vehicle Drive Systems Engineering. 3 Hours.
Engineering fundamentals of mechanical and mechatronic, hybrid-electric, and electric drive systems. Applications to passenger cars and commercial vehicles. Drive system and component design, including main clutches and torque converters, transmissions, transfer cases, and drive axles. Introduction to plug-in hybrid-electric vehicles.

Prerequisites: ME 215 [Min Grade: C] and ME 370 [Min Grade: C] (Can be taken Concurrently)

ME 532. Introduction to Electric Vehicles. 3 Hours.
Introduction to fully electric and hybrid vehicle engineering. Mechatronic system and component design. Batteries and energy storage devices. Plug-in hybrid electric vehicles.

ME 545. Combustion. 3 Hours.
Evaluation of the impact of fuel characteristics and operating conditions on the performance of coal-fired electric utility steam-raising plant and the prospects for continued reliance on coal for electric power generation. The phenomena emphasized are the behavior of turbulent jets; ignition, devolatilization and combustion of coal particles; radiative heat transfer and the effect of ash deposits on heat transfer; formation of air pollutants and their removal from combustion products; integrated gasification combined cycle; and capture and sequestration of carbon dioxide. Thermodynamics II, Introduction to Fluid Mechanics, and Introduction to Heat Transfer or equivalents are recommended prerequisites for this course.

ME 547. Internal Combustion Engines. 3 Hours.
Fundamentals of reciprocating internal combustion engines: engine types, engine components, engine design and operating parameters, thermochemistry of fuel-air mixtures, properties of working fluids, ideal models of engine cycles, engine operating characteristics, gas-exchange processes, fuel metering, charge motion within the cylinder, combustion in spark-ignition and compression ignition engines.
ME 549. Power Generation. 3 Hours.
Application of thermodynamics, fluid mechanics, and heat transfer to conversion of useful energy. Includes terrestrial and thermodynamic limitations, fossil fuel power plants, renewable energy sources, and direct energy direct energy conversion. Thermodynamics II or equivalent is a recommended prerequisite for this course.

ME 554. Heating, Ventilating & AC. 3 Hours.
Fundamentals and practice associated with heating, ventilating, and air conditioning; study of heat and moisture flow in structures, energy consumption, and design of practical systems. Introduction to Heat Transfer or equivalent is a recommended prerequisite for this course.

ME 555. Thermal-Fluid Systems Design. 3 Hours.
Comprehensive design problems requiring engineering decisions and code/Standard compliance. Emphasis on energy system components: piping networks, pumps, heat exchangers. Includes fluid transients and system modeling. Introduction to Heat Transfer is a recommended prerequisite for this course.

ME 556. Building Energy Modeling and Analysis. 3 Hours.
Computer modeling of energy use and thermal comfort in buildings using several software tools. Interpretation and analysis of the results. Implementing energy efficiency measures in the model and studying the effects on energy use. Students registering for this course should have successfully completed (grade of C or better) ME 242 Thermodynamics II and ME 322 Introduction to Heat Transfer or equivalents.

ME 564. Introduction to Finite Element Method. 3 Hours.
Concepts and applications of finite element method. Development and applications of basic elements used in engineering mechanics. Use of finite element analysis software. Application of finite element concept to several areas of mechanics. Mechanics of Solids or equivalent is a recommended prerequisite for this course.

ME 575. Mechanical Vibrations. 3 Hours.

ME 577. Systems Engineering. 3 Hours.
Exposure to the field of systems engineering, mission design, requirements development, trade studies, project life cycle, system hierarchy, risk analysis, cost analysis, team organization, design fundamentals, work ethics, compare and evaluate engineering alternatives, systems thinking.

ME 578. Automated Manufacturing. 3 Hours.
Introduction to automated manufacturing technology. Components of automated systems (controllers, sensors and actuators) and automated manufacturing sub-systems (3D printer, CNC, robot and computer vision) will be studied in a lecture/lab environment with hands on activities. A basic understanding of engineering graphics and computer methods at the undergraduate level is required for this course.

ME 580. Instrumentation and Measurements. 3 Hours.
Thorough exploration of fundamental measurement concepts and techniques for data acquisition and validation. Explanation of important selection criteria for the identification and configuration of commercially available data acquisition devices. Students will get hands on experience following best practices for data acquisition (high speed vs low speed) relevant to their field of study or career. Many types of sensors, their underlying technology, and measurement techniques will be discussed (i.e. accelerometers, load cells, Digital Image Correlation, etc.) to demonstrate best practices for sensor selection for a wide range of specialized applications.

ME 590. Special Topics in Mechanical Engineering. 1-3 Hour.
Special Topics in Mechanical Engineering.

ME 591. Individual Study in Mechanical Engineering. 1-6 Hour.
Individual Study in Mechanical Engineering.

ME 611. Advanced Fluid Mechanics. 3 Hours.
Fundamental laws of motion for viscous fluid, classical solutions of the Navier-Stokes equations, inviscid flow solutions, laminar boundary layers, and stability criteria.

ME 613. Introduction to Computational Fluid Dynamics. 3 Hours.
Review of governing equations of fluid dynamics, mathematical behavior of partial differential equations, basic aspects of discretization, basic CFD techniques, basic grid generation, coordinate transformations, advanced numerical schemes, future CFD methodology. A knowledge of a computer language is required.

ME 614. Advanced Computational Fluid Dynamics. 3 Hours.

ME 615. Introduction to Turbulent Flows. 3 Hours.
Characteristics of turbulence, length and time scales, energy cascade, vorticity stretching, Reynolds averaging technique, Closure problem, Boussinesq hypothesis, Eddy viscosity concepts, introduction to zero-, one-, and two-equation models, Reynolds stress model.

ME 631. Dynamics and Mobility of Vehicles: Modeling and Simulation. 3 Hours.
The main goal of the course is to present advanced research and engineering knowledge in recent vehicle dynamics of road and off-road wheeled and track vehicles with an emphasis on vehicle longitudinal/ lateral mobility and energy efficiency. Applications include vehicles for personal transportation, military vehicles, construction equipment and farm tractors. A unique feature of this course is its inverse vehicle dynamics approach. Another distinctive feature of the course is a mechatronics-based approach to modeling and simulation of multi-domain systems that include mechanical, electrical and electronics components such as sensors and actuators. Coupled and interactive dynamics of vehicle systems is presented, and a modeling process of vehicle operational properties is based on various equations of analytical and adaptive dynamics. Students will gain knowledge and analytical hands-on skills through innovative homework and a research project. Skills in one of programming software/languages are required (e.g., MATLAB/Simulink, ADAMS/Car, LabVIEW, etc.).
The main goal of this course is to give detailed understanding, analytical knowledge and engineering experience in research, design and experimental study of autonomous wheel power management systems (AWPMS). The AWPMS are autonomous mechatronic and autonomously operated mechanical systems that distribute power among the drive wheels of vehicles. AWPMS include various configurations of torque vectoring systems, limited slip differentials and hydraulically controlled differentials, electronically-locking differentials, and positive engagement of the wheels. AWPMS that are operationally integrated with steering and suspension systems are also presented in the course. Characteristics of wheel power management systems for a specific vehicle application are proved in the course by using inverse vehicle dynamics formulation and requirements to vehicle energy efficiency, mobility, stability of motion, and turnability. Students will learn mechanical design principles for mechatronic systems and methods for developing control algorithms. Methods for experimental study of wheel power management systems and vehicles are also presented in the course; including 4x4 vehicle chassis dynamometer with individual wheel control and test setups. Students will exercise analytical skills and gain hands-on experience through innovative homework and a research project.

ME 640. Heat Conduction. 3 Hours.
Introduction to methods of solution for heat conduction problems. Topics include separation of variables in rectangular, cylindrical and spherical coordinates, solution to the heat equation on semi-infinite and infinite domains, Duhamel's Theorem, use of Green's Function, and use of the Laplace Transform. A basic understanding of heat transfer at the undergraduate level is required for this course.

ME 641. Radiation Heat Transfer. 3 Hours.
Introduction to radiation heat transfer. Topics include radiation from black bodies and nonblack opaque surfaces, configuration factors for diffuse surfaces, radiation exchange in enclosures of diffuse-grey and specularly reflecting surfaces, radiation combined with conduction and convection, and energy transfer for absorbing, emitting and scattering media. A basic understanding of heat transfer at the undergraduate level is required for this course.

ME 650. Transport Phenomena. 3 Hours.
Laminar flow transports: momentum transfer (Couette/Poiseuille flows), energy transfer (free/forced convections and conductions), and mass transfer; equation of state, turbulence, chemical reactions, and numerical methods solving transport equations. Introduction to Fluid Mechanics and Introduction to Heat Transfer or equivalents are recommended prerequisites for this course.

ME 661. Math Methods in EGR I. 3 Hours.
Mathematical theory and solutions methods to problems in engineering including advanced ordinary differential equations; euigenvalue problems; multi-variable calculus and implicit functions; curve, surface ad volume representation and integration; Fourier integrals and transforms; separation of variables and transform techniques for solution of partial differential equations. Differential Equations or equivalent is recommended as a prerequisite for this course.

ME 662. Math Methods in EGR II. 3 Hours.
Mathematical theory and solution methods to problems in engineering including Scalar and vector field theory advanced partial differential equations, analysis using complex variables, conformal mapping, complex integral calculus, Green's functions, perturbation methods, and variational calculus. Math Methods in EGR I or equivalent is recommended as a prerequisite for this course.
ME 713. Introduction to Computational Fluid Dynamics. 3 Hours.
Review of governing equations of fluid dynamics, mathematical behavior of partial differential equations, basic aspects of discretization, basic CFD techniques, basic grid generation, coordinate transformation, advanced numerical schemes, future CFD methodology. A knowledge of a computer language is required.

ME 714. Advanced Computational Fluid Dynamics. 3 Hours.

ME 715. Introduction to Turbulent Flows. 3 Hours.
Characteristics of turbulence, length and time scales, energy cascade, vorticity stretching, Reynolds averaging techniques. Closure problem, Boussinesq hypothesis, Eddy viscosity concepts, introduction to zero-, one-and two-equation models, Reynolds stress model.

ME 731. Dynamics and Mobility in Vehicles: Modeling and Simulation. 3 Hours.
The main goal of the course is to present advanced research and engineering knowledge in recent vehicle dynamics of road and off-road wheeled and track vehicles with an emphasis on vehicle longitudinal/lateral mobility and energy efficiency. Applications include vehicles for personal transportation, military vehicles, construction equipment and farm tractors. A unique feature of this course is its inverse vehicle dynamics approach. Another distinctive feature of the course is a mechatronics-based approach to modeling and simulation of multi-domain systems that include mechanical, electrical and electronic components such as sensors and actuators. Coupled and interactive dynamics of vehicle systems is presented, and a modeling process of vehicle operational properties is based on various equations of analytical and adaptive dynamics. Students will gain knowledge and analytical hands-on skills through innovative homework and a research project. Skills in one of programming software/languages are required (e.g., MATLAB/Simulink, ADAMS/Car, LabVIEW, etc.).

The main goal of this course is to give detailed understanding, analytical knowledge and engineering experience in research, design and experimental study of autonomous wheel power management systems (AWPMS). The AWPMS are autonomous mechatronic and autonomously operated mechanical systems that distribute power among the drive wheels of vehicles. AWPMS include various configurations of torque vectoring systems, limited slip differentials and hydraulically controlled differentials, electronically-locking differentials, and positive engagement of the wheels. AWPMS that are operationally integrated with steering and suspension systems are also presented in the course. Characteristics of wheel power management systems for a specific vehicle application are proved in the course by using inverse vehicle dynamics formulation and requirements to vehicle energy efficiency, mobility, stability of motion, and turnability. Students will learn mechanical design principles for mechatronic systems and methods for developing control algorithms. Methods for experimental study of wheel power management systems and vehicles are also presented in the course; including 4x4 vehicle chassis dynamometer with individual wheel control and test setups. Students will exercise analytical skills and gain hands-on experience through innovative homework and a research project.

ME 740. Heat Conduction. 3 Hours.
Introduction to methods of solution for heat conduction problems. Topics include separation of variables in rectangular, cylindrical and spherical coordinates, solution to the heat equation on semi-infinite and infinite domains, Duhamel's Theorem, use of Green's Function, and use of the Laplace Transform. A basic understanding of heat transfer at the undergraduate level is required for this course.

ME 741. Radiation Heat Transfer. 3 Hours.
Introduction to radiation heat transfer. Topics include radiation from black bodies and nonblack opaque surfaces, configuration factors for diffuse surfaces, radiation exchange in enclosures of diffuse-grey and specularly reflecting surfaces, radiation combined with conduction and convection, and energy transfer for absorbing, emitting and scattering media. A basic understanding of heat transfer at the undergraduate level is required for this course.

ME 750. Transport Phenomena. 3 Hours.
Laminar flow transports: momentum transfer (Couette/Poiseuille flows), energy transfer (free/forced convections and conduction), and mass transfer; equation of state, turbulence, chemical reactions, and numerical methods solving transport equations.

ME 761. Math Methods in EGR I. 3 Hours.
Mathematical theory and solutions methods to problems in engineering including advanced ordinary differential equations; eigenvalue problems; multi-variable calculus and implicit functions; curve, surface ad volume representation and integration; Fourier integrals and transforms; separation of variables and transform techniques for solution of partial differential equations. Differential Equations or equivalent is recommended as a prerequisite for this course.

ME 762. Math Methods in EGR II. 3 Hours.
Mathematical theory and solution methods to problems in engineering including Scalar and vector field theory advanced partial differential equations, analysis using complex variables, conformal mapping, complex integral calculus, Green's functions, perturbation methods, and variational calculus. Math Methods in EGR I or equivalent is a recommended prerequisite for this course.

ME 763. Engineering Statistics. 3 Hours.
Introduction to applied statistics and probability for engineering and the physical sciences. Topics include introduction to probability, discrete and random variables and their distributions, joint probability distributions, hypothesis testing, statistical inference, linear regression and correlation, design of experiments, and statistical quality control. A basic understanding of calculus and matrix algebra at the undergraduate level is required for this course.

ME 765. Computational Methods in EGR. 3 Hours.
Applications of computers to solution of problems in engineering, including matrices, roots of equations, solution of simultaneous equations, curve fitting by least squares, differentiation and integration, differential and partial differential equations. Differential Equations and Computational Engineering or equivalents are recommended prerequisites for this course.

ME 770. Intro to Continuum Mechanics. 3 Hours.
Fundamentals and application of mechanics principles to problems in continuous media. Matrix and tensor mathematics, fundamentals of stress, kinematics and deformation of motion, conservation equations, constitutive equations and invariance, linear and nonlinear elasticity, classical fluids, linear viscoelasticity. Mechanics of Solids and Differential Equations or equivalents are recommended prerequisites for this course.
ME 772. Advanced Dynamics. 3 Hours.
Advanced topics in dynamics including complex motion analysis, generalized kinematic parameters, quasivelocities and virtual displacements, direct and inverse dynamics approaches, and fundamentals of systems with variable masses. Introduction to the modeling of mechatronic systems is presented through a consideration of mechanical, electrical, and electronics components. Analytical and adaptive dynamics principles are taught as a basis for control algorithm development and mechatronic system design. Students are expected to have a working knowledge of dynamics prior to registering for this course.

ME 779. Advanced Finite Element Analysis. 3 Hours.

ME 788. Fluid-Structure Interactions. 3 Hours.
Modeling and simulation of fluid-structure interaction (FSI) phenomena using computational methods. The Arbitrary Lagrangian Eulerian (ALE) formulation, a variety of interpolation methods, mesh movement and time mapping algorithms. Solution of FSI problems using interface codes.

ME 790. Special Topics in ME. 1-6 Hour.
Special Topics in (Area).

ME 791. Individual Study in (Area). 1-6 Hour.
Individual Study in (Area).

ME 794. Seminars in Mechanical EGR. 1 Hour.
Seminars in areas of mechanical engineering.

ME 796. IEGR Journal Club. 1 Hour.
Journal club to discuss current research and investigations in areas of interdisciplinary engineering.

ME 798. Non-Dissertation Research. 1-12 Hour.
Research.

ME 799. Dissertation Research. 1-12 Hour.
Research.
Prerequisites: GAC Z
School of Health Professions

Dean: Andrew J. Butler, PhD
Associate Dean for Academic & Faculty Affairs: Melanie Hart, PhD
Associate Dean for Research and Innovation: Ritu Aneja, PhD
Assistant Dean for Clinical Affairs: Anthony Patterson, MSHA

The School of Health Professions delivers educational programs to prepare health personnel who will improve the services in health care and the systems through which these services are provided. In keeping with the mission of the University of Alabama at Birmingham, the resources and programs of the school are dedicated to excellence in teaching, research, and scholarly activity and to service to the institution, the community, and the professions represented by programs of the school.

Degree options in the School of Health Professions include bachelor's, master's, and doctoral programs sponsored by five academic departments – Clinical and Diagnostic Sciences, Health Services Administration, Nutrition Sciences, Occupational Therapy, and Physical Therapy. In addition, certificate options are available in some specialized areas. The School sponsors more than 30 degree and certificate options, all of which require students to apply for and be accepted to the specific degree or certificate program.

The School of Health Professions is committed to the practice of ethical standards of conduct. School policies, procedures, and regulations reflect this commitment and are in compliance with those of the University of Alabama at Birmingham. To ensure continued practice of ethical standards, the administration and the standing committees of the school (Faculty Affairs, Academic Affairs, Student Affairs, and Diversity, Equity, and Inclusion) regularly review school policies and procedures. All research endeavors are in compliance with policies of the UAB Institutional Review Board.

SHP Mission, Vision, Values

The mission of the School of Health Professions is “To improve health care through teaching, research, and translation of discoveries into practice in partnership with the UAB community.” The School vision is, “To be recognized as the leading school of health professions – shaping the future of healthcare.” Fulfiling the mission requires faculty and staff to embrace the following organizational values:

- Accountability
- Collaboration/Cooperation
- Diversity
- Excellence
- Innovation/Creativity
- Integrity/Ethical behavior
- Open communication
- Professional behavior

SHP Admissions

Entrance requirements for the individual educational programs of SHP vary. Persons desiring admission to a particular program should consult the appropriate section of the University Catalogs for specific entrance requirements, application process, and program information. Students who attend an institution other than UAB are encouraged to seek academic advisement from the intended program as early as possible to plan for completion of program prerequisites.

The School of Health Professions welcomes applications from all individuals who are prepared for the programs offered. All applicants must offer acceptable evidence of ability and intent to meet the academic standards specified by the particular program into which admission is desired. In addition, certain immunizations are required prior to enrollment. For specific requirements, see the UAB Student Health and Insurance Programs and UAB Immunization Policy. If accepted into a SHP program, students must complete a background check and drug screen upon admission and again prior to clinical placement. Applicants are considered regardless of race, color, religion, sex, sexual orientation, national origin, disability unrelated to program performance, disabled veteran status, or Vietnam era veteran status (see UAB Equal Opportunity Policy). Persons who have not yet decided upon a specific health career may obtain information from the:

SHP Office of Student Services and Advising
School of Health Professions Building
1716 9th Avenue South / Room 230
Telephone: (205) 934-4195

Courses

HRP 575. Introduction to Healthcare Simulation for Quality and Safety. 1-2 Hour.
Introduction to the use of simulation-based training and systems for improving patient safety and quality, including exploration of immersive, procedural, and in situ modalities. Instructional methodologies include didactics, technology-enhanced simulations, and team-based assignments in the simulation environment.

Interdisciplinary Programs

The School of Health Professions offers two graduate level interdisciplinary programs. The Graduate Certificate in Health-Focused Patient/Client Management for Physical and Occupational Therapists (p. 372) is designed to prepare PTs and OTs for expanding roles in the areas of prevention, health promotion, and wellness. Health Focused Patient/Client Management is the integration of health promotion and education methods in OT and PT practice to create a holistic approach to enhance patient/client wellness and quality of life. Admissions to this certificate are currently suspended.

The Ph.D. in Rehabilitation Science (p. 373) is an interdisciplinary program sponsored by the Department of Occupational Therapy and the Department of Physical Therapy within the School of Health Professions. This program is designed to prepare graduates to become academicians, scholars, scientists, and researchers in education, health care, industry, and government institutions as well as consultants to individuals, communities, and governments. The aim of this program is to prepare candidates to become leaders in teaching and research within the field of Rehabilitation Science. However, this is not a clinical training program.

Applicants planning to become occupational therapists or physical therapists should look at the graduate catalog entries for these two professions.
Health Focused Patient/Client Management for Physical and Occupational Therapists

Contact Information

Program Director: Jennifer B Christy, PT, PhD
E-Mail: jbraswel@uab.edu
Phone: 205 - 934 - 3566

Mailing address:
The University of Alabama at Birmingham
Department of Physical Therapy
1716 9th Avenue South
SHPB 346
Birmingham, AL 35294-1212

Program Information

The UAB Graduate Certificate in Health Focused Patient/Client Management for Physical and Occupational Therapists is designed to prepare PTs and OTs for expanding roles in the areas of prevention, health promotion, and wellness. Health Focused Patient/Client Management is the integration of health promotion and education methods in OT and PT practice to create a holistic approach to enhance patient/client wellness and quality of life. The ultimate goal of the certificate is to enable graduates to develop and implement clinical and community programs to address lifestyle and behavior factors that underlie many chronic diseases. Emphasis will be placed on program development for persons with disabilities. The concepts addressed in the certificate program are applicable across the patient/client lifespan and in a variety of practice settings.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC 780 Hlth Focused Care in PT & OT</td>
<td>3</td>
</tr>
<tr>
<td>PTC 781 Health Focused Patient/Client Communication and Advocacy</td>
<td>3</td>
</tr>
<tr>
<td>PTC 782 Health Focused Patient/Client Management I</td>
<td>3</td>
</tr>
<tr>
<td>PTC 783 Health Focused Patient/Client Management II</td>
<td>3</td>
</tr>
<tr>
<td>PTC 784 Health Focused Care - Synthesis Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Credentials Conferred

The Graduate Certificate in Health Focused Patient/Client Management for Physical and Occupational Therapists is awarded by the University of Alabama at Birmingham.

Length of Study

The certificate requires 5 semesters to complete; students take 1 course per semester.

Program Entrance Date

Students may begin the program in the spring, summer or fall term.

Admission Requirements

Admissions requirements include completion of a degree in physical or occupational therapy and current licensure as a physical or occupational therapist in the United States or foreign equivalent. Students from countries where English is not the official and primary language must also take and receive an acceptable score on the TOEFL or IELTS. Admission to the certificate is currently suspended.

Degree Requirements

15 credit hours (5 required courses)

Courses

PTC 780. Hlth Focused Care in PT & OT. 3 Hours.
Overview of health promotion principles and health behavior theories as applied in contemporary health care, especially in rehabilitation services. Evidence is presented for the most prevalent preventable chronic diseases/conditions and the health behaviors that contribute to these conditions.

PTC 781. Health Focused Patient/Client Communication and Advocacy. 3 Hours.
Communication and advocacy strategies to effect behavior change at the individual and community level; application of evidence-based and best practice methods/techniques that empower individuals and community to change health-related behaviors.

PTC 782. Health Focused Patient/Client Management I. 3 Hours.
Application of evidence-based and best practice methods/techniques for physical activity/fitness, weight management, and nutrition optimization using a health focused care model.

PTC 783. Health Focused Patient/Client Management II. 3 Hours.
Examines how occupational and physical therapists address smoking cessation, alcohol moderation, sleep health, and stress management using a health focused care model for individuals and community groups. Issues addressed include screening, best practices for interventions, patient education resources, and consultation/referral sources to optimize health outcomes.

PTC 784. Health Focused Care - Synthesis Project. 3 Hours.
Synthesis of content from previous certificate courses to develop a health focused program in the clinical or community setting.

Exploration of current trends in health and healthcare in the United States with emphasis placed on underserved populations and marginalized communities. As a member of a primary care team, students will assess, analyze, synthesize, and modify determinants of health that underlie health disparities with respect to individual and community health outcomes.

PTC 791. Physical Therapist Role in Primary Care. 2 Hours.
Explore current primary care practice models in which a physical therapist is a team member.

PTC 792. Health-Focused Physical Therapy Care I. 2 Hours.
Preparation to assist patients/clients in underserved populations and marginalized communities to adopt healthier lifestyles, achieving better physical therapy outcomes, and optimize their health using the Health-Focused Physical Therapy Model. This course is part one of a two-course series.
Individual management of identified priority health conditions, within the context of primary care. This course is part one of a two course series where students will use the Patient/Client Management model to develop advanced screening/examination, evaluation, diagnostic and prognostic skills, and plan of care applied to complex and often chronic conditions in a primary care environment.

PTC 794. Health Focused Physical Therapy II. 2 Hours.
Prepares students to assist their patients/clients in underserved populations and marginalized communities to adopt healthier lifestyles, achieving better physical therapy outcomes, and optimizing their health using the Health-Focused Physical Therapy Model. This course is part two of a two-course series addressing health focused care in physical therapy.

Individual management of priority health conditions, within the context of primary care. This course is part two of a two-course series where students will develop advanced intervention skills applied to complex and often chronic conditions in a primary care environment.

PTC 796. Physical Therapists' Role in Disaster Emergency Preparation and Management. 1 Hour.
Underserved populations and marginalized communities are particularly vulnerable in natural disaster events and emergency situations. This course provides the physical therapist with skills within their scope of practice to prepare and respond to emergencies and disasters. Completion of National Safety Council Emergency Medical Response Training is required prior to course enrollment.

PTC 797. Community Engagement and Program Planning for Physical Therapists. 2 Hours.
Strategies for and benefits of community engagement and advocacy by physical therapists. Emphasis placed on needs assessment techniques, program planning, implementation, and evaluation.

Rehabilitation Science

Degree Offered: Ph.D.
Director: Dr. William Reed
Phone: (205) 934-3261
E-mail: wreed@uab.edu or rehabscience@uab.edu
Website: http://www.uab.edu/rsphd

Applying to the Program

Application Procedure

Received by UAB Graduate School
LHL G03
1720 2nd Avenue South
Birmingham, Alabama 35294-0013

- Complete and submit online Graduate School application (uab.edu/graduate)
- Submit application fee payment: Domestic: $50.00
- Request one (1) official transcript to be mailed by the issuing institution to the UAB Graduate School
- Three (3) letters of recommendation are required. Please ask the individuals from whom you requested references to submit them online via the recommendation email request they receive. Electronic submission is the preferred method. However, if your referees prefer to mail a recommendation letter, it should be mailed to the address of the department or program to which you are applying.

Minimum Requirements for Admission

- Note that each application will be reviewed by the Admission Committee to identify individuals with strong commitment and aptitude to perform research related to Rehabilitation Science, along with strong academic preparation and professional-leadership potential.
- Undergraduate or graduate degree in occupational or physical therapy, engineering, exercise science, neuroscience, medicine, nursing, or other health related professions.
- Recommended minimum GPA 3.0/4.0 in all previous coursework
- Three strong evaluation references, with at least one from a research lab mentor, and one from an academic source.
- With the written essay, provide evidence of appropriate goals of study, professional growth and commitment to research, with special emphasis on interest in research that is being conducted at UAB.
- Interview with faculty that shows passion and commitment to research and professional growth in Rehabilitation Science.

For further information contact:

Elisa Lewis, Program Coordinator II
PhD Program in Rehabilitation Science
205-934-4644
email: elewis06@uab.edu
Typical Program

(Course requirements are listed in semester credit hours)

First Year
<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
<th>Summer Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHB 780</td>
<td>3</td>
<td>RHB 781</td>
<td>3</td>
<td>RHB 782</td>
<td>3</td>
</tr>
<tr>
<td>RHB 783</td>
<td>3</td>
<td>RHB 785</td>
<td>3</td>
<td>RHB 789</td>
<td>1</td>
</tr>
<tr>
<td>RHB 789</td>
<td>1</td>
<td>RHB 789</td>
<td>1</td>
<td>GRD 717</td>
<td>3</td>
</tr>
<tr>
<td>EPR 609</td>
<td>3</td>
<td>EPR 710</td>
<td>3</td>
<td>Elective Coursework</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qualifier Exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year
<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
<th>Summer Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHB 789</td>
<td>1</td>
<td>RHB 789</td>
<td>1</td>
<td>RHB 746</td>
<td>1</td>
</tr>
<tr>
<td>RHB 798</td>
<td>3</td>
<td>RHB 798</td>
<td>3</td>
<td>RHB 789</td>
<td>1</td>
</tr>
<tr>
<td>Elective Coursework</td>
<td>6</td>
<td>Elective Coursework</td>
<td>6</td>
<td>RHB 798</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elective Coursework</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dissertation Proposal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year
<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
<th>Summer Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHB 799</td>
<td>6-9</td>
<td>RHB 799</td>
<td>6-9</td>
<td>RHB 799</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-9</td>
<td>6-9</td>
<td>6-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year
<table>
<thead>
<tr>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHB 799</td>
<td>6-9</td>
<td>RHB 799</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-9</td>
<td>6-9</td>
<td></td>
</tr>
</tbody>
</table>

Total credit hours: 90-105

A Sample of possible Elective Courses Currently Offered at UAB includes:

Requirements

- Concentration Electives: These are electives in a specific disease, population, or content area of interest
 - RHB 590: Quantitative Biomechanics of Injury and Rehabilitation
 - NCH 760: Child Health Theories and Concepts
 - NTR 650: Body Composition and Energy Metabolism
 - OT 677: Foundations in Low Vision Rehabilitation I

- Academic Writing Electives: These are electives that focus on developing writing skills for scientific publications and/or preparation
 - GRD 706: Grants and Fellowships 101
 - GRD 708: Writing Successfully
 - GRD 709: Writing Fellowships
 - GRD 722: Writing Research for Broad Audiences
 - GRD 723: Writing Research for Academic Audiences
 - GRD 727: Writing & Reviewing Research
 - GRD 728: Professional Writing & Publishing
 - GRD 729: Writing Your Journal Article in 12 Weeks

- Research Methods Electives: These are electives in a specific research methodology or study design areas of interest
 - HPO 787: Empirical Methods for Health Research
 - HPO 692: Health Equity and Inclusion in Public Health Programs and Policies
 - NRM 773: Qualitative Research Methods

Courses

RHB 500. Introduction to Rehabilitation Science. 3 Hours.
Encapsulating science from the level of the cell and body structure to the person, family, community and society level, rehabilitation science serves as a foundation and the body of knowledge by which individuals may develop and evaluate current and emerging approaches to enhancing enablement and minimizing disability.

RHB 575. Special Topics in Rehabilitation Science. 1-4 Hour.
Exploration of current topics in Rehabilitation Sciences.

RHB 590. Quantitative Biomechanics of Injury and Rehabilitation. 3 Hours.
Material, mechanical, electrophysiological and energetic principles of human movement. Comparison of non-impaired verses impaired systems in relation to injury/disability.

RHB 740. Teaching Practicum. 1-3 Hour.
Individually designed, directed teaching experience in focus area appropriate to student's background, needs, and goals under guidance of faculty preceptor.

Prerequisites: RHB 780 [Min Grade: C] and RHB 781 [Min Grade: C] and RHB 782 [Min Grade: C] and RHB 783 [Min Grade: C] and RHB 784 [Min Grade: C]

RHB 746. Rehabilitation Science Journal Club. 1 Hour.
Student-led, facilitated discussion of current, impactful published research in rehabilitation science. Interaction with scientists and clinicians from multiple disciplines contributing to the rehabilitation science.

RHB 775. Special Topics in Rehabilitation Sciences. 1-4 Hour.
Exploration of current issues in Rehabilitation Sciences.

RHB 780. Principles of Rehabilitation Science: Movement Science. 3 Hours.
Interdisciplinary discussion of concepts, theories, principles, and research literature underlying the understanding of neural control, biomechanics, motor learning, and motor development and how purposeful and functional body movements are accomplished under a variety of health conditions and disease processes.

RHB 781. Principles of Rehabilitation Science: Exercise Science. 3 Hours.
Interdisciplinary discussion of concepts, theories, principles, and research literature underlying the understanding of cardiac and pulmonary physiology, exercise physiology, and health behaviors and how important activities are accomplished under a variety of health conditions and disease processes.
RHB 782. Principles of Rehabilitation Science: Occupation Science. 3 Hours.
Interdisciplinary discussion of concepts, theories, principles, and research literature underlying the understanding of occupation science and how work and play activities are accomplished under a variety of health conditions and disease processes.

RHB 783. Research Design/Measurement in Rehab Sci. 3 Hours.
A detailed overview of research design and methodologies used in rehabilitation science, including quantitative and qualitative methods.

RHB 784. Res Design/Measure Rehab Sc II. 3 Hours.
A detailed overview of research design and methodologies used in rehabilitation science, including quantitative and qualitative methods. A continuation of Research Design and Measurement in Rehabilitation Science I.

RHB 785. Principles of Behavior Change in Rehabilitation Science. 3 Hours.
Scientific and theoretical principles underlying health behavior change in the context of rehabilitation science; health behavior from an ecological perspective; seminal behavior change theories; key elements required for design, implementation, and analysis of rigorous health behavior change research.

Varied discussion of rehabilitation science topics to help students explore research questions in preparation for their dissertation.

Development of research proposal.

Dissertation Research.
Prerequisites: GAC Z

Clinical and Diagnostic Sciences

The Department of Clinical and Diagnostic Sciences is comprised of academic programs essential to today’s healthcare system. Our programs provide training for future health care professionals in a variety of disciplines ranging from the diagnosis of illness and disease, the administration of advanced treatment therapies, to the performance of vital roles in surgical suites and in outpatient and inpatient healthcare settings. Graduates of our programs are well poised for a wide variety of job opportunities due to the outstanding education received at UAB. Current graduate program offerings include:

- Biomedical and Health Sciences, M.S.
- Biotechnology, M.S., PhD and Biotechnology Regulatory Affairs Graduate Certificate
- Clinical Laboratory Science, M.S.
- Genetic Counseling, M.S.
- Health Physics, M.S.
- Industry Genetics and Genomics Graduate Certificate
- Nuclear Medicine and Molecular Imaging Sciences, M.S.
- Physician Assistant Studies, M.S.P.A.S.

Graduate Certificate in Industry Genomics and Genetics

Program Information

The Industry Genetics and Genomics Graduate Online Certificate is designed to provide advanced skills and education that will prepare graduates for employment in genomic industries that focus on variant data and its interpretation. Advances in the application of genetics and genomics technology in clinical care to support the paradigm shift to personalized medicine has created a need for health care providers and genomics industry professionals to integrate genetics and genomic data with medicine. The certificate is intended to meet the educational needs for the current workforce in medical genetics and clinical laboratories for advanced analytical interpretation and applications related to genomics.

The Industry Genetics and Genomics Certificate is designed to enable students to meet the following learning objectives upon completion of the certificate:

- Demonstrate advanced knowledge in the clinical applications of genetics and genomic technology to support the workforce demand in the genetics and genomics laboratory industry.
- Effectively utilize of genetics and genomics data in clinical care.
- Assess genomics technologies and determine appropriate use in the clinical genomics industry.
- Effectively integrate genomic and clinical knowledge with the legal, regulatory, marketing, and financial aspects of the clinical genomics industry.
- Demonstrate the ability to effectively apply of professional guidelines for genetic variant classification for clinical applications.
- Communicate effectively with clinical genomics laboratory personnel and work in teams within the clinical genomics laboratory, serve as a resource to clinicians to improve the utilization of genomics technology in clinical care.
- Apply genomic industry standards within a clinical laboratory setting through direct application.

Essential Functions

The essential functions below extend beyond academic requirements for admission and are standards that all enrolled students must possess in order to successfully complete the graduate certificate.

- Communicate effectively and sensitively with members of the health care team.
• Possess the mental capacity for critical thinking including the ability to assimilate, analyze, synthesize, and integrate concepts and to problem solve in a timely fashion.
• Adapt to changing environments and function effectively under stress.

Admission Requirements

• Baccalaureate degree from a regionally accredited institution.
• Applicants must meet all requirements of the UAB Graduate School.
• A minimum overall GPA of 3.0 from prior coursework.
• Pre-requisite coursework: an undergraduate course in genetics

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Fulfilled By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Term:</td>
<td>Summer Semester</td>
</tr>
<tr>
<td>Application Deadline:</td>
<td>March 1</td>
</tr>
<tr>
<td>Entrance Tests:</td>
<td>For international applicants from non-English speaking countries, scores for the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE)</td>
</tr>
</tbody>
</table>

For detailed information, contact the Program Coordinator, Industry Genetics and Genomics Graduate Certificate, UAB, School of Health Professions, 1716 9th Avenue South, SHPB 444, Birmingham, AL 35294-1212

Telephone 205-975-4CDS (205-975-4237)

E-mail: AskCDS@uab.edu

Courses

CDS 505. Professional Skills Development. 1 Hour.
Development of professional behaviors and attitudes required for success in healthcare.

CDS 560. Foodborne and Waterborne Outbreak Investigations. 3 Hours.
Analysis of different aspects (basic microbiology, epidemiological analysis, surveillance tools, regulations, environmental and laboratory testing) of foodborne and waterborne outbreak investigations.

CDS 605. Survival Spanish for Health Professionals. 1 Hour.
Health care professionals will be introduced to basic vocabulary, useful questions and expressions in Spanish needed to communicate in practical health care situations. Students will participate in speaking exercises, dialogue, and role-play activities (field-specific scenarios).

CDS 610. Research Design and Statistics. 3 Hours.
This course will introduce the student to clinical research methods and review concepts involved in descriptive and inferential statistics. Topics covered include, overview of the research process, literature review, research hypothesis, research designs, sample selection, measurement methods, descriptive statistics, and inferential statistics.

CDS 625. Analysis of Scientific Publications. 3 Hours.
This course is designed to prepare students to critically evaluate medical/scientific literature and to write a master’s level papers. The ability to critically analyze scientific publications will be incorporated into the process of making medical decisions.

Biomedical and Health Sciences

Prospective students visit http://www.uab.edu/ephp/home/degrees-certificates/grad-professional-degrees to obtain specific admissions requirements on how to apply to the Graduate School.

Degrees Offered: M.S.

Co-Directors: Jorge Lopez, PhD and Carmel McNicholas-Bevensee, PhD

Phone: (205) 934-7539 (Dr. Lopez); (205) 934-1785 (Dr. McNicholas-Bevensee)

E-mail: jorlopez@uab.edu; cbevensee@uab.edu

Program Information

Program Mission
The mission of the Master of Science degree program in Biomedical and Health Sciences is to provide coursework and experiences that can help you make the transition from undergraduate to medical, dental, optometry, physician assistant, physical therapy, occupational therapy, and other health science professional programs.

Admission Requirements
In addition to the general Graduate School admission requirements, applicants to the M.S. program must:

• Have a minimum science GPA of 3.0 (A=4.0), computed from all coursework in biology, chemistry, mathematics, and physical sciences.
• Submit scores of Medical College Admissions Test (MCAT), Optometry Admissions Test (OAT), Dental Admission Test (DAT), or Graduate Record Exam (GRE),
• Submit a personal statement of interest to the program,
• Submit three letters of recommendation,
• If foreign educated, have a score of at least 550 for paper version (or 80 for Internet version; or 213 for computer version) on the TOEFL, submit a transcript evaluation from World Education Services (WES) at www.wes.org

If accepted, students must complete the UAB medical history questionnaire and physical, provide proof of required immunizations, and receive satisfactory screening by the UAB Medical Center Student Health Service before enrollment. A background check and drug screen will be required at program admission.

Persons with a Bachelor of Science degree may be eligible to register for courses as non-degree seeking graduate students before acceptance into the M.S. program at the discretion of the program co-directors. If a non-degree seeking graduate student meets the M.S. program admission requirements, up to 12 semester hours of approved non-degree graduate coursework may be accepted for the M.S. degree. Admission of a student to any course as a non-degree seeking student does not constitute or guarantee admission to the M.S. degree program. Non-degree seeking students will be eligible to meet with M.S. BHS advisors to discuss course selections and planning for future enrollment in either the M.S. BHS program or the graduate health professional school of their choice.
Essential Functions

Essential functions are physical abilities, mental abilities, skills, attitudes, and behaviors the students must evidence or perform at each stage of their education. The absence of an essential function would fundamentally alter a student’s ability to meet the program goals. The essential functions for the BHS program include commitment to learning, interpersonal skills, communication, time management, problem-solving, professionalism, responsibility, critical thinking, and stress management.

If you have a disability but have not contacted Disability Support Services (DSS), please call (205) 934-4205 (voice) or (205) 934-4248 (TDD) or visit the DSS offices at the Hill Student Center, Suite 409, 1400 University Boulevard. Additional information is available at http://www.uab.edu/students/disability/

Accreditation and Certification

None required.

Additional Information

Entry Term: Summer Semester
Deadline for All Application Materials to be in the Graduate School Office: March 1

Entrance Tests: MCAT, OAT, DAT, or GRE and for international applications from non-English speaking countries, scores for the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE)

Comments: Transcript evaluation by WES is required for applicants with foreign university degrees

Contact Information

For detailed information, contact the Department of Clinical and Diagnostic Sciences, Biomedical and Health Sciences Program, UAB School of Health Professions, SHPB 446, 1716 9th Avenue South, Birmingham, Alabama 35294-1212

Telephone: 205-934-7596
E-mail: AskCDS@uab.edu

Master of Science in Biomedical and Health Sciences

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHS 502 Molecules and Cells</td>
<td>4</td>
</tr>
<tr>
<td>BHS 503 Microbiology and Immunology</td>
<td>4</td>
</tr>
<tr>
<td>BHS 501 Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>BHS 550 Integrated Systems I: Neuroendocrine</td>
<td>3</td>
</tr>
<tr>
<td>BHS 555 Integrated Systems II: Cardiopulmonary</td>
<td>3</td>
</tr>
<tr>
<td>BHS 560 Integrated Systems III: Genitourinary</td>
<td>3</td>
</tr>
<tr>
<td>BHS 601 Seminar II</td>
<td>1</td>
</tr>
<tr>
<td>BHS 600 Integrated Systems IV: Gastrointestinal</td>
<td>2</td>
</tr>
<tr>
<td>BHS 605 Integrated Systems V: Musculoskeletal and Skin</td>
<td>3</td>
</tr>
<tr>
<td>BHS 610 Clinical Application and Simulation</td>
<td>1-2</td>
</tr>
<tr>
<td>BHS 690 Capstone: Integrating Basic and Clinical Sciences</td>
<td>4</td>
</tr>
<tr>
<td>BHS 602 Seminar III</td>
<td>1</td>
</tr>
</tbody>
</table>

Suggested Electives (must have 3 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHS 605</td>
<td>Applications of Biochemistry in Biotechnology</td>
</tr>
<tr>
<td>CDS 605</td>
<td>Survival Spanish for Health Professionals</td>
</tr>
<tr>
<td>CHHS 602</td>
<td>Advanced Principles of Mental Health, Stress, & Well-being</td>
</tr>
<tr>
<td>KIN 637</td>
<td>Physiology of Exercise I</td>
</tr>
<tr>
<td>PA 550</td>
<td>Introduction to Medical History Taking and Physical Examination</td>
</tr>
</tbody>
</table>

Any Graduate CDS-prefix elective course (500-600 level)

Table Hours 33-34

Courses

BHS 501. Seminar I. 1 Hour.
The first of a three-course series to prepare students for application, admission, and success in professional school and the biomedical workforce. Topics will include study skills, interview skills, and test taking strategies.

BHS 502. Molecules and Cells. 4 Hours.
Chemical structures and functions of biomolecules and human cells. The disciplines of biochemistry, genetics, cell biology, and histology will be integrated to provide a framework for understanding normal and abnormal cellular states. Topics will include cellular physiology, metabolic pathways, inheritance, molecular genetics, and basic histology.

BHS 503. Microbiology and Immunology. 4 Hours.
Biology of viruses, bacteria, parasites, and fungi as well as the natural human responses to these pathogens. Innate and adaptive immunity will be explored in the context of pathogenic and non-pathogenic assault. Introduction to concepts in general pathology including mechanisms of cell injury and repair, cell adaptation, and inflammation.

BHS 550. Integrated Systems I: Neuroendocrine. 3 Hours.
Integrated study of the nervous and endocrine body systems. The gross anatomy, histology, and physiology of each system will be examined through an integrated approach, which will include a study of the interrelationships of these controlling body systems. Correlations to disease states and disease treatments will be stressed throughout.

BHS 555. Integrated Systems II: Cardiopulmonary. 3 Hours.
Integrated study of the cardiovascular and respiratory body systems. The gross anatomy, histology, and physiology of each system will be examined through an integrated approach, which will include a study of the interrelationships of these systems and the gross anatomy of the thorax. Correlations to disease states and disease treatments will be stressed throughout.

BHS 560. Integrated Systems III: Genitourinary. 3 Hours.
Exploration and integration of the urinary and reproductive systems of the human body, including development and anatomical features and differences between males and females. Microanatomy of kidneys correlated with body fluid homeostasis and urine production, and clinical disorders of the urinary tract. Male and female reproductive tracts’ structure, function and gametogenesis. Female menstrual cycle at the level of hormonal regulation, events at the ovary, and changes in the uterus. Microanatomy and physiology of pregnancy. Diseases associated with the genitourinary tracts.

BHS 600. Integrated Systems IV: Gastrointestinal. 2 Hours.
Integrated study of the gastrointestinal body system. The gross anatomy, histology, and physiology of each organ will be examined through an integrated approach, which will include a study of the gross anatomy of the abdomen. Correlations to disease states and disease treatments will be stressed throughout.
BHS 601. Seminar II. 1 Hour.
The second of a three-course series to prepare students for application, admission, and success in professional school and the biomedical workforce. Topics will include professionalism, cultural competence, and ethical behavior.

BHS 602. Seminar III. 1 Hour.
The third of a three-course series to prepare students for application, admission, and success in professional school and the biomedical workforce. Topics will include interpersonal skills and teamwork.

BHS 605. Integrated Systems V: Musculoskeletal and Skin. 3 Hours.
Integrated study of the skeletal, muscular and integumentary body systems. The gross anatomy, histology, and physiology of each system will be examined through an integrated approach, which will include a study of the interrelationships of these systems and the gross anatomy of the back and limbs. Correlations to disease states and disease treatments will be stressed throughout.

BHS 610. Clinical Application and Simulation. 1-2 Hour.
Development of critical thinking skills regarding the effects of disease at various levels of organization on multiple organ systems. Activities will include small-group case studies and simulation.

BHS 675. Special Topics in Biomedical and Health Sciences. 1-4 Hour.
Exploration of current issues in Biomedical and Health Sciences.

BHS 690. Capstone: Integrating Basic and Clinical Sciences. 1-4 Hour.
Integration of knowledge from basic and clinical science courses to define and pose ethical resolutions to problems and clinical cases in the biomedical sciences.

BHS 698. Non-Thesis Research. 4 Hours.
This course will provide students with the opportunity to engage in inquiry and problem solving in the biomedical sciences. Students may engage in a research project or literature review on a topic related to health and disease. A written report will be the culmination of these activities.

Biotechnology

Degree Offered: M.S.
Program Director: Tino Unlap, PhD
Phone: (205) 934-7382
E-mail: unlap@uab.edu
Website: http://www.uab.edu/shp/cds/biotech

Program Information

Program Mission
The faculty members of the Biotechnology Programs are devoted to providing excellent service to the community and its graduates. The faculty, in its concern for the health and safety of the general public, is committed to ensuring that each student develops knowledge, skills, and values essential to their appropriate role providing the basis for continuing intellectual and professional growth.

Out of a great concern for applied technology and the role that it plays in the diagnosis, management and treatment of human disease, and in developing products to solve problems for present and future generations, the Biotechnology Programs are designed to provide instruction through didactic and practical training in order to ensure that graduates possess the critical knowledge and skill sets that are required for intellectual and professional growth in the future. Online options are available to give individuals with BS degrees already working in the Life Science industry the opportunity to earn a relevant MS degree or certificate.

Biotechnology Careers
The goal of the Master's degree program is to provide a more direct route to a career in biotechnology by focusing on mastering current techniques used in biotechnology coupled with the business fundamentals necessary for successful product/technology development in the industry. The multi-disciplinary aspects of this program will broaden and expand the knowledge base of students, thus making graduates particularly useful to potential industry employers. According to the U.S. Department of Labor Occupational Outlook Handbook, the demand in the biotechnology field continues to drive job growth, with much higher expected increases in career opportunities to be realized as compared to all other industries in future years.

The Biotechnology Master of Science degree program requires 3 semesters for completion as full-time students. The Master of Science requires 37 credit hours and is designed for individuals who hold a Bachelor of Science or Bachelor of Arts degree in a related discipline including biology, chemistry, biochemistry, physics, engineering, mathematics, psychology and sociology.

M.S. Admission Requirements
In addition to the general Graduate School admission requirements, applicants to the M.S. program must:

• Have a biology, chemistry, or a related major from an accredited college or university,
• Have a minimum undergraduate GPA of 3.0 (A = 4.00), computed from all undergraduate credits or from the last 60 semester hours of undergraduate course credit,
• Provide a written statement of career goals,
• Complete an interview with the program admissions committee, and
• If foreign-educated, have a score of at least 550 for paper version (or 94 for Internet version; or 213 for computer version) on the TOEFL, submit a transcript evaluation from World Education Services (WES) at www.wes.org.

If accepted, students must complete the UAB medical history questionnaire and physical, provide proof of required immunizations, and receive satisfactory screening by the UAB Medical Center Student Health Service before enrollment. Accepted students must complete a background check and drug screen at admission and prior to placement in clinical internships by school policy.

Essential Requirements
Fundamental tasks, behaviors, and abilities necessary to successfully complete the requirements of the Program are available upon request from the Biotechnology program office. If you have a disability, but have not contacted Disability Support Services (DSS), please call 934-4205 or visit http://www.uab.edu/students/disability/.

Additional Information

<table>
<thead>
<tr>
<th>Entry Term</th>
<th>Fall, Spring, and Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesters</td>
<td>Semesters</td>
</tr>
</tbody>
</table>

Website: http://www.uab.edu/shp/cds/biotech
E-mail: unlap@uab.edu
Phone: (205) 934-7382
Program Director: Tino Unlap, PhD
Degree Offered: M.S.
Contact Information

For detailed information, contact the Department of Clinical and Diagnostic Sciences, Biotechnology Program, UAB School of Health Professions, SHPB 430, 1716 9th Avenue South, Birmingham, Alabama 35294-1212. Telephone 205-934-3209. E-mail AskCDS@uab.edu

Master of Science in Biotechnology

Requirements Hours
BT 500 Principles of Biotechnology - Nucleic Acid Technology 3
BT 550 Principles of Biotechnology - Amino Acid Technology 3
BT 600 Principles of Biotechnology - Systems Biology & Pharmacology 3
BT 650 Applications in Biotechnology I 2
BT 651 Applications in Biotechnology II 2
BT 652 Applications in Biotechnology III 2
BT 670 Bench to Commercialization I 3
BT 671 Bench to Commercialization II 3
BT 672 Bench to Commercialization III 3
BT 690 Capstone: Integrating Basic Science and Product Development 4
BT 695 Biotechnology Internship 2
CDS 505 Professional Skills Development 1
CDS 610 Research Design and Statistics 3
Innovative Technologies in Biotechnology (take three times) 3
BT 676 Innovative Technologies in Biotechnology

Total Hours 37

Master of Science in Biotechnology (Online)

Requirements Hours
BT 500 Principles of Biotechnology - Nucleic Acid Technology 3
BT 550 Principles of Biotechnology - Amino Acid Technology 3
BT 600 Principles of Biotechnology - Systems Biology & Pharmacology 3
BT 605 Applications of Biochemistry in Biotechnology 3
BT 670 Bench to Commercialization I 3
BT 671 Bench to Commercialization II 3
BT 672 Bench to Commercialization III 3
BT 675 Special Topics in Biotechnology 3
Innovative Technologies in Biotechnology (1 credit; take three times) 3
BT 676 Innovative Technologies in Biotechnology
BT 695 Biotechnology Internship 2
BT 698 Non-Thesis Research 4
CDS 505 Professional Skills Development 1
CDS 610 Research Design and Statistics 3

Total Hours 37

Biotechnology, PhD

Program Information

The PhD program in Biotechnology offers a completely new approach to doctoral learning, blending traditional scholarly research and pedagogy with practicum-based learning that ultimately will provide graduate students with unique and highly marketable skillsets. Specifically, core training in the program will span from scientific discovery to the collection of proof-of-concept data and the development of intellectual property, and the analysis of market opportunities and business plans for a novel product, all with the goal to officially launch a biotechnology company post-graduation. In addition to scientific discovery capability, the biotechnology doctoral students will graduate with the knowledge and skills needed to successfully conduct and evaluate research within the setting of a biotechnology company and will have acquired the knowledge of biotechnology economics, regulatory affairs, how to launch a biotechnology company, and the finance skills specific to moving a biotechnology product and company forward. Upon graduation, the successful student will be equipped to launch a biotechnology company or market a patented product post-graduation.

Degree Requirements

The 78-credit-hour curriculum comprises didactic instruction, laboratory training, and mentored and independent research. Students will have the opportunity to complete either the existing Biotechnology Regulatory Graduate Certificate or the Technology Commercialization and Entrepreneurship Graduate Certificate, concurrently with the doctoral degree. Upon completion of didactic course work, students will be expected to pass a competency examination relevant to content in laboratory and lecture courses before they can transition to internships and dissertation work. This examination will be comprised of written, oral, and practical components and generally will be completed in Semester 7.

Requirements Hours
Core Requirements
BT 701 Cellular and Molecular Biotechnology I 3
BT 702 Cellular and Molecular Biotechnology II 3
BT 670 Bench to Commercialization I 3
BT 671 Bench to Commercialization II 3
BT 725 Creating a Biotechnology Venture 3
BT 730 Managing and Leadership in Biotechnology 3
BT 732 Financing a Biotechnology Venture 3
BT 750 Laboratory Rotation I 1
BT 751 Laboratory Rotation II 1
BT 752 Laboratory Rotation III 1

Required Courses
GBS 701 Core Concepts in Research: Critical Thinking & Error Analysis 1
GBS 716 Grantsmanship and Scientific Writing 3
GRD 717 Principles of Scientific Integrity 3
BT 745 Research Design and Statistics for Biotechnology 3
provide students with targeted training and education in:

The Biotechnology Regulatory Affairs certificate program is designed to prepare students for the biotechnology industry by reshaping drug development and medical device regulation, fundamental tasks, behaviors, and abilities necessary to successfully complete the requirements of the Program are available upon request from the Biotechnology program office. If you have a disability but have not contacted Disability Support Services (DSS), please call 934-4205 or visit http://www.uab.edu/students/disability/.

Essential Requirements
Fundamental tasks, behaviors, and abilities necessary to successfully complete the requirements of the Program are available upon request from the Biotechnology program office. If you have a disability but have not contacted Disability Support Services (DSS), please call 934-4205 or visit http://www.uab.edu/students/disability/.

Additional Information
Contact Information
For detailed information, contact the Department of Clinical and Diagnostic Sciences, Biotechnology Program, UAB School of Health Professions, SHPB 430, 1716 9th Avenue South, Birmingham, Alabama 35294-1212.
Telephone 205-934-3209.
E-mail AskCDS@uab.edu

Courses
BT 500. Principles of Biotechnology - Nucleic Acid Technology. 3 Hours.
Theories and knowledge required for the development and commercialization of nucleic acid-based technology for the biotechnology industry including genes, cloning, detection, therapies, diagnostics, and analysis.

BT 550. Principles of Biotechnology - Amino Acid Technology. 3 Hours.
Theories and knowledge required for the development and commercialization of amino acid-based technology for the biotechnology industry including protein-based therapeutics, diagnostics, vaccines, and research reagents.

BT 600. Principles of Biotechnology - Systems Biology & Pharmacology. 3 Hours.
Theories and knowledge required for the understanding of the science and technology of systems biology and pharmacology.

BT 605. Applications of Biochemistry in Biotechnology. 3 Hours.
Current concepts of human biochemistry and molecular biology; protein structure and function, enzymes, intermediary metabolism, biosynthesis of lipids, and utilization of lipids; special emphasis on the molecular basis of inherited genetic diseases, acquired diseases, and clinically-related biochemistry in Biotechnology.

BT 650. Applications in Biotechnology I. 2 Hours.
Lab provides the opportunity to set-up, perform, and interpret the results of various molecular assays. These include, but are not limited to, the following: nucleic acid isolation, enzymatic manipulation of nucleic acids, gel electrophoresis, amplifications reactions and hybridization reactions. Most of the laboratory work will involve a eukaryotic system.

BT 651. Applications in Biotechnology II. 2 Hours.
A laboratory that prepares students for the biotechnology industry by teaching how recombinant DNA can be used to generate specific proteins in any protein expression system.
BT 652. Applications in Biotechnology III. 2 Hours.
Laboratory applications required for the research and development of nucleic acid and amino acid based technology for the biotechnology industry.

BT 670. Bench to Commercialization I. 3 Hours.
Focus on growth of a biotechnology company from inception through the early stages of development. Topics will include market assessment, business plan development, raising capital, and regulatory and quality systems requirements for drugs, biologics, medical devices or combination products.

BT 671. Bench to Commercialization II. 3 Hours.
Focus is on the issues and challenges affecting the life cycle of a biotechnology company and product as it progresses through the different stages of development including regulatory strategies, financing strategies, business development, and marketing strategies.

BT 672. Bench to Commercialization III. 3 Hours.
Focus is on the role of managers and leaders within biotechnology companies as they undergo constant change. The course will review effective communication strategies, problem solving tactics, leadership skills and development of methods to implement change. Students will focus on developing writing, verbal, and presentation skills through a series of projects.

BT 675. Special Topics in Biotechnology. 1-4 Hour.
Exploration of current issues in Biotechnology.

BT 676. Innovative Technologies in Biotechnology. 1 Hour.
An overview of new and innovative technologies used in the discovery, development, and production of biotechnology products. This will include a series of guest speakers who have successfully discovered novel technologies and products and transitioned them into early-stage companies.

BT 690. Capstone: Integrating Basic Science and Product Development. 1-4 Hour.
Synthesis of biotechnology knowledge used to develop innovative products for the life science industry. Application of product phases including the discovery, preclinical, clinical, FDA review and post-marketing surveillance. Working on teams, to select products/medical devices and critically evaluate how these products were developed and identify strengths and weaknesses in each phase of development.

BT 695. Biotechnology Internship. 2 Hours.
Supervised basic research in areas including molecular biology, protein chemistry, drug discovery, cardiovascular diseases, neurodegenerative diseases and cancer. Students are trained in research planning and execution, problem-solving, team work, and data analysis and presentation.

Non Thesis Research.

BT 701. Cellular and Molecular Biotechnology I. 3 Hours.
Study of prokaryotic systems focusing on structures, functions and replicative processes with particular emphasis on the systems that are used in the Biotechnology Industry, especially bacteria. The students will learn the central dogma in prokaryotes from DNA replication to transcription and translation and the sorting of proteins to various destinations using different transport systems. Bacterial enzymes, including restrictions endonucleases, will be examined and the use of these enzymes to develop innovative products for the life science industry.

BT 702. Cellular and Molecular Biotechnology II. 3 Hours.
Study of the principles of cellular and molecular biology using innovative life science technologies to demonstrate the biological mechanisms that were used to develop these products. General topics will include DNA replication, DNA repair, DNA Transcription, Posttranscriptional Modifications, Translation, and Posttranslational Modifications. Existing technologies will be discussed under the appropriate topic in order to enable the students to see how a particular biological process leads to the development of a number of innovative technologies.

BT 725. Creating a Biotechnology Venture. 3 Hours.
An in-depth look at starting a new biotechnology company. Specifically, the course will provide a roadmap for starting a company with an overview of the challenges and opportunities that biotechnology start-ups face.

BT 730. Managing and Leadership in Biotechnology. 3 Hours.
Leadership skills, communication, conflict resolution and organizational structures specific to biotechnology companies.

BT 732. Financing a Biotechnology Venture. 3 Hours.
Provide students with limited knowledge in finance the ability to understand the financial basics unique to running a biotechnology company from inception through commercialization.

BT 740. Biotechnology Seminar/Journal Club. 1 Hour.
Assigned readings, student presentations, and discussion of current literature and development activity in the life sciences and biotechnology industries.

BT 745. Research Design and Statistics for Biotechnology. 3 Hours.
Issues of contemporary research design and methods in biotechnology; focus on translational research and areas of controversy; application of statistical software with emphasis on interpretation of findings for decision support.

BT 750. Laboratory Rotation I. 1 Hour.
First in series of three laboratory rotations completed during the first two years of graduate study. Each laboratory rotation is 8-12 weeks in duration, and will be designed to allow the student to explore a potential avenue of research for their dissertation and project deliverable.

BT 751. Laboratory Rotation II. 1 Hour.
Second in series of three laboratory rotations completed during the first two years of graduate study. Each laboratory rotation is 8-12 weeks in duration, and will be designed to allow the student to explore a potential avenue of research for their dissertation and project deliverable.

BT 752. Laboratory Rotation III. 1 Hour.
Third in series of three laboratory rotations completed during the first two years of graduate study. Each laboratory rotation is 8-12 weeks in duration, and will be designed to allow the student to explore a potential avenue of research for their dissertation and project deliverable.

BT 753. Advanced Applications in Biotechnology. 3 Hours.
Basic molecular techniques used in research from bacterial culture to gene regulation. Techniques will be taught under the umbrella of a research project which will involve the cloning of a mammalian gene into an expression vector, its purification, sequencing, transfection into a mammalian cell host and the detection of the protein product. The techniques used will include PCR, cloning, transformation, plasmid isolation, DNA sequencing, transfection and protein detection using immunofluorescence and Western blot techniques.

BT 770. Drug Discovery. 3 Hours.
Overview of pharmaceutical development from target identification through pre-clinical development; focus on small molecule and biological products.
BT 772. Medicinal Chemistry. 3 Hours.
Comprehensive overview of concepts related to actions and clinical uses of major classes of drugs from their chemical structures; focus on structure-activity relationships, pharmacokinetics, and pharmacodynamics.

BT 795. Special Topics in Biotechnology. 1-4 Hour.
Special topics in Biotechnology.

BT 797. Independent Study. 1-3 Hour.
Student exploration of topic specific to their research agenda.

BT 798. Nondissertation Research. 1-9 Hour.
Independent student research to prepare dissertation proposal. Mentored by appointed Graduate Study Committee. Continuous registration is required until student is admitted to candidacy.

BT 799. Dissertation Research. 1-12 Hour.
Independent student research to complete dissertation project and written report. Mentored by appointed Graduate Study Committee.

Biotechnology Regulatory Affairs Certificate

Degree Offered: Graduate Certificate in Biotechnology Regulatory Affairs
Program Coordinator: Kimberly McCall, PhD
Phone: (205) 934-3209
E-Mail: biotech@uab.edu
Website: https://www.uab.edu/shp/cds/biotechnology-regulatory-affairs

Program Information

Program Mission
As the biotechnology industry grows and life science companies mature, there is an increasing demand for a workforce trained in regulatory affairs to ensure that therapeutics, biologics, diagnostics and medical device products progress successfully through the development, manufacturing and marketing processes. Currently, there are thousands of ongoing clinical trials of new drugs, with many of them soon to be approved and ready for full-scale production, resulting in an all-time high demand for individuals with regulatory training.

The Biotechnology Regulatory Affairs certificate program is designed to provide students with targeted training and education in:

- The philosophies and roles of the domestic and international regulatory agencies that oversee drug, biologic, device, and diagnostics development,
- The laws that govern the development, manufacturing and commercial distribution of drugs, biologics and medical devices,
- The analysis of how emerging developments and trends are reshaping drug development and medical device regulation,
- The biological processes and laboratory techniques utilized for the discovery, development and evaluation of therapeutic drugs,
- Major concepts under which clinical trials are designed and run,
- The roles of the U.S. Food and Drug Administration (FDA), Institutional Review Boards, the Code of Federal Regulations and ethical principles,
- The complexities of clinical trial initiation and the issues of site and data management.

Essential Requirements
Fundamental tasks, behaviors, and abilities necessary to successfully complete the requirements of the Program are available upon request from the Biotechnology program office. If you have a disability, but have not contacted Disability Support Services (DSS), please call 934-4205 or visit http://www.uab.edu/students/disability/.

Additional Information

Entry Term: Fall Semester
Deadline for All Application Materials to be in the Graduate School Office:
February 28 (Early Acceptance);
August 1 (Final Acceptance)
Number of Evaluation Forms Required: None
Entrance Tests: For international applicants from non-English speaking countries, scores for the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE)
Comments: Financial aid (fellowship, stipend, or assistantship) is not available from the program; scholarship availability is limited; transcript evaluation by WES is required for applicants with foreign university degrees

Contact Information
For detailed information, contact the Department of Clinical and Diagnostic Sciences, Biotechnology Program, UAB School of Health Professions, SHPB 430, 1716 9th Avenue South, Birmingham, Alabama 35294-1212.
Telephone 205-934-3209.
E-mail AskCDS@uab.edu

Graduate Certificate in Biotechnology Regulatory Affairs

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTR 605 Biotechnology Regulatory & Quality Systems</td>
<td>3</td>
</tr>
<tr>
<td>BTR 615 Applications of Biological Processes in Drug Development</td>
<td>3</td>
</tr>
<tr>
<td>BTR 620 Regulation of Food and Drugs</td>
<td>3</td>
</tr>
<tr>
<td>BTR 640 Clinical Development of Drugs, Biologics, Diagnostics, and Medical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BTR 690 Clinical Trial Implementation</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

SHP 430, 1716 9th Avenue South, Birmingham, Alabama 35294-1212.
Courses

BTR 605. Biotechnology Regulatory & Quality Systems. 3 Hours.
U.S. and European Union regulatory affairs frameworks and practices governing the development, approval, manufacturing and surveillance of pharmaceuticals and medical devices, including in vitro diagnostic products. Regulations covered include investigational new drug applications (IND), new drug applications (NDA), good laboratory practices (GLP), good clinical practices (GCP) and current good manufacturing practices (cGMP).

BTR 615. Applications of Biological Processes in Drug Development. 3 Hours.
Overview of biological processes and laboratory techniques for discovery, development and evaluation of therapeutic drugs. Focus on drug development processes such as gene cloning, culture scale-up, downstream processing, and product purification. Emphasis on theory and application of laboratory methods used in drug development.

BTR 620. Regulation of Food and Drugs. 3 Hours.
Administrative procedures followed by the FDA; enforcement activities of the FDA, including searches, seizure actions, injunctions, criminal prosecutions, and civil penalties authorized by statutes.

BTR 640. Clinical Development of Drugs, Biologics, Diagnostics, and Medical Devices. 3 Hours.
Major concepts under which clinical trials are designed and run. Focus on phases of clinical trial development, role of the U.S. Food and Drug Administration, Institutional Review Boards, and the Code of Federal Regulations and ethical principles.

BTR 675. Special Topics in Biotechnology Regulatory Affairs. 1-4 Hour.
Exploration of current issues in Biotechnology Regulatory Affairs.

BTR 690. Clinical Trial Implementation. 3 Hours.
Activities involved in running a clinical trial from study initiation to study close-out. Complex details and issues associated with study initiation, site and data management, preparation of the final report and study close-out.

Clinical Laboratory Sciences

M.S. Admission Requirements

In addition to the general Graduate School admission requirements, applicants to the M.S. program must:

- Have a biology, chemistry, or a related major from an accredited college or university,
- Have a minimum undergraduate GPA of 3.0 (A = 4.0), computed from all undergraduate credits or from the last 60 semester hours of undergraduate course credit,
- Provide a written statement of career goals,
- If foreign-educated, have a score of at least 550 for paper version (or 80 for Internet version; or 213 for computer version) on the TOEFL, submit a transcript evaluation from World Education Services (WES) at www.wes.org

If accepted, students must complete the UAB medical history questionnaire and physical, provide proof of required immunizations, and receive satisfactory screening by the UAB Medical Center Student Health Service before enrollment. A background check and drug screen will be required at program admission and prior to clinical placement. Persons with a Bachelor of Science degree may be eligible to register for courses as non-degree seeking graduate students before acceptance into the M.S. program. If a non-degree seeking graduate student meets the M.S. program admission requirements, up to 12 semester hours of approved non-degree graduate coursework may be accepted for the M.S. degree. Admission of a student to any course as a non-degree student does not constitute admission to the M.S. degree program.

Essential Functions

Essential functions are fundamental tasks, behaviors, and abilities necessary to successfully complete the requirements of the Program. A full list of the essential functions of the program is available from the CLS website under the link Admission (http://www.uab.edu/shp/cds/clinical-laboratory-sciences). Essential functions are physical abilities, mental abilities, skills, attitudes, and behaviors the students must evidence or perform at each stage of their education. The absence of an essential function would fundamentally alter a student’s ability to meet the program goals. The essential requirements include categories of observation, movement, communication, intellect, and behavior.

If you have a disability, but have not contacted Disability Support Services (DSS), please call 934-4205 or visit the DSS offices at 1701 9th Avenue South. Additional information is available at http://www.uab.edu/students/disability/.

Accreditation and Certification

The program is accredited by the National Accrediting Agency for Clinical Laboratory Sciences. Program graduates are eligible to apply for the certification examination offered by the American Society of Clinical Pathology Board of Certification (ASCP-BOC).

NAACLS

5600 N River Road, Suite 720
Rosemont, IL 60018-5119
Phone: 847.939.3597
Fax: 773.714.8886
URL: http://www.naacls.org/

ASCP Board of Certification

33 West Monroe Street, Suite 1600
Additional Information:

Entry Term: Fall semester
Deadline for All Application Materials to be in the Graduate School Office: Early Admission: February 1; Regular Admission: May 1
Entrance Tests: GRE and for international applicants from non-English speaking countries, scores for the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE)
Comments: Scholarship money is available, but is limited; transcript evaluation by WES is required for applicants with foreign university degrees

Contact Information
For detailed information, contact the Department of Clinical and Diagnostic Sciences, Clinical Laboratory Sciences Program, UAB School of Health Professions, SHPB 430, 1716 9th Avenue South, Birmingham, Alabama 35294-1212.
Telephone 205-934-3209.
E-mail AskCDS@uab.edu

Master of Science in Clinical Laboratory Science

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS 502 Fundamentals of Phlebotomy and Body Fluid Collection</td>
<td>1</td>
</tr>
<tr>
<td>CDS 505 Professional Skills Development</td>
<td>1</td>
</tr>
<tr>
<td>CDS 610 Research Design and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>CDS 626 Analysis of Scientific Publications</td>
<td>3</td>
</tr>
<tr>
<td>CLS 501 Introduction to the Clinical Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CLS 503 Body Fluids</td>
<td>1</td>
</tr>
<tr>
<td>CLS 504 Lab Analysis of Body Fluids</td>
<td>1</td>
</tr>
<tr>
<td>CLS 505 Laboratory Management</td>
<td>3</td>
</tr>
<tr>
<td>CLS 518 Immunology</td>
<td>3</td>
</tr>
<tr>
<td>CLS 523 Clinical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>CLS 524 Clinical Microbiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CLS 526 Instrumentation & Automation</td>
<td>2</td>
</tr>
<tr>
<td>CLS 527 Instrumentation and Automation Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CLS 528 Hematology I</td>
<td>3</td>
</tr>
<tr>
<td>CLS 529 Hematology I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CLS 530 Immunohematology</td>
<td>4</td>
</tr>
<tr>
<td>CLS 531 Immunohematology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CLS 532 Hematology II</td>
<td>3</td>
</tr>
<tr>
<td>CLS 533 Hematology II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CLS 538 Infectious Diseases</td>
<td>3</td>
</tr>
<tr>
<td>CLS 539 Infectious Diseases Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CLS 542 Molecular Diagnostics</td>
<td>3</td>
</tr>
<tr>
<td>CLS 543 Molecular Diagnostics Lab</td>
<td>1</td>
</tr>
<tr>
<td>CLS 551 Clinical Chemistry</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours: 72

Courses

CLS 501. Introduction to the Clinical Laboratory. 3 Hours.
Overview of issues and skills surrounding working in the modern laboratory environment; introduction to roles and functions of a medical laboratory scientist; includes safety, equipment, mathematics, measurements, microscopy, dilutions, quality assurance, regulations of the laboratory, laboratory operations, and educational principles.

CLS 502. Fundamentals of Phlebotomy and Body Fluid Collection. 1 Hour.
An in depth course in phlebotomy covering aspects of safety procedures, hygiene, capillary puncture, venipuncture, arterial access and maintenance, intravenous access and maintenance, drug administration via IV, intramuscular and subcutaneous methods and non-blood collections of bodily fluids.

CLS 503. Body Fluids. 1 Hour.
Diagnosis and monitoring of renal and systemic disease through the physical, biochemical, and microscopic analysis of urine and feces. Diagnosis of central nervous system and systemic disease through cerebrospinal fluid analysis. Diagnosis of metabolic and infectious disease through analysis of peritoneal fluid, synovial fluid, transudates, and exudates. Fertility testing using semen analysis.

CLS 504. Lab Analysis of Body Fluids. 1 Hour.
Application of diagnosis and monitoring of renal and systemic disease through the physical, biochemical, and microscopic analysis of urine and feces. Diagnosis of central nervous system and systemic disease through cerebrospinal fluid analysis. Diagnosis of metabolic and infectious disease through analysis of peritoneal fluid, synovial fluid, transudates, and exudates. Fertility testing using semen analysis.

CLS 505. Laboratory Management. 3 Hours.
Roles and functions of clinical laboratories and practitioners; professionalism and ethics; educational methodology and training; professional and interpersonal communication; behavioral aspects of management; leadership styles and management theory; team-building; legal issues related to employment; recruitment, interview and selection of personnel; organizational culture and behavioral change; laboratory operations; safety, governmental regulations, standards and compliance; marketing, outreach, and business plan; budget, cost analysis, reimbursement; critical pathways, decision-making, test utilization; performance improvement, quality assessment; risk management, evidence-based laboratory medicine.

CLS 518. Immunology. 3 Hours.
Physiology of immune responses to infectious agents, tumors, transplant; abnormal responses: hypersensitivity, autoimmunity, immunoproliferative disorders, and immunodeficiencies; antigen-antibodt reaction; complement; application of immunologic tests.

CLS 523. Clinical Microbiology. 3 Hours.
Reservoirs, modes of transmission, disease associations, and morphological and biochemical characteristics of microorganisms commonly isolated in the clinical laboratory; methods used to isolate and identify bacteria, parasites, and fungi.
CLS 524. Clinical Microbiology Laboratory. 1 Hour.
Performance of techniques and tests used in the isolation and identification of bacteria, fungi, and parasites commonly seen in a clinical microbiology laboratory.

CLS 526. Instrumentation & Automation. 2 Hours.
Study of the theory and principles of automation and instrumentation used in laboratories. Emphasis will be placed on quality control, quality assurance, instrumentation principles, basic statistics, and regulatory, and economic issues encountered in laboratories including, clinical labs, health labs, government labs, private labs and other laboratories.

CLS 527. Instrumentation and Automation Laboratory. 1 Hour.
Practical application of automation and instrumentation used in laboratories. Emphasis will be placed on quality control, quality assurance, instrumentation principles, basic statistics, and regulatory, and economic issues encountered in laboratories including, clinical labs, health labs, government labs, private labs and other laboratories.

CLS 528. Hematology I. 3 Hours.
Systematic examination of blood cells: normal function; recognizing their microscopic appearance; blood cell disorders; standard and special clinical hematology laboratory procedures; validation of laboratory data; interpretation of results, and quality assurance.

CLS 529. Hematology I Laboratory. 1 Hour.
Practical application of Hematology I as applicable to diagnostic assays in clinical laboratories. An emphasis will be placed on hematology lab principles; complete blood count analysis, manual hematology procedures, automated and manual differentials, cell identification, procedural determination of various clinical diseases and disorders (anemia, leukemia etc.,) bone marrow analysis, quality control and quality assurance procedures in the hematology lab.

CLS 530. Immunohematology. 4 Hours.
Immunogenetics, serological characteristics, and clinical significance of blood group systems; antibody identification; pretransfusion testing and problem-solving; donor blood collection; component preparation; transfusion and cellular therapy; investigation and treatment of immune hemolytic disorders.

CLS 531. Immunohematology Laboratory. 1 Hour.
Red cell phenotyping, antibody detection and identification, pretransfusion testing, and laboratory investigation to diagnosis and treat hemolytic anemias.

CLS 532. Hematology II. 3 Hours.
Structure and function of hematopoietic and lymphatic tissue. Stem cell differentiation, hematopoiesis, erythrocyte and leukocyte kinetics. Laboratory diagnosis and case management of anemia, lymphoma, myeloma, acute and chronic cell morphology, cell population scatter plots and histograms, cytochemistry, immunophenotyping, molecular methods, and cytogenetics. Hematology laboratory problem solving.

CLS 533. Hematology II Laboratory. 1 Hour.
Practical application as applicable to diagnostic assays in clinical laboratories. An emphasis will be placed on hematology lab principles; complete blood count analysis, manual hematology procedures, normal and abnormal peripheral blood smear differentials, cell identification, procedural determination of various clinical diseases and disorders (anemia, leukemia etc.,) bone marrow analysis, quality control and quality assurance procedures in the hematology lab.

CLS 538. Infectious Diseases. 3 Hours.
Pathogenic mechanisms of infectious diseases; normal flora and pathogens of various body sites; methods for collection, transport, and culturing different types of clinical specimens; interpretation of cultures.

Prerequisites: CLS 523 [Min Grade: C]

CLS 539. Infectious Diseases Laboratory. 1 Hour.
Performance and interpretation of direct Gram stains; culturing various types of clinical specimens for isolation of bacteria; performing and interpreting tests used in the identification of potential pathogens; reporting culture results; antimicrobial susceptibility and resistance testing.

Prerequisites: CLS 524 [Min Grade: C]

CLS 542. Molecular Diagnostics. 3 Hours.
Study of molecular biochemistry, medical genetics, molecular pathophysiology, and the theory of molecular tests.

CLS 543. Molecular Diagnostics Lab. 1 Hour.
Practical application of the isolation of nucleic acids, analysis of nucleic acids and protein, cytogenetics, and the interpretation of various molecular methods.

CLS 551. Clinical Chemistry. 4 Hours.
Theory of clinical laboratory techniques to identify and quantitate chemical analytes in body fluids and the correlation of these analytes to human disease.

CLS 552. Clinical Chemistry Laboratory. 1 Hour.
Performance of laboratory techniques used to identify and quantitate chemical analytes in body fluids and the correlation of these analytes to human disease.

CLS 560. Clinical Correlations. 3 Hours.
Correlate clinical, technical and analytical proficiencies that comprise clinical laboratory science practice. Analyze and interpret case studies through selection, application, and interpretation of clinical laboratory protocols.

Prerequisites: CLS 532 [Min Grade: C] (Can be taken Concurrently) and CLS 538 [Min Grade: C] (Can be taken Concurrently) and CLS 551 [Min Grade: C] (Can be taken Concurrently)

CLS 570. Professional Development. 1 Hour.
Review of medical technology/clinical laboratory science body of knowledge with required comprehensive trial certification final examination using self-directed online materials. Experience with the development of a personal certification maintenance plan to meet requirements defined by national certification agencies in Clinical Laboratory Sciences.

CLS 595. Clinical Practice. 1-12 Hour.
Directed clinical practice in immunohematology laboratory procedures and methods, problem-solving, quality assurance, preventive maintenance, and safety.

CLS 666. Special Topics in Clinical Laboratory Sciences. 1-4 Hour.
Selected advanced topics of current scientific, clinical, and professional importance; specific topics designed to meet student need and interest.

CLS 698. Master’s Level Non-Thesis Research. 1-6 Hour.

CLS 699. Thesis Research. 1-6 Hour.
Implementation of research. Must be admitted to master level candidacy. Must have approval IRB. Must have a 3 member committee approved by the graduate dean.

Prerequisites: GAC M
Genetic Counseling

Degree Offered: M.S.
Program Director: R. Lynn Holt
Phone: (205) 975-4237
E-mail: lynnholz@uab.edu
Website: www.uab.edu/msgc

Master of Science in Genetic Counseling

Accreditation:
The Genetic Counseling Program is fully accredited by the Accreditation Council for Genetic Counseling (ACGC). The program received full accreditation in 2013 and was approved again 2018 for an additional eight years. Fully accredited programs must complete a rigorous process to demonstrate that the program is capable of meeting the criteria for a genetic counseling training program as established by ACGC. Programs that successfully complete this process are awarded full accreditation. All graduates of an accredited program are eligible for the board examination offered by the American Board of Genetic Counseling, Inc. (ABGC) and state licensure.

Admission Requirements
- Baccalaureate degree from a regionally accredited college/university
- A minimum cumulative undergraduate grade point average of at least 3.0 (A = 4.0)
- A minimum GPA of 3.0 in natural science courses
- A minimum cumulative grade point average of 3.0 in the program prerequisite courses, with a minimum grade of C in each (prerequisite courses are listed below)
- Resume or CV: This should include academic qualifications, a description and timeline of any paid or volunteer work experience in crisis counseling or peer counseling setting, working with individuals with genetic conditions or disabilities, technical work in laboratories, research, or teaching experience, and any other relevant information, such as job shadowing.
- A personal statement (no more than 500 words) highlighting your motivation to become a genetic counselor and emphasizing your prior and current experiences and how they will benefit you in the profession.
- Paid or volunteer experience as a genetic counseling assistant (GCA), in a crisis counseling setting, peer counseling setting, working with individuals with genetic conditions or disabilities, technical work in laboratories, research, or teaching experience in biology or genetics is recommended and encouraged in preparation for entering the genetic counseling field. Job shadowing is strongly encouraged.
- Interview with UAB faculty
- Three letters of recommendation
- Satisfactory screening on health data questionnaire by the UAB Medical Center Student Health Service.
- Complete a criminal background check and drug screen at program admission and again prior to clinical placement as required by school policy.
- Registration with National Matching Services.

- Biology (one full-year course sequence)
- Biochemistry (one upper level semester course)
- Genetics (one semester course to include Mendelian and molecular genetics)
- General Psychology (one semester)
- Statistics (one semester)

Degree Requirements
The graduate program in genetic counseling will follow the Plan II (non-thesis) option.

Program Curriculum

<table>
<thead>
<tr>
<th>First Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td></td>
</tr>
<tr>
<td>GC 501</td>
<td>3</td>
</tr>
<tr>
<td>GC 510</td>
<td>3</td>
</tr>
<tr>
<td>GC 560</td>
<td>1</td>
</tr>
<tr>
<td>GC 725</td>
<td>3</td>
</tr>
<tr>
<td>CDS 505</td>
<td>1</td>
</tr>
<tr>
<td>CDS 610</td>
<td>3</td>
</tr>
<tr>
<td>ECG 621</td>
<td>3</td>
</tr>
<tr>
<td>Total credit hours:</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 504</td>
<td>3</td>
</tr>
<tr>
<td>GC 505</td>
<td>3</td>
</tr>
<tr>
<td>GC 506</td>
<td>3</td>
</tr>
<tr>
<td>GC 560</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 656</td>
<td>2</td>
</tr>
<tr>
<td>ECG 638</td>
<td>3</td>
</tr>
<tr>
<td>Total credit hours:</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 650</td>
<td>2</td>
</tr>
<tr>
<td>GC 651</td>
<td>4</td>
</tr>
<tr>
<td>GC 698</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours:</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td></td>
</tr>
<tr>
<td>GC 560</td>
<td>1</td>
</tr>
<tr>
<td>GC 600</td>
<td>2</td>
</tr>
<tr>
<td>GC 652</td>
<td>2</td>
</tr>
<tr>
<td>GC 653</td>
<td>2</td>
</tr>
<tr>
<td>GC 698</td>
<td>1</td>
</tr>
<tr>
<td>CDS 605</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours:</td>
<td>9</td>
</tr>
</tbody>
</table>
Second Year

<table>
<thead>
<tr>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 560</td>
<td>1</td>
</tr>
<tr>
<td>GC 602</td>
<td>2</td>
</tr>
<tr>
<td>GC 654</td>
<td>2</td>
</tr>
<tr>
<td>GC 655</td>
<td>2</td>
</tr>
<tr>
<td>GC 698</td>
<td>1-3</td>
</tr>
<tr>
<td>Total credit hours: 8-10</td>
<td></td>
</tr>
</tbody>
</table>

Additional Information

Deadline for Entry Term(s): January 7

Deadline for All Application Materials to be in the Graduate School Office: January 15

Number of Evaluation Forms Required: Three

Entrance Tests: TOEFL and TWE also required for international applicants whose native language is not English.

Essential Functions

In order to successfully complete the degree requirements for the curriculum for the Master of Science (M.S.) in Genetic Counseling Program, students must complete the academic and clinical practice requirements of the program in preparation to practice as an entry-level genetic counselor (s). As defined by the program’s accrediting body, the Accreditation Council for Genetic Counseling, an entry level genetic counselor may demonstrate mastery of a broad body of genetics knowledge, and develop skills in the following domains: Genetic Expertise and Analysis; Interpersonal, Psychosocial and Counseling Skills; Education; and Professional Development and Practice. Graduate training is a rigorous and intense training process that places specific requirements and demands on enrolled students. The essential functions below extend beyond academic requirements for admission and are standards that all enrolled students must possess in order to successfully complete graduate training. All genetic counseling students must meet the following requirements:

- Communicate effectively and sensitively with patients and members of the health care team.
- Possess the mental capacity for critical thinking including the ability to assimilate, analyze, synthesize, and integrate concepts and to problem solve in a timely fashion.
- Possess the emotional health and psychological stability required for full utilization of his/her intellectual abilities, exercise good judgement, prompt completion of all responsibilities and the development of mature, sensitive and effective relationships with patients and other members of the health care team.
- Adapt to changing environments and function effectively under stress.
- Students must be able to demonstrate proficiency of all ACGC Practice Based Competencies.

ACGC Practice Based Competencies are available in the UAB GCP Student Handbook and online at http://www.gceducation.org.

Master of Science in Genetic Counseling

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS 505</td>
<td>Professional Skills Development</td>
<td>1</td>
</tr>
<tr>
<td>CDS 605</td>
<td>Survival Spanish for Health Professionals</td>
<td>1</td>
</tr>
<tr>
<td>CDS 610</td>
<td>Research Design and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 656</td>
<td>Human Embryology</td>
<td>2</td>
</tr>
<tr>
<td>ECG 621</td>
<td>Theories of Individual Counseling</td>
<td>3</td>
</tr>
<tr>
<td>ECG 638</td>
<td>Practicum I: Clinical Skills and Techniques</td>
<td>3</td>
</tr>
<tr>
<td>GC 501</td>
<td>Genetics in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>GC 504</td>
<td>Prenatal Genetics, Embryology and Teratology</td>
<td>3</td>
</tr>
<tr>
<td>GC 505</td>
<td>Principles of Cancer and Adult Genetics and Counseling</td>
<td>3</td>
</tr>
<tr>
<td>GC 506</td>
<td>Theory and Practice of Genetic Counseling</td>
<td>3</td>
</tr>
<tr>
<td>GC 510</td>
<td>Introduction to Genetic Counseling</td>
<td>3</td>
</tr>
<tr>
<td>GC 600</td>
<td>Advanced Clinical Skills in Genetic Counseling - SL</td>
<td>2</td>
</tr>
<tr>
<td>GC 602</td>
<td>Advanced Topics in Genetic Counseling</td>
<td>2</td>
</tr>
<tr>
<td>GC 650</td>
<td>Clinical Laboratory Rotation</td>
<td>2</td>
</tr>
<tr>
<td>GC 651</td>
<td>Clinical Rotation I</td>
<td>4</td>
</tr>
<tr>
<td>GC 652</td>
<td>Clinical Rotation II</td>
<td>2</td>
</tr>
<tr>
<td>GC 653</td>
<td>Clinical Rotation III</td>
<td>2</td>
</tr>
<tr>
<td>GC 654</td>
<td>Clinical Rotation IV</td>
<td>2</td>
</tr>
<tr>
<td>GC 655</td>
<td>Clinical Rotation V</td>
<td>2</td>
</tr>
<tr>
<td>GC 725</td>
<td>Advanced Medical Genetics and Genomics</td>
<td>3</td>
</tr>
</tbody>
</table>

Non-Thesis Research (take three times)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 698</td>
<td>Non Thesis Research</td>
</tr>
</tbody>
</table>

Four hours of Journal Club

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 560</td>
<td>Genetic Counseling Journal Club (take four times)</td>
</tr>
</tbody>
</table>

Total Hours: 57

Courses

GC 501. Genetics in Medicine. 3 Hours.
Overview of the clinical evaluation and assessment of an individual with a congenital anomaly, intellectual disability and/or genetic condition; includes introduction to etiology of common genetic conditions, pediatric genetic counseling, and testing and treatment options for genetic disorders.

GC 504. Prenatal Genetics, Embryology and Teratology. 3 Hours.
Basic concepts of embryology, teratology and physiology as related to human development and genetic disease and their applications in prenatal genetic counseling.

GC 505. Principles of Cancer and Adult Genetics and Counseling. 3 Hours.
Genetic mechanisms of cancer syndromes, cancer predisposition, and adult onset disorders; psychosocial issues related to these conditions that influence the genetic counseling process.

GC 506. Theory and Practice of Genetic Counseling. 3 Hours.
Development of advanced genetic counseling skills for application in clinical settings.

Contact Information

For detailed information, contact Program Director, Graduate Program in Genetic Counseling, UAB School of Health Professions, 1716 9th Avenue South, SHPB 444, Birmingham, AL 35294-1212.

Telephone 205-975-4CDS (205-975-4237)

E-mail AskCDS@uab.edu

Website www.uab.edu/msgc
GC 510. Introduction to Genetic Counseling. 3 Hours.
Introduction to the field of genetic counseling and the basic principles of the profession.

GC 535. Medical Genetics Across the Lifespan. 1 Hour.
Applications in patient care of medical genetics and genomics; genetic family and medical history collection; indications for referral to medical genetics; appropriate use and interpretation of genetic testing; ethical issues in medical genetics.

GC 545. Genetics and Genomics Applications in Health Care. 2 Hours.
Introduction for non-clinicians to the basic principles of medical genetics and the applications of genetics and genomics in healthcare.

GC 560. Genetic Counseling Journal Club. 1 Hour.
Review, presentation and discussion of relevant literature in medical genetics and genetic counseling.

GC 575. Special Topics in Genetic Counseling. 1-4 Hour.
Exploration of current issues in Genetic Counseling.

GC 600. Advanced Clinical Skills in Genetic Counseling - SL. 2 Hours.
Advanced genetic counseling clinical skills utilized in reflective practice, industry, and psychosocial counseling. Students will have opportunities to understand and participate in the lived experiences of people with disabilities through clinical and non-clinical professional duties as a genetic counselor. Attention will be placed on personal and group reflection of these experiences, including service learning and simulations.

GC 602. Advanced Topics in Genetic Counseling. 2 Hours.
Exploration of advanced topics in genetic counseling related to clinical practice and non-clinical professional duties as a genetic counselor.

GC 650. Clinical Laboratory Rotation. 2 Hours.
Exposure to genetic testing protocols, laboratory genetic counseling, and specimen processing and reporting through rotation in biochemical, molecular, and cytogenetic laboratories.

GC 651. Clinical Rotation I. 4 Hours.
Initial clinical rotation to establish basic skill sets in genetic counseling. Supervised and direct patient contact in prenatal, pediatric, adult, cancer, and specialty clinics will allow students to acquire cases for American Board of Genetic Counseling (ABGC) certification.

GC 652. Clinical Rotation II. 2 Hours.
Students utilize intermediate clinical skills in assigned clinical setting. Students interact with an array of genetic specialists. Supervised and direct patient contact in prenatal, pediatric, adult, cancer and specialty clinics will allow students to acquire cases for ABGC certification.

GC 653. Clinical Rotation III. 2 Hours.
Students will apply progressive genetic counseling skills in a clinical setting. Students will interact with an array of genetic specialists. Supervised and direct patient contact in prenatal, pediatric, adult, cancer and specialty clinics will allow students to acquire cases for ABGC certification.

GC 654. Clinical Rotation IV. 2 Hours.
Students will apply progressive genetic counseling skills in a clinical setting. Students will interact with an array of genetic specialists. Supervised and direct patient contact in prenatal, pediatric, adult, cancer and specialty clinics will allow students to acquire cases for ABGC certification.

GC 655. Clinical Rotation V. 2 Hours.
Students will apply progressive genetic counseling skills in a clinical setting. Students will interact with an array of genetic specialists. Supervised and direct patient contact in prenatal, pediatric, adult, cancer and specialty clinics will allow students to acquire cases for ABGC certification.

GC 658. Non Thesis Research. 1-3 Hour.
Graduate level research project under the supervision of clinical faculty.

GC 725. Advanced Medical Genetics and Genomics. 3 Hours.
Medical application of advances in genetics and genomics; chromosome structure and function and major types of chromosomal abnormalities, cancer genetics and cytogenetics; current strategies for detection of mutations associated with genetic disorders, genetic risk assessment and population genetics; genomic approaches to diagnosis and risk stratification.

Health Physics

Health Physics

Program Information

Health physics is the science of radiation protection. This interdisciplinary field combines physics, biology, chemistry, and radiological science to improve human lives. The UAB program offers unique didactic coursework, an applied internship, and the option to complete either a capstone project or a master's thesis.

Admission Requirements

In addition to the general Graduate School admission requirements, applicants to the M.S. program must:

- Have a baccalaureate degree in biology, physics, chemistry, biomedical sciences, bioengineering, or a related degree from an accredited college or university,
- Have a minimum undergraduate GPA of 3.0 (A= 4.0), computed from all undergraduate credits or from the last 60 semester hours of undergraduate course credit,
- Apply for admission to the UAB MHP Program,
- International students from non-English speaking countries are required to submit English proficiency scores (TOEFL/IELTS/ PTEA/Duolingo) that meet the Graduate School's minimum score requirements: TOEFL - 80; IELTS - 6.5; PTEA:- 53; IELA - 176 - Duolingo - 120. See other international admission requirements at https://www.uab.edu/graduate/admissions/international-applicants.

The completed application must be on file with the program office by March 1st for a priority interview to be granted. All eligible applicants will be interviewed in March for admission decisions in early April. Eligible late applicants will be considered on a space-available basis up to August 1st.

If accepted, students must complete the UAB medical history questionnaire and physical. Provide proof of required immunizations,
and receive satisfactory screening by the UAB Medical Center Student Health Service before enrollment. A background check and drug screen will be required at program admission and prior to clinical placement. Persons with a baccalaureate degree may be eligible to register for courses as non-degree seeking graduate students before acceptance into the M.S. program. If a non-degree seeking graduate student meets the M.S. program admission requirements, up to 12 semester hours of approved non-degree graduate coursework may be accepted for the M.S. degree. Admission of a student to any course as a non-degree student does not constitute admission to the M.S. degree program.

Early Acceptance

Early Acceptance Programs are designed for academically superior high-school students. Early Acceptance Programs allow high achieving students to be admitted to the Health Physics program at the same time they are admitted to an undergraduate program.

Eligible students are required to maintain a 3.5 undergraduate GPA.

Program Accreditation and Professional Credentials

Established Health Physics programs may seek accreditation from the Accreditation Board for Engineering and Technology (ABET). Programmatic accreditation can be sought when the program is fully implemented and has graduated its first cohort of students. Program graduates will be eligible for part I of the certification examination administered by the American Board of Health Physics (ABHP).

Additional Information

Entrance Term:
Fall Semester

Deadline for Application Materials to be in the Graduate School Office:
First Consideration: March 1st; Space available basis after first consideration, up to August 1

Entrance Tests:
For international applicants from non-English speaking countries, minimum score requirements: TOEFL - 80; IELTS - 6.5; PTEA:- 53; IELA - 176 - Duolingo - 120.

Contact Information

For detailed information, contact the Department of Clinical and Diagnostic Sciences, Health Physics Program, UAB School of Health Professions, SHPB 446, 1716 9th Avenue South, Birmingham, Alabama 35294-1212. Telephone 205-934-3209. E-mail AskCDS@uab.edu

Master of Science in Health Physics

Requirements

Courses

MHP 601. Principles of Health Physics. 3 Hours.
Introduction to the practice of health physics. Topics include accelerator and cyclotron health physics, environmental radiation, emergency response, decommissioning and decontamination, and nuclear reactors.

MHP 602. Radiation Physics. 3 Hours.
Introduction to the practice of health physics and an introduction to fundamental nuclear physics concepts. Emphasis is placed upon radioactive decay and the interaction of radiation with matter. Topics in support of this include relativistic dynamics, basic quantum mechanics, nuclear reactions, cross sections, basic atomic structure, fission and fusion.

MHP 610. Radiation Detection and Measurement. 4 Hours.
Principles and mechanisms underlying nuclear radiation detection and measurements; operation of nuclear electronic laboratory instrumentation; application of laboratory detectors for measurement of alpha, beta, and gamma radiation; digital spectroscopy; experimental investigation of interactions of radiation with matter.

MHP 611. Physics of Diagnostic Imaging. 3 Hours.
Overview of the various imaging modalities used in a clinical setting. Topics include the basics of X-rays, ultrasound, CT, MRI, SPECT & PET imaging.

Prerequisites: NMT 620 [Min Grade: C]

MHP 620. Principles of Dosimetry. 3 Hours.
Fundamental principles of radiation dosimetry. Topics include the mathematical treatment of internal and external doses from radiation sources, dosimetry models, routes of intake, industrial and medical sources.

Prerequisites: MHP 601 [Min Grade: C]

MHP 621. Nonionizing Radiation. 3 Hours.
Recognition, assessment, and control of nonionizing radiation hazards. Topics include sound, electricity, magnetism, microwaves, visible light, ultraviolet radiation, and lasers.

Prerequisites: MHP 611 [Min Grade: C] and NMT 610 [Min Grade: C]

MHP 645. Radiation Shielding and Protection. 3 Hours.
Principles of shielding from various types of radiation sources; scenario of radiation exposure and properties of various shielding materials; approaches to radiation protection.

Prerequisites: MHP 601 [Min Grade: C] and NMT 610 [Min Grade: C]
MHP 651. Advanced Radiation Biology. 3 Hours.
Effects of radiation at the molecular, cellular and whole-tissue level. Topics include cell survival curves, repair of radiation damage, radiation carcinogenesis, risk assessment models, cancer biology, model tumor systems, and dose fractionation in radiotherapy.
Prerequisites: NMT 641 [Min Grade: C]

MHP 652. Radiochemistry. 3 Hours.
Overview of fundamentals of radiochemistry and experiments including counting statistics, radionuclide generator design, elution and operation, labeling and quality control, liquid scintillation counting, radiotracer techniques and applications, and dating techniques.
Prerequisites: MHP 611 [Min Grade: C] and NMT 610 [Min Grade: C]

MHP 653. Research Methodology and Publication Analysis. 2 Hours.
Perform scientific research, critically evaluate scientific literature, and write an abstract and scientific poster on a topic relevant to health physics.

MHP 654. Laser Safety and Protection. 3 Hours.
Principles of laser, types of lasers, interaction of lasers with the human body, and laser safety regulations.
Prerequisites: MA 125 [Min Grade: C]

MHP 655. Contemporary Issues in Health Physics and CHP Exam Review. 3 Hours.
Exploration of contemporary issues in health physics; in-depth curriculum review to prepare for CHP exam.

MHP 657. Monte Carlo Techniques for Health Physicists. 1 Hour.
Introduction to Monte Carlo techniques that are regularly used by health physicists.

MHP 675. Special Topics in Health Physics. 1-4 Hour.
Exploration of current issues in Health Physics.

MHP 691. Supervised Practice. 1-10 Hour.
Supervised practice experiences in applied health physics.
Prerequisites: MHP 620 [Min Grade: C]

MHP 698. Non-Thesis Research. 1-6 Hour.
Directed research with a faculty mentor to complete an applied master’s degree project.

MHP 699. Thesis Research for MHP. 1-6 Hour.
Original research in health physics and interpretation of results. Demonstrates student’s acquaintance with literature of field and competency in proper selection and execution of research methodology.
Prerequisites: GAC M

Physician Assistant Studies

Degree Offered: M.S.P.A.S.
Program Director: M. Tosi Gilford, MD, PA-C
Phone: (205) 936-9921
E-mail: AskCDS@uab.edu
Website: www.uab.edu/pa

General Information

Physician Assistants (PAs) are valuable members of a multidisciplinary healthcare team. The profession was established in 1965 to help physicians provide healthcare services to under-served and rural populations. While the profession remains committed to its historical mission, PAs are now employed in almost all medical and surgical specialties.

PAs are healthcare professionals licensed to practice medicine under the supervision of a physician. Individual state practice laws and hospital bylaws define the scope of practice and prescribing authority of physician assistants. To be eligible for licensure, PAs must graduate from an accredited physician assistant program and pass the Physician Assistant National Certification Examination (PANCE). To maintain licensure, PAs must complete 100 hours of continuing medical education credits every two years and pass the Physician Assistant National Recertification Examination (PANRE) every ten years. PAs may obtain additional training through postgraduate residency programs in various subspecialty areas, but these programs are not required for licensure or practice in subspecialty areas.

Admission Prerequisite Coursework and Application Information

All prerequisite courses must be successfully completed in the United States.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY 115 Human Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>BY 116 Introductory Human Physiology</td>
<td>4</td>
</tr>
<tr>
<td>or BY 409 Principles of Human Physiology</td>
<td></td>
</tr>
<tr>
<td>BY 123 Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BY 124 Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>BY 261 Introduction to Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>or BY 271 Biology of Microorganisms</td>
<td></td>
</tr>
<tr>
<td>CH 115 General Chemistry I</td>
<td>8</td>
</tr>
<tr>
<td>& CH 116 and General Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CH 117 and General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>& CH 118 and General Chemistry II Laboratory (CH 105, CH 106, CH 107, CH 108 accepted)</td>
<td></td>
</tr>
<tr>
<td>PY 216 Elementary Statistical Methods</td>
<td>3-4</td>
</tr>
<tr>
<td>& PY 216 Elementary Statistical Methods Laboratory</td>
<td></td>
</tr>
<tr>
<td>or MA 180 Introduction to Statistics</td>
<td></td>
</tr>
<tr>
<td>or HCM 360 Statistics for Managers</td>
<td></td>
</tr>
<tr>
<td>PY 101 Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or PY 201 Honors Introduction to Psychology</td>
<td></td>
</tr>
<tr>
<td>PY 212 Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or PY 218 Psychopathology</td>
<td></td>
</tr>
<tr>
<td>Medical Terminology</td>
<td></td>
</tr>
<tr>
<td>HCM 350 Medical Terminology for Health Professionals</td>
<td>3</td>
</tr>
</tbody>
</table>

Deadline for All Application Materials to be received by the CASPA:
Completed applications must be received by the Central Application Service for Physician Assistants (CASPA) no later than August 1 the year prior to the expected term of enrollment

Number of Evaluations/ Letter of Recommendations Required: Three

Entrance Tests:
GRE (TOEFL is required for international applicants whose native language is not English) or MCAT.
Accreditation:
The Physician Assistant Studies Program is accredited by the Accreditation Review Commission on Education for the Physician Assistant, Inc. (ARC-PA).

Credentials Conferred:
Diploma – The Master of Science in Physician Assistant Studies (MSPAS) degree is awarded by the University of Alabama at Birmingham.

Professional Certification:
Graduates of the UAB PA program are eligible to take the Physician Assistant National Certifying Examination (PANCE) sponsored by the National Commission on Certification of Physician Assistants (NCCPA) to become a certified PA.

Essential Requirements
Fundamental tasks, behaviors, and abilities necessary to successfully complete the academic and clinical requirements of the program and to satisfy licensure/certification requirements have been outlined and are available upon request from the academic program office. Students requesting disability accommodations should contact UAB Disability Support Services (DSS) at 205-934-4205.

Program Curriculum:
Course requirements are listed below with semester credit hours shown.

Didactic Curriculum

<table>
<thead>
<tr>
<th>First Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 601</td>
<td>4</td>
</tr>
<tr>
<td>PA 602</td>
<td>4</td>
</tr>
<tr>
<td>PA 605</td>
<td>4</td>
</tr>
<tr>
<td>PA 610</td>
<td>3</td>
</tr>
<tr>
<td>PA 615</td>
<td>1</td>
</tr>
<tr>
<td>CDS 505</td>
<td>1</td>
</tr>
<tr>
<td>GC 535</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours: 18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 603</td>
<td>3</td>
</tr>
<tr>
<td>PA 606</td>
<td>6</td>
</tr>
<tr>
<td>PA 608</td>
<td>3</td>
</tr>
<tr>
<td>PA 611</td>
<td>3</td>
</tr>
<tr>
<td>PA 616</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours: 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 604</td>
<td>3</td>
</tr>
<tr>
<td>PA 607</td>
<td>6</td>
</tr>
<tr>
<td>PA 609</td>
<td>3</td>
</tr>
<tr>
<td>PA 613</td>
<td>3</td>
</tr>
<tr>
<td>PA 618</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours: 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PA 619</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total credit hours: 18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 614</td>
<td>2</td>
</tr>
<tr>
<td>PA 617</td>
<td>3</td>
</tr>
<tr>
<td>PA 620</td>
<td>2</td>
</tr>
<tr>
<td>PA 633</td>
<td>2</td>
</tr>
<tr>
<td>PA 634</td>
<td>2</td>
</tr>
<tr>
<td>PA 635</td>
<td>2</td>
</tr>
<tr>
<td>Total credit hours: 13</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Curriculum
The clinical component of the curriculum consists of 11 clinical rotations PA 621 – PA 632 plus Senior Seminar and a Master’s Research Project Presentation. Of the clinical rotations, 7 are required core rotations and 4 are electives.

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 621</td>
<td>4</td>
</tr>
<tr>
<td>PA 622</td>
<td>4</td>
</tr>
<tr>
<td>PA 623</td>
<td>4</td>
</tr>
<tr>
<td>PA 624</td>
<td>4</td>
</tr>
<tr>
<td>PA 643</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours: 17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 625</td>
<td>4</td>
</tr>
<tr>
<td>PA 626</td>
<td>4</td>
</tr>
<tr>
<td>PA 627</td>
<td>4</td>
</tr>
<tr>
<td>PA 629</td>
<td>4</td>
</tr>
<tr>
<td>PA 698</td>
<td>1</td>
</tr>
<tr>
<td>PA 644</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours: 18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Term</td>
<td>Hours</td>
</tr>
<tr>
<td>PA 630</td>
<td>4</td>
</tr>
<tr>
<td>PA 631</td>
<td>4</td>
</tr>
<tr>
<td>PA 632</td>
<td>4</td>
</tr>
<tr>
<td>PA 645</td>
<td>3</td>
</tr>
<tr>
<td>Total credit hours: 15</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Rotations (PA 621- PA 632)

7 Required Core Clinical Rotations

4 Elective Clinical Rotations:
Studies

Master of Science in Physician Assistant Studies-Master of Public Health Degree Option

The coordinated Master of Science in Physician Assistant Studies and Master of Public Health (MSPAS-MPH) dual degree program will prepare physician assistant students for leadership roles that address community healthcare needs. The program aims to increase the number of high quality primary care clinicians with public health expertise and thus improve access, quality and cost of care. This plan of study provides students with a thorough understanding of the social and environmental determinants of health, population disease prevention and health promotion strategies, health disparities, epidemiological research analysis and healthcare quality improvement capabilities.

Admissions Requirements

Students must meet the admissions requirements for both the MSPAS degree program as well as the MPH degree program. Click here for MSPAS admissions requirements. Click here for UAB School of Public Health admissions requirements.

In addition to meeting the stated requirements for each degree separately, applicants for the dual degree must also have completed a bachelor's degree and all prerequisites before December 30 in order to start the program in January of the following spring term.

Application Procedures

In order to be considered for admission to the UAB MSPAS/MPH dual degree program, candidates will need to complete and submit the following materials by the stated deadlines:

August 1: The Central Application Service for Physician Assistants (CASPA) Application
August 7: The UAB PA Supplemental Application
August 7: The UAB Graduate School MPH/MSPAS ApplyYourself Application

For more information visit the Physician Assistant Studies web page for the MSPAS-MPH degree option at http://www.uab.edu/shp/cds/physician-assistant/mspas-mph

Master of Science in Physician Assistant Studies

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA 621</td>
<td>4</td>
</tr>
<tr>
<td>PA 622</td>
<td>4</td>
</tr>
<tr>
<td>PA 623</td>
<td>4</td>
</tr>
<tr>
<td>PA 624</td>
<td>4</td>
</tr>
<tr>
<td>PA 625</td>
<td>4</td>
</tr>
<tr>
<td>PA 626</td>
<td>4</td>
</tr>
<tr>
<td>PA 627</td>
<td>4</td>
</tr>
<tr>
<td>PA 629</td>
<td>4</td>
</tr>
<tr>
<td>PA 630</td>
<td>4</td>
</tr>
<tr>
<td>PA 631</td>
<td>4</td>
</tr>
<tr>
<td>PA 632</td>
<td>4</td>
</tr>
<tr>
<td>PA 601</td>
<td>4</td>
</tr>
<tr>
<td>PA 602</td>
<td>4</td>
</tr>
<tr>
<td>PA 603</td>
<td>3</td>
</tr>
<tr>
<td>PA 604</td>
<td>3</td>
</tr>
<tr>
<td>PA 605</td>
<td>4</td>
</tr>
<tr>
<td>PA 606</td>
<td>6</td>
</tr>
<tr>
<td>PA 607</td>
<td>6</td>
</tr>
<tr>
<td>PA 608</td>
<td>3</td>
</tr>
<tr>
<td>PA 609</td>
<td>3</td>
</tr>
<tr>
<td>PA 610</td>
<td>3</td>
</tr>
<tr>
<td>PA 611</td>
<td>3</td>
</tr>
<tr>
<td>PA 613</td>
<td>3</td>
</tr>
<tr>
<td>PA 614</td>
<td>2</td>
</tr>
<tr>
<td>PA 615</td>
<td>1</td>
</tr>
<tr>
<td>PA 616</td>
<td>1</td>
</tr>
<tr>
<td>PA 617</td>
<td>3</td>
</tr>
<tr>
<td>PA 618</td>
<td>1</td>
</tr>
<tr>
<td>PA 619</td>
<td>2</td>
</tr>
<tr>
<td>PA 620</td>
<td>2</td>
</tr>
<tr>
<td>PA 633</td>
<td>2</td>
</tr>
<tr>
<td>PA 634</td>
<td>2</td>
</tr>
<tr>
<td>PA 635</td>
<td>2</td>
</tr>
<tr>
<td>CDS 505</td>
<td>1</td>
</tr>
<tr>
<td>GC 535</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses

PA 550. Introduction to Medical History Taking and Physical Examination. 3 Hours.
Introduction to the proper way to elicit a comprehensive medical history, perform a physical examination, and report the findings in a systematic and concise format.

PA 601. Human Gross Anatomy. 4 Hours.
Course provides a comprehensive survey of the gross anatomy of the human along with functional and applied anatomy as it relates to common clinical findings. It utilizes a lecture format and cadaver dissection laboratory sessions.

PA 601L. Human Gross Anatomy Lab. 0 Hours.
Human cadaver dissection laboratory for PA 601.
PA 602. Medical Physiology. 4 Hours.
Course emphasizes the normal function and control of various systems within the human body. The principles taught will serve as a foundation for understanding the etiology, management and prevention of disease processes.

PA 603. Pharmacology I. 3 Hours.
Course provides students with the pharmacologic knowledge needed to begin practice as primary care physician assistants. Delivery is via classroom lecture and supplemented with intermittent case studies requiring students to critically evaluate medical conditions and choose safe and effective medications in treating those conditions.

PA 604. Pharmacology II. 3 Hours.
Second and final course in a series that provides students with the pharmacologic knowledge needed to begin practice as primary care physician assistants. Delivered via classroom lecture and supplemented with intermittent case studies requiring students to critically evaluate medical conditions and choose safe and effective medications in treating those conditions.
Prerequisites: PA 603 [Min Grade: C]

PA 605. Clinical Pathology. 4 Hours.
Descriptions of the pathologic processes involved in common disorders and diseases; introduction to the principles of clinical medicine and clinical problem solving; and provide foundation needed for clinical courses taught later in the curriculum.

PA 606. Clinical Medicine I. 6 Hours.
Introductory course in human disease designed to describe the pathologic processes involved in common disorders and diseases; introduces students to the principles of clinical medicine and clinical problem solving; provides background needed for medical courses taught later in the curriculum.
Prerequisites: PA 601 [Min Grade: C] and PA 602 [Min Grade: C] and PA 605 [Min Grade: C] and PA 610 [Min Grade: C]

PA 607. Clinical Medicine II. 6 Hours.
Overview of the diagnosis and management of the most common clinical problems seen by primary care practitioners; employs an organ systems approach incorporating relevant anatomy, physiology, pharmacology, pathology, radiology and nutrition.
Prerequisites: PA 606 [Min Grade: C]

PA 608. Surgical Disease I. 3 Hours.
Course introduces students to common surgical disorders with early emphasis on physiologic changes, medical requirements and evaluation of patients before, during, and after surgery. It also provides basic instruction in the diagnosis, management, and complications associated with common surgical gastrointestinal and urogenital disorders.
Prerequisites: PA 601 [Min Grade: C]

PA 609. Surgical Disease II. 3 Hours.
Course delivered via didactic instruction and focuses on the pre-operative evaluation and diagnosis, and post-operative management and treatment of common disorders of the heart, lungs, and vascular systems.
Prerequisites: PA 608 [Min Grade: C]

PA 610. Clinical Lab Medicine. 3 Hours.
An introduction to laboratory diagnostics with an emphasis on pathology, microbiology, hematology, and clinical chemistry. Course utilizes lecture format, specimen handling in a clinical laboratory as well as cost effective diagnostic algorithms in problem-based case scenarios.

PA 610L. Clinical Laboratory Medicine Lab. 0 Hours.
Lab for PA 610 Clinical Laboratory Medicine.

PA 611. History and Physical Examination I. 3 Hours.
First course in a series of two that provides students with the skills necessary to elicit a comprehensive medical history, perform a complete physical examination and systematically report their findings. A variety of teaching formats are utilized including; lectures, small group activities, video productions, and simulated patients.

PA 611L. History and Physical Examination I Lab. 0 Hours.
Laboratory required for PA 611 History and Physical Examination I.

PA 613. Surgical Techniques. 3 Hours.
Provides didactic instruction and applied technical skills in surgical techniques and various invasive medical procedures. An animal surgery laboratory, using live pigs is an essential component.
Prerequisites: PA 601 [Min Grade: C]

PA 614. Operating Room Techniques. 2 Hours.
Final course in a series providing didactic instruction and applied technical skills in surgical techniques and various invasive medical procedures. Experiences in operating rooms in Birmingham area hospitals observing the basics in surgical first assisting.
Prerequisites: PA 613 [Min Grade: C]

PA 615. Intro to the Profession. 1 Hour.
Course is designed to introduce students to the Physician Assistant profession and to prepare them to practice as professionals in a physician/PA/patient team. It will cover roles and responsibilities of the PA including their expected legal and moral behavior, their understanding of laws governing their practice and their ethical responsibilities in being health care professionals. The course will also teach students to respect the health, safety, welfare, and dignity of all human beings and to assess their own personal capabilities and limitations, striving always to improve their medical practice.

PA 616. Electrocardiography. 1 Hour.
Course presents the basic concepts needed to interpret the electrocardiogram and will provide opportunities to develop interpretive skills through analysis of rhythm strips and 12-lead electrocardiograms. Upon completion of the course, students will be able to systematically interpret basic rhythm strips and 12-lead electrocardiograms.

PA 617. Applied Behavioral Medicine. 3 Hours.
Course introduces students to human behavior, strategies and issues surrounding health education and theoretical models of how to change human behavior. This knowledge will enable students to incorporate health promotion and disease prevention strategies in their daily clinical practice to the benefit of their patients.

PA 618. Risk Management. 1 Hour.
Course provides an introduction to the legal, political and professional issues affecting physician assistant practice.

PA 619. Fundamentals of Clinical Research. 2 Hours.
Foundations of epidemiologic measures, reasons for patterns of disease occurrence, principles of medical surveillance, methods for investigating disease outbreaks, and principles of diagnostic tests. Review of study designs, roles of variability and bias in the interpretation of scientific literature, and principles of clinical decision-making based on medical literature.

PA 620. Analysis of Professional Literature. 2 Hours.
This course is designed to prepare students to critically evaluate medical literature and use as basis for making medical decisions.

PA 621. Clinical Service I. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.
PA 622. Clinical Service II. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 623. Clinical Service III. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 624. Clinical Service IV. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 625. Clinical Service V. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 626. Clinical Service VI. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 627. Clinical Service VII. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 628. Clinical Service VIII. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 629. Clinical Service IX. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 630. Clinical Service X. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 631. Clinical Service XI. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 632. Clinical Services XII. 4 Hours.
Supervised clinical practice experience in an assigned healthcare organization.

PA 633. Navigating Healthcare Delivery and Reimbursement Systems for Physician Assistants. 2 Hours.
Introduction to current structure and financing of the U.S. health care system; current policy issues affecting physician assistant providers; reimbursement for health care services provided by the physician assistant.

PA 634. Simulated Clinical Concepts. 2 Hours.
Laboratory simulated clinical experience to provide supervised practice in clinical skills, practical procedures, teamwork, patient management, and decision making in preparation for the students clinical year.

PA 635. Special Populations in Medicine. 2 Hours.
Exploration of the medical needs, challenges, and health disparities of specific patient groups including geriatrics, LGBTQ, ethnic minorities, and others.

PA 637. Special Topics in Physician Assistant Studies. 1-4 Hour.
Selected advanced topics of current scientific, clinical and professional importance; specific topics designed to meet student need and interest.

PA 641. Senior Seminar. 5 Hours.
Didactic instruction to prepare students for the Physician Assistant National Certification Exam (PANCE) and reinforce the student’s clinical rotation experiences. The course content reflects areas identified as important by the Examination Content Blueprint prepared by the National Commission on Certification of Physician Assistants.

PA 643. Senior Seminar I. 1 Hour.
Didactic instruction to prepare students for the Physician Assistant National Certification Exam (PANCE) and reinforce the student’s clinical rotation experiences. The course content reflects areas identified as important by the Examination Content Blueprint prepared by the National Commission on Certification of Physician Assistants (NCCPA).

PA 644. Senior Seminar II. 1 Hour.
Continuation of didactic instruction to prepare students for the Physician Assistant National Certification Exam (PANCE) and reinforce the student’s clinical rotation experiences. The course content reflects areas identified as important by the Examination Content Blueprint prepared by the National Commission on Certification of Physician Assistants (NCCPA).

PA 645. Senior Seminar III. 3 Hours.
Culminating didactic instruction to prepare students for the Physician Assistant National Certification Exam (PANCE) and reinforce the student’s clinical rotation experiences. The course content reflects areas identified as important by the Examination Content Blueprint prepared by the National Commission on Certification of Physician Assistants (NCCPA).

PA 698. Presentation of Res Project. 1 Hour.
Oral and visual presentations and structured discussion of research papers developed in PA 620.

Prerequisites: PA 619 [Min Grade: C] and PA 620 [Min Grade: C]
Health Services Administration

The Department of Health Services Administration includes degree programs at baccalaureate, masters, and doctoral levels, as well as undergraduate minors and a variety of professional education opportunities for health services executives and clinicians. Some programs in the department are the only one of their kind in the state, or first of their kind in the nation. The MSHA Program is ranked #1 in the nation. Degree programs currently available include:

- Administration - Health Services, PhD
- Health Services Research, MS
- Applications of Mixed Methods Research, Graduate Certificate
- Health Administration, MSHA
 - Tracks: Residential, Executive, International
- Healthcare Leadership, Graduate Certificate
- Health Informatics, MSHI
 - Tracks: Data Analytics, User Experience, Research
- Clinical Informatics, Graduate Certificate
- Healthcare Leadership, DSc
- Healthcare Quality and Safety, MS and Graduate Certificate
- Healthcare Simulation, MS and Graduate Certificate
- Health Care Management, BS
 - Tracks: Clinical Manager, General Manager
- Minors: Health Care Management, Health Information Management

Applications of Mixed Methods Research Graduate Certificate

The Graduate Certificate in Applications of Mixed Methods Research is an interdisciplinary certificate program that provides researchers with applied knowledge and skills to plan, design, conduct, evaluate, and report mixed methods research in the context of the research topic of interest.

Credentials Conferred

The Graduate Certificate in Applications of Mixed Methods Research is awarded by the University of Alabama at Birmingham.

Length of Study

The certificate requires 5 courses (15 credit hours), which can be completed in 3 or more semesters.

Program Entrance Date

Fall, Spring, and Summer semesters

Requirements for Admission

Students holding a master's or other post-bachelor's degree and meeting qualifications for admission to the UAB Graduate School.

Certificate

On completion of the required coursework, the student will be awarded a Graduate Certificate in Applications of Mixed Methods Research by the University of Alabama at Birmingham and the student’s name will appear in the commencement bulletin. A transcript of the coursework taken for the certificate will be available.

The curriculum for the certificate is offered online as web-based distance education with select real-time Zoom sessions. The four required mixed methods courses are designed as independent courses and can be taken in any sequence. Each course has a different focus and objectives, and each course covers different aspects and practices of mixed methods research that can be successfully mastered within a separate course. One elective qualitative research course can be selected from the list of recommended courses based on the student’s proficiency in qualitative research methods.

APPLICATIONS IN MIXED METHODS RESEARCH CURRICULUM

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Coursework 12 Hours</td>
<td></td>
</tr>
<tr>
<td>NRM 777 Mixed Methods Research I: Introduction to the Field</td>
<td>3</td>
</tr>
<tr>
<td>NRM 778 Mixed Methods Research II: Designing and Conducting a Mixed Methods Study</td>
<td>3</td>
</tr>
<tr>
<td>AH 779 Mixed Methods Applications in Action and Community-Based Participatory Research</td>
<td>3</td>
</tr>
<tr>
<td>AH 783 Writing Effective Mixed Methods Grant Proposals</td>
<td>3</td>
</tr>
<tr>
<td>Elective Coursework 3 hours (Select 1 Course)</td>
<td>3</td>
</tr>
<tr>
<td>NRM 783 Foundations of Qualitative Research</td>
<td></td>
</tr>
<tr>
<td>HPO 628 Qualitative and Mixed Methods Research in Public Health</td>
<td></td>
</tr>
<tr>
<td>AH 785 Qualitative Research: Analysis and Interpretation</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

CONTACT INFORMATION

For detailed information, contact the office for the Graduate Certificate in Applications of Mixed Methods Research, UAB School of Health Professions Building, 1716 9th Avenue South, Birmingham, AL 35294-1212.
Telephone 205-934-3113
Fax 205-975-6608
E-mail mmrgradcert@uab.edu
Web Applications of Mixed Methods Research

Clinical Informatics Graduate Certificate

The Graduate Certificate in Clinical Informatics is an online, self-paced certificate program. All courses will apply toward the Master of Science in Health Informatics degree.

Credentials Conferred

The Graduate Certificate in Clinical Informatics is awarded by the University of Alabama at Birmingham.

Length of Study

The certificate requires 4 courses (15 credit hours), which can be completed in 2 semesters.

Program Entrance Date

Fall Semester
Requirements for Admission

Students holding a master’s or other post-bachelor's degree and meeting qualifications for admission to the UAB Graduate School.

Certificate

On completion of the required coursework, the student will be awarded a Graduate Certificate in Clinical Informatics by the University of Alabama at Birmingham and the student’s name will appear in the commencement bulletin. A transcript of the coursework taken for the certificate will be available.

The curriculum for the certificate is offered online only as a self-paced curriculum. The four certificate courses can be completed in two semesters and are only offered during the fall and spring semesters.

CLINICAL INFORMATICS CURRICULUM

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI 611 Introduction to Health Informatics and Healthcare Delivery</td>
<td>4</td>
</tr>
<tr>
<td>HI 613 Analysis and Design of Health Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>HI 614 Clinical and Administrative Systems</td>
<td>3</td>
</tr>
<tr>
<td>HI 617 Principles in Health Informatics</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

CONTACT INFORMATION

For detailed information, contact the office for the Graduate Certificate in Clinical Informatics, UAB School of Health Professions Building, 1716 9th Avenue South, SHPB 590A, Birmingham, AL 35294-1212.

Telephone 205-975-6608
E-mail mshi@uab.edu (mmrgradcert@uab.edu)

Healthcare Leadership Graduate Certificate

The Graduate Certificate in Healthcare Leadership is a certificate program that provides individuals with applied knowledge and skills to improve their leadership abilities within a healthcare setting.

Credentials Conferred

The Graduate Certificate in Healthcare Leadership is awarded by the University of Alabama at Birmingham.

Length of Study

The certificate requires 5 courses, which can be completed in 3 semesters.

Program Entrance Date

Fall, Spring, and Summer semesters

Requirements for Admission

Admission requirements include eligibility for admission to the UAB Graduate School. Applicants must have a bachelor’s degree (or higher) from an accredited college or university or from a recognized university abroad, with a minimum GPA of 3.0 in coursework and a minimum of three years of healthcare industry experience or five years of general industry experience. Additional requirements include submission of a personal statement regarding interest in the certificate program and three letters of recommendation.

Certificate

On completion of the required coursework, the student will be awarded a Graduate Certificate in Healthcare Leadership by the University of Alabama at Birmingham and the student’s name will appear in the commencement bulletin. A transcript of the coursework taken for the certificate will be available.

The curriculum for the certificate is offered online as web-based distance education. The five courses are designed as independent courses and can be taken in any sequence. Each course has a different focus and objectives, and each course covers different aspects of leadership and management.

Requirements

<table>
<thead>
<tr>
<th>Required Coursework 16 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 606 Operations Management & Process Improvement in Health Care Organizations</td>
</tr>
<tr>
<td>HA 610 Health Systems and Policy for Leaders</td>
</tr>
<tr>
<td>HCS 660 Financial Management for Healthcare Quality Leaders</td>
</tr>
<tr>
<td>HI 624 Leadership Theory and Development</td>
</tr>
<tr>
<td>HQS 630 Leadership of High Reliability Healthcare Organizations</td>
</tr>
<tr>
<td>Total Hours</td>
</tr>
</tbody>
</table>

CONTACT INFORMATION

For detailed information, contact the office for the Graduate Certificate in Healthcare Leadership, UAB School of Health Professions Building, 1716 9th Avenue South, Birmingham, AL 35294-1212.

Telephone 205-996-2215
E-mail nborkows@uab.edu
Web www.hsa.uab.edu

Healthcare Simulation Graduate Certificate

The Graduate Certificate in Healthcare Simulation meets the growing demand of healthcare simulation educators and leaders. Graduates will be able to design and implement simulations aimed at improving teamwork, communication, and clinical skills according to evidence-based practices.

Our program is delivered online with on-campus visit for 3 1/2 days in September. It is comprised of 15 credits, completed over three consecutive semesters.

Credentials Conferred

The Graduate Certificate in Healthcare Simulation is awarded by the University of Alabama at Birmingham.

Length of Study

The certificate requires 15 credits, which can be completed in 3 semesters.

Program Entrance Date

Fall semester -- deadline for all application materials to be in the Graduate School Office: July 1, after July 1 applications will be considered on a space available basis.
TYPICAL HEALTHCARE SIMULATION CURRICULUM

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS 575 Introduction to Healthcare Simulation for Quality and Safety</td>
<td>3</td>
</tr>
<tr>
<td>HCS 625 Simulation Methodology</td>
<td>3</td>
</tr>
<tr>
<td>HCS 626 Healthcare Simulation Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>HCS 610 Instructional Design in Simulation</td>
<td>2</td>
</tr>
<tr>
<td>HCS 630 Research in Simulation</td>
<td>1</td>
</tr>
<tr>
<td>HCS 620 Current Trends in Simulation</td>
<td>2</td>
</tr>
<tr>
<td>HCS 635 Advanced Debriefing</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Additional Information

Contact Information

For detailed information, contact the Office of Doctoral Programs in Administration–Health Services, UAB School of Health Professions Building, 1705 University Boulevard, Birmingham, AL 35294-1212. Telephone 205-993-3113.
Fax 205-975-6608
E-mail phdha@uab.edu
Web www.hsa.uab.edu

Prospective students should visit http://www.uab.edu/shp/hsa/doctoral-programs/ph-d to obtain specific admissions requirements on how to apply.

Doctor of Philosophy Program Information

The Ph.D. program in Administration–Health Services is a degree program offered jointly and cooperatively by the Department of Health Services Administration in the School of Health Professions and the Graduate School of Management in the Collat School of Business. Faculty associated with the School of Public Health, School of Medicine, Lister Hill Center for Health Policy, Center for Outcomes and Effectiveness Research and Education, and Center on Aging also contribute to student learning.

The Ph.D. program is for those who wish to pursue the conceptual, philosophical, and applied aspects of administrative processes in health services, health policy, and outcomes research in health care. It provides doctoral-level study and research in administration with specific application to health services. The pedagogical focus is on developing a strong research orientation through course work, research seminars, and mentoring relationships with faculty. Students may choose a specialization in either strategic management, health services research, or health informatics. Students who are interested in pursuing academic careers are also afforded the opportunity to develop their teaching skills through course work and teaching opportunities. Job placement occurs in regional, national, and international markets. To date, more than 100 graduates have taken positions in academic institutions as well as health service delivery, governmental, and consulting organizations.

Admission Requirements

An applicant should already possess a master’s degree in a relevant discipline or have completed an undergraduate program with an outstanding record. Completed applications of well-qualified candidates received by January 1 may be considered for early admission. The application deadline is March 15. Although applications may be considered after March 15, admission and financial aid priority is given to those applicants whose materials are complete by January 1. Applications submitted after January 1 would be considered on a space-available basis only.

Admission recommendations are made by the Admissions and Policy Committee after examination of the candidate’s qualifications, which should include a minimum GRE General Test score of 300 (verbal plus quantitative), if tested prior to August 2011; equivalent combined scores for the revised GRE; or a GMAT test score of 550. All applicants whose
first language is not English are also required to submit a score for the Test of English as a Foreign Language (TOEFL). A TOEFL score of 80 is required if the TOEFL taken is based on the Internet version; if computer-based, the minimum score required is 213; and if the paper-based test version is taken, the minimum acceptable score is 550 or above. Consideration will also be given to the quality of the applicant’s academic record, previous research experience and productivity, and estimated research potential as indicated by references.

Various forms of financial aid are available to students. Departmental research assistantships are awarded on a competitive basis and carry an obligation of 20 hours of work per week. Assistantships are awarded to incoming students for a period of one year and may be renewable for a second year based on satisfactory work and academic progress, depending on the availability of funds. Some students are able to secure funding for additional years in the program through research assistant positions or other part-time jobs funded by faculty members’ grants and contract activities. Other forms of financial assistance include minority fellowships offered through the UAB Graduate School, paid teaching opportunities in selected undergraduate programs, and federal student loans.

Prerequisites

Prerequisite requirements include one graduate-level statistics course with computer usage, one graduate-level course on the U.S. health care system, and an introductory healthcare finance course. Incoming students who have not met these prerequisites during a master’s program may take courses prior to entering the program or during their first year of study in the program.

Program of Study

The program of study consists of five components

1. Courses in administration and health systems,
2. Courses in research methodology and statistics,
3. Specialization courses,
4. Comprehensive examinations,
5. The doctoral dissertation.

Specializations are currently available in strategic management, health services research, and health informatics. Students must complete all coursework in the first three areas and pass a comprehensive examination in each area before work can officially begin on the dissertation. The investigation and other special work leading to the dissertation must be performed directly under the guidance and supervision of a five-person committee of the UAB graduate faculty. The normal minimum period in which the doctoral degree can be earned is three to four years of full-time study.

If entering with a baccalaureate degree, a student is required to earn a minimum of 72 credit hours comprised of the following:

1. Completion of 48 credit hours of course work prior to candidacy
 - Up to 16 credits of the 48 can be non-dissertation research credits
 - Up to 10 credits can be lab rotation, seminar, or directed study credits
2. Completion of 24 credit hours of research-based work which can be designated as either:
 - Completion of at least two semesters in candidacy and accumulation of at least 24 semester credit hours in 799 dissertation research OR Completion of at least two semesters in candidacy and accumulation of at least 12 semester credit hours in 799 dissertation research AND, either during or before candidacy, 12 semester credit hours in other appropriate research-based coursework which has been approved by the graduate student’s program

If entering with a previously earned master’s degree appropriate to the doctoral degree field, a student is required to earn a minimum of 51 credit hours comprised of the following. These requirements also apply to students with previously earned M.S., D.V.M., D.M.D., D.D.S., etc.:

1. Completion of 27 credit hours of course work prior to candidacy
 - Up to 6 credits of the 27 can be non-dissertation research credits
 - Up to 6 credits can be lab rotation, seminar, or directed study credits
2. Completion of 24 credit hours of research-based work which can be satisfied by either:
 - Completion of at least two semesters in candidacy and accumulation of at least 24 semester credit hours in 799 dissertation research OR Completion of at least two semesters as a student in candidacy and accumulation of at least 12 semester credit hours in 799 dissertation research AND, either during or before candidacy, 12 semester credit hours in other appropriate research-based coursework which has been approved by the graduate student’s program.

Typical Program of Study

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 602 Introduction to Health Care Systems</td>
<td>3</td>
</tr>
<tr>
<td>HA 605 Health Policy and Politics in the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>HA 632 Quantitative Methods in Health Services Admin</td>
<td>3</td>
</tr>
<tr>
<td>AH 700 Health Economics</td>
<td>3</td>
</tr>
<tr>
<td>AH 701 Administrative Theory</td>
<td>3</td>
</tr>
<tr>
<td>AH 703 Philosophy of Science</td>
<td>3</td>
</tr>
<tr>
<td>AH 705 Health Care Finance</td>
<td>3</td>
</tr>
<tr>
<td>AH 706 Strategic Management Theory and Research</td>
<td>3</td>
</tr>
<tr>
<td>AH 707 Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>AH 710 Comparative Health Systems</td>
<td>3</td>
</tr>
<tr>
<td>AH 712 Research in Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>AH 714 Marketing Strategy and Research</td>
<td>3</td>
</tr>
<tr>
<td>AH 715 Research in Organizational Theory</td>
<td>3</td>
</tr>
<tr>
<td>AH 720 Continuing Seminar</td>
<td>2</td>
</tr>
<tr>
<td>AH 722 Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AH 755 Dissemination and Implementation Science in Health Care</td>
<td>3</td>
</tr>
<tr>
<td>AH 716 Macroeconomic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AH 775 Strategic Planning and Management Health Care Organizations</td>
<td>3</td>
</tr>
<tr>
<td>AH 780 Strategic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>AH 798 Non-Dissertation Research</td>
<td>1-6</td>
</tr>
<tr>
<td>AH 799 Dissertation Research</td>
<td>12</td>
</tr>
<tr>
<td>NST 777 Multivariate Statistical Methods For Clinical Nursing Research</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>Specialization Electives*</td>
<td>18</td>
</tr>
</tbody>
</table>

*The specialization electives should be 600+ level and chosen from any of the following departments/schools: Public Health, Sociology, Psychology, Engineering, Education, and Business.
Degree Completion

The granting of the Ph.D. degree is based on completion of all required coursework, residency requirements, comprehensive examinations, dissertation requirements, and the recommendation of the Administration–Health Services graduate program director and the dissertation committee.

Mission, Vision, and Values Statements

Because outstanding teaching and research are essential to the future of health care delivery in our nation and abroad, the Ph.D. program in Administration–Health Services provides doctoral-level training to individuals who will be our future health care leaders in academic and nonacademic research organizations.

We seek to recruit a diverse and talented group of national and international students who are attracted to careers in research and teaching. The educational experience in the Ph.D. program is characterized by exposure to the various disciplines relevant to health administration and policy from across the university, as well as one-on-one mentoring relationships with faculty. These experiences are expected to serve as a foundation for future research throughout the graduate careers.

Additional Information

Deadline for Entry Term(s):	January 1st
Deadline for All Application Materials to be in the Graduate School Office:	March 15th
Number of Evaluation Forms Required:	Three

Entrance Tests: TOEFL is required for international applicants whose native language is not English

Comments: Stipend support available

Contact Information

For detailed information, contact the Program Office of the Doctoral Programs in Administration–Health Services, UAB School of Health Professions Building, 1705 University Boulevard, Birmingham, AL 35294-1212.

Telephone 205-934-3113
Fax 205-975-6608
E-mail phdha@uab.edu
Web www.hsa.uab.edu

Courses

AH 701. Administrative Theory. 3 Hours.
History of, recent contributions to, and current issues in administrative theory and management; focus on evolution of management thought and research and on developing areas of research interest that will contribute to field.

AH 703. Philosophy of Science. 3 Hours.
Systems of thought and activities in theory-building process, deriving hypotheses from literature, understanding scientific theory, philosophy of science; applications to health services administration.

AH 705. Health Care Finance. 3 Hours.
Financial management functions, third-party reimbursement, determination of costs and charges, analysis of financial positions, working capital management, budgeting, capital expenditure analysis, and case studies.

AH 706. Strategic Management Theory and Research. 3 Hours.
Current and historically important research in field of strategic management, including major streams of research, role of strategic management in management disciplines, relationships to other disciplines, and pedagogical approaches used in graduate and undergraduate strategy courses.

AH 707. Research Methods. 3 Hours.
Issues of research design and research methods for organizational studies and health services research; integration of knowledge from quantitative courses with areas of research interest in students’ chosen fields.

AH 710. Comparative Health Systems. 3 Hours.
This course allows students to compare the U.S. health care delivery system with approaches used in other countries and to identify health system reform efforts occurring in selected global regions. Emphasis will be placed on the role of the health system within selected forms of government and at various levels of economic development.

AH 712. Research in Organizational Behavior. 3 Hours.
Examination of topics and empirical research in organizational behavior; emphasis on important issues in field, including areas of controversy and contemporary interest.

Prerequisites: AH 706 [Min Grade: C]

AH 715. Research in Organizational Theory. 3 Hours.
Topics and research in organization and management theory applied to health services organizations, including organization-environment relations, population ecology, interorganization relations, and strategic alliances.

AH 716. Macroenvironmental Analysis. 3 Hours.
Examination of research literature that addresses external and internal environmental factors affecting strategic management.

Prerequisites: AH 706 [Min Grade: C]

AH 720. Continuing Seminar. 2 Hours.
Presentations by faculty and Ph.D. candidates concerning issues in particular areas of specialization. May be repeated for credit.

AH 722. Regression Analysis. 3 Hours.
Various approaches to regression analysis, including ordinary least squares and probability models, such as logit and probit.

AH 727. Applied Multivariate Statistic. 3 Hours.
This is a survey course on the application of multivariate techniques in health care management research. The course focuses on application of multivariate statistical methods to health administration research questions, with emphasis on interpretation within real healthcare management problems.

AH 755. Dissemination and Implementation Science in Health Care. 3 Hours.
Historical, scientific, and theoretical underpinnings of dissemination and implementation science; conceptual and methodological challenges of conducting dissemination and implementation science research.

AH 770. Special Topics in Administration - Health Services. 1-4 Hour.
Exploration of current issues in Administration - Health Services.
AH 775. Strategic Planning and Management Health Care Organizations. 3 Hours.
Assessment of strategic management literature applied to health services organizations, exploration of strategy formulation, strategic content, and implementation and evaluation of topics for health care organizations.
Prerequisites: AH 706 [Min Grade: C]

AH 777. Mixed Methods Research I: Introduction. 3 Hours.
Introduction to mixed methods research: essence of mixed methods research, rationale for using it, fundamental principles and key characteristics, major design applications, and means of assessing the quality of mixed methods inferences.

AH 778. Mixed Methods Research II: Designing and Conducting Mix Mhds Study. 3 Hours.
Knowledge and skills of designing and conducting mixed methods studies in social and health sciences: types of research problems addressed, specification of mixed methods purpose statements and research questions, types of mixed methods designs, data collection and analysis strategies within mixed methods designs, procedures for reporting and evaluating mixed methods studies, and visually presenting mixed methods procedures.

AH 779. Mixed Methods Applications in Action and Community-Based Participatory Research. 3 Hours.
Overview of how mixed methods can be applied in designing and conducting community-based action research studies: community-based action research, its purposes and cross-disciplinary utilization; a mixed methods methodological framework for action research; steps in designing and conducting mixed methods action research studies in community settings; specific types of mixed methods action research designs; sampling, data collection, analysis, validation, and evaluation of mixed methods action research projects.

AH 783. Writing Effective Mixed Methods Grant Proposals. 3 Hours.
Logistics of developing competitive mixed methods grant applications for K and R type funding mechanisms; special focus on specific aims, innovation and significance, research plan, human subject protection, project team, resources, and budget; integrating multiple methods and data sources, establishing analytical rigor, and addressing reviewer feedback.

AH 785. Qualitative Research: Analysis and Interpretation. 3 Hours.
Applied knowledge of data analysis and interpretation in qualitative inquiry as related to its five basic approaches (narrative, case study, ethnography, grounded theory, and phenomenology). Students will develop basic skills in using qualitative research software NVivo for data organization, management and analysis.

AH 788. Independent Studies. 3 Hours.

AH 790. Independent Study and Research. 1-12 Hour.
Independent Study and Research in Administration Health Services. Can be taken from 1-12 hours graduate credit.

Non dissertation research credits. Can be taken for 1 to 9 graduate credits.

Dissertation Research. Must be admitted to doctoral candidacy. Must have 2 semesters before graduation.
Prerequisites: GAC Z

Health Administration

Degree Offered: M.S.H.A.
Residential and Executive M.S.H.A. Amy Yarbrough Landry, PhD
Director:
Phone: (205) 936-7767
E-mail: akyarb@uab.edu
Website: www.uab.edu/msha

Master of Science in Health Administration Program Information

The Master of Science in Health Administration (MSHA) Program, accredited by the Commission on Accreditation of Healthcare Management Education, trains executives for health services organizations. The program has graduated more than 1,400 persons since 1965.

Students must complete 23 graduate courses and a 12-month administrative residency in a health care organization. A capstone core course is completed during the last on-campus semester. Twenty-one core courses and two elective courses are required as well as a summer internship or international experience for single-degree MSHA students. All students begin in the fall term and complete coursework in 21 months followed by the administrative residency.

Complete applications for fall entry are due no later than the preceding December 1. Since admission to the MSHA program is very competitive, early application is encouraged.

- Master of Science in Health Administration-Master of Business Administration
- Master of Science in Health Administration-Master of Science in Health Informatics
- Master of Science in Health Administration-Master of Public Health

Students wishing to pursue simultaneously the Master of Science in Health Administration (MSHA) and the Master of Business Administration (MBA) degrees must complete 29 graduate courses, including 1 elective. Students seeking to complete the Master of Science in Health Administration (MSHA) and the Master of Science in Health Informatics (MSHI) must complete 30 graduate courses including a summer internship. Students seeking to complete the Master of Science in Health Administration (MSHA) and the Master of Public Health must complete 27 graduate courses, including a summer internship. MSHA-MPH students will complete 13 hours of public health coursework in the summer term prior to MSHA program entry.

A 12-month administrative residency in a health services organization is required for completion of the MSHA degree. A student who enters a coordinated program, but subsequently decides to pursue only one of the degrees, must satisfy all the requirements for the degree sought.

Application Information

Applicants to the MSHA, MSHA-MBA, MSHA-MSHI, or MSHA-MPH programs must have completed or anticipate completion of at least a baccalaureate degree from a regionally accredited college or university or from a recognized university abroad before entry into the program.

Application for the MSHA program should be made by visiting the UAB
Additional Information

Deadline for Entry Term(s): Fall
Deadline for All Application Materials to be in the Graduate School Office: December 1 for first priority and June 1 if space is still available
Number of Evaluation Forms Required: Three

Entrance Tests: TOEFL and TWE are also required for all international applicants whose native language is not English.

Comments: Additional application for admission is required by program

For detailed information, contact Admissions Coordinator, Department of Health Services Administration, UAB School of Health Professions, SHPB 567, 1716 9th Avenue South, Birmingham, AL 35294. Telephone 205-934-1583 E-mail parmstrong@uab.edu Web www.uab.edu/msha

Executive Master of Science in Health Administration Program Information

Qualified students can earn the Master of Science in Health Administration (MSHA) by completing the Executive format. This program is open to individuals with at least 5 years of experience in health care organizations, either as managers or as clinical professionals.

Participants in the MSHA program (Executive format) complete both on-campus and distance-learning activities, and a brief field experience, within 2 years of study.

Executive Health Administration and Master of Science in Healthcare Quality and Safety Coordinated Degree

Students wishing to pursue simultaneously the executive format of the Master of Science in Health Administration and the Master of Science in Healthcare Quality and Safety degrees must be accepted into both programs and complete twenty-eight (28) courses, including an interactive capstone experience course. A student who enters a coordinated program, but subsequently decides to pursue only one of the degrees, must satisfy all the requirements of the degree sought.

Healthcare Quality and Safety Certificate for Executive Master of Science in Health Administration

Students enrolled in the Executive Master of Science in Health Administration program, may pursue a graduate certificate in Healthcare Quality and Safety. To obtain the certificate, Executive MSHA students may add an online HQS certificate course in each fall and spring term, increasing their credits hours from 9 to 13. For more information, please contact the HQS or MSHA programs.

Contact Information

For detailed information, contact Admissions Coordinator, Department of Health Services Administration, UAB School of Health Professions, SHPB 564, 1716 9th Avenue South, Birmingham, Alabama 35294. Telephone 205-996-6593 E-mail hjlee@uab.edu (sarap@uab.edu) Web www.uab.edu/msha

Graduate Certificate in Healthcare Financial Management

Any student who receives three "C"s or one "F" in any graduate level course while in the MSHA program will be dismissed from the program.

Requirements Hours
HA 620 Healthcare Financial Management I 3
HA 621 Healthcare Financial Management II 3
HA 623 Application of Health Care Finance Principles 3
HA 624 Revenue Cycle Management 3
or HA 644 Seminar Issues in Ambulatory Care and Medical Group Management

Select one elective from the list below:
MBA 621 Topics in Corporate Finance
MBA 622 Portfolio Theory and Construction
MBA 624 Global Financial Management
MBA 629 Treasury Management
MBA 626 Credit Markets and Instruments 3

Total Hours 15

Executive Master of Science in Health Administration

The Executive MSHA Program requires a minimum of 57 semester hours for the MSHA degree. Any student who receives three "C"s or one "F" in any graduate level course while in the MSHA Program will be dismissed from the program.

Requirements Hours
HA 602 Introduction to Health Care Systems 3
HA 605 Health Policy and Politics in the U.S. 3
HA 612 Essentials of Health and Human Disease 3
HA 607 Operation Management for Health Services 3
HA 613 Health Law 3
HA 614 Process Improvement 3
HA 620 Healthcare Financial Management I 3
HA 621 Healthcare Financial Management II 3
HA 625 Strategic Planning and Management 3
HA 631 Organization Theory and Behavior 3
HA 632 Quantitative Methods in Health Services Admin 3
HA 635 Human Resources Management in Health Services Administration 3
HA 637 Leadership 3
HA 640 Information Systems and Management Science in Health Services Administration 3
HA 645 Health Economics 3
HA 655 Seminar: Synthesis of Health Services Administration 3
Residential Master of Science in Health Administration

Any student who receives three C’s or one F in any graduate level course while enrolled in the MSHA program will be dismissed from the program.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 602 Introduction to Health Care Systems</td>
<td>4</td>
</tr>
<tr>
<td>HA 605 Health Policy and Politics in the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>HA 606 Operations Management & Process Improvement in Health Care Organizations</td>
<td>3-4</td>
</tr>
<tr>
<td>HA 612 Essentials of Health and Human Disease</td>
<td>3</td>
</tr>
<tr>
<td>HA 613 Health Law</td>
<td>3</td>
</tr>
<tr>
<td>HA 620 Healthcare Financial Management I</td>
<td>3</td>
</tr>
<tr>
<td>HA 621 Healthcare Financial Management II</td>
<td>3</td>
</tr>
<tr>
<td>HA 625 Strategic Planning and Management</td>
<td>3</td>
</tr>
<tr>
<td>HA 628 Leadership Development</td>
<td>3</td>
</tr>
<tr>
<td>HA 631 Organization Theory and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>HA 632 Quantitative Methods in Health Services Admin</td>
<td>3</td>
</tr>
<tr>
<td>HA 635 Human Resources Management in Health Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>HA 640 Information Systems and Management Science in Health Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>HA 671 Health Care Marketing</td>
<td>3</td>
</tr>
<tr>
<td>HA 675 Health Administration Internship</td>
<td>3</td>
</tr>
<tr>
<td>HA 680 Health Administration Capstone</td>
<td>2</td>
</tr>
<tr>
<td>Administrative Residency (take twice)</td>
<td>10</td>
</tr>
<tr>
<td>HA 690 Administrative Residency</td>
<td></td>
</tr>
<tr>
<td>HA 645 Health Economics</td>
<td>3</td>
</tr>
<tr>
<td>MBA 601 Accounting and Finance for Managers</td>
<td>3</td>
</tr>
<tr>
<td>Two Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total Hours</td>
<td>70-71</td>
</tr>
</tbody>
</table>

Dual Master of Science in Health Administration and Master of Science in Health Informatics

Any student who receives three C’s or one F in any graduate level course while enrolled in the MSHA program will be dismissed from the program.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 602 Introduction to Health Care Systems</td>
<td>4</td>
</tr>
<tr>
<td>HA 605 Health Policy and Politics in the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>HA 606 Operations Management & Process Improvement in Health Care Organizations</td>
<td>3-4</td>
</tr>
<tr>
<td>HA 612 Essentials of Health and Human Disease</td>
<td>3</td>
</tr>
<tr>
<td>HA 613 Health Law</td>
<td>3</td>
</tr>
<tr>
<td>HA 620 Healthcare Financial Management I</td>
<td>3</td>
</tr>
<tr>
<td>HA 621 Healthcare Financial Management II</td>
<td>3</td>
</tr>
<tr>
<td>HA 625 Strategic Planning and Management</td>
<td>3</td>
</tr>
<tr>
<td>HA 628 Leadership Development</td>
<td>3</td>
</tr>
<tr>
<td>HA 631 Organization Theory and Behavior</td>
<td>3</td>
</tr>
<tr>
<td>HA 632 Quantitative Methods in Health Services Admin</td>
<td>3</td>
</tr>
<tr>
<td>HA 635 Human Resources Management in Health Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>HA 640 Information Systems and Management Science in Health Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>HA 690 Administrative Residency</td>
<td></td>
</tr>
<tr>
<td>HA 645 Health Economics</td>
<td>3</td>
</tr>
<tr>
<td>HA 640 Information Systems and Management Science in Health Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>Administrative Residency (take twice)</td>
<td>10</td>
</tr>
<tr>
<td>HA 690 Administrative Residency</td>
<td></td>
</tr>
<tr>
<td>HA 645 Health Economics</td>
<td>3</td>
</tr>
<tr>
<td>HA 640 Information Systems and Management Science in Health Services Administration</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>58-59</td>
</tr>
</tbody>
</table>

Courses

HA 599. Professional Development. 0 Hours.
Professional development experiences associated with the MSHA degree program.

HA 602. Introduction to Health Care Systems. 3-5 Hours.
U.S. health care system. Historical context; systems theory; analysis of organizational components; health services personnel; national, state, and local government roles; financing mechanisms; demography; mortality and morbidity; quality assurance; political issues; and trends in progress. Individual and group projects and field trips.

HA 605. Health Policy and Politics in the U.S. 3 Hours.
HA 606. Operations Management & Process Improvement in Health Care Organizations. 3-4 Hours.

Presents an overview of operational management and processes from the administrative perspective. Provides students with knowledge, skills, and tools including lean/six sigma, to implement, facilitate, and coordinate continuous quality improvement activities in health care environments.

HA 607. Operation Management for Health Services. 3 Hours.

Day-to-day operational aspects of health services administration through use of required readings, case studies, class discussions, and class assignments.

Prerequisites: HA 602 [Min Grade: C]

HA 610. Health Systems and Policy for Leaders. 1-4 Hour.

Overview of the United States health care system in terms of historical, current, political, organizational, human resources, financial, access-related, and quality dimensions; comparisons of the US health system to other health systems; overview of the US health policy, policy-making, and analysis.

HA 612. Essentials of Health and Human Disease. 3 Hours.

Reviews medical terminology, diseases, and diagnostic and therapeutic procedures for key body systems and the fundamentals of epidemiology.

HA 613. Health Law. 3 Hours.

Selected legal principles and their application to health field. Legal aspects of corporate liability, medical malpractice, admission and discharge processes, medical staff bylaws, informed consent, nursing, patients' rights, medical records, and governmental regulation of personnel and health facilities.

HA 614. Process Improvement. 3 Hours.

Customer driven process involving team and process thinking and application of statistical tools to way in which work is accomplished. Provides students with knowledge, skills, and tools necessary to implement, facilitate, and coordinate continuous quality improvement activities in health care environments.

HA 616. Biomedical Ethics. 3 Hours.

Focuses on the examination of various faith traditions, theories, principles and methods that influence reasoning, analysis and argument in contemporary health care ethics. Investigation of notable cases, the application of Modern Moral Theory, and in depth discourse on current issues in health care ethics (including media) is the cornerstone of the course.

Application of financial management techniques to decision making for health care providers. Financial management functions and organizations, financial statement analysis, working capital management, present value analysis, capital budgeting, cost of capital, variance analysis, financing techniques, and financial analysis case studies.

HA 621. Healthcare Financial Management II. 3 Hours.

Analytical and synthetic aspects of financial management tools. Project method and case studies used to supplement theory.

HA 622. Financial Management for Health Professionals. 3 Hours.

Financial statements, cost allocation, capital budgeting, time value analysis, reimbursement, financial risk and return, long-term debt financing, capital structure, cost of capital, and analysis of financial performance.

HA 623. Application of Health Care Finance Principles. 3 Hours.

This course gives students opportunities to work on finance related projects in a health care setting. It is intended for Master of Science in Health Administration students who are pursuing the Health Care Financial Management Certificate. The students will apply knowledge they have acquired in previous courses in Health Care Financial Management.

HA 624. Revenue Cycle Management. 3 Hours.

The purpose of this course is to expose generalist administrators to information directly related to a modern healthcare revenue cycle and the impact that this process has on the financial viability for all healthcare organizations.

HA 625. Strategic Planning and Management. 3 Hours.

Methods for strategic planning and management of health services organizations. Techniques for determining strategies for unique services, integration of strategy, structure, and administrative systems.

HA 628. Leadership Development. 3 Hours.

Provide tools for the students' professional development and leadership; assist students' research for an administrative residency.

HA 631. Organization Theory and Behavior. 3 Hours.

Introduction to organization theory and behavior with applications to health services organizations. Topics include organizational structure, organization/ environment relationships, organizational performance, power and leadership, perception, attitudes, motivation, communication, and group dynamics.

HA 632. Quantitative Methods in Health Services Admin. 3 Hours.

Selected mathematical, statistical, and computer applications and statistical techniques applied to decision making in hospitals and health care organizations.

HA 635. Human Resources Management in Health Services Administration. 3 Hours.

Human resources management issues, including strategic role of employee selection, appraisal, rewards, and development, applications to health care sector, labor relations, and unique aspects of labor law relevant to health care organizations.

HA 636. High Performing Healthcare Organizations. 3 Hours.

This course is designed for future managers and leaders of hospitals and health systems and those who expect to have extensive involvement in them from the perspective of buyers, insurers, or policy makers. The course provides students with knowledge about how the best hospitals and health systems respond to their environment, and how they reach and implement decisions about future activities.

HA 637. Leadership. 3 Hours.

Individual leadership talents in handling various organizational challenges, such as leading organization change, building strong culture, developing effective teams, resolving conflicts, implementing effective motivational systems, and nurturing a learning organization.

HA 640. Information Systems and Management Science in Health Services Administration. 3 Hours.

Introductory course that provides basic vocabulary and principles of modern information architectures. Computer networking and communication technologies needed to support modern information infrastructures. Emphasis on management and use of information to support management decision making.
HA 643. Long-Term Care Administration. 3 Hours.
Seminar analysis of effect of chronic conditions and aging on delivery of health services, nursing homes and alternatives, mental health facilities and agencies, and rehabilitation facilities and services. Field trips and individual research projects.

HA 644. Seminar Issues in Ambulatory Care and Medical Group Management. 3 Hours.
This course provides an overview to the field of ambulatory care and physician practice management. With the emphasis on outpatient care, these areas offer tremendous career potential for graduate students. Many aspects are similar between the acute care setting and the ambulatory care environment; however, this course will highlight areas that differ and how those differences impact doing business. This course builds on many of the Masters-level introductory courses.

HA 645. Health Economics. 3 Hours.
Economic analysis applied to health services sector; concept of efficiency applied to production and distribution of health services, health insurance, government programs, health care personnel, and health services organizations; current public policy issues; emphasis on student application of economic principles to health care issues.

HA 650. Management and Leadership Skills for Clinical Professionals. 1-3 Hour.
Leadership concepts and management principles as employed by clinical professionals in health care organizations. Focus on effective approaches to communication, change and conflict management, performance and financial management, and cultural competence.

HA 655. Seminar: Synthesis of Health Services Administration. 3-4 Hours.
Case method and problem-solving applications. Integration of materials presented during previous academic coursework. Course offered via Internet for Executive HA students. 2-3 hours each term of residency.

HA 671. Health Care Marketing. 3 Hours.
Introductory survey of marketing concepts as applied to health services organizations. Consumer behavior, market segmentation, target marketing, marketing research, management, and control of marketing mix variables.

HA 672. Health Care Entrepreneurship. 3 Hours.
This course provides a overview of the principle components of health care entrepreneurship, including business planning, raising funds, and the entrepreneurial activity and promoting innovation in existing healthcare organizations (intrapreneurial ventures).

HA 674. Health Care Innovation. 3 Hours.
Introduction to innovation management concepts, theories of idea generation, methods to select strategically innovative services, service delivery models, and project management concepts.

HA 675. Health Administration Internship. 3 Hours.
Provides an experience for MSHA students to become more familiar with a health care organization or the delivery/administration of health care in a different country; provides an opportunity for students to apply and integrate knowledge and skills; interactions with health care managers and executives in a “real world” health care setting; enables students to explore and clarify their own career goals and to begin the process of professional development.

HA 678. Special Topics in Health Administration. 1-4 Hour.
Exploration of current issues in Health Administration.

HA 680. Health Administration Capstone. 2 Hours.
Helps facilitate the students’ transition from the academic learning environment to the “real world”.

HA 690. Administrative Residency. 2-6 Hours.
Structured field experience providing mentoring relationship with preceptor, observation of management processes within health services organization, and application of administrative theory and techniques. 2-6 hours each term of residency.

HA 695. Independent Study. 1-6 Hour.

HA 697. Independent Study. 3 Hours.

Health Informatics

Degree Offered: M.S.H.I.
Program Director: Sue S. Feldman, RN, MEd, PhD
Phone: (205) 975-0809
E-mail: mshi@uab.edu
Website: www.uab.edu/hi

Master of Science in Health Informatics

Program Admission

Admission to the program is in the fall semester only. Application to the program may be made September through May 31, preceding the expected date of enrollment for the next fall term. Applications received after May 31 are considered on a space-available basis. Applications are evaluated against the Graduate School criteria and those criteria developed specifically for the HI program. The ideal size of each entering class is 30 to 35 students.

Admission Requirements

Admission to the program requires acceptance to the Graduate School of The University of Alabama at Birmingham. Applicants must have completed or anticipate completion of at least a baccalaureate degree from a regionally accredited college or university or from a recognized university abroad before entering the program. As a criterion for unconditional admission, applicants must have no less than a B GPA (3.0 on a 4.0 scale) for the last 60 semester hours of earned undergraduate credit or overall undergraduate credit hours. Official transcripts of all previous academic work beyond the secondary level should be submitted. Before matriculation, entering students must have received a final transcript for each degree received.

The applicant should include a carefully drafted statement about his or her personal interests, career goals, and relevant background experience and a professional resume. Three confidential letters of recommendation from individuals qualified to write concerning the applicant’s potential for success in both a graduate program and in the Health Informatics field must be submitted.

Prior to entering the program, applicants should have completed three credit hours of undergraduate or graduate course work in statistics (taken within the last five years with a grade of B or better) and an SQL programming or a relevant continuing education course.

Admission to the MSHI program is determined by an interview process and the consensus of the Admissions Committee. The decision is based on previous academic record, professional recommendations as evidence of ability to perform graduate-level work, and an interview with two faculty members. The program director reserves the prerogative for final recommendation on admission status to the Graduate School.
Applicants accepted to the program may be asked to complete a criminal background check and drug screen at program admission and again prior to clinical placement as required by school policy.

To be considered for early admission, all application materials must be in the Graduate School Office by March 1.

Additional Information

Deadline for Entry Term(s): Fall
Deadline for All Application Materials to be in the Graduate School Office: May 31
Number of Evaluation Forms Required: Three Professional Letters of Recommendation
Entrance Tests: (TOEFL and TWE also required for international applicants whose native language is not English.)
Length of Study: 45 Credit Hours

Program Overview

Health Informatics is about optimizing technology to effectively capture and manage health information. Health Informatics is a rapidly evolving discipline that connects people, technology, and data to better improve healthcare outcomes. Health Informatics professionals work with the processes and tools used to implement, maintain, and evaluate health informatics systems and applications. The Health Informatics professional is a cross-cutting leader who drives analytics and usability.

Our students graduate with a solid understanding of how clinicians and administrators use data, information, and technology in making decisions. With courses in the effective design and use of information systems, databases and software, students also learn how to successfully manage the flow of information throughout a healthcare organization and the value of building a solid business case for the purchase, implementation, and use of technology in a healthcare setting. Graduates are prepared to become senior and executive level leaders in the healthcare IT industry. Students are exposed to a variety of academic disciplines and gain a broad education that serves as a foundation for them throughout their careers as information and health informatics executives.

The program includes a core curriculum plus one track of the student’s choosing. The first year of the MSHI core curriculum includes HI 611-Introduction to Health Informatics and Healthcare Delivery, HI 613-Analysis & Design of Health Information Systems, HI 614-Clinical & Administrative Systems, HI 617 Principles of Health Informatics, HI 618 Research Methods in Health Informatics, HI 619-Databases and Data Modeling, HI 620-Security and Privacy in Healthcare, and HI 621-Strategic Planning, Project Management, and Contracting. During the second year, students complete the MSHI core by taking HI 624-Leadership Theory and Development and completing a capstone project.

Data Analytics Track

The proliferation of information technology to support workers in the healthcare industry has resulted in a massive amount of healthcare data being generated. While the data are seen as an organizational asset that can both help determine trends and patterns in patient care delivery and increase organizational efficiency, there are very few individuals trained to extract, combine, organize, interpret, and display these data in meaningful ways. This track produces graduates who help healthcare organizations institute data-driven decision-making processes through data science approaches. Beyond that, graduates of this track in the MSHI program are trained to assist organizations with developing data governance strategies, which help them define the way they think about quality, security, access to data, and policies surrounding data.

Courses in the Data Analytics Track include: HI 599 Professional Development, HI 641-Healthcare Data Analytics Challenges, Methods, and Tools, HI 642-Advanced Data Management & Analytics for Healthcare, HI 643-Business Intelligence for Healthcare, HI 646-Advanced Quantitative Methods for Health Informatics, HI 671-Data Analytics Capstone Project I, HI 673-Data Analytics Capstone Project II, and HI 675-Data Analytics Capstone Project III.

Entry into this track requires admission to the MSHI Program and completion of the first year MSHI core curriculum. Declaration for this track occurs in the summer semester of the student’s first year in the program.

User Experience Track

Information technology has facilitated many significant improvements to the way we deliver patient care. But, most IT solutions currently in use by healthcare organizations were not designed to enable new models of healthcare delivery and will require development of more intuitive interfaces that model the behaviors and needs of patients and clinical end users. New products and software cannot be perceived as too difficult to use, nor can they compromise clinicians’ ability to interact meaningfully with their patients. Graduates of the Healthcare User Experience Track bring an in-depth understanding of human factors engineering to a complex healthcare delivery system, the technologies that are required to support patient care delivery, and the understanding of best practices in designing safe, effective, and user-friendly products and software in a healthcare setting.

Entry into this track requires admission to the MSHI Program and completion of the first year MSHI Core. Declaration for this track occurs in the summer semester of the student’s first year in the program.

Research Track

Health informaticians are being called on to participate in and contribute to scientific studies and translate bioinformatics into practice. Additionally, for those who are post-docs, we offer the Research Track in collaboration with the Informatics Institute in the Heersink School of Medicine. This track includes two elective courses.

Courses in the Research Track include: HI 599 Professional Development, INFO 696 Biomedical Informatics Methods I, INFO 697, Biomedical Informatics II, 2 Electives, HI 677 Research Capstone Project I, HI 678 Research Capstone Project II, and HI 679 Research Capstone Project III.

Entry into the track requires admission to the MSHI Program and completion of the first year MSHI Core. Declaration for this track occurs in the summer semester of the student’s first year in the program.
Students must discuss electives with the program director prior to course registration.

Clinical Informatics Graduate Certificate

The Clinical Informatics Graduate Certificate is designed as a high-quality, rigorous educational forum for practicing clinicians interested in advancing their informatics skills. Students will develop a broad understanding of the strategic application of clinical and administrative information systems, the data contained in these systems, and the people and processes required for effective information systems deployment. Expanding the number of clinical professionals who can act as health informatics champions in healthcare organizations is needed to enable high quality health care, improved population health, and efficient use of healthcare resources.

The curriculum is delivered completely online and consists of 15 credit hours (4 courses) that may be completed in two academic terms. Applicants must be admitted to the UAB Graduate School and to the Clinical Informatics Graduate Certificate program. Upon application and admission to the MSHI Program, these 15 credits can be applied toward degree requirements for the MSHI degree.

Additional Information

Requirement	**Fulfilled By:**
Deadline for Entry Term(s): | Fall
Deadline for All Application Materials to be in the Graduate School Office: | May 31
Length of Study: | 15 Credit Hours

Contact Information

For detailed information, contact the Program Manager, Graduate Programs in Health Informatics, UAB School of Health Professions, SHPB 590F. Physical address: 1716 9th Avenue South, Birmingham, AL 35294. Mailing address: 1720 2nd Avenue South, Birmingham, AL 35294.

Telephone 205-996=2215
Fax 205-975-6608
E-mail mshi@uab.edu

Graduate Certificate in Clinical Informatics

Requirements	**Hours**
HI 611 Introduction to Health Informatics and Healthcare Delivery | 4
HI 613 Analysis and Design of Health Information Systems | 4
HI 614 Clinical and Administrative Systems | 3
HI 617 Principles in Health Informatics | 4

Total Hours 15

Healthcare Data Analytics Track

Requirements	**Hours**
HI 599 Professional Development | 0
HI 641 Healthcare Data Analytics Challenges, Methods, and Tools | 3
HI 642 Advanced Data Management and Analytics for Healthcare | 3
HI 643 Business Intelligence for Healthcare | 3
HI 646 Advanced Quantitative Methods for Health Informatics | 3
HI 671 Data Analytics Capstone Project I | 1
HI 673 Data Analytics Capstone Project II | 1
HI 675 Data Analytics Capstone Project III | 3

Total Hours 17

Healthcare User Experience Track

Requirements	**Hours**
HI 599 Professional Development | 0
HI 656 Human Factors in Healthcare IT Systems | 3
HI 657 Human-centered Research Design Methods for Healthcare | 3
HI 658 Development of User Centered Health Information Systems | 3
HI 659 Qualitative Synthesis for Healthcare Insights | 3
HI 672 User Experience Capstone Project I | 1
HI 674 User Experience Capstone Project II | 1
HI 676 User Experience Capstone Project III | 3

Total Hours 17

Research Track

Requirements	**Hours**
HI 599 Professional Development | 0
INFO 696 Introduction to Biomedical Informatics Research | 3
INFO 697 Biomedical Informatics Methods | 3
HI 677 Research Capstone Project I | 1
HI 678 Research Capstone Project II | 1
HI 679 Research Capstone Project III | 3

The MSHI Program allows students to earn only two grades of "C" during their time in the program. Upon earning a third grade of "C," the student may be dismissed from the program, depending on the final GPA. In all cases, if the program GPA is lower than 3.0, the student is placed on academic probation or dismissed from the program. Any final grade of "F" or below in any course will result in dismissal from the program.
Courses

HI 598. Professional Activity. 0 Hours.
Professional Development experiences associated with the MSHI degree program.

HI 599. Professional Development. 0 Hours.
Professional development experiences associated with the MSHI degree program.

HI 611. Introduction to Health Informatics and Healthcare Delivery. 3-4 Hours.
Overview of history and current status of health information technology (health IT) and health informatics within the US health care system, including approaches for planning, implementing and evaluating health IT and the legal and ethical issues involved in the use of health IT.

HI 613. Analysis and Design of Health Information Systems. 4 Hours.
Concepts, methods, approaches, standards, and tools in analyzing, modeling, designing, and implementing user centered health information systems.

HI 614. Clinical and Administrative Systems. 3 Hours.
Clinical and administrative systems with an emphasis on clinical decision support methods, tools, and systems. Types of methods, tools, and systems used in inpatient and outpatient settings, information flow across systems within healthcare settings, strategies for user centered design, implementation and evaluation of systems.

HI 617. Principles in Health Informatics. 3-4 Hours.
Underpinnings in Health Informatics policies, practices, and principles; inter-and intra-organizational application of socio-technical information systems and data to enhance research and practice in healthcare.

HI 618. Research Methods in Health Informatics. 3 Hours.
Fundamental concepts, methods, and approaches of qualitative and quantitative data analysis, including statistical analysis and measurement techniques, for clinical and health informatics.

HI 619. Databases and Data Modeling. 3 Hours.
Concepts of data modeling, database design and administration, data architectures, and data querying for transactional and analytical data systems. Study of various data models with application to health information projects using SQL in current database management systems.

HI 620. Security and Privacy in Health Care. 3 Hours.
Security and privacy issues, legislation, regulations, and accreditation standards unique to the health care domain and relative to various group layers (individual, social, and society). Concepts, theories, methods, models, and tools related to technical security of data across networks, systems, databases and storage, audit mechanisms and controls.

HI 621. Strategic Planning Project Management and Contracting. 3 Hours.
Theory, practice, and processes needed for strategic planning of integrated health information systems. Assessing benefits of enterprise-wide information integration and tactics needed to realize these benefits. Steps needed for developing strategic plans and understanding drivers of information systems - corporate business alignment. Understanding key concepts of project management. Exposure to skills needed to negotiate contracts with vendors.

HI 624. Leadership Theory and Development. 2 Hours.
Exploration of leadership theory and development, and the role of leadership in internal and external advocacy. The emphasis is on the application of leadership theories to individuals and groups in healthcare settings.

HI 641. Healthcare Data Analytics Challenges, Methods, and Tools. 3 Hours.
Current factors, methods, and tools affecting data collection, management, analytics, integration, and reporting in healthcare, including use of various ontologies and standards, and healthcare challenges affecting data analytics.

HI 642. Advanced Data Management and Analytics for Healthcare. 3 Hours.
Automation of database management and basic Extract-Transform-Load (ETL) and data analytics tasks using advanced SQL. Creation and optimization of relational databases. Current data modeling and database architecture approaches and their uses in healthcare. Integration of data mining and analytics into database management platforms.

Prerequisites: HI 619 [Min Grade: C]

HI 643. Business Intelligence for Healthcare. 3 Hours.
Current concepts, methods and tools in Business Intelligence for healthcare. Approaches for data modeling for data warehouses, Extract-Transform-Load (ETL) processes, data marts, data integration, and data visualization.

Prerequisites: HI 619 [Min Grade: C] and HI 642 [Min Grade: C]

HI 646. Advanced Quantitative Methods for Health Informatics. 3 Hours.
Concepts, methods, and tools used in advanced quantitative data analytics to address a range of problems in health informatics, including prediction, classification, and pattern recognition across a variety of levels (individual, social group, and society).

Prerequisites: HI 618 [Min Grade: C]

HI 655. Human Factors in Healthcare IT Systems. 3 Hours.
Overview of the importance of human factors engineering in the function of healthcare IT systems and specialized challenges to user experience (UX) research in the context of the healthcare system. Application of user-centered theory, principles, data, and methods to the design of healthcare IT systems. Implementation of UX research methods to evaluate and understand the interactions between healthcare IT systems and their users.

HI 657. Human-centered Research Design Methods for Healthcare. 3 Hours.
Design Thinking methodology intensive. Discussion of the importance of qualitative user research. Understanding of discovery to enable identification of proper user research approaches and establishing research goals. Overview tools and processes for deep research discovery. Students will select a healthcare context for the application of research methods.

HI 658. Development of User Centered Health Information Systems. 3 Hours.
Development approaches involving principles of human-centered design, leading to high fidelity health information system prototypes.
HI 659. Qualitative Synthesis for Healthcare Insights. 3 Hours.
Overview and execution of qualitative research methods and data gathering within the healthcare context to enable the delivery of solutions. Focus on the application of research theories, methods, and tools to deliver insights and qualitative and quantitative outputs. Understanding socio-technical factors relative to fundamental interface design elements and interface layouts across modalities. Journey mapping, concep ting, user flows, and wireframing will be generated.

HI 660. Healthcare Requirements Analysis. 3 Hours.
Approach to, identification, documentation and presentation of common health informatics problems. A focus on identifying root problems and unambiguous metrics for post-evaluation to ensure final deliverable meets intended need. Exposure to project management methodologies and six sigma processes to facilitate the logic needed for troubleshooting data problems in healthcare.

HI 661. Advanced Database Design and SQL for Healthcare. 3 Hours.
Study of common healthcare data structures and environments. Creation of database components; in-depth SQL coding; data warehouse designs; tools such as TOAD, SQL Explorer, Management Studio.

HI 662. Healthcare Business Intelligence. 3 Hours.
Exposure to typical business intelligence (BI) tool sets and identification of business objects. Building of the metalayer involved in a business intelligence system and exposure to Business Objects, Crystal Reports, SSRS.

HI 664. Data Analytics Capstone Project. 1-5 Hour.
Rigorous project that provides opportunity for focused investigation of healthcare data problems in real-world settings and for application of problem-solving methodologies for development and execution of solutions. Investigation and application of theory through practical implementation project.

HI 671. Data Analytics Capstone Project I. 1 Hour.
Initiation of first steps in identifying and developing the HI Capstone Project; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problem solving methodologies for development and execution of solutions.

HI 672. User Experience Capstone Project I. 1 Hour.
Initiation of first steps in identifying and developing the HI Capstone Project; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problem solving methodologies for development and execution of solutions.

HI 673. Data Analytics Capstone Project II. 1 Hour.
Continuation course of the HI Capstone Project involving project execution, management, and dissemination; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problems solving methodologies for development and execution of solutions.

HI 674. User Experience Capstone Project II. 1 Hour.
Continuation course for the HI Capstone Project involving project proposal development; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problems solving methodologies for development and execution of solutions.

HI 675. Data Analytics Capstone Project III. 3 Hours.
Final course for the HI Capstone Project involving project execution, management, and dissemination; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problems solving methodologies for development and execution of solutions.

HI 676. User Experience Capstone Project III. 3 Hours.
Final course for the HI Capstone Project involving project execution, management, and dissemination; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problems solving methodologies for development and execution of solutions.

HI 677. Research Capstone Project I. 1 Hour.
Initiation of first steps in identifying and developing the HI Capstone Project: the capstone project is a focused investigation of health informatics problem in a real-world setting and application of problem solving methodologies for development and execution of solutions.

HI 678. Research Capstone Project II. 1 Hour.
Continuation course of the HI Capstone Project involving project execution, management, and dissemination; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problems solving methodologies for development and execution of solutions.

HI 679. Research Capstone Project III. 3 Hours.
Final course for the HI Capstone Project involving project execution, management, and dissemination; the Capstone project is a focused investigation of a health informatics problem in a real-world setting and application of problems solving methodologies for development and execution of solutions.

HI 685. Principles in Health Informatics. 3-4 Hours.
Underpinnings in health informatics policies, practices, and principles. Inter- and intra-organizational application of information systems and data to enhance research and practice in healthcare.

HI 690. Administrative Internship. 4-8 Hours.
Structured field experiences in health care or other enterprises associated with health care industry. Includes a mentoring relationship with a preceptor and an opportunity for application of information resource management theory and strategies. Foundation for professional development and assists in refining skills and behaviors necessary for successful practice in a complex professional, social, political, and technological environment.

HI 694. Special Topics in Health Informatics. 1-4 Hour.
Study of selected topics in health informatics. May be repeated for credit.

HI 698. Simulation Capstone/Non-thesis Research. 1-8 Hour.
Rigorous culminating project that provides the opportunity for focused investigation of simulation applications in a real-world setting. Investigation and application of theory through a practical project.

HI 699. Master’s Level Thesis Research. 4-8 Hours.
Original research in health informatics and interpretation of results. Demonstrates student’s acquaintance with literature of field and competency in proper selection and execution of research methodology. Recommended for students planning to pursue a doctoral degree. May be repeated for credit (8 hours maximum credit allowed).

Prerequisites: GAC M

HI 725. Information Systems Theory and Practice. 3 Hours.
Investigation of appropriate research methods to assess theoretical models involving interdependencies and relationships between information technology, human behavior, and organizational and socio-technical contexts; review of qualitative and quantitative research methods using IS journal article exemplars.
HI 777. Mixed Methods Research I. 3 Hours.
Provide introduction to the field of mixed methods research: essence of mixed methods research, rationale for using it, its fundamental principles and key characteristics, major design applications, and means of assessing the quality of mixed methods inferences. Learn how the mixed methods research process is shaped by personal, interpersonal, and social contexts and how mixed methods intersects with other quantitative and qualitative research approaches and designs.

Healthcare Leadership

Degrees Offered: D.Sc.
Director: Dr. Robert Hernandez
Phone: (205) 934-1665
E-mail: hernande@uab.edu
Website: http://www.uab.edu/execdoc

Healthcare Leadership

Prospective students should refer to the Admissions tab on the program webpage (www.uab.edu/execdoc) to obtain specific admissions requirements on how to apply to the program. Information about how to apply to the Graduate School is available at https://www.uab.edu/graduate/admissions/.

Doctor of Science Program Information

The Doctor of Science (D.Sc.) in Healthcare Leadership program is designed for healthcare executives who are seeking to engage in a rigorous course of study that will also permit them to retain their demanding work and life responsibilities. D.Sc. students are interested in continuing a practice-focused career, as opposed to the academic career sought by most residential Ph.D. students.

The program is offered by the Department of Health Services Administration. Faculty associated with the School of Public Health, Lister Hill Center for Health Policy, Center for Outcomes and Effectiveness Research and Education, and other national experts also contribute to student learning.

Admission Requirements

Qualified applicants will preferably have a master’s degree in health administration; health informatics; business administration; or a related field. Degree(s) must be from an accredited institution. In addition, qualified applicants will have a minimum of five years of mid- to senior-level managerial experience in health management.

Students whose first language is not English must submit recent scores for the Test of English as a Foreign Language (TOEFL) exam or IELTS. Applicants who have received a degree from an accredited U.S. institution or from institutions in countries where English is the primary language of instruction are not required to submit the TOEFL or IELTS score.

The UAB Graduate School has approved a waiver of the GRE/GMAT score.

Applications are reviewed by the Admissions and Policy Committee of the Executive D.Sc. in Healthcare Leadership Program. The committee forwards a recommendation to the Dean of the UAB Graduate School who then communicates official admission decisions via written letter.

As it is based on a cohort model, the Executive D.Sc. Program only admits for the fall of each year. Applicants who complete applications prior to February 1 will be given priority in the admission process. Applications received after February 1 will be considered on a space-available basis.

Program of Study

The program of study consists of four components

1. Courses in administration and health systems,
2. Courses in research methodology and statistics,
3. Comprehensive examinations,

Students must complete all coursework and pass a comprehensive examination before work can officially begin on the dissertation. The investigation and other special work leading to the dissertation must be performed directly under the guidance and supervision of a four-person committee of the UAB graduate faculty. The normal minimum period in which the doctoral degree can be earned is three years of full-time study.

Degree Completion

The granting of the D.Sc. degree is based on completion of all required coursework, residency requirements, a comprehensive examination, dissertation requirements, and the recommendation of the Healthcare Leadership graduate program director and the dissertation committee.

Mission, Vision, and Values Statements

The mission of the Executive Doctoral Program is to develop highly qualified strategic management practitioners and scholars. We accomplish this mission through: our strategic management courses, faculty/student interaction, publishing and presenting our work, and teaching others.

Additional Information

Deadline for Priority Application: February 1st. After February 1st, applications will be considered on a space-available basis.

Number of Evaluation Forms Required: Three

Entrance Tests: TOEFL required for international applicants whose native language is not English.

Contact Information

For detailed information, contact the Program Office of the Doctoral Programs in Healthcare Leadership, UAB School of Health Professions Building, 1716 9th Avenue South, Birmingham, AL 35294-1212. Telephone 205-934-3588 Fax 205-975-6608
Courses

AHD 632. Quantitative Methods. 3 Hours.
Selected statistical methods and analytical tools for hypothesis testing and to inform evidence-based decision-making in hospitals and health care organizations, use of computer applications such as Excel and Stata for conducting analyses.

AHD 705. Health Care Finance. 3 Hours.
Financial management functions, third-party reimbursement, determination of costs and charges, analysis of financial positions, working capital management, budgeting, capital expenditure analysis, and case studies.

AHD 706. Strategic Management Theory and Research. 3 Hours.
This course enables students to become well-versed in the healthcare strategic management scholarly literature; and ultimately contribute to it. Mastering the healthcare strategy literature requires different skills than those needed to manage an organization strategically. Thus, this course focuses on the relevant literature and not on the process of strategic planning or management.

AHD 707. Research Methods. 3 Hours.
This course introduces methods and issues relevant to research in the business disciplines and in health services. The various business disciplines and the broad field of health services draw heavily from the social and behavioral sciences as the basis for much of their theoretical and empirical work. This course will focus on issues that are relevant generally to social science research, with the goal of applying that information to research in health services.

AHD 710. Comparative Health Systems. 3 Hours.
This course allows students to compare the U.S. health care delivery system with approaches used in other countries and to identify health system reform efforts occurring in selected global regions. Emphasis will be placed on the role of the health system within selected forms of government and at various levels of economic development.

AHD 711. Health Systems Leadership. 3 Hours.
Evidence based materials used to teach skills to develop an understanding of leadership theories and application through the use of fundamental leadership principles proven to be successful in the healthcare industry.

AHD 714. Marketing Strategy and Research. 3 Hours.
This course will introduce the doctoral student to the study of marketing strategy through an examination of the literature in the field. The course is intended to provide a broad background for understanding and conducting research in this area. As such, it will require students to draw on their knowledge of other functional and organizational topics as well as other social sciences (e.g., psychology, sociology, and economics) to better understand the subject of marketing strategy from an academic and organizational perspective.

AHD 715. Research in Organization Theory. 3 Hours.
Course designed to develop the student's ability to use theory based research in health-care organizations. This course will cover the major theoretical perspectives on organizations and will link these to contemporary empirical studies. Special perspectives on organizations and will link these to contemporary empirical studies. Special focus in placed on exploring the link between theory and research exhibited in this empirical work to enable students to develop the capability of using theory to guide their own research.

AHD 716. Macro-Environmental Analysis. 3 Hours.
Macro-environmental analysis is strategic in nature and will focus on specific macro-environmental conditions or policies that may impact the delivery and financing of health care services and product. Macro-environmental analysis is traditionally the first step in the development of a strategic plan; sometimes referred to as external market analysis or political, economic, social, and technological (PEST) analysis.

AHD 718. Strategic Implementation and Evaluation. 3 Hours.
Examination of types of evaluations and evaluation designs, emphasis on application of evaluations in organizations; development of indicators; impact measurement.

AHD 722. Regression Analysis. 3 Hours.
Various approaches to regression analysis, including ordinary least squares and probability models, such as logit and probit.

AHD 727. Applied Multivariate Statistics for Health Administration Research. 3 Hours.
This is a survey course on the application of multivariate techniques in health care management research. The course focuses on application of multivariate statistical methods to health administration research questions, with emphasis on interpretation within real health care management problems.

AHD 730. Health Econ & Insurance. 3 Hours.
Development of economic principles and describes system of health care financing and delivery in the United States, providing a basis for analyzing health management and policy options.

AHD 731. Health Policy. 3 Hours.
Exploration of the health policy-making process in the U.S., the impact of policy decisions (or lack of decisions) on key stakeholders, and needed research and policy approaches to these issues.

AHD 735. Healthcare Quality Improvement. 3 Hours.
Policy issues and managerial methods related to quality and safety in healthcare organizations. Role of senior executives, board members, physician leaders in quality improvement and in creating a quality-focused organizational culture. Public and private sector approaches to quality measurement and improvement.

AHD 775. Strategic Planning and Mgt. 3 Hours.
Assessment of strategic management literature applied to health services organizations, exploration of strategy formulation, strategic content, and implementation and evaluation of topics for health care organizations.

AHD 778. Special Topics in Administration - Health Services. 1-4 Hour.
Exploration of current issues in Health Services Administration.

AHD 780. Strategic Information Systems. 3 Hours.
Examination of current research on role of information systems in strategic management and sources available to health care organizations for strategic decision support.

AHD 798. Non-Dissertation Research. 1-6 Hour.
Mentored research to design a study addressing a significant healthcare delivery problem.

AHD 799. Dissertation Research. 1-6 Hour.
Mentored research to conduct a study addressing a significant healthcare delivery problem.

Prerequisites: GAC Z
Healthcare Quality and Safety

Degree Offered: M.S.
Program Director: Allyson Hall, PhD
Phone: (205) 934-3509
E-Mail: askhqs@uab.edu
Website: www.uab.edu/hqs

Master of Science in Healthcare Quality and Safety

The Master of Science in Healthcare Quality and Safety will prepare individuals to provide leadership in the design, implementation, and evaluation of clinical and non-clinical process improvement and patient safety activities in complex healthcare environments. The program will comprise a didactic and experiential curriculum including:

- Quantitative and analytical methods and statistical process control techniques
- Quality management models such as PDSA, Lean, and Six Sigma
- Risk and patient safety assessment and management techniques
- Implementing and managing cultural and organizational change
- Team leadership and communication
- Leadership of high reliability organizations
- Integrative capstone project
- Currently working full-time in the healthcare industry

The program is housed in the Department of Health Services Administration (HSA) in the School of Health Professions. The HSA Department offers graduate degrees in health administration and health informatics, both of which include courses with leadership, quality improvement, and data analytics content, as well as a graduate degree in healthcare simulation, and a graduate certificate in Healthcare Quality and Safety (HQS).

Admission Requirements

Admission requirements include eligibility for admission to the UAB Graduate School, at least five years of relevant work experience, and currently working full-time in the healthcare industry. Applicants must have completed a bachelor’s degree (or higher) from an accredited college or university or from a recognized university abroad, with a minimum GPA of 3.0 on the last 60 hours of course work.

Additional requirements will include completion of a program-specific application showing quality or safety-related employment and previous relevant training, personal statement regarding interest in the program, three professional letters of recommendation, and prior completion of a basic statistics course.

An admissions committee comprised of, faculty, program administrators and HQS course directors will review applications and make final admission decisions based on desired cohort size. Application to the program may be made September through May 31, preceding the expected date of enrollment for the next fall term. Applications received after May 31 are considered on a space-available basis.

Entry Term: Fall Semester
Deadline for All Application Materials to be in the Graduate School Office: July 1, after July 1 applications will be considered on a space available basis
Length of Study: 36 Credit Hours
Number of Evaluation Forms Required: Three Professional Letters of Recommendation

Master of Science in Healthcare Quality and Safety and Executive Health Administration Coordinated Degree

Students wishing to pursue simultaneously the Master of Science in Healthcare Quality and Safety and the executive format of the Master of Science in Health Administration degrees must be accepted into both programs and complete twenty-eight (28) courses, including an interactive capstone experience course. A student who enters a coordinated program, but subsequently decides to pursue only one of the degrees, must satisfy all the requirements of the degree sought.

Graduate Certificate in Healthcare Quality and Safety

Prospective students should use this checklist to obtain specific admissions requirements on how to apply to Graduate School.

Degree Offered: Graduate Certificate
Program Director: Allyson Hall, PhD
Medical Director: Scott Buchalter, MD
Phone: (205) 934-3509
E-Mail: askhqs@uab.edu
Website: www.uab.edu/hqs

Certificate Information

The Graduate Certificate in Healthcare Quality and Safety is a unique, multidisciplinary approach to the analysis and solution of complex problems. The program, which is offered totally online, prepares clinical and administrative professionals to deploy quality- and safety-focused strategies for their organizations. HQS is a high quality, academically rigorous forum for developing the individual knowledge and skills needed to conduct clinical practice and non-clinical process improvement projects in a complex medical environment.

The certificate program, housed in the Department of Health Services Administration in the School of Health Professions, requires a combined approach using data and models from the natural, social, technological, behavioral and life sciences, and other specialized fields. The curriculum is delivered by an interdisciplinary team of faculty from the University of Alabama at Birmingham Schools of Health Professions, Nursing, Public Health and Medicine.

Certificate Options

This certificate is offered as a blended or online option.

Blended
• Students complete the 4-course certificate in an accelerated cohort: 4 months/1 semester
• Students complete 50% of the curriculum online and 50% face-to-face over four long weekends

Online
• Students complete the 4-course certificate over 2 semesters
• Students will take 2 courses during the fall semester and 2 courses during the spring semester.

Admission Requirements
• Undergraduate, graduate or professional degree in a health-related field and at least five years of experience in health care
• Currently working full-time in health care.
• Personal statement regarding interest in the program and the identification of a quality related project topic
• Minimum G.P.A of 3.00 or above for the past 60 hours of course work
• Non-refundable application fee of $50, payable online
• Official transcripts of all previous academic work beyond the secondary level
• Current Resumé or CV which outlines your professional work experience

Entry Term: Blended Option: Fall and Spring Semesters; Online Option: Fall Semester
Deadline for All Application Materials to be in the Graduate School Office: Blended Option: July 1st or Nov 1st; Online Option: July 1st -- applications submitted after the deadlines will be considered on a space available basis
Length of Study: 15 Credit Hours

Required Coursework

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQS 600 Introduction to Clinical Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HQS 610 Quantitative Methods, Measurement, and Tools for Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HQS 625 Fundamentals of Patient Safety</td>
<td>4</td>
</tr>
<tr>
<td>HQS 630 Leadership of High Reliability Healthcare Organizations</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Healthcare Quality and Safety Certificate for Executive Master of Science in Health Administration

Students enrolled in the Executive Master of Science in Health Administration program, may pursue a graduate certificate in Healthcare Quality and Safety. To obtain the certificate, Executive MSHA students may add an online HQS certificate course in each fall and spring term, increasing their credit hours from 9 to 13. For more information, please contact the HQS or MSHA programs.

Contact Information
For detailed information, contact the Department of Health Services Administration, Healthcare Quality and Safety Program, UAB School of Health Professions, SHPB 580A, 1716 9th Avenue, Birmingham, Alabama 35294-1212.
Telephone 205-934-3509.
E-mail HQS (SHRP.GCHQS@uab.edu) askhqs@uab.edu
Website: http://www.uab.edu/hqs

Graduate Certificate in Healthcare Quality and Safety

A student who receives two grades of “C”, or any grade of “F” on any course taken in pursuit of the HQS Graduate Certificate will be dismissed from the program.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQS 600 Introduction to Clinical Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HQS 610 Quantitative Methods, Measurement, and Tools for Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HQS 625 Fundamentals of Patient Safety</td>
<td>4</td>
</tr>
<tr>
<td>HQS 630 Leadership of High Reliability Healthcare Organizations</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Master of Science in Healthcare Quality and Safety

A student who receives two grades of “C”, or any grade of “F” on any course taken in pursuit of the MS degree in Healthcare Quality and Safety will be dismissed from the program.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQS 600 Introduction to Clinical Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HQS 610 Quantitative Methods, Measurement, and Tools for Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HQS 613 Advanced Data Use in Quality Improvement and Patient Safety</td>
<td>3</td>
</tr>
<tr>
<td>HQS 625 Fundamentals of Patient Safety</td>
<td>4</td>
</tr>
<tr>
<td>HQS 630 Leadership of High Reliability Healthcare Organizations</td>
<td>3</td>
</tr>
<tr>
<td>HQS 640 Project Management: Leading Successful Healthcare Initiatives</td>
<td>3</td>
</tr>
<tr>
<td>HQS 635 Healthcare Policy and Regulation</td>
<td>3</td>
</tr>
<tr>
<td>HQS 655 Population Health for Healthcare Quality Leaders</td>
<td>3</td>
</tr>
<tr>
<td>HQS 660 Financial Management for Healthcare Quality Leaders</td>
<td>3</td>
</tr>
<tr>
<td>HQS 675 Evaluating and Designing Quality Improvement Models</td>
<td>3</td>
</tr>
<tr>
<td>HQS 698 Integrative Capstone Experience/Non-Thesis Project</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>36</td>
</tr>
</tbody>
</table>

Courses
HQS 600. Introduction to Clinical Quality Improvement. 4 Hours.
Clinical quality improvement theory; classes of outcomes; process management; management tools and modeling techniques for improvement of clinical processes and decision-making.

HQS 610. Quantitative Methods, Measurement, and Tools for Quality Improvement. 4 Hours.
Statistical process control techniques applied to clinical and patient service processes, including Lean and Six Sigma methodologies; data system design concepts applied to clinical and financial data for managing health care business processes.
HQS 612. Health Data Management and Analytics for Enterprise Performance Improvement. 4 Hours.
Managing health data across the information lifecycle; assuring data quality and integrity; data visualization and analytics techniques; health information governance.
Prerequisites: HQS 600 [Min Grade: C] and HQS 610 [Min Grade: C] and HQS 625 [Min Grade: C] and HQS 630 [Min Grade: C]
HQS 613. Advanced Data Use in Quality Improvement and Patient Safety. 3 Hours.
Applying quantitative techniques to clinical and administrative data to inform and improve healthcare quality and patient safety outcomes.
Prerequisites: HQS 610 [Min Grade: C]
HQS 615. Collaborative Analytics for Quality and Safety Improvement. 3 Hours.
Survey of analytics used by HCO improvement project teams; emphasis on conceptual understanding of analytics approaches to investigate and resolve organizational quality and safety issues.
Prerequisites: HQS 610 [Min Grade: C] and HQS 612 [Min Grade: C]
HQS 625. Fundamentals of Patient Safety. 4 Hours.
Nature and science of medical error; strategies for design of safety-critical systems; hazard analysis and risk assessment in health care organizations; design elements of safety programs and high reliability systems.
HQS 630. Leadership of High Reliability Healthcare Organizations. 3 Hours.
Applying concepts of high reliability organizations to create an organizational culture that supports strong, functional, and safe patient care environments resulting in quality clinical care and patient satisfaction.
HQS 635. Healthcare Policy and Regulation. 3 Hours.
External drivers for quality and safety improvement in healthcare organizations, particularly policies and regulations affecting reimbursement. Discussion and analysis of key federal legislation and regulations promulgated by the Centers for Medicare and Medicaid Services (CMS) and The Joint Commission.
Prerequisites: HQS 600 [Min Grade: C] and HQS 630 [Min Grade: C] and HQS 610 [Min Grade: C] and HQS 625 [Min Grade: C]
HQS 655. Population Health for Healthcare Quality Leaders. 3 Hours.
Foundational skills needed to work in teams to effectively collaborate in the development and implementation of population health programs aimed at improving health outcomes. Special emphasis will be on evidence-based care and patient and community engagement.
HQS 675. Evaluating and Designing Quality Improvement Models. 3 Hours.
Application of analytical and decision tools to determine appropriate enterprise models for quality improvement, including problem identification, selection of metrics, analytical approaches, prioritization criteria, and post-implementation evaluation.
Prerequisites: HQS 612 [Min Grade: C] and HQS 635 [Min Grade: C]
HQS 678. Special Topics in Healthcare Quality and Safety. 1-4 Hours.
Exploration of current issues in Healthcare Quality and Safety.

HQS 698. Integrative Capstone Experience/Non-Thesis Project. 3-6 Hours.
Investigation of a process or safety improvement opportunity in a healthcare organization to propose a solution; application of the concepts and tools presented in the program courses. A written project report is required.
Prerequisites: HQS 615 [Min Grade: C] and HQS 635 [Min Grade: C] and HQS 675 [Min Grade: C] and HA 650 [Min Grade: C]

Healthcare Simulation

Master of Science in Healthcare Simulation

Degree Offered: M.S.
Program Director: Michelle Brown, PhD
Phone: (205) 934-9617
Email: michellebrown@uab.edu
Website: www.uab.edu/sim

Program Overview

The Master of Science in Healthcare Simulation is designed to prepare you with leadership and quality improvement skills in healthcare simulation in order to improve patient safety, increase communication effectiveness, refine teamwork, and enhance care delivery. By developing expertise in healthcare simulation, you will be equipped with a unique skill set to impact patient outcomes in your organization through the innovation of simulation. We believe that interprofessional collaboration is fundamental in being a successful healthcare simulationist.

The curriculum is taught by faculty with a variety of clinical and administrative experiences. Fellow classmates will be from diverse backgrounds who are interested in working collaboratively to improve patient care with simulation. Throughout the program, you will be challenged to think creatively and have opportunities to integrate simulation into your current practice.

Admission Requirements

Admission requirements include eligibility for admission to the UAB Graduate School. Experience in the healthcare industry or a related field is preferred. Applicants must have a bachelor's degree (or higher) from an accredited college or university or from a recognized university abroad, with a minimum GPA of 3.0 in coursework.

Additional requirements include submission of a personal statement regarding interest in the program, three letters of recommendation, prior completion of a basic statistics course, and healthcare terminology (if undergraduate degree is not in a health-related field).

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Fulfilled By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for Entry Term(s):</td>
<td>Fall, Spring, Summer</td>
</tr>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office:</td>
<td>July 1st, November 1st, March 1st</td>
</tr>
</tbody>
</table>

Entrance Tests:
The Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE) for international applicants from non-English speaking countries.
Number of Recommendation Letters Required: Three
Comments: Transcript evaluation by WES is required for applicants with foreign university degrees

Contact Information
For detailed information, contact the Department of Health Services Administration, Master of Science in Healthcare Simulation Program, UAB School of Health Professions, SHPB 590A. Physical address: 1716 9th Avenue South. Mailing address: 1716 9th Avenue South, Birmingham, AL 35294
Telephone 205-934-3509
Fax 205-975-6608
E-mail SimMasters@uab.edu

Master of Science in Healthcare Simulation
The MSHS program consists of a total of 33 semester hours. Thirty semester hours are considered required core courses. The remaining 3 semester hours are elective courses chosen based on student interest and program director approval. One on-campus visit is required in the first semester of the program.

The MSHS program allows students to earn only two grades of “C”. Upon earning a third grade of “C,” the student will be dismissed from the program. Any grade of “F” in any course will result in dismissal from the program.

Requirements
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS 575</td>
<td>Introduction to Healthcare Simulation for Quality and Safety</td>
<td>3</td>
</tr>
<tr>
<td>HCS 620</td>
<td>Current Trends in Simulation</td>
<td>2</td>
</tr>
<tr>
<td>HCS 625</td>
<td>Simulation Methodology</td>
<td>3</td>
</tr>
<tr>
<td>HCS 626</td>
<td>Healthcare Simulation Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>HCS 635</td>
<td>Advanced Debriefing</td>
<td>3</td>
</tr>
<tr>
<td>HCS 640</td>
<td>Project Management: Leading Successful Healthcare Initiatives</td>
<td>3</td>
</tr>
<tr>
<td>HCS 698</td>
<td>Simulation Capstone/Non-thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>HQS 600</td>
<td>Introduction to Clinical Quality Improvement</td>
<td>4</td>
</tr>
<tr>
<td>HCS 660</td>
<td>Financial Management for Healthcare Quality Leaders</td>
<td>3</td>
</tr>
<tr>
<td>HQS 630</td>
<td>Leadership of High Reliability Healthcare Organizations</td>
<td>3</td>
</tr>
<tr>
<td>HCS 610</td>
<td>Instructional Design in Simulation</td>
<td>2</td>
</tr>
<tr>
<td>Select 3 hours of elective coursework approved by the program director.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

1 Students must take a minimum of 3 semester hours of elective courses. Program director approval is required for all elective courses

Healthcare Simulation Graduate Certificate
The Graduate Certificate in Healthcare Simulation meets the growing demand of healthcare simulation educators and leaders. Graduates will be able to design and implement simulations aimed at improving teamwork, communication, and clinical skills according to evidence-based practices.

Our program is delivered online with an on-campus visit for 3 1/2 days in September. It is comprised of 15 credits, completed over three consecutive semesters.

Credentials Conferred
The Graduate Certificate in Healthcare Simulation is awarded by the University of Alabama at Birmingham.

Length of Study
The certificate requires 15 credits, which can be completed in 3 semesters.

Program Entrance Date
Fall semester -- deadline for all application materials to be in the Graduate School Office: July 1, after July 1 applications will be considered on a space available basis.

TYPICAL HEALTHCARE SIMULATION CURRICULUM
Requirements
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS 575</td>
<td>Introduction to Healthcare Simulation for Quality and Safety</td>
<td>3</td>
</tr>
<tr>
<td>HCS 610</td>
<td>Instructional Design in Simulation</td>
<td>2</td>
</tr>
<tr>
<td>HCS 625</td>
<td>Simulation Methodology</td>
<td>3</td>
</tr>
<tr>
<td>HCS 626</td>
<td>Healthcare Simulation Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>HCS 620</td>
<td>Current Trends in Simulation</td>
<td>2</td>
</tr>
<tr>
<td>HCS 630</td>
<td>Research in Simulation</td>
<td>1</td>
</tr>
<tr>
<td>HCS 635</td>
<td>Advanced Debriefing</td>
<td>3</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Courses
HCS 575. Introduction to Healthcare Simulation for Quality and Safety. 3 Hours.
Introductory course on origins and current applications for healthcare simulation; overview of simulation methodologies and application in education, training, quality improvement, and patient safety.

HCS 610. Instructional Design in Simulation. 2 Hours.
Instructional Design in Simulation applies the foundational concepts in the field of instructional design to the growing field of healthcare simulation. This course focuses on the processes of analysis, design, development, implementation, and evaluation as they relate to developing quality simulation learning experiences.

Survey of emerging technologies as well as new applications and best practices in the delivery of simulation.

HCS 625. Simulation Methodology. 3 Hours.
Intensive focus on the development of simulation sequences to meet institutional priorities; emphasis on simulation case development, including debriefing and assessment strategies; teamwork and interprofessional competencies.

HCS 626. Healthcare Simulation Laboratory. 1 Hour.
Participation in simulations; application of research-based strategies for designing and implementing simulation scenarios; debriefing and developing solutions to common issues in simulation.
HCS 630. Research in Simulation. 1 Hour.
Introduction to simulation-focused research and present an overview of the current simulation evidence base.

HCS 635. Advanced Debriefing. 3 Hours.
In-depth review and application of current debriefing models in the field of simulation. Emphasis on choosing effective debriefing models for various modalities of simulation.
Prerequisites: HCS 625 [Min Grade: C]

HCS 640. Project Management: Leading Successful Healthcare Initiatives. 3 Hours.
Techniques for planning, scheduling, controlling, resource allocation, and performance measurement activities required for successfully completing a project.

HCS 645. Simulation Modeling. 3 Hours.
Introduction to basic concepts, approaches, and processes relevant to computer modeling in healthcare simulation environments; use of computer modeling to shorten design cycles, innovate new processes, evaluate designs, and simulate the impacts of alternative approaches relevant to healthcare environments; includes structure system analysis, model construction, data collection, and computer simulation languages.

HCS 655. Population Health for Healthcare Quality Leaders. 3 Hours.
Focuses on the foundational skills needed to work in teams to effectively collaborate in the development and implementation of population health programs aimed at improving health outcomes. Special emphasis will be on evidence-based care and patient and community engagement.

HCS 660. Financial Management for Healthcare Quality Leaders. 3 Hours.
Basic concepts in financial management; introduction to financial accounting and management accounting; emphasis on evaluating the financial impact of new programs.

HCS 675. Special Topics in Healthcare Simulation. 1-4 Hour.
Exploration of current issues in Healthcare Simulation.

HCS 698. Simulation Capstone/Non-thesis Research. 1-4 Hour.
Rigorous culminating project that provides the opportunity for focused investigation of simulation applications in a real-world setting. Investigation and application of theory through a practical project.

Nuclear Medicine and Molecular Imaging Sciences

Degree Offered M.S.
Program Director Amy Brady, M.A.Ed, CNMT
Phone (205) 934-3427
E-Mail amybrady@uab.edu
Website https://www.uab.edu/shp/cds/nmmis

Program Information

Program Mission
The mission of the Master of Science in Nuclear Medicine and Molecular Imaging Sciences (NMMIS) program in the School of Health Professions at the University of Alabama at Birmingham (UAB) is to provide comprehensive didactic and clinical educational experiences reflecting 21st century workforce demands that prepare graduates to be competent practitioners and innovative leaders within the nuclear medicine profession.

Admission Requirements
In addition to the general Graduate School admission requirements, applicants to the M.S. program must:
- Have any baccalaureate degree in biology, physics, chemistry, biomedical sciences, bioengineering, or a related degree from an accredited college or university, along with pre-requisite course requirements.
- Have a minimum undergraduate GPA of 3.0 (A= 4.0), computed from all undergraduate credits or from the last 60 semester hours of undergraduate course credit.
- Apply for admission to the UAB NMMIS Program.
- Complete a clinical observation and write a reflection on the observation.
- International students from non-English speaking countries are required to submit English proficiency scores (TOEFL/IELTS/ PTEA/Duolingo) that meet the Graduate School's minimum score requirements: TOEFL - 80; IELTS - 6.5; PTEA:- 53; IELA - 176 - Duolingo - 120. See other international admission requirements at https://www.uab.edu/graduate/admissions/international-applicants.

The completed application and observation form must be on file with the program office by February 15th for a priority interview to be granted. All eligible applicants will be reviewed in March for admission decisions in early April. Eligible late applicants will be considered on a space-available basis up to August 1st.

If accepted, students must complete the UAB medical history questionnaire and physical, provide proof of required immunizations, and receive satisfactory screening by the UAB Medical Center Student Health Service before enrollment. A background check and drug screen will be required at program admission and prior to clinical placement.

Persons with a baccalaureate degree may be eligible to register for courses as non-degree seeking graduate students before acceptance into the M.S. program. If a non-degree seeking student meets the M.S. program admission requirements, up to 12 semester hours of approved non-degree graduate coursework may be accepted for the M.S. degree. Admission of a student to any course as a non-degree student does not constitute admission to the M.S. degree program.

Early Acceptance
Early Acceptance Programs are designed for academically superior high-school students. Early Acceptance Programs allow high achieving students to be admitted to the Master of Science in Nuclear Medicine and Molecular Imaging Sciences program at the same time they are admitted to an undergraduate program.

Eligible students are required to maintain a 3.5 undergraduate GPA and complete the following pre-requisite courses: MA 106, CH 105-CH 108 or CH 115-CH 118, BY 216 or NMT 320, BY 115, BY 116, MA 180, PH 201, PH 202, HCM 350, HCM 330, CDS 425

Essential Functions
Essential functions are physical abilities, mental abilities, skills, attitudes, and behaviors the students must show evidence of to be able perform at each stage of their didactic and clinical education. A list of essential functions is on file in the NMMIS Program Office and the NMMIS Student Handbook.

If you have a disability, but have not contacted Disability Support Services (DSS), please call (205) 934-4205 (voice) or (205) 934-4248
Accreditation and Certification

Nuclear Medicine and Molecular Imaging Sciences academic programs are accredited by the Joint Review Committee on Nuclear Medicine Technology Programs (JRCNMT). Program graduates are eligible to apply for the certification examination offered by both the Nuclear Medicine Technology Certification Board (NMTCB) or the American Registry of Radiological Technologists (ARRT).

JRCNMT
2000 W. Danforth Road
Suite 130, #203
Edmond, OK 73003
Phone: 405.285.0546
Fax: 405.285.0579
jrcnmt@coxinet.net
http://www.jrcnmt.org/

NMTCB
3558 Habersham at Northlake Building I Tucker, GA 30084
Phone: 404.315.1739 Fax: 404.315.6502 board@nmtcb.org https://www.nmtcb.org/

ARRT
1255 Northland Drive St. Paul, MN 55120 Phone: 651.687.0048 Fax: 651.687.3299 https://www.arrt.org/

Additional Information

Entry Term Fall Semester
Deadline for All Application First Consideration: February 15th; Deadline for All Application
Materials to be in the Graduate School Office Space available basis after first consideration, up to August 1st
Entrance Tests For international applicants from non-English speaking countries, minimum score requirements: TOEFL - 80; IELTS - 6.5; PTEA:- 53; IELA - 176 - Duolingo - 120.

Comments Scholarship money is available, but is very limited; transcript evaluation by WES is required for applicants with foreign university degrees

Contact Information

For detailed information, contact the Department of Clinical and Diagnostic Sciences, Nuclear Medicine and Molecular Imaging Sciences Program, UAB School of Health Professions, SHPB 446, 1716 9th Avenue South, Birmingham, Alabama 35294-1212.
Telephone 205-934-3209.
E-mail AskCDS@uab.edu

Master of Science in Nuclear Medicine and Molecular Imaging Sciences

The Master of Science in Nuclear Medicine and Molecular Imaging Sciences follows a Core/Track model which consists of a total of 64 semester hours. 39 semester hours are taken in the core Nuclear Medicine and Molecular Imaging Sciences courses. The remaining 25 semester hours are taken on one of three specialty tracks (Imaging Specialists, Radiation Safety, or Research).

Imaging Specialist Track

Requirements Hours
NMT 624 Physics/Instrumentation of Nuclear Magnetic Resonance 2
NMT 633 Computed Tomography Procedures 2
NMT 634 MRI Scanning and Sequence 2
NMT 692 NMT and CT Clinical Practice 7
NMT 694 Computed Tomography Clinical Practice 7
NMT 698 Non-Thesis Research 4

Total Hours 24

Radiation Safety Track

Requirements Hours
MHP 651 Advanced Radiation Biology 3
MHP 691 NMT Clinical Practice 6
MHP 698 Non-Thesis Research 4

Total Hours 24

Research Track

Requirements Hours
NMT 697 Journal Club in Nuclear Medicine and Molecular Imaging Sciences 2
NMT 697 Journal Club in Nuclear Medicine and Molecular Imaging Sciences 2
MHP 651 Advanced Radiation Biology 3
NMT 698 Non-Thesis Research 6
NMT 699 Thesis Research 10
BST 603 Introductory Biostatistics for Graduate Biomedical Sciences 3

Total Hours 24
Courses

NMT 525. First Aid and Healthcare Provider CPR and AED. 1 Hour.
Knowledge and skills needed to perform basic first aid and CPR
procedures for adult, child and infant victims according to the American
Heart Association (AHA) Standards.

NMT 540. Physics in Biomedical Sciences. 3 Hours.
Physical concepts used in biology, human anatomy, physiology, as well
as in medical diagnosis and treatment. Topics include mechanics, fluids,
waves, heat, sound, optics, electricity & magnetism. Advanced topics
include radiation, X-rays, MRI, and nuclear medicine.

NMT 601. Introduction to MRI Clinic. 2 Hours.
Overview of patient management, MRI screening and safety procedures,
quality assurance procedures and FDA guidelines.

NMT 602. Introduction to Nuclear Medicine, Patient Care &
Communication Skills. 3 Hours.
Overview of professional organizations and nuclear medicine; hospital
organization; medical terminology; medical records; communication skills,
health law and medical ethics; basic patient care theory.

NMT 604. Introduction to Nuclear Medicine, Management, Patient
Care & Lab. 2 Hours.
Overview of professional organizations and nuclear medicine; hospital
organization; medical terminology; medical records; introduction to
other aspects of nuclear medicine technology including management,
communication skills, health law and medical ethics; basic patient care
theory and techniques including standard precautions, infection control,
vital signs, venipuncture, patient transfer techniques, immobilization
techniques, aseptic and non-aseptic techniques, oxygen administration,
and medical emergencies which are required for nuclear medicine
students prior to entering clinical training.

NMT 605. Cross-Sectional Anatomy. 2 Hours.
Integration of the knowledge of gross anatomy with the identification and
location of structures in cross-sectional images. Computed Tomography
(CT) and Magnetic Resonance (MR).

NMT 610. Medical Radiation Physics. 4 Hours.
Overview of basic medical radiation physics concepts and experiments.

NMT 620. Nuclear Medicine Physics, Instrumentation, and Lab. 4
Hours.
Principles and applications of nuclear medicine physics and
instrumentation.
Prerequisites: MA 180 [Min Grade: C] and PH 201 [Min Grade: C] and
PH 202 [Min Grade: C]

NMT 621. Nuclear Medicine Instrumentation I. 4 Hours.
Theory and experiments on radiation detection instrumentation;
calibration; maintenance standards; practical uses of gaseous detectors,
scintillation detectors, and multichannel analyzers; quality assurance
testing for nuclear medicine instrumentation including GM detectors,
ionization chambers and scintillation detectors.

NMT 622. CT Instrumentation. 3 Hours.
Theoretical principles of Computed Tomography (CT); CT
instrumentation, data acquisition, data processing, and image quality.
Prerequisites: NMT 605 [Min Grade: C]

NMT 624. Physics/Instrumentation of Nuclear Magnetic Resonance.
2 Hours.
Fundamental physical principles of nuclear magnetic resonance,
including structure of atom, concept of resonance, Larmor frequency,
gyromagnetic ratio, T1 and T2 and methods of generating magnetic
fields.

NMT 625. CT Physics and Instrumentation. 2 Hours.
Provide theoretical principles of Computed Tomography (CT); CT
instrumentation, physics, data, acquisition, data processing and image
quality.

NMT 631. Nuclear Medicine Anatomy & Physiology - Procedures I. 4
Hours.
Study of the utilization of nuclear medicine procedures including skeletal,
respiratory, endocrine, gastrointestinal and genitourinary systems.
Anatomy and relevant concepts in physiology are reviewed and applied
to each procedure.
Prerequisites: NMT 601 [Min Grade: C]

NMT 632. Nuclear Medicine Anatomy & Physiology - Procedures II. 2
Hours.
Study of the utilization of nuclear medicine procedures including nuclear
cardiology, oncology, central nervous and hematopoietic systems and
applications of position emission tomography. Anatomy and relevant
concepts in physiology are reviewed and applied to each procedure.
Prerequisites: NMT 631 [Min Grade: C]

NMT 633. Computed Tomography Procedures. 2 Hours.
Overview of CT positioning criteria, specific selections, and options
in protocols. Understanding concepts in advanced CT including
interventional imaging, positron emission tomography and special
procedures.

NMT 634. MRI Scanning and Sequence. 2 Hours.
Overview of basic MRI theory; imaging sequences, parameter
optimizations, and imaging procedures, flow imaging, and MR
spectroscopy.
Prerequisites: NMT 624 [Min Grade: C]

NMT 641. Regulations, Radiation Protection/Biology and Lab. 4
Hours.
Overview of principles and methods of radiation protection, radiation
biology and ionizing radiation regulations.

NMT 653. Research Methodology and Publication Analysis. 2 Hours.
Perform scientific research, critically evaluate scientific literature, and
write an abstract and scientific poster on a topic relevant to nuclear
medicine.
Prerequisites: CDS 610 [Min Grade: C]

NMT 660. Radiopharmacy, Pharmacology & Lab. 4 Hours.
Overview of fundamentals of radiopharmacy and experiments including
radionuclide generator design, elution and operation, labeling and
quality control of Tc-99m labeled compounds, unit dose preparation;
radiopharmaceutical design, IND process, MIRD, contrast media and
pharmacology.

NMT 675. Special Topics in Nuclear Medicine Technology. 1-4 Hour.
Faculty-led exploration of current topics and issues in nuclear medicine
technology.

NMT 691. NMT Clinical Practice. 3-9 Hours.
Directed clinical practice: in vivo procedures; instrumentation quality
control; radiopharmacy; applied radiation safety procedures.

NMT 692. NMT and CT Clinical Practice. 7 Hours.
Clinical experience providing the opportunity to observe, work, and train
to become a Nuclear Medicine Technologist in a clinical setting.
Prerequisites: NMT 691 [Min Grade: C]
NMT 694. Computed Tomography Clinical Practice. 1-10 Hour.
Directed clinical practice: CT instrumentation quality control; applied application of CT procedures.
Prerequisites: NMT 605 [Min Grade: C] and NMT 623 [Min Grade: C] and NMT 633 [Min Grade: C]

NMT 695. MRI Clinical Practice. 10 Hours.
Directed clinical practice: MRI instrumentation quality control; applied application of MRI procedures.
Prerequisites: NMT 602 [Min Grade: C] and NMT 605 [Min Grade: C] and NMT 624 [Min Grade: C] and NMT 634 [Min Grade: C]

NMT 696. Seminar and Registry Review. 2 Hours.
Ethics, healthcare disparities and costs associated with selected disease conditions; board exam review.

NMT 697. Journal Club in Nuclear Medicine and Molecular Imaging Sciences. 1 Hour.
Analysis of primary scientific literature in the field of nuclear medicine and imaging sciences.

NMT 698. Non-Thesis Research. 1-10 Hour.
Directed research for a non-thesis master of science degree project.

NMT 699. Thesis Research. 1-10 Hour.
Original research in nuclear medicine technology and interpretation of results. Demonstrates student's acquaintance with literature of field and competency in proper selection and execution of research methodology.
Prerequisites: GAC M

Nutrition Sciences

The School of Health Professions Department of Nutrition Sciences offers the most comprehensive nutrition education experience you will find on one campus. Everything you need to learn to save lives, prevent disease, and improve quality of life can be found at UAB.

You can study the clinical side of nutrition in the heart of Alabama’s top medical center, a dynamic academic campus environment surrounded by highly regarded medical facilities such as UAB Hospital, Birmingham VA Medical Center, and Children's of Alabama. The Department of Nutrition Sciences offers an undergraduate minor in Nutrition Sciences, a Bachelor of Science in Behavioral Nutrition and Wellness, a Master of Science in Nutrition Sciences (multiple tracks available), and a Doctor of Philosophy in Nutrition Sciences.

Master of Science Program in Nutrition Sciences (NS)

Degree Offered: M.S.
Director: Dr. Brenda Bertrand
Phone: (205) 934-8770
E-mail: brendamb@uab.edu
Web site: https://www.uab.edu/shp/nutrition

The MS in Nutrition Sciences provides experiences that foster understanding about nutrition research, health promotion, and disease prevention. Students choose from various track options as described below.

Admission to the Master of Science Program in Nutrition Sciences

The Nutrition Sciences graduate program recommends fall-term entry. Interested students must first obtain admission to the UAB Graduate School. Graduate School admission standards include:

1. A 'B' average computed overall;
2. Evidence of a bachelor's degree from a regionally accredited university or college in the United States or other majors with specified prerequisite courses;
3. Complete a criminal background check and drug screen at program admission and again prior to clinical placement as required by school policy for select tracks. Please check with the program for specific track requirements.

Additional requirement for the Clinical Track/Dietetic Internship Option only:
1. Evidence of a bachelor's degree from a Didactic Program approved by the Accreditation Council for Education in Nutrition and Dietetics (ACEND).

Additional requirement for the Clinical Track/Prior Learning Option only:
1. Verification statement from the Accreditation Council for Education in Nutrition and Dietetics (ACEND) demonstrating successful completion of a Dietetic Internship.

Degree Requirements

The MS in Nutrition Sciences requires successful completion of 14 semester hours in core courses, and additional specific courses for each of the tracks.

Core Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTR 618 Nutritional Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>NTR 621 Applied Statistics to Nutrition Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>NTR 637 Applied Research in Nutrition Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NTR 690 Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hours: 14

Additional Information

Deadline for Entry Term(s): Fall (June 1), Spring (Nov 1), and Summer (April 1) admission available for Lifestyle Management Disease Prevention Track and Clinical Track/Prior Learning Option.

Fall - DEP-C Track Jan 3; DEP Track May 15, Research Track Feb 1; Clinical/Dietetic Internship Track June 1

Number of Evaluation Forms Required: Three

Entrance Tests: TOEFL, IELTS, PTEA, Duolingo, or IELA is required for all international applicants whose native language is not English for applicable tracks.
Master of Science in Nutrition Sciences - Clinical Track/Dietetic Internship

Students in the MS in Nutrition Sciences Clinical Track/Dietetic Internship must complete 48 semester hours of graduate-level coursework (14 semester hours in core courses and 34 semester hours of required track courses). Students are required to complete 1,000 contact hours of supervised professional practice in nutrition and dietetics (NTR 589). This is a non-thesis track. All non-practicum course work is offered online. Fall term admission only. Only students who have completed a bachelor's degree from a didactic program approved by ACEND are eligible to apply.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTR 500 Communications in Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NTR 501 RDN Certification Review</td>
<td>0</td>
</tr>
<tr>
<td>NTR 601 Advanced Medical Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTR 604 Principles and Practice of Nutrition Support</td>
<td>3</td>
</tr>
<tr>
<td>NTR 611 Advanced Food System and Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>Internship/Practicum</td>
<td>24</td>
</tr>
<tr>
<td>NTR 589 Internship Practicum</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>34</td>
</tr>
</tbody>
</table>

Clinical Track/Dietetic Internship Accreditation

The Clinical Track / Dietetic Internship is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) and is designed to prepare entry-level dietitians for careers in a variety of health care, wellness, and community settings. Admission to this track is awarded on a competitive basis through a national matching process using the Dietetic Internship Centralized Application Service (DICAS) portal and D&D Digital. Upon acceptance into the Dietetic Internship, you must then apply to be admitted to the UAB Graduate School.

An onsite internship is offered in Birmingham, and offsite in Huntsville, Mobile, and Montgomery. Upon completion of the program, graduates are eligible to take the national examination to become a Registered Dietitian Nutritionist (RDN).

Additional Information

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Fulfilled By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Term(s)</td>
<td>Fall</td>
</tr>
<tr>
<td>Deadline for DICAS and D&D Digital:</td>
<td>February 15</td>
</tr>
<tr>
<td>Deadline for ALL Application Materials to be in the Graduate School Office:</td>
<td>June 1</td>
</tr>
</tbody>
</table>

For detailed information, contact:

Dr. Brenda Bertrand, Professor and MS in Nutrition Sciences Program Director
UAB School of Health Professions
Webb Building, Room 534, 1675 University Boulevard, Birmingham, AL 35294-3360
Telephone: 205-934-8770
E-mail: brendamb@uab.edu (miller1@uab.edu)
Website: https://www.uab.edu/shp/nutrition/

Mrs. Carleton Rivers, Assistant Professor and Director, Clinical Track/Dietetic Internship
Department of Nutrition Sciences, UAB School of Health Professions
Webb Building, Room 540, 1675 University Boulevard, Birmingham, AL 35294-3360
Telephone: 205-934-3223
E-mail: meadows4@uab.edu (dintr@uab.edu)
Website: www.uab.edu/shp/nutrition/education/masters/clinical-track-dietetic-internship

Master of Science in Nutrition Sciences - Clinical Track/Dietetic Internship/MPH Dual Degree

Students in the Dietetic Internship/MPH Dual Degree option must complete 30 semester hours of graduate-level coursework, comprising 27 hours of public health courses and 3 semester hours of NTR 589 to be applied to the MPH degree, in addition to the requirements of the MS in Nutrition Sciences Clinical Track/Dietetic Internship program described above. All required public health coursework is offered online.

Only students who are enrolled in the MS in Nutrition Sciences Clinical Track /Dietetic Internship are eligible to apply for the dual degree option.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td>3</td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following courses</td>
<td>2</td>
</tr>
<tr>
<td>ENH 689 Environmental Health Sciences Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>EPI 689 Epidemiology Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>HB 689 Health Behavior Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>NTR 589 Internship Practicum</td>
<td>3</td>
</tr>
<tr>
<td>MPH Elective Courses</td>
<td>7</td>
</tr>
<tr>
<td>Total Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

For further information about the MPH component of the dual degrees, contact:
KaShunti S. Farmer, MPA, MPH, Program Manager, Population Health & Coordinated Degree Programs
University of Alabama at Birmingham School of Public Health
1720 2nd Avenue South, 130 Ryals Public Health Building, Birmingham AL 35294-0022
Telephone: 205-934-2684
E-mail: kfarmer@uab.edu
Website: https://www.uab.edu/soph/home/graduate/programs/mph-ms

Master of Science in Nutrition Sciences -
Lifestyle Management and Disease Prevention Track

Students in the MS in Nutrition Sciences Lifestyle Management and Disease Prevention Track must complete 36 semester hours of graduate-level coursework (14 semester hours in core courses, 19 semester hours of required courses, and 3 semester hours of graduate-level elective coursework). This is a non-thesis track and all coursework is offered online. Prerequisite requirements include successful completion (with a grade of C or higher) in undergraduate courses, in the following subject areas (3 semester hours each): Introductory Nutrition, Biology, Organic Chemistry, Physiology, and Microbiology.

Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTR 609 Applied Nutrition for Physical Activity and Disease Prevention</td>
<td>3</td>
</tr>
<tr>
<td>NTR 631 Community Interventions for Healthy Lifestyles</td>
<td>3</td>
</tr>
<tr>
<td>NTR 632 Nutrition Counseling and Education</td>
<td>4</td>
</tr>
<tr>
<td>KIN 644 Application of Exercise Physiology to Fitness and Performance</td>
<td>3</td>
</tr>
<tr>
<td>CDS 605 Survival Spanish for Health Professionals</td>
<td>1</td>
</tr>
<tr>
<td>GC 545 Genetics and Genomics Applications in Health Care</td>
<td>2</td>
</tr>
<tr>
<td>PA 550 Introduction to Medical History Taking and Physical Examination</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective

3

Total Hours

22

Master of Science in Nutrition Sciences -
Dietitian Education Program Track

The Dietitian Education Program (DEP) is a Coordinated Program in Dietetics as defined by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). There are two program options for the DEP: one includes a Dietetic Internship (DI) and the other includes the DEP Graduate Certificate. Upon completion of the program, graduates are eligible to take the national examination to become a Registered Dietitian Nutritionist (RDN). Prerequisite requirements for the DEP include successful completion (with a grade of C or higher) in undergraduate courses in Introductory Nutrition, Biology, Organic Chemistry, Physiology, and Microbiology and completion of the following undergraduate nutrition courses: NTR 222 Nutrition and Health, NTR 232 Lifecycle Nutrition, NTR 320 Nutrition and the Consumer, NTR 330 Nutrition and Metabolism, NTR 420 Nutritional Genetics, and NTR 421 Nutrition Assessment and the Nutrition Care Process.

Only students who are enrolled in the Lifestyle Management and Disease Prevention Track are eligible for the DEP Graduate Certificate program.

Students in the Dietitian Education Program must complete 58 hours of graduate-level coursework (14 semester hours in core courses and 44 semester hours of required track courses). Students are required to compete 1,000 contact hours of supervised professional practice in nutrition and dietetics (NTR 670 – 676). This is a non-thesis track and all non-practicum coursework is offered online. Fall term admission only. Students can elect to complete practicum experiences in the Birmingham area, or remotely in their preferred location.

Dietitian Education Program Accreditation

The Dietitian Education Program is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). Prerequisite requirements include successful completion (with a grade of C or higher) in undergraduate courses, in the following subject areas (3 semester hours each): Introductory Nutrition, Biology, Organic Chemistry, Physiology, and Microbiology.

Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTR 500 Communications in Nutrition</td>
<td>1</td>
</tr>
<tr>
<td>NTR 501 RDN Certification Review</td>
<td>0</td>
</tr>
<tr>
<td>NTR 600 Principles of Food Science Operations and Menu Planning</td>
<td>3</td>
</tr>
<tr>
<td>NTR 601 Advanced Medical Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTR 604 Principles and Practice of Nutrition Support</td>
<td>3</td>
</tr>
<tr>
<td>NTR 611 Advanced Food System and Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>NTR 631 Community Interventions for Healthy Lifestyles</td>
<td>3</td>
</tr>
<tr>
<td>NTR 632 Nutrition Counseling and Education</td>
<td>4</td>
</tr>
<tr>
<td>NTR 670 Practicum in Wellness</td>
<td>3</td>
</tr>
<tr>
<td>NTR 671 Practicum in Community Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTR 672 Practicum in Food Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>NTR 673 Practicum in Medical Nutrition Therapy I</td>
<td>3</td>
</tr>
<tr>
<td>NTR 674 Practicum in Medical Nutrition Therapy II</td>
<td>4</td>
</tr>
<tr>
<td>NTR 675 Practicum in Dietetic Administration</td>
<td>4</td>
</tr>
<tr>
<td>NTR 676 Advanced Practicum in Dietetics</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours

44

For detailed information, contact Dr. Lizzy Davis, Assistant Professor and DEP Track Director, Department of Nutrition Sciences, UAB School of Health Professions, Webb Building, Room 550, 1675 University Blvd, Birmingham, AL 35294.

- Telephone 205-935-6514
- Web https://www.uab.edu/shp/nutrition/education/masters/dietitian-education-track

Master of Science in Nutrition Sciences -
Clinical Track/Prior Learning Option

Students in the MS in Nutrition Sciences Clinical Track/Prior Learning Option must complete 30 semester hours of graduate-level coursework (14 semester hours in core courses, 10 semester hours of required track courses, and 6 semester hours of elective credits). Only students who have a Verification Statement demonstrating successful completion of a Dietetic Internship (DI) or a Coordinated Program (CP) accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) are eligible to apply. This is a non-thesis track and all required coursework is offered online.
Successful completion of the Ph.D. will require completion of a minimum of 14 semester hours in core courses (encompassing the disciplines of biochemistry, nutritional biochemistry, statistics, and experimental design) and at least 46 additional graduate semester hours of required and elective coursework from nutrition and other disciplines; passing a comprehensive written and oral qualifying examination; and defense of a dissertation reporting the results of original scientific research that makes a genuine contribution to the knowledge of nutrition sciences. In fulfilling the latter requirement, with rare exceptions, the student must include papers that are publishable in peer-reviewed journals, with one paper for which the student is the first author. In addition, the student must have published two manuscripts in peer-reviewed journals, one for which the student is the first author, prior to defending their dissertation.

Additional Information

For detailed information, contact Dr. Paula Chandler-Laney, Director of the Ph.D. Program in Nutrition Sciences, Department of Nutrition Sciences, UAB School of Health Professions, Susan Mott Webb Nutrition Sciences Building, Room 413, 1675 University Boulevard, Birmingham, AL 35294-3360.

Telephone 205-975-3006

E-mail nutrition@uab.edu (phdntr@uab.edu)

Web www.uab.edu/nutrition

Core Classes must include:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses:</td>
<td></td>
</tr>
<tr>
<td>NTR 621: Applied Statistics to Nutrition Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>NTR 637: Applied Research in Nutrition Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NTR 690: Seminar</td>
<td>2</td>
</tr>
<tr>
<td>NTR 618: Nutritional Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>Required Courses:</td>
<td></td>
</tr>
<tr>
<td>GRD 717: Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>NTR 733: Laboratory Instruments and Methods in Nutrition Research</td>
<td>2</td>
</tr>
<tr>
<td>NTR 736: Scientific Methods</td>
<td>3</td>
</tr>
<tr>
<td>NTR 747: Molecular Biology and Nutrition Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NTR 779: Obesity in the 21st Century</td>
<td>3</td>
</tr>
<tr>
<td>NTR 788: Advanced Nutrition Seminar (Required each Fall and Spring semester for a total of 5 credits)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hours 29

Elective classes:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTR 601: Advanced Medical Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NTR 604: Principles and Practice of Nutrition Support</td>
<td>3</td>
</tr>
<tr>
<td>NTR 609: Applied Nutrition for Physical Activity and Disease Prevention</td>
<td>3</td>
</tr>
<tr>
<td>NTR 631: Community Interventions for Healthy Lifestyles</td>
<td>2</td>
</tr>
<tr>
<td>NTR 632: Nutrition Counseling and Education</td>
<td>4</td>
</tr>
<tr>
<td>NTR 750: Body Composition and Energy Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>NTR 755: Teaching Practicum in Nutrition Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NTR 761: Enhancing Research Productivity Through Intensive Writing</td>
<td>3</td>
</tr>
<tr>
<td>NTR 769: Race, Nutrition and Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 16
Graduate Certificate in Nutrition for Community Health

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTR 632 Nutrition Counseling and Education</td>
<td>4</td>
</tr>
<tr>
<td>NTR 631 Community Interventions for Healthy Lifestyles</td>
<td>3</td>
</tr>
<tr>
<td>NTR 618 Nutritional Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>NTR 609 Applied Nutrition for Physical Activity and Disease Prevention</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 16

Courses

NTR 500. Communications in Nutrition. 1 Hour.
This course is designed to enable students to communicate effectively with the public via blogs, media interviews, traditional written education materials, social media, and websites. Emphasis in all of these areas of communication will be on translating scientific evidence into accurate and engaging communications for consumers and the press.

NTR 501. RDN Certification Review. 0 Hours.
Sponsored workshop to prepare students for the Registered Dietitian Nutritionist examination.

NTR 521. Nutrition Assessment and the Nutrition Care Process. 3 Hours.
Introduction to the Nutrition Care Process (NCP), a systematic approach to providing high-quality nutrition care. The NCP provides a framework for critical thinking and decision making. Gain factual knowledge, learn to apply course material through case study application, and explore fundamental principles in medical nutrition related content areas.

Prerequisites: NTR 222 [Min Grade: C]

NTR 589. Internship Practicum. 1-12 Hour.
Clinical experience in food service management and nutritional care in facilities throughout community; specific objectives vary depending on rotation.

NTR 600. Principles of Food Science Operations and Menu Planning. 3 Hours.
Practice Management and Use of Resources: strategic application of principles of management and systems in the provision of food services to individuals and organizations.

NTR 601. Advanced Medical Nutrition. 3 Hours.
Roles of nutrition in relationship to health; prevention of disease and correction of disorders due to nutritional imbalance throughout life cycle; disease states and their nutritional management; biochemical, clinical, and dietary assessment of nutritional status; drug-nutrient interactions; inborn errors of metabolism.

NTR 604. Principles and Practice of Nutrition Support. 3 Hours.
Critical review of current methods of providing nutrition support for critically ill patients; theory integrated with clinical practice.

NTR 609. Applied Nutrition for Physical Activity and Disease Prevention. 3 Hours.
Theoretical and applied aspects of nutrition for sport performance and health promotion. Provides practical application of evidence-based analysis of topics to promote consumer health.

NTR 611. Advanced Food System and Resource Management. 3 Hours.
Management systems and their application to hospital food service; legal aspects of dietetic practice; quality assurance, departmental planning, and organization.

NTR 618. Nutritional Biochemistry. 6 Hours.
Metabolism and function of nutrients; biosynthesis of vitamins and their cofactors; human requirements for energy, amino acids, minerals, and vitamins; current human nutritional problems.

NTR 621. Applied Statistics to Nutrition Sciences I. 3 Hours.
This course has been designed to introduce students to statistical methods and approaches used to test hypotheses in the field of nutrition. Students will learn statistical tools that will equip them to analyze data, and will apply their knowledge to data sets addressing scientific questions related to nutrition and the application of nutrition to health.

Prerequisites: NTR 621 [Min Grade: C]

NTR 625. Human Nutr Through the Life Cy. 3 Hours.
This course will examine the role of nutrition and dietary factors on the growth, development, and maintenance of health throughout the human life cycle. Nutritional guidelines/recommendations, special nutritional needs, physiology, and nutritional health concerns for each stage of the human lifecycle beginning with preconception and continuing throughout adulthood and aging will be addressed.

NTR 626. Consumer Issues in Nutrition. 3 Hours.
This course examines contemporary nutritional issues that affect consumers. Focus will be on the translation of science to public policy, consumer communications, and food choices.

NTR 630. Maternal Child Hlth Ped Nutrit. 4 Hours.
Public health and interdisciplinary approach to pediatric and maternal and child nutrition; translation of evidence based approaches to pediatric nutrition, including prevention and intervention.

NTR 631. Community Interventions for Healthy Lifestyles. 3 Hours.
Community-based strategies for promoting healthy lifestyles through improved eating and physical activity behaviors; emphasis on childhood obesity prevention and intervention; integration of the Life Course model.

NTR 632. Nutrition Counseling and Education. 4 Hours.
Theoretical and applied aspects of nutrition counseling and education. Practical application of counseling strategies to promote consumer health.

NTR 636. Scientific Methods. 3 Hours.
Approaches for nutrition investigation; design of experiments and research proposals.

NTR 637. Applied Research in Nutrition Sciences. 3 Hours.
Introduction to research methodologies and application of research related to nutrition and dietetics using practical application of qualitative and quantitative research and evaluation methods in community and health-related settings.

Prerequisites: NTR 621 [Min Grade: C]

NTR 650. Body Composition and Energy Metabolism. 3 Hours.
Methods of measurement of body composition and energy expenditure and their relationship to health and disease.
NTR 666. Nutrition, Mindfulness, and Wellness. 3 Hours.
Exploration of relationship between dietary practices and health; guide to
design of individualized health lifestyle practices, including meditation and
mindfulness.

NTR 670. Practicum in Wellness. 3 Hours.
This course is designed to give students practical experiences to meet
nutrition and wellness needs in a variety of populations. Students will
complete wellness activities in campus dining, corporate, healthcare, and
school sites. These activities will include developing wellness messages
for social media, investigating new wellness and nutrition trends, and
practicing counseling/health coaching skills leading to health behavior
change.

NTR 671. Practicum in Community Nutrition. 3 Hours.
Students will apply strategies to meet nutrition needs outside of the
acute-care setting with emphasis on cultural competency, effective
communication, nutrition education, public policy, program planning and
food assistance programs.

NTR 672. Practicum in Food Systems Management. 3 Hours.
This practicum provides supervised experiences that will help students
explore issues and topics to develop the skills necessary to manage
foodservice systems, including production, inventory control, sanitation
and quality management. Emphasis on applications to healthcare
facilities.

NTR 673. Practicum in Medical Nutrition Therapy I. 3 Hours.
Students will round with the dietitian to gain competence in the Nutrition
Care Process in long-term, in-patient, and outpatient hospital or clinic
setting. Students also prepare and present case study reports to
become skillful in investigating and discussing these disease states and
conditions in professional settings. Students use a clinical log to track the
populations they are serving and the disease states and conditions they
are treating during this practicum.

NTR 674. Practicum in Medical Nutrition Therapy II. 4 Hours.
Students will work, under the supervision of registered dietitians, in local
hospitals (acute care, outpatient) and long-term medical care facilities to
assess, diagnose, chart and plan Medical Nutrition Therapy. Students will
practice the skills developed in Practicum in Medical Nutrition Therapy I.

NTR 675. Practicum in Dietetic Administration. 4 Hours.
This practicum focuses on the application of management and leadership
principles and techniques specific to the provision of nutrition services
in foodservice. Students practice the care and operation of equipment,
sanitation audits, HACCP Guidelines, budget planning and customer
service.

NTR 676. Advanced Practicum in Dietetics. 4 Hours.
This course provides the opportunity for the student to work
independently under the supervision of a registered dietitian. The student
will demonstrate competence at an entry-level before beginning this
experience.

NTR 680. Journal Club in Clinical Nutrition. 1 Hour.
Review, discussion, and critique of current literature in clinical nutrition.

NTR 690. Seminar. 2 Hours.
Review of current literature and research in nutrition.

NTR 691. Clinical Practicum: Nutritional Aspects of Children with
Intellectual Disabilities. 1-6 Hour.
Evaluation of nutritional status, feeding behavior, and food habits
of children with intellectual disabilities; nutritional care; functioning
in interdisciplinary team; field trips to agencies serving children with
intellectual disabilities.

NTR 692. Clinical Practicum: Community Nutrition. 1-6 Hour.
Clinical experiences in health care delivery systems with nutrition
components; methods of determining nutritional status of most vulnerable
groups; nutrition education of community; current community nutrition
issues; food fads, weight control, food misinformation, and nutrition
legislation.

NTR 693. Clinical Practicum: Pediatric Nutrition. 1-6 Hour.
Clinical experiences in normal growth patterns in children; nutritional
needs in health and disease; medical problems of pediatric patients; diet
therapy.

NTR 694. Clinical Practicum: General Clinical Research. 1-6 Hour.
Clinical experiences in a multi-disciplinary research facility involving
human subjects.

NTR 695. Special Topics in Nutrition. 1-4 Hour.
Exploration of current issues in Nutrition Sciences.

NTR 696. Clinical Practicum: Nutr Support of Pediatric Clin. 1-6
Hour.
Observation of and participation in interdisciplinary team delivery of
nutrition support to critically ill hospitalized patients and ambulatory
patients.

NTR 697. Clinical Practicum: Nutrition Support Service. 3-6 Hours.
Observation of and participation in interdisciplinary team delivery of
nutrition support to critically ill hospitalized patients and ambulatory
patients.

NTR 698. Master's Level Non-Thesis Research. 1-6 Hour.
Project designed to meet student's particular interest in nutrition and
dietetic field; review of current literature; limited research and paper
required.

Projects designed individually to meet student's particular interest within
nutrition and dietetic field; emphasis on research approach to problem
solving, including review of current literature in topic area.
Prerequisites: GAC M

NTR 701. Advanced Medical Nutrition. 3 Hours.
Role of nutrition and its relationship to health, prevention of disease, and
correction of disorders due to nutritional imbalance throughout the life
cycle. Emphasis on nutrition assessment and current research, including
biochemical clinical, dietary, and anthropometric measurements.

NTR 718. Nutritional Biochemistry. 6 Hours.
Metabolism and function of nutrients; biosynthesis of vitamins and their
cofactors; human requirements for energy, amino acids, minerals, and
vitamins; current human nutritional problems.

NTR 723. Assessment of Nutritional Status in Populations. 3 Hours.
Theoretical and hands-on instruction in methods of assessment of
dietary intakes, body composition, and biochemical levels of macro-
and micronutrients. Proper techniques for collecting measurements and
review of computer software packages that specialize in analysis of
specific measurements.

NTR 728. Cancer Prevention and Control Seminar. 1-3 Hour.
Presentations related to cancer prevention and control and participation
on cancer research review boards. Required for pre- and post-doctoral
fellows in the NCI-supported R25 Cancer Prevention and Control Training
Program.
NTR 733. Laboratory Instruments and Methods in Nutrition Research. 1-5 Hour.
Instruction in theory and use of selected laboratory instruments (selected according to student's need related to research project).

NTR 736. Scientific Methods. 3 Hours.
This course is designed to provide the students with the knowledge necessary to plan, design, and undertake research on topics related to nutrition science.

NTR 747. Molecular Biology and Nutrition Sciences. 3 Hours.
Overview of molecular biology applications in nutrition science research. Examination of basic molecular biology techniques, current usage of molecular biology to solve nutrition problems, and application of biotechnology to study disorders with nutritional component.

NTR 750. Body Composition and Energy Metabolism. 3 Hours.
Methods of measurement of body composition and energy expenditure and their relationship to health and disease.

NTR 755. Teaching Practicum in Nutrition Sciences. 3 Hours.
Students will apply the concepts that they learned from the graduate teaching certificate program of UAB Center for the Integration of Research, Teaching and Learning (CIRTL) to formal teaching instruction. Students will serve as co-teachers, working with a Nutrition Science faculty course-master to participate in teaching activities of a specified course.

NTR 760. Foundations of Nutrition Research. 1 Hour.
NTR 761. Enhancing Research Productivity Through Intensive Writing. 3 Hours.
Instruction and practice in techniques for developing publishable manuscripts, including establishing consistent and sustainable writing habits, improving the quality of writing, seeking and incorporating feedback from mentors and co-authors, identifying appropriate statistical approaches for research questions, and responding to reviewers/editors comments for revision or rejection.

NTR 768. Race, Nutrition and Health. 3 Hours.
Introduction to the identification, measurement and exploration of etiological factors that underlie racial/ethnical disparities in health outcomes.

NTR 778. Special Topics in Nutrition Sciences. 1-5 Hour.
NTR 779. Obesity in the 21st Century. 3 Hours.
General overview of the facts and research findings underlying the understanding of obesity, its co morbidities, and its consequences in the population.

NTR 788. Advanced Nutrition Seminar. 1 Hour.
NTR 798. Doctoral Level Dissertation Research. 1-15 Hour.
Prerequisites: GAC Z

Occupational Therapy

The Department of Occupational Therapy currently offers an Occupational Therapy Clinical Doctorate (OTD - entry-level and post-professional tracks), and a graduate certificate in Low Vision Rehabilitation (LVR). The LVR graduate certificate may be completed independently by practicing occupational therapists, or in conjunction with the OTD degree.

Degree Offered: Occupational Therapy Clinical Doctorate (OTD)

Low Vision Rehabilitation, Graduate Certificate

The Graduate Certificate in Low Vision Rehabilitation is a practice oriented certificate program that prepares occupational therapists to provide comprehensive, competent intervention to adults with visual impairment from age-related eye diseases or brain injury. The program is designed for occupational therapists already working in low vision rehabilitation; those interested in starting low vision rehabilitation programs; and those interested in expanding their practice skills in this area. The program's flexible web-based distance format allows occupational therapists across the United States and other English speaking countries to obtain these skills while working full time.

Credentials Conferred

The Graduate Certificate in Low Vision Rehabilitation is awarded by the University of Alabama at Birmingham.

Length of Study

The certificate requires 5 semesters to complete; students take 1 course per semester.

Program Entrance Date

Fall semester (begins in August)

Requirements for Admission

Degree in occupational therapy from an accredited university program.

Essential Requirements

After acceptance and prior to enrollment into online programs, students must certify their ability to complete the essential tasks, with or without reasonable accommodation, associated with performing as an occupational therapy student. Reasonable accommodation refers to ways in which the University can assist students with disabilities to accomplish these tasks (for example, providing extra time to complete an examination). Reasonable accommodation does not mean that students with disabilities will be exempt from certain tasks; it does mean that the Department of Occupational Therapy will work with students with disabilities to determine whether there are ways to assist the student with completion of the required tasks.

After enrollment, a student with a disability who wishes reasonable accommodation contacts Disability Support Services (205) 934-4205 or (205) 934-4248 (TDD), provides appropriate and current documentation substantiating the claimed disability, meets the requirements of a disability as described in the ADA, and identifies the needed
Essential Tasks

- Students must meet class standards for course completion throughout the curriculum.
- Students must be able to read, write, speak, and understand English at a level consistent with successful course completion and development of positive client-therapist relationships.
- Students must be able to read and write English at a level consistent with successful course completion and development of positive client-therapist relationships.
- Students must complete readings, assignments, and other activities.
- Students must gather decision-making pieces of information during client assessment activities.
- Students must perform evaluation and intervention activities by direct performance keys.
- Students must apply critical thinking processes to their work in the courses.
- Students must have interpersonal skills as needed for productive discussion, respectful interaction with classmates and faculty.
- Students must demonstrate appropriate health status prior to enrollment with annual updates on some items. Requirements are found at www.uab.edu/studenthealth.
- Students must follow standards and policies specified in the Department of Occupational Therapy Student Handbook, and the University of Alabama at Birmingham Directions Handbook.
- Students must adhere to all policies outlined in the Department of Occupational Therapy Student Handbook which is posted online at www.uab.edu/shp/ot/contact-us/student-resources.

Application Deadline and Procedure

See Occupational Therapy Low Vision Rehabilitation Admissions Checklist on the Overview page.

International Students:

See Occupational Therapy Low Vision Rehabilitation Admissions Checklist, in addition to the following items:

- A transcript evaluation from World Education Services (www.wes.org) or Educational Credential Evaluators (www.ece.org) may be required.
- Students from countries where English is not the official and primary language may be required to take and receive an acceptable score on the TOEFL, or the IELTS.
- Submit official TOEFL test score (Institution code: 1856) or official IELTS score (provide the Graduate School's mailing address to the testing company/center).

Typical Program (Course requirements are listed in semester credit hours)

The curriculum is designed with the working occupational therapist in mind. Coursework emphasizes practical application to the clinic. Projects are designed to reinforce learning of application to practice. Materials for completion of the courses can be obtained through the internet and required texts. The student must have consistent access to the internet. A high-speed connection (DSL, cable, satellite) is strongly recommended.

Certificate

On completion of the required coursework the student will be awarded a Graduate Certificate in Low Vision Rehabilitation by the University of Alabama at Birmingham and the student’s name will appear in the commencement bulletin. A transcript of the coursework taken for the certificate will be available.

The curriculum for the certificate is offered online as web-based distance education for practitioners. Students accepted into the program begin the curriculum in August and complete one course per semester. Because one course builds on another, students must take the courses in sequence. The final course requires that the student come to the UAB campus for a 2-day on campus intensive where they will work in small groups with instructors to demonstrate assessment and intervention skills. This is the only time the student is required to come to the UAB campus during the entire curriculum. Travel to UAB for the intensive weekend may be waived under special circumstances. Examples include limitations in travel due to disability, illness, or travel from outside the U.S. A series of online meetings will be substituted. Travel exceptions are at the discretion of the Low Vision Rehabilitation Program Director. Based on these requirements, course work for completion of the certificate will require 5 semesters.

LOW VISION REHABILITATION CURRICULUM

The courses must be completed sequentially in the order listed below.

Typical OT Curriculum Course Sequence

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Cohort</td>
<td></td>
</tr>
<tr>
<td>OT 677</td>
<td>Foundations in Low Vision Rehabilitation I (1st Fall semester) 3</td>
</tr>
<tr>
<td>OT 679</td>
<td>Foundations in Low Vision Rehabilitation II (1st Spring semester) 3</td>
</tr>
<tr>
<td>1st Summer semester Open</td>
<td></td>
</tr>
<tr>
<td>OT 690</td>
<td>Foundations in Low Vision Rehabilitation III (2nd Fall semester) 3</td>
</tr>
<tr>
<td>OT 689</td>
<td>Foundations in Treatment of Visual Impairment from Brain Injury (2nd Spring semester) 3</td>
</tr>
<tr>
<td>OT 691</td>
<td>Foundations in Low Vision Rehabilitation IV (2nd Summer semester) 3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15 credits</td>
</tr>
</tbody>
</table>

For further information contact:

Program Coordinator
Occupational Therapy Low Vision Rehabilitation Certificate Program
UAB School of Health Professions
SHPB 352
1716 9th Avenue South
Birmingham, AL 35294-1212
Telephone 205-934-3569
E-mail lvrcert@uab.edu
Web http://www.uab.edu/shp/ot/low-vision-rehabilitation

Clinical Doctorate in Occupational Therapy

The Clinical Doctorate in Occupational Therapy (OTD) prepares graduates with in-depth knowledge in a specific area such as professional practice, advocacy, policy, education, research and program
development. Doctoral students actively engage in educational and clinical experiences to develop the capacity to drive change across professional and community based practice. Students develop advanced knowledge and practice skills to assess occupational needs; identify barriers to occupational engagement and devise strategies that support full occupational participation to improve the health and well-being of people, populations, and communities. The degree is offered as either:

1. Entry-Level OTD – The entry level, or professional track, is a full-time program designed for those interested in obtaining an occupational therapy degree. The graduates of this track are eligible to sit for the national occupational therapist certification examination administered by the National Board for Certification in Occupational Therapy (NBCOT®); website: www.nbcot.org.

2. Post-professional OTD – The post-professional track is a flexible web-based format that allows occupational therapists across the United States, and in other countries, to obtain this advanced practice degree while working full time. The post-professional track is for experienced occupational therapy professionals.

Entry-Level OTD Program

Accreditation

The entry-level occupational therapy doctoral degree program has applied for accreditation and was granted Candidacy Status by the Accreditation Council for Occupational Therapy Education (ACOTE) of the American Occupational Therapy Association (AOTA), located at 6116 Executive Boulevard, Suite 200, North Bethesda, MD 20852-4929. ACOTE’s telephone number c/o AOTA is (301) 652-AOTA and its web address is www.acoteonline.org. The program must have a pre-accreditation review, complete an on-site evaluation, and be granted Accreditation Status before its graduates be eligible to sit for the national certification examination for the occupational therapist administered by the National Board for Certification in Occupational Therapy (NBCOT). After successful completion of this exam, the individual will be an Occupational Therapist, Registered (OTR). In addition, all states require licensure in order to practice; however, state licenses usually are based on the results of the NBCOT Certification Examination. Note that a felony conviction may affect a graduate’s ability to sit for the NBCOT certification examination or attain state licensure.

Students must complete 24 weeks of Level II fieldwork as well as an individual 14-week capstone experience within 12 months following the completion of the didactic portion of the program. The doctoral capstone experience must be started after completion of all coursework and Level II fieldwork as well as completion of preparatory activities defined in 2018 ACOTE OTD Standard D.1.3.

Credentials Conf erred

The Clinical Doctorate in Occupational Therapy (OTD) degree is awarded by the University of Alabama at Birmingham.

Professional Certification

ACOTE’s final accreditation decision will be completed August 2023. Following successful completion of that, graduates of the entry level OTD program will be eligible to sit for the national occupational therapist certification examination administered by the National Board for Certification in Occupational Therapy (NBCOT)®; website: www.nbcot.org. After successful completion of the examination, the individual will be an Occupational Therapist, Registered (OTR). Most states require licensure in order to practice; however, state licenses are usually based on the results of the NBCOT Certification Examination.

Applicants should be aware that fieldwork placement sites, professional licensing agencies and prospective employers frequently require criminal history disclosures and background checks, although convictions do not necessarily disqualify someone for licensure or employment. Applicants with criminal convictions should recognize that such convictions may impede eventual licensure or employment and that the University of Alabama at Birmingham cannot predict the future decisions of fieldwork sites, licensing agencies, or employers. An individual who is considering, or who has entered, an occupational therapy educational program can have his/her background reviewed by requesting an Early Determination Review from NBCOT at https://www.nbcot.org/en/Students/Services.

Length of Study

Minimum of eight (8) semesters as a full-time student.

Entrance Date

Summer semester

Application Deadline

This program participates in the Occupational Therapy Centralized Application Service (OTCAS). Please consult www.otcas.org for more information regarding specific OTCAS application requirements, procedures, and fees. The OTCAS application needs to be completed by the OTCAS deadline. Applicants should send all application materials directly to OTCAS. OTCAS will verify the application information and send completed applications to the department. Contact Information for OTCAS: Web: https://portal.otcas.org/.

Requirements for Admission

The applicant must hold a baccalaureate degree from an accredited college or university in a field other than occupational therapy. Acceptance will be based on the student’s academic ability, aptitude for a career as an occupational therapist, and an interview. The candidate is expected to satisfy the following requirements:

• Complete the OTCAS application based on the OTCAS deadline.
• Hold a baccalaureate degree in a discipline other than occupational therapy from an accredited college or university; or receive a baccalaureate degree prior to admission.
• Completion of prerequisite coursework prior to admission.
• Complete either:
 • At least 20 hours of observation of occupational therapy. Various settings are recommended. Or:
 • The “Introduction to Occupational Therapy” course (offered 100% online)
• Have an overall minimum GPA of 3.0 as calculated by OTCAS or a minimum GPA of 3.0 in the last 60 hours of coursework;
• Have an overall minimum GPA of 3.0 or better for all prerequisite courses. For prerequisite courses, no grade lower that a B will be accepted.
• If invited, complete an interview with faculty of the Department of Occupational Therapy.
Students who are **accepted** into the UAB Clinical Doctorate in Occupational Therapy (OTD): entry level program must:

- Complete the UAB Graduate School application to include the Graduate School fee.
- Complete the UAB medical history questionnaire and physical.
- Provide proof of required immunizations, and receive satisfactory screening by the UAB Medical Center Student Health Service.
- Send all official transcripts to the UAB Graduate School.
- Submit a $300 non-refundable deposit to reserve a seat in the program.
- Complete a criminal background check and drug screen before program matriculation and as specified by the Department of Occupational Therapy.

Prerequisites-UAB Equivalents

All prerequisites must be completed in the last 8 years with a grade of “B” or better, or must be scheduled for completion prior to admission. (Transfer equivalents for UAB can be found by clicking here.)

Course requirements are listed in semester credit hours.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Humanities</td>
<td></td>
</tr>
<tr>
<td>EH 302 Intermediate Writing</td>
<td>3</td>
</tr>
<tr>
<td>Social and Behavioral Sciences</td>
<td>6</td>
</tr>
<tr>
<td>PY 218 Psychopathology</td>
<td></td>
</tr>
<tr>
<td>PY 212 Developmental Psychology (course must cover human development from prenatal to old age)</td>
<td></td>
</tr>
<tr>
<td>Natural Sciences and Mathematics</td>
<td>22</td>
</tr>
<tr>
<td>Statistics (must be taken in Math, Psychology or Sociology)</td>
<td></td>
</tr>
<tr>
<td>MA 180 Introduction to Statistics</td>
<td></td>
</tr>
<tr>
<td>or PY 216 Elementary Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>or SOC 41 Social Statistics</td>
<td></td>
</tr>
<tr>
<td>or HCM 311 Statistics for Managers</td>
<td></td>
</tr>
<tr>
<td>Biology with Lab</td>
<td></td>
</tr>
<tr>
<td>BY 123 & 123L Introductory Biology I Laboratory</td>
<td></td>
</tr>
<tr>
<td>Human Anatomy with Lab</td>
<td></td>
</tr>
<tr>
<td>BY 115 & 115L Human Anatomy & Human Anatomy Laboratory</td>
<td></td>
</tr>
<tr>
<td>Human Physiology with Lab</td>
<td></td>
</tr>
<tr>
<td>BY 116 & 116L Introductory Human Physiology & Introductory Human Physiology Laboratory</td>
<td></td>
</tr>
<tr>
<td>Kinesiology</td>
<td></td>
</tr>
<tr>
<td>KIN 307 Applied Kinesiology</td>
<td></td>
</tr>
<tr>
<td>Introductory Sociology or Cultural Anthropology</td>
<td></td>
</tr>
<tr>
<td>SOC 100 Introduction to Sociology</td>
<td></td>
</tr>
<tr>
<td>or ANTH Introducing Cultural Anthropology</td>
<td></td>
</tr>
<tr>
<td>Medical Terminology is strongly recommended</td>
<td></td>
</tr>
<tr>
<td>HCM 350 Medical Terminology for Health Professionals</td>
<td></td>
</tr>
</tbody>
</table>

Essential Requirements

Prior to enrollment, students must certify their ability to complete the essential tasks, with or without reasonable accommodation, associated with performing as an occupational therapy student. Reasonable accommodation refers to ways in which the University can assist students with disabilities to accomplish these tasks (for example, providing extra time to complete an examination or enhancing the sound system in a classroom). Reasonable accommodation does not mean that students with disabilities will be exempt from certain tasks; it does mean that the Department of Occupational Therapy will work with students with disabilities to determine whether there are ways to assist the student with completion of the required tasks.

After enrollment, a student with a disability who wishes reasonable accommodation contacts Disability Support Services (205) 934-4205 or (205) 934-4248 (TDD) or visit 9th Avenue Office Bldg. 1701 9th Ave., provides appropriate and current documentation substantiating the claimed disability, meets the requirements of a disability as described in the ADA, and identifies the needed accommodation. Reasonable accommodation in classroom and in practice settings cannot be provided without the formal request and the required documentation of the ADA defined disability. (Visit http://www.uab.edu/dss)

Essential Tasks

The student possess sufficient cognitive skills to:

- Acquire, process, retain and apply knowledge through a variety of instructional methods such as: written materials (i.e. texts, journals, documentation and other written sources), oral delivery, visual demonstrations, laboratory experiences, clinical experiences and independent learning.
- Complete reading assignments, search and analyze professional literature, and apply information gained to guide practice.
- Process (measure, calculate, analyze, synthesize and evaluate) large amounts of complex information; apply theoretical concepts to practice activities and perform clinical problem-solving in a logical and timely manner.
- Perceive and understand three-dimensional relationships and spatial relationships necessary for education and practice related tasks such a moving in a variety of environments, designing treatment equipment, and fabricating splints.
- Maintain attention for 2-4 hours; tolerate days when classes or fieldwork may last 8-10 hours.
- Take and pass test/quizzes in a variety of formats.
- Complete written assignments and produce written documentation in standard and organized English.
- Apply knowledge and judgment required to demonstrate ethical reasoning and behavior.
- Apply safety knowledge and judgment to a variety of situations.
- Comply with University, Program, and fieldwork site rules and regulations.
- Demonstrate problem-solving skills and judgment necessary to modify evaluation or intervention methods when necessary to address the specific needs of individuals (behavioral, cultural, etc.), in order to maximize client performance.
- Apply clinical reasoning and judgment necessary for interpretation of evaluation data and development of treatment plans.
- Identify and select occupations that are goal directed and motivate and challenge clients.
- Demonstrate judgment necessary to establish priorities and develop and use strategies.
The student must possess sufficient interpersonal skills, communication skills, and affective learning skills to:

- Demonstrate positive sufficient interpersonal skills including, but not limited to, cooperation, flexibility, tact, empathy, and confidence.
- Collaborate with classmates, clients, family members, significant others, and team members.
- Function successfully in supervisory, and instructor-student relationships; change and adjust behavior and performance in the classroom, laboratory, or clinic on the basis of instructor feedback.
- Participate equitably in cooperative group learning activities; actively participate in class discussions and as a member of a team.
- Sustain the mental and emotional rigors of a demanding educational program in occupational therapy that includes academic and clinical components that occur within set time constraints and often concurrently.
- Orally present information to groups of people.
- Communicate in the English language effectively and clearly in oral and written forms, using proper spelling, punctuation, and grammar to explain procedures and teach skills.
- Use language appropriate to the recipient, with faculty, peers, clients, and other health professionals from different social and cultural backgrounds; use communication skills needed to practice safely.
- Obtain information from clients, peers, faculty, supervisors, and other professionals.
- Use therapeutic communication skills such as attending and active listening during therapeutic interactions; and motivating and facilitating client behaviors in order to maximize client performance.
- Communicate effectively both verbally and non-verbally; elicit and describe factual information and perceive information derived from verbal and non-verbal communication and social cues.
- Be appropriately assertive as required to speak in class, initiate and guide the therapy process, establish limits as needed for the safety of self and clients and establish professional identity within complex systems.
- Utilize the computer for communication and class assignments.
- Observe persons and scenarios and elicit relevant information for use in assessment and intervention.
- Plan, guide and implement both individual and group interventions.

The student must possess sufficient professional behavior to:

- Demonstrate respect for diversity, including but not limited to, socio-cultural, socioeconomic, spiritual, and lifestyle choices.
- Function successfully in supervisory and instructor-student relationships; change and adjust behavior and performance in the classroom, laboratory, or clinic on the basis of instructor feedback.
- Exhibit professional demeanor including appropriate language and dress, acceptance of responsibility for conduct.
- Demonstrate organizational and time management skills and ability to prioritize activities effectively as needed to attend class and fulfill class requirements.
- Exhibit flexibility and adapt to changing environments and expectations.
- Cope with stresses encountered in the intensive educational process as well as clinical practice environments.
- Demonstrate consistent work behaviors including initiative, preparedness, dependability, punctual attendance and work site maintenance.
- Tolerate working in environments where there is exposure to disability, illness, pain, and death.
- Maintain general good health and self-care in order not to jeopardize the health and safety of self and others in the academic and clinical settings.
- Maintain ethical standards including honesty, integrity, and confidentiality, at all times.
- Produce the required volume of work in the expected time frame.

The student must possess sufficient physical and sensory skills to:

- Tolerate sitting up to 2 hours at a time, over an 8–10 hour period.
- Tolerate periods of physical activity up to 8–10 hours per day.
- Demonstrate coordination, equilibrium, and sensory functioning required to manipulate parts of, or whole bodies of, simulated and real clients for purposes of evaluation and treatment.
- Demonstrate mobility and ability to move within environments adequately to access and maneuver within locations and destinations including classroom, lab, and clinical settings.
- Demonstrate lifting ability sufficient to maneuver an individual’s body parts effectively to perform evaluation and treatment techniques including, but not limited to, transferring another person into and out of a wheelchair, to and from the commode or bed, etc.
- Demonstrate sufficient postural control, neuromuscular control, eye/hand coordination, and integrated function of the senses of vision, hearing, tactile sense, vestibular (movement sense) and proprioception (sense of muscles and joints) to manipulate and use common occupational therapy equipment, devices, materials, and supplies, and demonstrate competency in the use of these objects within assessment and treatment procedures commonly used in occupational therapy practice.
- Demonstrate motor skill capacities with sufficient levels of strength, endurance and fine and gross motor coordination to safely, accurately, and effectively engage in a wide variety of therapeutic techniques, activities and occupations used in the occupational therapy assessment and intervention process; these capacities would include ability to lift and move objects, adequate manual dexterity, arm and hand function needed to use tools and perform other manipulative activities, use of limbs and trunk in bending, twisting, squatting, kneeling, reaching, pushing, pulling, holding, extending, and rotation.
- Manipulate or guide another person’s body in transfers, ambulation, positioning and assisted or facilitated trunk, head, and limb movements.
- Manipulate bolsters, pillows, plinths, mats, assistive/adaptive devices, and other supports or chairs to aid in positioning, moving, or treating a patient/client effectively.
- Legibly record/document evaluations, patient care notes, and referrals, etc., in standard medical charts in clinical settings in a timely manner and consistent with the acceptable norms of clinical settings.
- Demonstrate or complete activities or tests with adequate degree of fine motor dexterity.
- Tolerate physical contact with others: tolerate manipulation of his/her own body by peers or instructors for instructional purposes.
- Demonstrate a sufficiently high degree of coordination of motor skills and vigilance to respond to emergency situations quickly and appropriately, including performance of CPR.
• Travel to various community and fieldwork sites for experiential learning, clinical opportunities, and fieldwork.

Typical Program

Total curriculum hours for the Entry-Level OTD: 107

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year (Summer)</td>
<td></td>
</tr>
<tr>
<td>OT 701 Theoretical Foundations for Occupational Therapy Practice</td>
<td>15</td>
</tr>
<tr>
<td>OT 704 Research Design for Occupational Therapy Practice</td>
<td></td>
</tr>
<tr>
<td>OT 715 Introduction of the OT Process, Analysis and Adaptation of Occupation</td>
<td></td>
</tr>
<tr>
<td>OT 716 Social, Economic and Political Factors that Influence Occupational Therapy</td>
<td></td>
</tr>
<tr>
<td>OT 717 Creative Occupations</td>
<td></td>
</tr>
<tr>
<td>OT 730 Performance Skills for Occupation: Introduction</td>
<td></td>
</tr>
<tr>
<td>First Year (Fall)</td>
<td>13</td>
</tr>
<tr>
<td>OT 720 Contexts of Professional Practice: Infancy to Early Childhood</td>
<td></td>
</tr>
<tr>
<td>OT 726 Low Vision and Participation</td>
<td></td>
</tr>
<tr>
<td>OT 731 Performance Skills for Occupation: Infancy to Adolescence</td>
<td></td>
</tr>
<tr>
<td>OT 764 Fieldwork Experience</td>
<td></td>
</tr>
<tr>
<td>OT 776 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>Second Year (Spring)</td>
<td>15</td>
</tr>
<tr>
<td>OT 705 Evidenced-based Occupational Therapy Practice Design and Application</td>
<td></td>
</tr>
<tr>
<td>OT 721 Contexts of Professional Practice: Childhood to Adolescence</td>
<td></td>
</tr>
<tr>
<td>OT 732 Performance Skills for Occupation: Adulthood</td>
<td></td>
</tr>
<tr>
<td>OT 750 Scholarly Inquiry I</td>
<td></td>
</tr>
<tr>
<td>OT 764 Fieldwork Experience</td>
<td></td>
</tr>
<tr>
<td>OT 776 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>Second Year (Summer)</td>
<td>16</td>
</tr>
<tr>
<td>OT 703 Advocacy and Healthcare Policy in Population Health</td>
<td></td>
</tr>
<tr>
<td>OT 706 Management for Occupational Therapy Practice</td>
<td></td>
</tr>
<tr>
<td>OT 722 Contexts of Professional Practice: Early Adulthood to Middle Adulthood</td>
<td></td>
</tr>
<tr>
<td>OT 751 Scholarly Inquiry II</td>
<td></td>
</tr>
<tr>
<td>OT 764 Fieldwork Experience</td>
<td></td>
</tr>
<tr>
<td>OT 776 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>Second Year (Fall)</td>
<td>14</td>
</tr>
<tr>
<td>OT 634 Seminar in Professional Readiness</td>
<td></td>
</tr>
<tr>
<td>OT 723 Contexts of Professional Practice: Later Adulthood</td>
<td></td>
</tr>
<tr>
<td>OT 727 Health and Wellness Promotion</td>
<td></td>
</tr>
<tr>
<td>OT 774 Contemporary and Emerging Issues in Occupational Therapy</td>
<td></td>
</tr>
<tr>
<td>OT 776 Capstone Project</td>
<td></td>
</tr>
<tr>
<td>Third Year (Spring)</td>
<td>10</td>
</tr>
<tr>
<td>OT 765 Advanced Fieldwork I</td>
<td></td>
</tr>
<tr>
<td>Third Year (Summer)</td>
<td>10</td>
</tr>
<tr>
<td>OT 766 Advanced Fieldwork II</td>
<td></td>
</tr>
<tr>
<td>Third Year (Fall)</td>
<td>14</td>
</tr>
<tr>
<td>OT 777 Capstone Experience: Emerging as an Occupational Therapist</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 107

For further information contact:

UAB Department of Occupational Therapy
Recruitment and Admissions Coordinator
SHPB 353, 1716 9th Avenue South
Birmingham, AL 35294-1212
Telephone 205-934-3568
E-mail OTD@uab.edu
Web http://www.uab.edu/shp/ot

Post-professional OTD Track

Length of Study

The program requires variable semesters to complete; students taking two courses per semester should finish in 2 1/2 years. Students taking only one course per semester or a mix of credit hours across semesters will take longer. One course a semester will take four (4) years. The UAB Graduate School mandates degree completion in five (5) years.

Requirements for Admission

Admission is open to therapists with current master’s or bachelor’s degrees in occupational therapy conferred from an accredited occupational therapy program who are currently employed or have a minimum of one year experience as an occupational therapist.

Requirement	**Fulfilled By:**
Entry Term | Fall
Deadline for ALL Application Materials to be in the Graduate School Office | August 1
Entrance Tests | For international applicants from non-English speaking countries, scores for the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS)

All Post-Professional OTD applicants must complete the following requirements:

*No GRE (Graduate Record Examination) is required.

**Students planning to take the Low Vision Graduate Certificate concentration must also submit a copy of their US license. This does not apply to international students.

• Current master’s or bachelor’s degree in occupational therapy from an accredited program (this includes applicants who have an OTA degree and a BS degree in a related field).

• Applicants must be currently or have been previously employed as an occupational therapist or OTA with at least one year of clinical experience.

• The ability to complete essential tasks, with or without reasonable accommodation, associated with performing as an occupational therapy student.

• Curriculum vitae (CV)/ Resume.

• GPA of 3.0 from most recent degree.

• A Letter of Intent (minimum of two double-spaced pages and maximum of four pages in length to be submitted before interview)
Essential Tasks

- Students must gather decision-making pieces of information during client assessment activities.
- Students must perform evaluation and intervention activities by direct performance keys.
- Students must apply critical thinking processes to their work in the courses.
- Students must have interpersonal skills as needed for productive discussion, and respectful interaction with classmates and faculty.
- Students must demonstrate appropriate health status prior to enrollment with annual updates on some items. Requirements at www.uab.edu/studenthealth.
- Students must follow standards and policies specified in the Department of Occupational Therapy Student Handbook posted online on our website at http://www.uab.edu/shp/ot/admissions.

International Students:

See Clinical Doctorate in Occupational Therapy Admissions Checklist, in addition to the following items:

- A transcript evaluation from World Education Services (www.wes.org) or Educational Credential Evaluators (www.ece.org) may be required.
- Students from countries where English is not the official and primary language may be required to take the TOEFL, or the IELTS. A minimum score of 550 on the paper test, 213 on the computer version, or 80 on the internet-based test of the TOEFL or a minimum score of 6.0 – 6.5 on the IELTS test is recommended.

Degree

On completion of the required coursework the student will be awarded an OTD by the University of Alabama at Birmingham and the student’s name will appear in the commencement bulletin. A transcript of the coursework taken for the degree will be available through the University Registrar’s Office.

The curriculum for the degree is offered online via a web-based learning management system for students in the program. Students accepted into the program begin the curriculum in August and complete one or more courses per semester. The clinical doctorate requires variable semesters to complete; students taking 2 courses per semester should finish in 2 1/2 years. Students taking only 1 course per semester or a mix of credit hours across semesters will take longer.

Typical Program

The curriculum is designed with the working occupational therapist in mind. Coursework emphasizes practical application to the OT clinic environment. Projects are designed to reinforce classroom learning for application to practice. Materials for completion of the courses can be obtained through the Internet, materials provided, and required texts.

The Post-Professional OTD follows a core/concentration model which consists of a total of 40 semester hours. 25 semester hours are taken in the core. The remaining 15 semester hours are taken in specialty areas (Low Vision Rehabilitation, Healthcare Quality and Safety, or General).

Required Core Courses

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course Requirements</td>
<td></td>
</tr>
<tr>
<td>OT 701 Theoretical Foundations for Occupational Therapy Practice</td>
<td>3</td>
</tr>
<tr>
<td>OT 702 Leadership for OT Practice Excellence</td>
<td>2</td>
</tr>
<tr>
<td>OT 703 Advocacy and Healthcare Policy in Population Health</td>
<td>3</td>
</tr>
<tr>
<td>OT 704 Research Design for Occupational Therapy Practice</td>
<td>3</td>
</tr>
<tr>
<td>OT 705 Evidenced-based Occupational Therapy Practice Design and Application</td>
<td>3</td>
</tr>
<tr>
<td>OT 706 Management for Occupational Therapy Practice</td>
<td>3</td>
</tr>
<tr>
<td>OT 707 Occupational Therapists as Educators</td>
<td>2</td>
</tr>
</tbody>
</table>
Total Curriculum Hours for the Post-Professional OTD: 40

For further information contact:

UAB, Department of Occupational Therapy
Program Director, Occupational Therapy Post-Professional Doctorate Program
SHPB 338, 1716 9th Avenue South
Birmingham, AL 35294-1212
Telephone 205-934-8623
E-mail OTD@uab.edu
Web http://www.uab.edu/shp/otd

Courses

OT 595. Occupations and Health: Groups and Communities I. 1 Hour.
A service-based learning model, pairing students with community partners to provide opportunities to reflect upon the facilitating and inhibiting nature of group and community settings. The course will also provide opportunity to consider the domains and contexts of both occupation and its influence on health, well-being, and lifestyle. The course aims to facilitate self-awareness through reflection of personal values, family, and roles as aspects of development of personality type and sense of self, as well as emphasizing cultural diversity competence and clearance of institutional administrative requirements for off campus experiences.

OT 596. Occupations and Health: Groups and Communities II. 1 Hour.
A service-based learning model, pairing students with community partners to provide opportunities to reflect upon the facilitating and inhibiting nature of group and community settings. In addition, the course will allow the opportunity to consider the domains and contexts of both occupation and its influence on health, well-being, and lifestyle. The course introduces the Occupational Therapy Practice Framework and application of the Occupational Therapy Process for clients at the groups and communities level. Service-based learning is introduced, and a number of service-based experiences are coordinated as a means to introduce the existing community partnerships.

Prerequisites: OT 595 [Min Grade: C]

OT 597. Occupations and Health: Groups and Communities III. 1 Hour.
A service-based learning model, pairing students with community partners to provide opportunities to reflect upon the facilitating and inhibiting nature of group and community settings. The course will allow for consideration of the domains and contexts of both occupation and its influence on health, well-being, and lifestyle. The course will facilitate use of the Occupational Therapy Practice Framework and the Occupational Therapy Process when working with groups and communities. An emphasis on establishing rapport with the partners and initiating the evaluation process (i.e., development of the occupational profile, beginning the analysis of occupation, generating project ideas including outcomes, and development of a working hypothesis for the focus of the intervention plan).

Prerequisites: OT 595 [Min Grade: C] and OT 596 [Min Grade: C]
OT 598. Occupations and Health: Groups and Communities IV. 1 Hour.
A service-based learning model, pairing students with community partners to provide opportunities to reflect upon the facilitating and inhibiting nature of group and community settings. In addition, the course will allow for consideration of the domains and contexts of both occupation and its influence on health, well-being, and lifestyle. Application of the Practice Framework and Occupational Therapy Process is continued, with emphasis on completion of evaluation, development of an intervention plan including selecting desired outcomes and goals, identifying possible intervention approaches and specific interventions, and potential discharge recommendations and plan.
Prerequisites: OT 595 [Min Grade: C] and OT 596 [Min Grade: C] and OT 597 [Min Grade: C]

OT 599. Occupations and Health: Groups and Communities V. 2 Hours.
A service-based learning model, pairing students with community partners to provide opportunities to reflect upon the facilitating and inhibiting nature of group and community settings and to consider the domains and contexts of both occupation and its influence on health, well-being, and lifestyle. Application of the Practice Framework and Occupational Therapy Process with emphasis on reassessment and discharge recommendations and public dissemination of the project via poster presentation.
Prerequisites: OT 595 [Min Grade: C] and OT 596 [Min Grade: C] and OT 597 [Min Grade: C] and OT 598 [Min Grade: C]

OT 600. The Nature of Occupation. 2 Hours.
Study of the complex nature of occupation and how it contributes to the experience of being human across the life span and through life transitions. Development of student's perspective of how health and well-being are influenced by the interplay of the person, their environment, and the nature of occupation.

OT 605. Therapeutic Skills. 3 Hours.
Group theory and group dynamics; basic group and individual client-therapist interaction and evaluation skills; therapeutic skills and tools used in occupational therapy practice.

OT 606. Frameworks for Occupational Therapy Practice. 3 Hours.
Introduction to fundamental concepts of Occupational Therapy frameworks, theory, philosophy, conceptual models and models of practice.

OT 607. Analysis of Occupational Performance. 3 Hours.
Introduction to intervention techniques commonly used in occupational therapy practice; activity analysis and synthesis; application of typical growth and development in relationship to different age groups and populations.

OT 609. Barriers to Occupational Performance. 3 Hours.
Exposure to specific to human disease processes, injuries, and developmental or inherited abnormalities within body systems that affect individual's occupational performance.

OT 610. Mental Health Diagnosis Across Life Span. 3 Hours.
Examines developmental and psychiatric conditions that result from disease, congenital, traumatic, environmental or social processes. Relationships among disease or disorder, impairments, activity limitations and participation restrictions are emphasized in terms of the impact upon occupational performance.

OT 615. Occupational Therapy Study Abroad. 1 Hour.
A five-week program that offers a unique combination of online and classroom learning, an in-country community engagement and cultural immersion. Selected location and on-site activities provided in the current course syllabus.

OT 620. Found of Occupation: A&P. 4 Hours.
Designed to provide occupational therapy students a fundamental knowledge of human anatomy. An emphasis will be placed on the musculo-skeletal and peripheral nervous systems to enhance the understanding of conditions that will likely be encountered in the practice of Occupational Therapy.

OT 622. Introduction to Occupations of Infants, Children and Adolescents. 3 Hours.
Aspects of common pediatric diagnoses seen by occupational therapists; process of occupational therapy evaluation birth through adolescence, addressing needs through a holistic approach; assessment of occupational performance and occupational performance issues related to adaptation and life satisfaction.

OT 623. Found of Occup: Neuroscience. 3 Hours.
Advanced study of structure and function of central nervous system augmented with client examples.

OT 624. Occupations of Infants, Children and Adolescents. 4 Hours.

OT 625. Occupations of Adults and Older Adults I. 4 Hours.
This course addresses aspects of evaluation, intervention planning, implementation, and specific intervention strategies across diagnostic categories in adult and elder rehabilitation. Occupational therapy addresses client needs using a holistic approach that incorporates all aspects of an individual's lifestyle. This course will focus on occupational areas of work, play, and leisure addressing components of occupational performance and contexts and how these areas affect occupational performance.

OT 630. Fieldwork Preparatory. 1 Hour.
Knowledge and ideas in preparation for upcoming fieldwork experiences throughout the program.

OT 631. Found of Occup: Biomechanics. 3 Hours.
Basic kinesiological principles and functional movement patterns of the human body during occupational performance. Study of principles and techniques for obtaining data about the status of the client's joint range of motion and muscle strength.

OT 632. Fieldwork Experience I. 1 Hour.
Fieldwork experience to enrich the didactic coursework through direct observation and participation in selected aspects of the occupational therapy process with emphasis on increasing awareness of better therapeutic use of self, occupational barriers and decision making skills when working with clients. An in class forum for exchange of ideas and experiences will be conducted after participating in the clinical experience.
Prerequisites: OT 630 [Min Grade: C]
OT 633. Fieldwork Experience II. 1 Hour.
Forum for exchange of ideas and experiences; detailed case study/inservice on modality and interventions chosen from client census during previous term's Level I Fieldwork experience.
Prerequisites: OT 630 [Min Grade: C] and OT 632 [Min Grade: C]

OT 634. Seminar in Professional Readiness. 2 Hours.
Forum for exchange of ideas and experiences; student, faculty, and alumni presentations on variety of topics.

OT 642. Research Design in Occupational Therapy. 1-3 Hour.
Review of research methodologies appropriate for use in clinical practice; topics include sampling, data management, and IRB training and approval. Students will design, implement, and document final projects.

OT 643. Data Analysis in Occupational Therapy Research. 1-3 Hour.
Review of data management and data analysis using SPSS Student Version to design, implement, analyze and document student final projects.

OT 644. Project Dissemination - Professional Writing and Presentation. 1-3 Hour.
Review documentation of project outcomes, writing for publication, and professional presentations to design, implement, analyze and, document student final projects.

OT 647. Leadership in Occupational Therapy. 3 Hours.
To develop leadership competencies for the occupational therapist to enable understanding of personal development and organizational change dynamics.

OT 653. Using the Literature for Evidence Based Practice. 3 Hours.
History of and rationale for evidence-based practice, introduction to typologies of evidence levels, search of data bases, developing clinical questions, critiquing evidence, analyzing bodies of evidence developed in response to research questions, and integrating evidence into clinical practice.

OT 655. Qualitative Research Methods for Health Profession. 2 Hours.
Explores the paradigm of qualitative research including the role it has in the development of a deeper understanding of client populations and the development of theory in occupational therapy. Research design, data collection strategies, and methods of analysis will be discussed.

OT 658. Foundations of Professional Education. 4 Hours.

Synthesis of team-based approaches to intervention for infants, children, and youth with known or suspected disabilities.

OT 661. Well-being and Health Through Occupation. 3 Hours.
Evaluate and critique the evidence which supports the relationship between occupation, health promotion, lifestyle choices, and prevention of injury and disease, utilizing occupational therapy models and approaches to practice while considering contexts. Includes learning experience to practice concepts of health and wellness.

OT 662. Upper Extremity Function in Occupation. 4 Hours.
This course will provide the opportunity to consider the occupational therapy process related to the design, fabrication, application, fitting, and training in the use of orthotics, prosthetics, and other modalities. Students will consider and apply the foundational knowledge, underlying principles, indications, contraindications, and precautions necessary for evidence-based practice.

OT 665. Occupations of Adults and Older Adults II. 4-5 Hours.
This course addresses aspects of evaluation, intervention planning, implementation and specific intervention strategies across diagnostic categories in adult and elderly rehabilitation. Occupational therapy addresses client needs using a holistic approach that incorporates all aspects of an individual's lifestyle. This course will focus on occupational areas of work, play, and leisure addressing components of occupational performance and contexts and how these areas affect occupational performance.

OT 667. Research Methods. 3-4 Hours.
Research ethics, descriptive, exploratory and experimental design, basic statistical concepts, and discussion of various types of research to enable students to critically analyze and use scientific literature to improve practice. Emphasis on understanding components of the research report and concepts associated with judging of internal and external validity.

OT 668. Mental Health Practice in Adulthood. 4 Hours.
Examines psychiatric conditions that result from disease, congenital, traumatic, environmental or social processes. Relationships among impairments, activity limitations, and participation restrictions are emphasized in terms of the impact upon occupational performance. Evaluation, intervention planning, and intervention are studied.

OT 670. Occupation and Low Vision. 3 Hours.
Knowledge and skills to address issues related to vision loss across the lifespan referred for OT treatment in all practice settings.

OT 673. Engagement in Occupation Thru Technology I. 3 Hours.
Introduction to the relationship between occupation, health promotion, lifestyle, and health within communities, using occupational therapy models of practice to frame this critique. Evaluation and critique of the evidence base for current and emerging areas of occupational therapy practice and identification of potential service gaps.

OT 674. Engagement in Occupation thru Technology II. 3 Hours.
Designed to acquaint the student with assessments used in evaluation of clients for assistive technology, specific intervention strategies, elements of safety related to assistive technology, the education of clients and families and other key people in the context of the user.

OT 677. Foundations in Low Vision Rehabilitation I. 3 Hours.
Information on the topics of low vision rehabilitation including demographics and characteristics, settings and provider systems, anatomy and physiology of the eye and visual system, medical conditions causing low vision and common co-occurring secondary health conditions, low vision evaluation and screening, contribution of low vision on occupational performance and environmental interaction, and intervention strategies used by the occupational therapy generalist working in low vision.

OT 679. Foundations in Low Vision Rehabilitation II. 3 Hours.
Techniques for selecting, developing, and applying interventions to enhance occupational performance. Topics covered include optical devices, assistive technology and computer modifications, reading, and writing.
Prerequisites: OT 677 [Min Grade: C]
OT 685. Advanced Fieldwork Experience I. 10 Hours.
Full time supervised practice experience designed to develop entry level professional skills consisting of a 3-month experience.

OT 686. Advanced Fieldwork Experience II. 10 Hours.
Full time supervised practice experience designed to develop entry level professional skills consisting of a 3-month experience.

OT 689. Foundations in Treatment of Visual Impairment from Brain Injury. 3 Hours.
Evaluation and intervention for adults experiencing occupational limitations due to visual processing impairment from acquired brain injury. Topics include neuroanatomy of the visual processing system, evaluation and intervention for deficits in visual acuity, visual field oculomotor function, and visual attention and cognitive processing.
Prerequisites: OT 679 [Min Grade: C]

OT 690. Foundations in Low Vision Rehabilitation II. 3 Hours.
Techniques for selecting, developing, and applying interventions to enhance occupational performance. Topics covered include activities of daily living with and without vision, functional mobility, diabetes self-management, and driving and transportation.
Prerequisites: OT 679 [Min Grade: C]

OT 691. Foundations in Low Vision Rehabilitation IV. 3 Hours.
Students demonstrate ability to apply knowledge gained in the previous foundation courses to select and interpret evaluations and design interventions for adults with vision impairment. Format includes: a three-day on-campus intensive to provide review and synthesis of key evaluation and intervention principles for working with persons with age-related vision impairment and brain injury; practicum in diabetes self-management, prescribed optical devices and assistive technology; influence of policy and regulation on practice; ethical reasoning and advocacy; professional development and continuing professional competence.
Prerequisites: OT 677 [Min Grade: C] and OT 679 [Min Grade: C] and OT 686 [Min Grade: C]

OT 692. Special Topics in OT. 1-4 Hour.
Readings for in depth study of specialized topics.

OT 698. Master’s Level Non-Thesis Research. 1-6 Hour.
Implementation of project activities with data collection, analysis, and preparation of scholarly activity project.

OT 699. Master’s Level Thesis Research. 1-6 Hour.
Elements of proposal and development of thesis/project; thesis and institutional review board procedures; student presentation, group discussion, recommendations, and critique.
Prerequisites: GAC M

OT 701. Theoretical Foundations for Occupational Therapy Practice. 3 Hours.
Occupational therapy frameworks, theory, philosophy, conceptual models, and practice models as guides to clinical reasoning; integration into clinical practice.

OT 702. Leadership for OT Practice Excellence. 2 Hours.
Leadership competencies for the occupational therapist; leadership and management theories to guide and enhance professional practice.

OT 703. Advocacy and Healthcare Policy in Population Health. 3 Hours.
Broad overview and challenges of the current U.S. healthcare system; impact of regulation on health care access, delivery, cost, and quality for disability populations; advocacy role for OTs working with these populations.

OT 704. Research Design for Occupational Therapy Practice. 3 Hours.
Research designs and advanced statistical concepts; internal and external validity; confounding variables; extrapolation of research findings; critique of the professional literature.

OT 705. Evidenced-based Occupational Therapy Practice Design and Application. 3 Hours.
Strategies for evidence-based service delivery; critical analysis of the literature to support clinical practice. Includes applied project.

OT 706. Management for Occupational Therapy Practice. 3 Hours.
Managing people and resources in a practice environment changing due to political, regulatory, economic, and social drivers.

OT 707. Occupational Therapists as Educators. 2 Hours.
Role of the occupational therapist as educator; teaching and learning styles; effective organization of educational experiences.

OT 710. Introduction to Occupational Science. 3 Hours.
Conceptual foundations and methodological orientations for occupational science; human drive to remain occupied; creation of identity through meaningful activity; enhancing health and wellness through occupation.

OT 711. Adaptation and Disability in Occupational Therapy Practice. 3 Hours.
Process of social and cultural adaptation to disabilities and stigmatized medical conditions using examples from different cultures and disabilities.

OT 712. Environment and Context in Occupational Therapy Practice. 3 Hours.
Relationship between environments and context from the micro (home) to the macro level (country view); impact of these constructs on disability over the lifespan.

OT 713. Professional Writing. 3 Hours.
Advanced writing course designed to teach professional writing styles commonly used in academia and professional practice.

OT 714. Program Evaluation in Occupational Therapy. 3 Hours.
Designs and methods in formative and summative program evaluation; quantitative and qualitative strategies; communicating information to stakeholders.

OT 715. Introduction of the OT Process, Analysis and Adaptation of Occupation. 3 Hours.
Examines the complex nature of occupation and how it contributes to the experience of being human; Employing logical thinking, critical analysis, problem-solving and creativity, students will learn how to analyze and adapt occupations. Students will study the domain and process of occupational therapy through case based learning.

OT 716. Social, Economic and Political Factors that Influence Occupational Therapy. 2 Hours.
Examines the individual, community and systems level influencers of occupational participation; Discussion of health viewed through social, cultural and systemic factors. Focus on developing critical thinking skills related to occupational justice, occupational disruption, deprivation, apartheid, transitions and imbalance in culturally responsive practice.

OT 717. Creative Occupations. 2 Hours.
Exploration of arts and crafts in both historical and contemporary contexts; involvement in creative projects and reflections on experience to support understanding of creativity in the arts, sciences, professions, evaluation, daily life, and culture.
OT 720. Contexts of Professional Practice: Infancy to Early Childhood. 6 Hours.
Evaluation, planning, implementing, and documenting client-centered, occupation and evidence-based occupational therapy assessment and intervention of infancy to early childhood.

OT 721. Contexts of Professional Practice: Childhood to Adolescence. 6 Hours.
Evaluation, planning, implementing, and documenting client-centered, occupation and evidence-based occupational therapy assessment and intervention of childhood to adolescence.

OT 722. Contexts of Professional Practice: Early Adulthood to Middle Adulthood. 6 Hours.
Evaluation, planning, implementing, and documenting client-centered, occupation and evidence-based occupational therapy assessment and intervention of early adulthood to middle adulthood.

OT 723. Contexts of Professional Practice: Later Adulthood. 6 Hours.
Evaluation, planning, implementing, and documenting client-centered, occupation and evidence-based occupational therapy assessment and intervention of later adulthood.

OT 726. Low Vision and Participation. 3 Hours.
Evaluation, planning, implementing, and documenting client-centered, occupation and evidence-based occupational therapy assessment and intervention to address issues related to vision loss across the lifespan referred for OT treatment in all practice settings. Case-based learning.

OT 727. Health and Wellness Promotion. 3 Hours.
Occupational Therapy's role in developing theory-driven and evidence-based health promotion and wellness programs. Theoretical perspectives and intervention models guiding health promotion and wellness programs for individuals or groups of people, with and without disabilities, and in a variety of settings. Case-based learning.

OT 730. Performance Skills for Occupation: Introduction. 2 Hours.
Introduction to the examination of anatomical, physiological, neurological, cognitive, biomechanical and functional movement principles and the relation of these, and changes to occupational participation.

OT 731. Performance Skills for Occupation: Infancy to Adolescence. 2 Hours.
Anatomical, physiological, neurological, cognitive, biomechanical and functional movement principles and the relation of these, and changes, from infancy through adolescence, to occupational participation.

OT 732. Performance Skills for Occupation: Adulthood. 2 Hours.
Examines anatomical, physiological, neurological, cognitive, biomechanical and functional movement principles and the relation of these, and changes, across adulthood, to occupational participation.

OT 750. Scholarly Inquiry I. 2 Hours.
Introduction to key elements of quantitative and qualitative research design and implementation relevant to occupational therapy practice. Integration of theory, research design, and methods to design and implement a scholarly study.

OT 751. Scholarly Inquiry II. 2 Hours.
Continued study of key elements of quantitative and qualitative research design and implementation relevant to occupational therapy practice. Integration of theory, research design, and methods to design and implement a scholarly study.

OT 764. Fieldwork Experience. 1 Hour.
Series of experiential courses that emphasize the application of occupational therapy skills when working with clients and the influence that physical, psychological and/or social factors have on participation in occupation.

OT 765. Advanced Fieldwork I. 10 Hours.
Supervised practice experience designed to develop advanced entry-level, generalist professional skills.

OT 766. Advanced Fieldwork II. 10 Hours.
Supervised practice experience designed to develop advanced entry-level, generalist professional skills.

OT 774. Contemporary and Emerging Issues in Occupational Therapy. 2 Hours.
Exposure to contemporary and emerging issues and trends in occupational therapy practice; value and contribution of occupational therapy in complex and emerging settings; key competencies and unique professional attributes of occupational therapists; factors influencing health and social contexts.

OT 775. Independent Study in Occupational Therapy. 1-4 Hour.
Faculty-led exploration of a specific topic/issue related to occupational therapy.

OT 776. Capstone Project. 1 Hour.
In-depth exposure to one or more of the following: clinical practice skills, research skills, administration, leadership, program and policy development, advocacy, education, and theory development. Synthesis project includes literature review, needs assessment, goals/objectives, and evaluation plan.

OT 777. Capstone Experience: Emerging as an Occupational Therapist. 14 Hours.
Supervised experience for dissemination and application of the capstone synthesis project to demonstrate in-depth knowledge in a focused area of study.

OT 792. Special Topics in Occupational Therapy. 1-4 Hour.
Exploration of current issues in occupational therapy.

OT 798. Occupational Therapy Capstone Experience/Non-Thesis Project. 1-6 Hour.
Focused investigation of an occupational therapy problem in a professional practice setting; application of concepts and tools presented in the program courses. Written project report required.

Physical Therapy

Degree Offered: D.P.T.
Director (D.P.T.): Jennifer Christy, PT, PhD
Phone: (205) 934-3566
Website: www.uab.edu/shp/pt

Program Information

The Doctor of Physical Therapy program is a course of study for students who hold baccalaureate degrees in fields of study other than Physical Therapy. Completion of the program after nine semesters leads to a Doctor of Physical Therapy (DPT) degree and serves as initial preparation for practice as a physical therapist.

Doctor of Physical Therapy (D.P.T.)

Physical therapists provide services to patient/clients who have body structure and function impairments, activity limitations, participation...
restrictions, or changes in physical function and health status resulting from injury, disease, and other causes. Physical therapists also address risk and provide prevention services and promote health, wellness, and fitness. Physical therapists interact and practice in collaboration with a variety of professionals. Physical therapists also function in consultative, education, administrative and supervisory roles in many different types of practice, research, and education settings.

Accreditation: The program is accredited by the Commission on Accreditation in Physical Therapy Education. (www.capteonline.org/home.aspx)

Credentials Conferred: The Doctor of Physical Therapy degree is awarded by the University of Alabama at Birmingham.

License: Graduates are eligible for the physical therapist licensure examination. Note that state law regulates the practice of Physical Therapy; contact a specific state’s Board of Licensure for Physical Therapy to obtain information on that state’s eligibility requirements. https://www.fsbpt.org/Free-Resources/Licensing-Authorities-Contact-Information

Length of Study: Nine semesters.

Program Entrance Date: Spring semester.

Application Procedure: This program participates in the Physical Therapist Centralized Application Service (PTCAS). Please consult www.ptcas.org for more information regarding specific PTCAS application requirements, procedures and fees. The PTCAS application needs to be completed by the PTCAS deadline. Applicants should send all application materials directly to PTCAS. PTCAS will verify the application information and send completed applications to the program.

Requirements for Admission: The applicant must hold a baccalaureate degree from an accredited college or university within the United States in a field other than physical therapy. Acceptance will be based on the student’s academic ability and aptitude for a career as a physical therapist. The candidate is expected to satisfy the following requirements:

- Complete the PTCAS application based on the PTCAS deadline.
- 75% of prerequisite courses must be completed by the end of the fall semester of the year of application.
- Complete at least 40 hours of documented observation of physical therapy. Various settings are recommended. Documentation should be submitted to PTCAS.
- Submit three letters of recommendation to PTCAS:
 - Letters 1 and 2: Written by a physical therapist who has interacted with the applicant for at least 20 hours in a clinical setting.
 - Letter 3: Written by a professor with whom the applicant had significant interaction in an academic setting.
- Have a minimum 3.0 (A=4.0) overall, prerequisites, and last 60 semester hours grade point averages. For prerequisite courses, no grade lower than a C will be accepted.
- If invited, complete a personal interview with the Department of Physical Therapy.

Students who are accepted into the UAB Doctor of Physical Therapy program must:

- Complete the UAB Graduate School application to include the Graduate School fee.

- Complete the UAB medical history questionnaire and physical.
- Provide proof of required immunizations, and receive satisfactory screening by the UAB Medical Center Student Health Service.
- Send all official transcripts to the UAB Graduate School.
- Complete a criminal background check and drug screen before program matriculation and as specified by the Department of Physical Therapy.

State law regulates the practice of Physical Therapy. Therefore, applicants are encouraged to review the nonacademic eligibility requirements for licensure to practice physical therapy prior to application to the program. These may be obtained from each individual state’s Board of Licensure for Physical Therapy. https://www.fsbpt.org/Free-Resources/Licensing-Authorities-Contact-Information

Program Prerequisites—UAB Equivalents

(Course requirements are listed in semester credit hours)

Arts and Humanities

English Composition (6)

Social and Behavioral Sciences

Psychology (6)

Natural Sciences and Mathematics

Biology (12)
Human/Mammalian Physiology (4)
Chemistry for Science Majors (8)
Physics for Science Majors (8)
Pre-Calculus With Trigonometry (3)
Psychology (6)
Statistics (3)
Medical Terminology (1-3)

It is strongly recommended that applicants take the following courses: practical reasoning or logic course, biomechanics or kinesiology and upper level biology (physiology).

Essential Requirements: Fundamental tasks, behaviors, and abilities necessary to successfully complete the academic and clinical/residency requirements of the program and to satisfy licensure/certification requirements, if any, have been outlined and are available on the program's website: https://www.uab.edu/shp/pt/programs/dpt/admissions. Students requesting disability accommodations must do so by filing a disability accommodation request with the UAB Office of Disability Support Services.

Typical Program

(Course requirements are listed in semester credit hours)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT 700</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PT 702</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PT 710</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PT 730</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PT 760</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total credit hours:</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
First Year
Summer Term Hours
PT 701 2
PT 711 2
PT 712 3
PT 720 3
PT 731 3
PT 790 2

Total credit hours: 15

First Year
First Term Hours
PT 704 3
PT 706 3
PT 740 5
PT 761 3
PT 798 1

Total credit hours: 15

Second Year
Second Term Hours
PT 707 3
PT 716 3
PT 743 4
PT 760 3
PT 798 1

Total credit hours: 15

Second Year
Summer Term Hours
PT 743 4
PT 744 3
PT 770 4
PT 791 2
PT 798 1

Total credit hours: 14

Second Year
First Term Hours
PT 741 5
PT 746 5
PT 762 3
PT 798 1

Total credit hours: 14

Third Year
Second Term Hours
PT 763 2
PT 764 2
PT 770 9

Total credit hours: 13

Third Year
Summer Term Hours
PT 770 9

Total credit hours: 9

Total Credit Hours for Program: 119

Additional Information
For detailed information, contact the Department of Physical Therapy, School of Health Professions, SHPB, Room 375, 1716 9th Avenue South (mailing address: SHPB 375, 1720 2nd Avenue South), Birmingham, Alabama 35294-1212.

Telephone 205-934-4363
E-mail DPTAdmissions@uab.edu

Doctor of Physical Therapy Requirements Hours
PT 700 Human Gross Anatomy 3
PT 702 Functional Anatomy 4
PT 710 Physical Therapy Intervention I 3
PT 730 Essentials of Human Physiology 3
PT 760 PT Professional Practice I 2
PT 701 Human Gross Anatomy II 2
PT 711 PT Examination I 2
PT 712 Physical Therapy Examination II 3
PT 720 Pathology and Pharmacology for Movement Disorders I 3
PT 731 Human Performance Physiology 3
PT 790 Scientific Inquiry I 2
PT 704 Analysis of Human Movement 3
PT 706 Neuroscience I 3
PT 714 Physical Therapy Intervention II 3
PT 715 Physical Therapy Intervention III 3
PT 721 Pathology and Pharmacology for Movement Disorders II 3
PT 716 Clinical Evaluation in Physical Therapy 3
PT 707 Neuroscience II 3
PT 740 PT Management of Musculoskeletal Dysfunction I 5
PT 761 PT Professional Practice II 3
PT 798 Doctoral Level Non-Thesis Research 1
PT 743 PT Management of Cardiopulmonary Dysfunction 4
PT 744 PT Management of Neuromuscular Dysfunction I 3
PT 770 Clinical Education 4
PT 791 Scientific Inquiry II 2
PT 798 Doctoral Level Non-Thesis Research 1
PT 741 PT Management of Musculoskeletal Dysfunction II 5
PT 746 PT Management of Neuromuscular Dysfunction II 5
PT 762 PT Professional Practice III 3
PT 798 Doctoral Level Non-Thesis Research 1
PT 763 PT Professional Practice IV 2
PT 764 Professional Practice V - Capstone Experience 2
A study of the anatomical structure of the human body includes limbs, back, abdominal wall and cavity. Specific emphasis includes regional study of the relationships between musculoskeletal, nervous, and vascular systems, joint structure, cardiovascular and pulmonary systems, and surveys of selected viscera. Includes surface anatomy.

PT 701. Human Gross Anatomy II. 2 Hours.
A study of the anatomical structure of the human body includes limbs, back, abdominal wall and cavity. Specific emphasis includes regional study of the relationships between musculoskeletal, nervous, and vascular systems, joint structure, cardiovascular and pulmonary systems, and surveys of selected viscera.

Prerequisites: PT 700 [Min Grade: C]

PT 702. Functional Anatomy. 4 Hours.
Integrated study of anatomy, kinesiology, muscle biology, and biomechanics to develop an understanding of and ability to analyze normal and pathologic human movement. Includes palpation and surface anatomy.

PT 704. Analysis of Human Movement. 3 Hours.
Study of human movement through an examination of the movement patterns during common motor skills (e.g., walking). The kinematics and kinetics related to movement will be studied across the lifespan.

PT 705. Human Movement Dysfunction. 3 Hours.
Study of human movement dysfunction including recovery processes related to injury, impairments associated with pathology and behavior and kinematic/kinetic descriptions of movement dysfunction related to cardiopulmonary, musculoskeletal, and neuromuscular pathology across the lifespan.

PT 706. Neuroscience I. 3 Hours.
A study of structures and functions of the human nervous system with emphasis on sensory/motor function.

PT 707. Neuroscience II. 3 Hours.
Study of the theories of motor control and motor learning will serve as a foundation for the understanding how the CNS is organized in relation to human movement.

PT 710. Physical Therapy Intervention I. 3 Hours.
Introduction to the basic components of physical therapy practice applicable to those with acute and chronic conditions. Emphasis placed on basic procedural interventions and equipment.

PT 711. PT Examination I. 2 Hours.
Introduction to the physical therapy examination process. Emphasis on exploring the human movement system as the foundation of patient/client management.

PT 712. Physical Therapy Examination II. 3 Hours.
Continuation of Physical Therapy I with focus on knowledge and skills needed to test and measure strength, range of motion, and posture.

PT 713. Physical Therapy Intervention I. 3 Hours.
Introduction to the components and process of physical therapy intervention. Emphasis on beginning communication & documentation skills and basic procedural interventions of patient transfers, gait with assistive devices, superficial physical agents, massage, and passive range of motion. Overview of major categories of procedural interventions utilized by physical therapists.

PT 714. Physical Therapy Intervention II. 3 Hours.
Procedures and techniques for the design and implementation of fundamental therapeutic exercise; recognizing impairments in body function and structure and activity limitations amenable to physical therapy; students will utilize therapeutic exercise interventions for prevention and rehabilitation of movement dysfunction and disability.

PT 715. Physical Therapy Intervention III. 3 Hours.
The study and use of knowledge and skills needed to select and use both electrodiagnostic and electrotherapeutic modality interventions for various impairments and functional limitations. Emphasis will be placed on integrating electrical evaluation, electrical and deep heat therapy with previously learned examination, evaluation, and intervention skills. An overview of integument system repair and the management of chronic wounds will be discussed with an emphasis on examination, clinical decision making, and intervention.

PT 716. Clinical Evaluation in Physical Therapy. 3 Hours.
Study of comprehensive clinical evaluation concepts through use of the International Classification of Function, Disability and Health (ICF) model framework with application in health conditions across the lifespan.

PT 720. Pathology and Pharmacology for Movement Disorders I. 3 Hours.
Overview of clinical medicine related to management of movement disorders. Basic principles of pathology and pharmacology. Explores physical therapy implications associated with medical and surgical management of disorders with emphasis on clinical manifestations, management, and physical therapy implications.

PT 721. Pathology and Pharmacology for Movement Disorders II. 3 Hours.
Exploration of medical and surgical disorders with emphasis on clinical manifestations, management, and physical therapy implications.
PT 730. Essentials of Human Physiology. 3 Hours.
Fundamental principles and concepts of human physiology are covered regarding cell physiology, the cardiovascular, endocrine, gastrointestinal, pulmonary, renal, and skeletal muscle systems as well as thermoregulation of the body. Both cellular and systemic issues are addressed with an emphasis on a mechanistic and integrative approach to understanding function.

PT 731. Human Performance Physiology. 3 Hours.
Course provides fundamental knowledge about the adaptability of human physiological systems in meeting a range of exercise demands. Areas covered include energy transfer during rest and exercise, physiologic and performance adaptations, exercise prescription for healthy adults, and body composition. Research evidence regarding how exercise and physical activity impact health, wellness, and disease is included.

PT 740. PT Management of Musculoskeletal Dysfunction I. 5 Hours.
Application of biological and physical sciences in understanding musculoskeletal disorders. Diagnosis of common musculoskeletal dysfunctions; clinical decision making concerning treatment and prevention of musculoskeletal disorders. Medical and surgical diagnostic and treatment procedures with implications for rehabilitation. Focus for one course is on the lower quarter and the thoracic spine; focus of the other course is on the upper quarter.

PT 741. PT Management of Musculoskeletal Dysfunction II. 5 Hours.
Application of biological and physical sciences in understanding musculoskeletal disorders. Diagnosis of common musculoskeletal dysfunctions; clinical decision making concerning treatment and prevention of musculoskeletal disorders. Medical and surgical diagnostic and treatment procedures with implications for rehabilitation. Focus for one course is on the lower quarter and the thoracic spine; focus of the other course is on the upper quarter.

PT 743. PT Management of Cardiopulmonary Dysfunction. 4 Hours.
Physical therapy examination, evaluation, diagnosis, prognosis, and intervention for patients with primary and secondary disorders involving the cardiovascular/pulmonary system.

PT 744. PT Management of Neuromuscular Dysfunction I. 3 Hours.
Application, analysis, and synthesis of principles of neuromuscular rehabilitation in physical therapy examination, evaluation, diagnosis, and intervention.

PT 746. PT Management of Neuromuscular Dysfunction II. 5 Hours.
Application, analysis and synthesis of principles of neuromuscular rehabilitation in physical therapy examination, evaluation, diagnosis, prognosis and intervention.

PT 760. PT Professional Practice I. 2 Hours.
Introduction to the profession of physical therapy, including history, APTA, and scope of practice. Introduction to legal, ethical and other regulatory mechanisms that guide the practice of physical therapy. Presentation of cultural diversity issues related to physical therapy practice.

PT 761. PT Professional Practice II. 3 Hours.
Synthesis and application of regulatory mechanisms, legal mandates and ethical principles and theories to issues facing the physical therapy student and the physical therapist functioning in a multifaceted role; values clarification and decision making related to current professional issues. Strategies for dealing with diverse cultures and conflict. Utilization of documentation strategies to promote effective physical therapy practice and payment.

PT 762. PT Professional Practice III. 3 Hours.
Forces contributing to the health care environment and the effects of this environment on physical therapy practice, research and education. Concepts of health promotion (including wellness and patient education) and the role of the physical therapist in promoting healthy lifestyles in the health care and community settings. Theoretical basis for health behaviors and application of theories to physical therapy practice. Concepts of consultation, program planning, implementation, and evaluation applied to health promotion-oriented physical therapy programs.

PT 763. PT Professional Practice IV. 2 Hours.
Study of management and supervisory principles and current issues related to physical therapy practice: Practical concepts of marketing organizational structure, fiscal management, facility planning, design and entrepreneurship.

PT 764. Professional Practice V - Capstone Experience. 2 Hours.
Integration of all previous coursework applied to reflection of the scope of physical therapy practice: direct patient care, professional growth/development, professional issues, education, consultation, evidence based practice (EBP), communication and cultural competency. Development and presentation of an individual portfolio that reflects core values, personal and professional growth and accomplishments, and appropriate plans for future professional development.

PT 770. Clinical Education. 1-9 Hour.
Supervised clinical education in patient care skills and practice issues related to physical therapy.

PT 778. Special Topics in Physical Therapy. 1-9 Hour.
Exploration of current issues in Physical Therapy.

PT 790. Scientific Inquiry I. 1-2 Hour.
Introduction to sources of evidence; measurement principles, experimental design, and basic statistical concepts are combined to build analytical skills required for evidence-based practice.

PT 791. Scientific Inquiry II. 2 Hours.
This course combines concepts of measurement principles, experimental design, qualitative, survey outcomes research and a review of basic statistical concepts that will prepare the graduate to critically analyze and use the scientific literature to improve clinical practice. Emphases will be placed on understanding the components of a research report and the concepts associated with judging quality of research design as applied to clinical practice.

Implementation of project activities with data collection, analysis, and preparation of manuscript of scholarly activity project. Student and mentor work together to identify specific project components to be completed during each specific term the course is taken.
School of Medicine

At UAB, we’re training the next generation of physicians and physician-scientists, answering basic scientific questions that lead to medical innovations and bringing the best medical care to bear for our patients.

UAB is an integral part of Birmingham and the region, and Birmingham is integral to UAB. The Birmingham campus is within walking distance of some of the best parks, entertainment and dining in the region. Our regional campuses—in Huntsville, Montgomery and Tuscaloosa—expand our academic reach and responsibilities, helping educate physicians in rural and underserved areas of the state.

The School of Medicine has approximately 750 students, 900 residents and 1,300 full-time faculty in 26 academic departments. We are the home of The Kirklin Clinic, a multi-disciplinary medical home; University Hospital, one of the largest academic hospitals in the country; and our faculty serve the Children’s of Alabama hospital.

Interdisciplinary Academic Programs

UAB offers a NIH-funded Medical Scientist Training Program (MSTP), a combined MD/PhD program designed to prepare students for careers that combine laboratory investigation of disease mechanisms with the practice and teaching of clinical medicine in an academic setting. The Gerontology Education Certificate Program was established in 1980 through the cooperative efforts of the School of Social and Behavioral Sciences and the Center for Aging. Since that time, the program has expanded considerably and offers diverse academic opportunities. Students have access to a number of faculty members from multiple disciplines who bring research and academic expertise to the study of aging and the aged.

Marnix E. Heersink Institute for Biomedical Innovation Graduate Programs

The Heersink Institute offers graduate certificate and masters degree programs to meet the needs of innovation and digital-minded clinicians, leaders and scholars.

Certificate Programs

Digital Healthcare Certificate (p. 442)

Artificial Intelligence in Medicine (p. 442)

Translation of Biomedical Innovation to Clinical Practice (p. 443)

BMEM-Biomedical Engineering Courses

BMEM 601. Biomedical Innovation and Clinical Translation I. 3 Hours.

This lecture and team-based project focused course will provide a detailed overview of the device design process and focus on important issues to be considered for successful translation of preliminary designs into viable clinical products. This course will include a final team-based project focused on providing a biomedical device for a hypothetical problem selected by the group.

BMEM 602. Biomedical Innovation and Clinical Translation II. 3 Hours.

This lecture and team-based project will be a continuation of BME-M 601. The business and commercialization aspects of a marketable design will be explored. This course will focus on the important business issues to be considered for successful translation of preliminary designs into viable clinical products. This course will include a final team-based presentation (with an accompanying report) to obtain funding from investors.

BMEM 603. Regulatory, Legal and Ethical Perspectives. 3 Hours.

This lecture and team-based project will be a continuation of BME-M 602. The regulatory, legal, and ethical aspects of a marketable design will be explored; specifically how this will modify the final marketable design. This course will include a final team-based oral and written presentation (accompanying report) to include information necessary for an FDA submission as well as an updated commercialization plan to give to investors.

BMEM 610. Design and Regulation of Stem Cell and Tissue Engineered Products. 3 Hours.

The overall objective of this course is to provide a broad introduction to regenerative and therapeutic strategies enabled using stem cells and tissue engineering. This course will provide an overview of the different types of stem cells, discuss their potential for regenerative medicine and cellular therapeutics, introduce basic concepts in tissue engineering, and discuss regulatory and ethical issues associated with the use of stem cells and tissue-engineered products.

BMEM 611. Biomedical Device Design. 3 Hours.

This design course focuses on the development of solutions to clinical problems that require the use of implants and medical devices. Topics covered include a detailed overview of the design process of implants and biomedical devices including the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; pre-clinical testing for safety and efficacy, risk assessment evaluation of clinical performance and design of clinical trials.

BMEM 612. Lab-on-a-chip and Point-of-Care Diagnostic Technologies. 3 Hours.

This course will introduce lab-on-a-chip (LOC) technologies used for point-of-care (POC) diagnostics. Specifically, this course will detail design considerations, fabrication techniques, current advances in sensing and detection, data acquisition and analysis, and quality control. This course will also provide an overview of regulatory challenges associated with the development and approval of these technologies for use in patients. Finally, this course will provide examples of point-of-care technologies classified based on clinical use and clinical setting.

BMEM 613. Implantable Devices and Biomaterials. 3 Hours.

The overall objective of this course is to provide a comprehensive review of tissue-material interactions to guide the design on biomedical devices for in-vivo transplantation. Specific topics will include an overview of commonly used bio-materials, their interactions with blood and the immune system and strategies to prevent unwanted tissue responses and promote beneficial responses.

BMEM 614. Wearable Device Technologies. 3 Hours.

The overall objective of this course is to provide a comprehensive overview of currently used wearable devices, provide a basic understanding of the current technologies, their advantages for continuous patient monitoring and current limitations. This course will also provide a broad overview of potential new markets and opportunities for wearable devices over the next decade.
BMEM 615. Design and Use of Tissue Chips, Organ Chips & Microphysiological Systems. 3 Hours.
The overall objective of this course is to provide an introduction to human tissue chips and microphysiological systems that are poised to replace animal-based drug testing with human in-vitro model-based approaches. This course will outline the basics of tissue chips and complex microphysiological systems, provide an overview of current state of the field, outline limitations and challenges and discuss potential opportunities for disease modeling, drug discovery and drug toxicity testing.

BMEM 616. Direct Reprogramming 101. 3 Hours.
Dysfunction or degradation of cells in our body leads to devastating human disorders. The discovery of direct reprogramming opens the avenue to (re)generate the desired cell types for both research purposes and disease treatment. This course will cover the history and biological basis of direct reprogramming, outline direct reprogramming achieved in different cell types, and their implications in answering basic biomedical questions and treating human diseases. We will also overview the current state of the field and discuss the obstacles and potential opportunities to be applied with other bioengineering technologies.

BMEM 617. Pain Management. 3 Hours.
The overall objective of this course is to provide an introduction to human disease with pain. Pain management is an aspect of medicine and health care involving relief of pain in various dimensions, from acute and simple to chronic and challenging. Effective pain management does not always mean total eradication of all pain. Rather, it often means achieving adequate quality of life in the presence of pain, through any combination of lessening the pain and/or better understanding it and being able to live happily despite it.

HCl-Healthcare Innovation Courses

HCl 611. Foundations of Artificial Intelligence in Medicine. 3 Hours.
This course introduces students to the fundamentals needed for implementing Artificial Intelligence (AI) in clinical settings. Introduction to AI, Introduction to Healthcare System and Clinical data and Introduction to tools and techniques used in AI.

HCl 612. Applications of Artificial Intelligence in Medicine. 3 Hours.
This course introduces students to Applications of AI in medicine, Machine Learning- Applications of AI to EHR data, Deep Learning- Applications of AI to Medical Imaging data, and Natural Language Processing- Applications of AI to Clinical Documentation.

HCl 613. Leadership & Ethics AI in Med. 3 Hours.
This course introduces students to leadership, ethical and strategic skills, responsible AI, AI strategy, people, organization, and implementation of AI in medicine.

HCl 614. Integration of Artificial Intelligence into Clinical Workflow. 3 Hours.
This course introduces students to strategies and processes for integrating AI into existing clinical workflows. Using AI for Medical Diagnosis, Using AI for Medical Prognosis, and Using AI for Medical Treatment.

HCl 641. Foundations of Digital Health. 3 Hours.
This course introduces students to the basic concepts needed for implementing digital health solutions in health care. Digital Health Concepts and Key Components, Digital Health Technologies, and Digitally Enabled Care Models.

HCl 642. Leadership & Ethics for Digital Health. 3 Hours.
This course introduces students to leadership, ethical and strategic skills for digital health. Business and Commercialization Strategies, Ethics, Digital Health Technology Assessment.

HCl 643. Special Topics for Digital Health. 3 Hours.
This course introduces students to special topics in digital health including blockchain in health care, mixed reality in health care and data science for digital health.

PSDO - Physician Scientist Dev Courses

PSDO 630. Physician Experience. 2 Hours.
PSDO 630 will provide practical information and experience for highly qualified students considering medical school or other health-care based professional programs. The course will emphasize real world considerations of the clinical professions including acceptance criteria, expected duration of training, average debt and compensation of various specialties. The students will also be given multiple opportunities to interact with individuals from various levels of training and backgrounds to provide focused and nuanced guidance. Finally, the course will incorporate a shadowing experience, providing students the opportunity to observe and interact with practitioners from across UAB in a variety of specialties and settings. Each student will be required to complete documentation for the UAB and Children's hospital, as well as receiving clearance from UAB Employee Health, as well as completing an online HIPAA compliance module. Students are not permitted to shadow until each is complete.

PSDO 698. Master's Level Non-Thesis Research. 1-8 Hours.
Students may perform independent study in a research laboratory setting. This work may contribute toward the concentration credits subject to program director approval.

This course is designed to give students a basic background in topics necessary to succeed as a physician scientist in today's academic medical environment. Topics to be covered include the NIH funding system, how to write a fellowship, record keeping, authorship and publication, conflict of interest, animal and human subjects, and finding a mentor (Open to MD-PhD, ARISE-MD, and DMD-PhD students).

PSDO 700. Pathway to Grant Submission. 2 Hours.
This course is designed to give students a basic background in topics necessary to succeed as a physician scientist in today's academic medical environment. Topics to be covered include the NIH funding system, how to write a fellowship, record keeping, authorship and publication, conflict of interest, animal and human subjects, and finding a mentor (Open to MD-PhD, ARISE-MD, and DMD-PhD students).

PSDO 701. Career Development Grant Writing Workshop. 1 Hour.
This course is designed to assist postdocs, residents, fellows, and rising junior faculty with the creation and submission of a K award or equivalent grant application. Topics to be covered include the NIH funding system, how to write a fellowship, how to submit animal protocols, and how to submit IRB forms. Individuals will be given a variety of reading assignments from which they will be expected to participate in group discussions and/or presentations. They will also be expected to prepare a fellowship application that will be submitted to an NIH Funding agency.
PSDO 720. Critical Approaches & Clinical Evaluation of Kidney Disease. 1 Hour.
Enhance knowledge of kidney disease physiology to include expansion of the themes from the Mount Desert Island Biologic Laboratory (MDIBL) course on the “Origins of Renal Physiology” Promote structured critical thinking skills focused on kidney disease. Enhance experimental design skills for the development and testing of new hypotheses. Enhance constructive reviewing skills. Engage in the culture and language of medicine through exposure to a range of clinical experiences. Provide opportunities for PROmoTE scholars and clinical faculty to discuss areas where basic science and clinical medicine intersect and where new information could be beneficial. Expose PROmoTE scholars to clinical problems and a variety of team-based investigation.

PSDO 798. PSDO Non-Dissertation Research. 1-8 Hour.
Non-Dissertation research. Only open to ARISE-MD students.

PSDO 799. PSDO Dissertation Research. 1-8 Hour.
Dissertation research. Only open to ARISE-MD students.

Prerequisites: GAC Z

Graduate Certificate in Digital Healthcare

The Graduate Certificate in Digital Healthcare is an online graduate certificate program that will provide a unique credential that will help entrepreneurs, graduate students, medical students, scientists, physicians and others. The certificate offers an educational foundation that will help graduates navigate the complex digital transformation of health care and medicine. Courses will apply toward the Masters of Healthcare Innovation. Certificates may be combined to obtain an Interdisciplinary Master’s Degree.

Courses are held asynchronously with optional weekly synchronous sessions.

The Graduate Certificate in Digital Healthcare is awarded by the University of Alabama at Birmingham Heersink School of Medicine.

Admission Requirements:
Admission requirements include eligibility for admission to the UAB Graduate School. There is no GRE required. An admissions committee reviews applications and makes final decisions. Students may begin the program in the Fall or Spring semesters.

Required Coursework:

Graduate Certificate in Digital Healthcare

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCI 641. Foundations of Digital Health</td>
<td>3</td>
</tr>
<tr>
<td>HI 657. Human-centered Research Design Methods for Healthcare</td>
<td>3</td>
</tr>
<tr>
<td>HCI 642. Leadership & Ethics for Digital Health</td>
<td>3</td>
</tr>
<tr>
<td>HCI 643. Special Topics for Digital Health</td>
<td>3</td>
</tr>
<tr>
<td>HI 620. Security and Privacy in Health Care</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 15

Artificial Intelligence in Medicine

The Graduate Certificate in AI in Medicine provides a unique credential that will help physicians, entrepreneurs, students, and scientists become knowledgeable about the growing and influential field of artificial intelligence in medicine. The certificate emphasizes the practical application and integration of artificial intelligence principles and tools to design and implement effective approaches for improving health of people through increased precision in predictive modeling, improved diagnostics and other advances.

Courses will apply toward the Masters of Healthcare Innovation. Certificates may be combined to obtain an Interdisciplinary Master’s Degree.

Courses are held asynchronously with optional weekly synchronous sessions.

The Graduate Certificate in AI in Medicine is awarded by the University of Alabama at Birmingham Heersink School of Medicine.

Admission Requirements:
Admission requirements include eligibility for admission to the UAB Graduate School. There is no GRE required. An admissions committee reviews applications and makes final decisions. Students may begin the program in the Fall or Spring semesters.

Required Coursework:

Graduate Certificate Artificial Intelligence in Medicine

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCI 611. Foundations of Artificial Intelligence in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>HCI 612. Applications of Artificial Intelligence in Medicine</td>
<td>3</td>
</tr>
<tr>
<td>HCI 613. Leadership & Ethics AI in Med.</td>
<td>3</td>
</tr>
<tr>
<td>HCI 614. Integration of Artificial Intelligence into Clinical Workflow</td>
<td>3</td>
</tr>
<tr>
<td>HI 620. Security and Privacy in Health Care</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 15

Courses

HCI 611. Foundations of Artificial Intelligence in Medicine. 3 Hours.
This course introduces students to the fundamentals needed for implementing Artificial Intelligence (AI) in clinical settings. Introduction to AI, Introduction to Healthcare System and Clinical data and Introduction to tools and techniques used in AI.

HCI 612. Applications of Artificial Intelligence in Medicine. 3 Hours.
This course introduces students to Applications of AI in medicine, Machine Learning- Applications of AI to EHR data, Deep Learning-Applications of AI to Medical Imaging data, and Natural Language Processing- Applications of AI to Clinical Documentation.

HCI 613. Leadership & Ethics AI in Med. 3 Hours.
This course introduces students to leadership, ethical and strategic skills, responsible AI, AI strategy, people, organization, and implementation of AI in medicine.

HCI 614. Integration of Artificial Intelligence into Clinical Workflow. 3 Hours.
This course introduces students to strategies and processes for integrating AI into existing clinical workflows. Using AI for Medical Diagnosis, Using AI for Medical Prognosis, and Using AI for Medical Treatment.
ARISE-MD

OVERVIEW

The Advance Research training In Science for MDs (ARISE-MD) PHD at UAB is a physician scientist training pathway designed to prepare residents and fellows at UAB for the roles of researchers, scholars and leaders capable of making a substantive contribution to academic medicine. The ARISE-MD pathway is designed to build on previous training at the undergraduate medical education level obtained from a nationally accredited school of medicine. The multi-year program offers future clinician-scientists a pathway that combines clinical training with advanced research training in multiple arenas of basic science leading to a PhD degree from one of eight Graduate Biomedical Science (GBS) PhD themes. It is through immersion in a research project that ARISE-MD students gain the knowledge and skills required for the successful completion of a dissertation. Residents or fellows from any graduate medical education (GME) training program at UAB can apply to the ARISE-MD.

PROGRAM OUTCOMES

- Synthesize historical and philosophical knowledge as a foundation for the design and conduct of research that generates new knowledge
- Critically appraise and synthesize evolving knowledge as a foundation for a scientific program of research
- Generate knowledge that informs the design, implementation, and evaluation of interventions that contribute to the advancement of science and facilitate optimal patient, population, and health systems outcomes
- Conduct investigations based upon scientifically sound conceptual and methodological decisions about research designs, measures, and analytic methods
- Demonstrate scientific integrity in the design, conduct, and dissemination of research
- Participate in the mentoring of the next generation of physician scientists

ARISE-MD MINIMUM ADMISSION REQUIREMENTS

- A Doctor of Medicine (MD) from a nationally accredited institution, equivalent to that in the UAB School of Medicine
- Eligibility for licensure as a physician in Alabama
- Active resident or fellow matched at UAB through the UASOM Graduate Medical Education Office (ERAS Application and Match Acceptance)
- A personal statement that evidences prior research experiences, congruence between the applicant’s research interests and chosen mentor’s research, and future endeavors as a physician scientist in academic medicine
- A current CV or NIH Biosketch
- Two references from individuals with expertise to comment on the applicant’s capability for research and scholarship (e.g., research mentor and UAB Residency or Fellow Chair)
- A personal interview with an ARISE-MD advisory member or designee

Biochemistry & ARISE-MD Theme - MSTP/Structural Biology (BSB)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEM 601</td>
<td>Biomedical Innovation and Clinical Translation I</td>
</tr>
<tr>
<td>BMEM 610</td>
<td>Design and Regulation of Stem Cell and Tissue Engineered Products</td>
</tr>
<tr>
<td>BMEM 611</td>
<td>Biomedical Device Design</td>
</tr>
<tr>
<td>BMEM 612</td>
<td>Lab-on-a-chip and Point-of-Care Diagnostic Technologies</td>
</tr>
<tr>
<td>BMEM 602</td>
<td>Biomedical Innovation and Clinical Translation II</td>
</tr>
<tr>
<td>BMEM 613</td>
<td>Implantable Devices and Biomaterials</td>
</tr>
<tr>
<td>BMEM 614</td>
<td>Wearable Device Technologies</td>
</tr>
<tr>
<td>BMEM 615</td>
<td>Design and Use of Tissue Chips, Organ Chips & Microphysiological Systems</td>
</tr>
<tr>
<td>BMEM 603</td>
<td>Regulatory, Legal and Ethical Perspectives</td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

ARISE MD

OVERVIEW

The Advance Research training In Science for MDs (ARISE-MD) PHD at UAB is a physician scientist training pathway designed to prepare residents and fellows at UAB for the roles of researchers, scholars and leaders capable of making a substantive contribution to academic medicine. The ARISE-MD pathway is designed to build on previous training at the undergraduate medical education level obtained from a nationally accredited school of medicine. The multi-year program offers future clinician-scientists a pathway that combines clinical training with advanced research training in multiple arenas of basic science leading to a PhD degree from one of eight Graduate Biomedical Science (GBS) PhD themes. It is through immersion in a research project that ARISE-MD students gain the knowledge and skills required for the successful completion of a dissertation. Residents or fellows from any graduate medical education (GME) training program at UAB can apply to the ARISE-MD.
MSTP/ARISE Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td>7</td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Hours

| Total Hours | 39 |

1. Four modular courses selected from the following: GBS 710, GBS 712, GBS 714, GBS 720, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 769, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBSC 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747

2. Required each fall and spring semester

3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course

4. Course selected from GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course

5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746L, GBS 756, GBS 776, GBS 786L, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793

6. Three advanced courses selected from the following:
 - GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727,
 - GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757,
 - GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783,
 - GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710,
 - GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721,
 - GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732,
 - GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741,
 - GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701,
 - INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796,
 - INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.

7. Required every semester

8. Required each fall and spring semester

9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Cancer Biology (CANB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 710 Cell Signaling</td>
<td></td>
</tr>
<tr>
<td>GBS 769 Carcinogenesis</td>
<td></td>
</tr>
<tr>
<td>GBS 770 Pathobiology of Cancer</td>
<td></td>
</tr>
<tr>
<td>GBSC 744 Cancer Immunology</td>
<td></td>
</tr>
</tbody>
</table>

Theme Required Courses

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBSC 777 Cancer Biology Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

GBS Required Courses

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>23</td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>5</td>
</tr>
</tbody>
</table>

MSTP/ARISE Required Courses

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td>6</td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Hours

| Total Hours | 76 |

Cell, Molecular & Developmental Biology (CMDB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 717 Methods and Scientific Logic</td>
<td>7</td>
</tr>
<tr>
<td>GBSC 792 CMDB Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

GBS Required Courses

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>23</td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>5</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>5</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>5</td>
</tr>
</tbody>
</table>

MSTP/ARISE Required Courses

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td>7</td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Hours

| Total Hours | 77 |

1. Four modular courses selected from the following: GBS 710, GBS 712, GBS 714, GBS 720, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 769, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBSC 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747

2. Required each fall and spring semester.

3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course.

4. Course selected from GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course.

5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746L, GBS 756, GBS 776, GBS 786L, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793

6. Three advanced courses selected from the following:
 - GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727,
 - GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757,
 - GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783,
 - GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710,
 - GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721,
 - GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732,
 - GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741,
 - GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701,
 - INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796,
 - INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.

7. Required every semester

8. Required each fall and spring semester.

9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.
Genetics, Genomics and Bioinformatics (GGB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 717 Methods and Scientific Logic</td>
<td></td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>4</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>5</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
<tr>
<td>Total Hours</td>
<td>77</td>
</tr>
</tbody>
</table>

1. Four modular courses selected from the following: GBS 710, GBS 712, GBS 714, GBS 720, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 769, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBSC 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747
2. Required each fall and spring semester
3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course
4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793

Immunology (IMM) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 740A Introduction to Immunology Part 1</td>
<td></td>
</tr>
<tr>
<td>GBS 740B Introduction to Immunology Part 2</td>
<td></td>
</tr>
<tr>
<td>GBS 744 Mucosal Immunology</td>
<td></td>
</tr>
<tr>
<td>GBS 741 Lymphocyte Biology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>6</td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>5</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
<tr>
<td>Total Hours</td>
<td>76</td>
</tr>
</tbody>
</table>

1. Required each fall and spring semester
2. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course
3. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
4. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
5. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.
6. Required each semester
7. Required each fall and spring semester
8. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.
Microbiology (MIC) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>5</td>
</tr>
<tr>
<td>GBS 760 Bacterial Genetics and Physiology</td>
<td></td>
</tr>
<tr>
<td>GBS 762 Virology</td>
<td></td>
</tr>
<tr>
<td>GBS 764 Introduction to Structural Biology Methods</td>
<td>4</td>
</tr>
<tr>
<td>GBS 763 Microbial Pathogenesis</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 768 Communicating Science: Reading, Writing and Presentation</td>
<td>3</td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td>1</td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Courses</td>
<td>5</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td>6</td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td>7</td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Hours: 79

1. Required each summer semester
2. Required each fall and spring semester
3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBS 768, GBS 726, GRD 709, or other approved course
4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBS 700, GBS 713, GBS 720, INFO 673, INFO 793
6. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 783, GBS 705, GBS 706, GBS 707, GBS 709, GBS 710, GBS 712, GBS 714, GBS 715, GBS 717, GBS 721, GBS 724, GBS 725, GBS 728, GBS 730, GBS 732, GBS 734, GBS 735, GBS 736, GBS 740, GBS 741, GBS 743, GBS 745, GBS 746, GBS 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course
7. Required every semester
8. Required each fall and spring semester
9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Neuroscience (NEURO) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>5</td>
</tr>
<tr>
<td>GBSC 744 Neuroanatomy</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 79

1. Required each summer semester
2. Required each fall and spring semester
3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBS 768, GBS 726, GRD 709, or other approved course
4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBS 700, GBS 713, GBS 720, INFO 673, INFO 793
6. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 783, GBS 705, GBS 706, GBS 707, GBS 709, GBS 710, GBS 712, GBS 714, GBS 715, GBS 717, GBS 721, GBS 724, GBS 725, GBS 728, GBS 730, GBS 732, GBS 734, GBS 735, GBS 736, GBS 740, GBS 741, GBS 743, GBS 745, GBS 746, GBS 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course
7. Required every semester
8. Required each fall and spring semester
9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Pathobiology, Pharmacology, & Physiology (P³) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>5</td>
</tr>
<tr>
<td>GBS 750 Intro to Physiology</td>
<td></td>
</tr>
<tr>
<td>GBS 751 Intro to Physiology II</td>
<td></td>
</tr>
<tr>
<td>GBS 752 Intro to Pathobiology</td>
<td></td>
</tr>
<tr>
<td>GBS 753 Intro to Pharmacology & Toxicology</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 79

1. Required each summer semester
2. Required each fall and spring semester
3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBS 768, GBS 726, GRD 709, or other approved course
4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBS 700, GBS 713, GBS 720, INFO 673, INFO 793
6. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 783, GBS 705, GBS 706, GBS 707, GBS 709, GBS 710, GBS 712, GBS 714, GBS 715, GBS 717, GBS 721, GBS 724, GBS 725, GBS 728, GBS 730, GBS 732, GBS 734, GBS 735, GBS 736, GBS 740, GBS 741, GBS 743, GBS 745, GBS 746, GBS 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course
7. Required every semester
8. Required each fall and spring semester
9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.
PSDO 630. Physician Experience. 2 Hours.
PSDO 630 will provide practical information and experience for highly qualified students considering medical school or other health-care based professional programs. The course will emphasize real world considerations of the clinical professions including acceptance criteria, expected duration of training, average debt and compensation of various specialties. The students will also be given multiple opportunities to interact with individuals from various levels of training and backgrounds to provide focused and nuanced guidance. Finally, the course will incorporate a shadowing experience, providing students the opportunity to observe and interact with practitioners from across UAB in a variety of specialties and settings. Each student will be required to complete documentation for the UAB and Children’s hospital, as well as receiving clearance from UAB Employee Health, as well as completing an online HIPAA compliance module. Students are not permitted to shadow until each is complete.

Students may perform independent study in a research laboratory setting. This work may contribute toward the concentration credits subject to program director approval.

Courses

Students perform independent study in a research laboratory setting. This work contributes directly to the completion of the degree and meets the degree requirements for graduation.

PSDO 700. Pathway to Grant Submission. 2 Hours.
This course is designed to assist postdocs, residents, fellows, and rising junior faculty with the creation and submission of a K award or equivalent grant application. Topics to be covered include the NIH funding system, how to write a fellowship, record keeping, authorship and publication, conflict of interest, animal and human subjects, and finding a mentor (Open to MD-PhD, ARISE-MD, and DMD-PhD students).

PSDO 701. Career Development Grant Writing Workshop. 1 Hour.
This course is designed to assist postdocs, residents, fellows, and rising junior faculty with the creation and submission of a K award or equivalent grant application. Topics to be covered include the NIH funding system, how to write a fellowship, how to submit animal protocols, and how to submit IRB forms. Individuals will be given a variety of reading assignments from which they will be expected to participate in group discussions and/or presentations. They will also be expected to prepare a fellowship application that will be submitted to an NIH Funding agency.

PSDO 720. Critical Approaches & Clinical Evaluation of Kidney Disease. 1 Hour.
Enhance knowledge of kidney disease physiology to include expansion of the themes from the Mount Desert Island Biologic Laboratory (MDIBL) course on the “Origins of Renal Physiology” Promote structured critical thinking skills focused on kidney disease. Enhance experimental design skills for the development and testing of new hypotheses. Enhance constructive reviewing skills. Engage in the culture and language of medicine through exposure to a range of clinical experiences. Provide opportunities for PROMoTE scholars and clinical faculty to discuss areas where basic science and clinical medicine intersect and where new information could be beneficial. Expose PROMoTE scholars to clinical problems and a variety of team-based investigation.

PSDO 798. PSDO Non-Dissertation Research. 1-8 Hour.
Non-Dissertation research. Only open to ARISE-MD students.

PSDO 799. PSDO Dissertation Research. 1-8 Hour.
Dissertation research. Only open to ARISE-MD students.

Prerequisites: GAC Z
Gerontology

Certification Program Director: Dr. Patricia L. Sawyer
Phone: (205) 934-9261
E-mail: psawyer@uab.edu
Website: www.aging.uab.edu

Program Information

The Gerontology Education Program was established in 1980 through the cooperative efforts of the School of Social and Behavioral Sciences and the Comprehensive Center for Healthy Aging. Since that time, the program has expanded considerably and offers diverse academic opportunities. Students have access to a number of faculty members from multiple disciplines who bring research and academic expertise to the study of aging and the aged.

The Gerontology Education Program offers multidisciplinary academic courses in gerontology leading to a graduate certificate. The study of gerontology at these levels is designed to provide people educated in various disciplines with the background needed to work in programs related to aging and the aged. The main goals are to provide students with a thorough background in existing theory and research in gerontology, and a supplement to their existing backgrounds and professional disciplines. We have designed the program to prepare students for leadership roles in this field of growing importance for both the private and public sectors. Our program's curriculum integrates research, theory, and practice. Its multidisciplinary approach reflects the urban mission of UAB.

The program office is located at the UAB Comprehensive Center for Healthy Aging. This academic program is administered by the Director of the Gerontology Education Program, who also serves as Chair of the Guidance Committee on Graduate and Undergraduate Education in Gerontology. This committee is made up of representatives of academic departments and schools throughout the UAB campus active in the study of aging and the aged. The multidisciplinary gerontology program is offered to all UAB students in good standing with the sponsorship and support of the School of Social and Behavioral Sciences, the School of Health Related Professions, and the Comprehensive Center for Healthy Aging.

Student Admissions and Advisement

Although general advisement is handled through UAB student advising and parent departments, student advisement in gerontology is handled formally by the Director of the Gerontology Education Program. The director facilitates student advisement with other members of the Committee on Graduate and Undergraduate Education in Gerontology. A graduate specialty is offered to students who want a special emphasis in gerontology or geriatrics. The major objective of this specialization is to provide a strong academic background for professional careers in academic and aging-related settings. There are two avenues for undertaking the graduate gerontology certificate requirements. Students in good standing in the graduate school can specialize in gerontology through their primary department. Letters of application also are accepted from students who have already completed requirements for an advanced or professional degree.

Students not currently enrolled in a graduate program at UAB may petition the university for non-degree admission status. Once accepted, the student can undertake a course of study to receive a graduate certificate upon completion of the required sequence of classes.

A careful review of proposed curriculum is recommended before the student enrolls for gerontology study. This will give students an opportunity to receive initial advisement while reviewing available study plans and course schedules.

Requirements

Students must complete at least 15 credit hours of graduate-level work in gerontology or geriatrics, achieving a grade of B or better in each course. The curriculum consists of a required multidisciplinary course offered through the graduate school (GRD 600) or the completion of an aging course from each of the following departments: biology, psychology and sociology, and gerontology electives chosen from a roster of courses approved by the Committee on Graduate and Undergraduate Education in Gerontology, and a required research project or a relevant internship.

To ensure a multidisciplinary perspective, courses must represent at least two departments.

Additional Information

For detailed information, contact Dr. Patricia L. Sawyer, Director, UAB Gerontology Education Program, Center for Aging, Room 201-E1, 933 19th Street South, Birmingham, AL 35294-2041.
Telephone 205-934-9261
Fax 205-934-7354
E-mail psawyer@uab.edu

Courses

GER 540. Biology of Aging. 3 Hours.
GER 590. Seminar in Sociological Substantive Areas. 1-3 Hour.
GER 593. Educational Gerontology. 3 Hours.
GER 595. Independent Study in Longterm Care. 1-3 Hour.
GER 603. Politics of Aging. 3 Hours.
Analysis of the role of aging in the political process. Focus on political demands made by elderly, role of aging in political decision making, and policy outputs relevant to older population.
GER 610. Health and Economics of Aging. 3 Hours.
Overview of economic aspects of aging focusing on the role of health and health care in the United States. The financing of health care for the aged will be the primary topic of the course. The economic factors influencing formal and informal sources of long term care also will be addressed. A final topic will be the role of health in retirement decisions and pension policies.
GER 611. Managed Care. 3 Hours.
Examination of factors that influence future direction of managed care. Changing relationships among major stakeholders. Broad areas of discussion including marketing dynamics, product characteristics, reimbursement methodologies, contracting issues, management information systems, government initiatives, legal and ethical issues, and future trends. 3.000 Credit Hours.
GER 638. Gerontology and Geriatrics Multidisciplinary Core. 3 Hours.
The curriculum consists of lectures and discussions sessions on the multidisciplinary treatment of health and aging.
GER 643. Long-Term Care Administration. 3 Hours.
Seminar analysis of effect of chronic conditions and aging on delivery of health services, nursing homes and alternatives, mental health facilities and agencies, and rehabilitation facilities and services. Field trips and individual research projects. 3.000 Credit Hours.

GER 655. Minority Aging. 3 Hours.

GER 665. Geriatric Rehabilitation for the Health Profession. 3 Hours.
Rehabilitation of the elderly person from the perspective of age-related changes, the impact of selected functional problems, psychosocial aspects of decreasing function, personal and environmental adaptations, and the continuing autonomy of the individual.

GER 680. Health Promotion for the Aged. 2 Hours.
Problems and public health solutions for older Americans examined. Sub-areas of aging are explored; biological, social, behavioral, and economic aspects of aging.

GER 690. Independent Study in Gerontological Nursing. 1-3 Hour.

GER 691. Seminar in Gerontological Substantive Areas. 1-3 Hour.
Seminar in Gerontological Substantive Areas.

GER 734. International Medical Sociology. 3 Hours.
Cross-cultural, comparative analysis of health and health care delivery systems in both industrialized and developing countries.

GER 738. Gerontology and Geriatrics Multidisciplinary Core. 3 Hours.
Gerontology and geriatrics multidisciplinary core.

GER 755. Race and Ethnic Relations. 3 Hours.
Income inequality, school and residential segregation, intermarriage, and interracial crimes.

GER 759. Social Gerontology. 3 Hours.
Structural and behavioral implications of older adulthood. Relationships of aged to political, economic, educational, medical, religious, and other structures in society.

GER 760. Sociology of Death and Dying. 3 Hours.
Sociological, social psychological and existential perspectives on death and dying; recent trends in definition, distribution, and practices surrounding death and dying.

GER 769. Sociology of the Life Cycle. 3 Hours.
Theories of life; social construction of age categories, aging and family life, work, careers, and aging; men, women, and life cycle.

GER 777. Demography of Health and Aging. 3 Hours.
Focus on demographic processes, such as mortality, morbidity, migration, and fertility; how each influences number and proportion of elderly; how such processes shape age/sex structure; other demographic characteristics of older people.

GER 780. Medical Sociology. 3 Hours.
Theory and research in medical sociology; systematic overview of relevant literature.

GER 781. Sociology of Health. 3 Hours.
Subjective experience of illness; predictions of health behavior; social networks and health.

GER 785. Psychology of Aging. 3 Hours.
Age differences in perception, memory, intelligence, personality, adjustment, and psychopathology.

GER 786. Aging Seminar. 1 Hour.
Contemporary topics in aging, including basic science, clinical, and psycho-social issues.

GER 788. Social Medicine. 3 Hours.
Socioenvironmental factors in etiology of disease; social movements and health policy; medical ethics and broad ethical issues; place of social science in medical care.

GER 789. Social Medicine Seminar. 3 Hours.
GER 790. Independent Study in Gerontological Nursing. 1-3 Hour.
GER 791. Seminar in Gerontological Substantive Areas. 3 Hours.
Seminar in Gerontological Substantive Areas.

GER 796. Research Seminar in Health and Aging. 3 Hours.

Medical Scientist Training Program

Degree Offered: M.D.-Ph.D.
Co-Director: William Geisler, M.D., MPH.
Co-Director: Talene Yacoubian, M.D., Ph.D
Director Title: Co-Directors of Medical Scientist Training Program
Phone: (205) 934-4092 or 934-0676
E-mail: mstp@uab.edu
Website: http://www.mstp.uab.edu

Overview

UAB's outstanding research and clinical training programs provide a unique opportunity for students interested in careers in basic biomedical research. As a designated NIH Medical Scientist (M.D.-Ph.D.) Training Program (MSTP), students are admitted concurrently to the School of Medicine and the Graduate School in order to pursue both the M.D. degree and the Ph.D. degree. Ph.D. study in this program is available in the areas of biochemistry, structural, and stem cell biology; biomedical engineering; biostatistics; cancer biology; cell, molecular and developmental biology; epidemiology; genomics, and bioinformatics; health behavior; immunology; microbiology, neuroscience; nutrition sciences; pathobiology and molecular medicine; public health; sociology; and vision science.

Individuals admitted to this highly competitive program must have excellent undergraduate academic records and MCAT scores. In addition, successful applicants must have demonstrated their commitment to a career pathway as an investigator with active participation in an original research project prior to admission. Fellowship support, including a stipend and payment of tuition and fees, is provided to successful applicants.

In general, M.D.-Ph.D. students will first complete the basic science phase of the medical curriculum and the first-year core curriculum of their chosen Ph.D. discipline simultaneously. The second phase of study will focus on mentor selection, research path, and completion of a dissertation research project leading to the Ph.D. degree. The final phase of the program is a series of clinical rotations and an abbreviated set of acting internships to complete the M.D. degree. Normally, the program involves about 8 years for completion, depending on the time required to complete the dissertation research.

Interested applicants must complete the standard AMCAS application to the UAB School of Medicine and a short secondary application to the M.D.-Ph.D. program once the AMCAS application has been reviewed
for consideration. More information is available at https://www.uab.edu/medicine/mstp/admissions.

Students who have initiated study in the University of Alabama School of Medicine or the UAB Graduate School may also apply to the MD-PhD Program. Please contact the MSTP Directors for further information.

Biochemistry & Structural Biology (BSB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>Theme Required Course</td>
<td>6</td>
</tr>
<tr>
<td>GBSC 742, GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717, Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794, Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795, Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Hours | 76 |

1. Four modular courses selected from the following: GBS 710, GBS 711, GBS 712, GBS 720, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 769, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBSC 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747

2. Required each fall and spring semester

3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course

4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course

5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 792, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793

6. Three advanced courses selected from the following:
 - GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 759, GBS 765, GBS 774, GBS 775, GBS 776, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.

7. Required every semester

8. Required each fall and spring semester

9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Cancer Biology (CANB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 710, Cell Signaling</td>
<td></td>
</tr>
<tr>
<td>GBS 769, Carcinogenesis</td>
<td></td>
</tr>
<tr>
<td>GBS 770, Pathobiology of Cancer</td>
<td></td>
</tr>
<tr>
<td>GBS 774, Cancer Immunology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>6</td>
</tr>
<tr>
<td>GBS 777, Cancer Biology Seminar</td>
<td>1</td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717, Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>2</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>5</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794, Translational Research Seminar</td>
<td>6</td>
</tr>
<tr>
<td>MSTP 795, Continuing Clinical Education</td>
<td>7</td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Hours | 76 |

1. Required each fall and spring semester.

2. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course.

3. Course selected from GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course.

4. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793

5. Three advanced courses selected from the following:
 - GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 759, GBS 765, GBS 774, GBS 775, GBS 776, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.

6. Required every semester.

7. Required each fall and spring semester.

8. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Cell, Molecular & Developmental Biology (CMDB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 717, Methods and Scientific Logic</td>
<td></td>
</tr>
<tr>
<td>GBS 792, CMDB Seminar</td>
<td>2</td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717, Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>4</td>
</tr>
</tbody>
</table>
Genetics, Genomics and Bioinformatics (GGB) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>7</td>
</tr>
<tr>
<td>GBS 717 Methods and Scientific Logic</td>
<td></td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>5</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Hours: 77

1. Four modular courses selected from the following: GBS 710, GBS 712, GBS 714, GBS 720, GBS 724, GBS 740A, GBS 740B, GBS 741, GBS 744, GBS 750, GBS 751, GBS 752, GBS 753, GBS 760, GBS 762, GBS 763, GBS 764, GBS 770, GBS 774, GBS 781, GBS 782, GBS 784, GBSC 718, GBSC 727, GBSC 729, GBSC 744, GBSC 747
2. Required each fall and spring semester
3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course
4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course.
5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
6. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 778, GBS 779, GBS 783, GBSC 705, GBSC 706, GBSC 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course.
7. Required each semester
8. Required each fall and spring semester
9. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Immunology (IMM) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 740A Introduction to Immunology Part 1</td>
<td></td>
</tr>
<tr>
<td>GBS 740B Introduction to Immunology Part 2</td>
<td></td>
</tr>
<tr>
<td>GBS 744 Mucosal Immunology</td>
<td></td>
</tr>
<tr>
<td>GBS 741 Lymphocyte Biology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>6</td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td>3</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>5</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Hours: 76

1. Required each fall and spring semester
2. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course
3. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course.
Microbiology (MIC) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 760 Bacterial Genetics and Physiology</td>
<td></td>
</tr>
<tr>
<td>GBS 762 Virology</td>
<td></td>
</tr>
<tr>
<td>GBS 764 Introduction to Structural Biology Methods</td>
<td></td>
</tr>
<tr>
<td>GBS 765 Microbial Pathogenesis</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 768 Communicating Science: Reading, Writing and Presentation</td>
<td></td>
</tr>
<tr>
<td>GBSC 742 GBS Student Theme Meeting Course</td>
<td></td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td></td>
</tr>
<tr>
<td>Journal Clubs</td>
<td></td>
</tr>
<tr>
<td>Advanced Courses 5</td>
<td></td>
</tr>
<tr>
<td>MSTP/ARISE Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
<tr>
<td>Total Hours</td>
<td>78</td>
</tr>
</tbody>
</table>

1. Required each fall and spring semester
2. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBS 768, GBSC 726, GRD 709, or other approved course
3. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
4. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793

Neuroscience (NEURO) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBSC 744 Neuroanatomy</td>
<td></td>
</tr>
<tr>
<td>GBSC 729 Cell Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>GBS 714 Developmental Neuroscience</td>
<td></td>
</tr>
<tr>
<td>GBS 727 Neuro Systems</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>9</td>
</tr>
<tr>
<td>GBS 737 Neuro Student Summer Seminar Series</td>
<td></td>
</tr>
<tr>
<td>NBL 703 Nuerobiology Seminar Series</td>
<td></td>
</tr>
<tr>
<td>GBS Required Course</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant-Writing/Scientific Communication</td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td></td>
</tr>
<tr>
<td>Journal Clubs</td>
<td></td>
</tr>
<tr>
<td>Three Advanced Courses</td>
<td>6</td>
</tr>
<tr>
<td>MSTP/ARISE Required Course</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td></td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td></td>
</tr>
<tr>
<td>Research Hours</td>
<td>9</td>
</tr>
<tr>
<td>Total Hours</td>
<td>79</td>
</tr>
</tbody>
</table>

1. Required each summer semester
2. Required each fall and spring semester
3. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBS 768, GRD 709, or other approved course
4. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
5. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
Pathobiology, Pharmacology, & Physiology (P³) Theme - MSTP/ARISE

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Courses</td>
<td>8</td>
</tr>
<tr>
<td>GBS 750 Intro to Physiology</td>
<td></td>
</tr>
<tr>
<td>GBS 751 Intro to Physiology II</td>
<td></td>
</tr>
<tr>
<td>GBS 752 Intro to Pathobiology</td>
<td></td>
</tr>
<tr>
<td>GBS 753 Intro to Pharmacology & Toxicology</td>
<td></td>
</tr>
<tr>
<td>Theme Required Courses</td>
<td>6</td>
</tr>
<tr>
<td>GBS 742 GBS Student Theme Meeting Course</td>
<td>1</td>
</tr>
<tr>
<td>GBS Required Courses</td>
<td>23</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td></td>
</tr>
<tr>
<td>Grant Writing/Scientific Writing</td>
<td>2</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>Journal Clubs</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Courses</td>
<td>5</td>
</tr>
<tr>
<td>MSTP/Arise Required Courses</td>
<td>39</td>
</tr>
<tr>
<td>MSTP 794 Translational Research Seminar</td>
<td>6</td>
</tr>
<tr>
<td>MSTP 795 Continuing Clinical Education</td>
<td>7</td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
<tr>
<td>Total Hours</td>
<td>76</td>
</tr>
</tbody>
</table>

1. Required each fall and spring semester
2. Course selected from the following: PSDO 700, GBS 716, GBS 725, GBSC 726, GRD 709, or other approved course
3. Course selected from the following: GRD 770, BST 611, BST 612, BY 755, PY 716, or other approved course
4. Required each fall and spring semester. Courses selected from the following: GBS 736, GBS 746J, GBS 756, GBS 776, GBS 786J, GBS 793, GBSC 700, GBSC 713, GBSC 720, INFO 673, INFO 793
5. Three advanced courses selected from the following: GBS 700, GBS 702, GBS 715, GBS 718, GBS 726, GBS 727, GBS 729, GBS 739, GBS 742, GBS 749, GBS 754, GBS 757, GBS 758, GBS 765, GBS 775, GBS 779, GBS 783, GBS 705, GBS 706, GBS 707, GBSC 709, GBSC 710, GBSC 712, GBSC 714, GBSC 715, GBSC 717, GBSC 721, GBSC 724, GBSC 725, GBSC 728, GBSC 730, GBSC 732, GBSC 734, GBSC 735, GBSC 736, GBSC 740, GBSC 741, GBSC 743, GBSC 745, GBSC 746, GBSC 748, INFO 701, INFO 702, INFO 703, INFO 704, INFO 751, INFO 762, INFO 796, INFO 797, BME 723, BME 770, BME 772, BME 780, or other approved course
6. Required every semester
7. Required each fall and spring semester
8. Student must complete 24 hours total of dissertation research, MSTP 799 or PSDO 799.

Courses

MSTP 793. Basic Research Forum. 1 Hour.
This course is for entering MD-PhD students to meet the GBS Core-Course requirements. The following list consists of desirable competencies for enrolled MD-PhD students to achieve while in this course: (a) Learn fundamental topics in biomedical research that will not be covered in SOM courses; (b) Fill gaps in curriculum between GBS707/709; and (c) Introduce topics that may be of interest for future lab rotations.

MSTP 794. Translational Research Seminar. 1 Hour.
The CAMS Translational Research Seminar series, required fall, spring and summer semesters, invites UAB faculty (PhD, MD, MD-PhD or MPH) who are conducting translational research to present their work to students in the MSTP. The goal of the presentation is three fold: (a) to inform students about the career path of the investigator, (b) to provide them with information regarding the initiation and conduct of translational research, and (c) to expose students to current developments in basic and clinical research. There are two to three sessions each year in which panels or round tables discuss topics, including mentor selection, preparation for residency, residency selection, and the overall UAB MSTP experience. Lecturers give a 45-minute presentation followed by a 15-minute question and answer session. This course is open only to MD-PhD students.

MSTP 795. Continuing Clinical Education. 1 Hour.
This course is designed to maintain clinical skills and knowledge during students’ dissertation research years. MSTP students will take the course every fall semester and spring semester during their PhD dissertation phase. Each semester, students will be required to complete seven course components. Some components serve to maintain clinical skills and includes students conducting a resident-supervised clinical encounter as well as completing one half day of shadowing. Other components serve to maintain or bolster clinical knowledge and include students attending case conferences and/or participating in simulation sessions. This course is open only to MD-PhD students.
MSTP 796. Anatomy Lab TA Opportunity. 1 Hour.
From 23 TOTAL dissections between the MS1 and MS2 years, students choose any 6 dissections to teach depending on their availability. Overview: MS4 students will serve as Anatomy Teaching Associates for MS1 and MS2 students during scheduled lab times to make preclinical training more robust and clinically relevant. Course benefits for MS4 students: - Small-group anatomy training aimed to improve knowledge of anatomy & dissection skills. - Teaching & mentoring experience of students with less clinical experience. - Flexible schedule: Preferred dissections may be changed up to 1 week before the preclinical scheduled lab time. Format: - Students will attend a 1-hour orientation session addressing effective teaching techniques in August of the entering year (accommodation for absence can be made on a case-by-case basis). - The week prior to their chosen dissections, students will receive 2 hours of small group training in SOM lab under the directions of trained UAB Anatomist and Course Director Dr. Resuehr. During this training, students will perform the relevant cadaveric dissection which will be saved for demonstration during the preclinical lab. - TAs will be assigned to a group of preclinical students during their scheduled lab time to help answer questions. Particular emphasis will be placed on providing preclinical students with clinical correlates. Learning Objectives: - Dissect and identify all associated structures of their chosen dissections emphasizing the relation of structures to each other and common pathologies. - Understand common anatomical variations (if applicable). - Understand anatomically relevant information pertaining to clinical procedures. - Understand geriatric changes. - Mentor and teach students with less experience.

MSTP 798. MSTP Non-Dissertation Hours. 1-8 Hour.
Laboratory research pre-qualification. Only open to MSTP students.

MSTP 799. MSTP Dissertation Hours. 1-8 Hour.
Dissertation research. Only open to MSTP students.

Prerequisites: GAC Z

School of Nursing

Degree Offered: M.S.N.
Assistant Dean (M.S.N.): Dr. Tedra Smith
Phone: (205) 996-4193
Email: tedraka@uab.edu

Director (A.M.N.P.): Dr. Michael Mosley
Phone: (205) 975-3465
Email: mmosley@uab.edu

Degree Offered: D.N.P.
Assistant Dean (D.N.P.): Dr. Curry Bordelon
Phone: (205) 934-0479
Email: cjborde@uab.edu

Director (Nurse Anesthesia): Dr. Susan P McMullan
Phone: (205) 934-6587
Email: susanpmcm@uab.edu

Degree Offered: Ph.D.
Director (Ph.D.): Dr. Edwin Aroke
Phone: (205) 975-7500
Email: earoke@uab.edu

Degree Offered: M.S.N.
Director (A.M.N.P.): Dr. Michael Mosley
Phone: (205) 975-3465
Email: mmosley@uab.edu

A.M.N.P. Program Description
The Accelerated Master’s Entry to Nursing Pathway (AMNP) is an alternate pathway into the existing master’s in nursing (MSN degree) for applicants who have a bachelor’s degree in a field other than nursing, who are not registered nurses, and who seek MSN preparation. Students may apply for continued graduate options while in the AMNP coursework to start after successful completion of the AMNP. The AMNP was developed in response to the growing need for well-educated, highly skilled professionals who can manage complexity within clinical environments.

A.M.N.P. Admission Requirements
Admission is based on the applicant’s academic record and all application materials at the time of the application deadline. *All grades (UAB and other colleges/universities) from previous college course work must be posted on applicant’s UAB transcript by the application deadline. Courses in progress must be validated with a letter from the college or university students are attending. Accelerated Masters in Nursing Pathway (AMNP) - School of Nursing | UAB.

- Applicants must have earned a minimum of a baccalaureate degree from a regionally accredited college/university prior to beginning classes. Applications are completed through the School of Nursing at: http://www.uab.edu/nursing/home/apply-now.
- Upon receipt of ALL official transcripts, course work will be evaluated for advisement purposes regarding AMNP Foundational Courses.
- Pre-requisites: Students are eligible to apply if they will have successfully completed a minimum of 29 semester credit hours by the Application Deadline of the AMNP Pre-requisite Foundation Coursework (listed on the next page). The final minimum cumulative/overall and Pre-requisite Foundation Coursework GPA must be a 3.0 or greater. Once you have applied through UAB Graduate School, and upon receipt of ALL official transcripts, your coursework will be evaluated for advisement purposes. Completion of AMNP foundation/pre-requisite courses with at least a 3.0 GPA and a "C" or better in each course: Human Anatomy, Human Physiology, Microbiology, Chemistry I with lab, Chemistry II with lab or core science (excluding Geology or Astronomy), Developmental Psychology, Descriptive Statistics, Core Mathematics such as Pre-Calculus or Finite Mathematics, and Nutrition. Accelerated Masters in Nursing Pathway (AMNP) - School of Nursing | UAB.
- GPA: The minimum cumulative AND foundational GPA for all AMNP applicants is 3.0 at the time of application. Admission is competitive and is based on space availability. A minimum cumulative GPA of 3.0 does not guarantee admission to the School of Nursing. It is strongly recommended that applicants to the School of Nursing demonstrate a record of full-time study; a minimum number of course repeats/grade forgiveness options, and withdrawals.
- A minimum score of 410 on the MAT; or a minimum score of 480 on the GMAT; or a combined score of 297 on the verbal and quantitative sections of the Graduate Record Examination (GRE). Students who have a 3.2 GPA or better may waive this requirement.
• Test Waiver: The GRE/GMAT/MAT Waiver process allows eligible candidates for master’s study to have this requirement waived if they meet the following criteria: Have earned a baccalaureate degree from a regionally accredited university and have a cumulative GPA of 3.2 on a 4.0 scale. Approval for the waiver does not imply or guarantee admission to the AMNP. The following individuals are not eligible for the waiver process: International applicant and Non-native English speaking applicants. Candidates not eligible for the Waiver Process will be required to take the GRE/GMAT/MAT and submit an official score by the application deadline. Upon receipt of the applicant’s transcripts, the Office of Student Affairs at the SON will verify with the student that they do not need to take one of the following: GRE/ GMAT/MAT.

• International students must achieve a TOEFL examination score of at least 500;

• Three (3) letters of professional reference attesting to the applicant’s potential for graduate study.

• A resume, outlining health care interest/experience, campus/community involvement, leadership, and employment will be due by the application deadline. Resumes should not be more than one page in length. Applicants are strongly encouraged to provide proof of work/volunteer experience in a healthcare setting as part of the application process. The healthcare work is to be documented by letters from a supervisor (on agency letterhead). Completion of a nursing skills course does not meet these criteria.

• Interviews: Due to the competitive nature, not all candidates that apply will be invited for interviews. Applicants will be notified if they are invited to participate in the interview round for continued consideration for admission. Interviews will be conducted in either October or November. You will be given ample time to plan for a trip to campus if you are selected to be interviewed. Students will be notified shortly after the interviews of our admission decision.

A.M.N.P. Degree Requirements

AMNP provides pre-licensure coursework leading to a Master of Science in Nursing, MSN, degree. Students should be prepared to dedicate 40 hours or more a week to coursework and clinicals. Students find that it is not feasible for them to work while completing coursework and clinicals. AMNP is live and not distance accessible.

The pre-licensure:

58 Credits, 840 contact hours. Consists of 12 months of full-time study in which students complete the required courses and clinical experiences and are eligible to apply for licensure as a registered nurse. Students emerge with the knowledge and skills required to function as a registered nurse through an intense learning experience. Upon successful completion of pre-licensure requirements, the UAB University Registrar sends a certified letter to the Alabama Board of Nursing stating that students have successfully completed requirements and are eligible to take the National Certification Licensure Exam for RNs (NCLEX-RN). Students who successfully complete the NCLEX-RN may apply for licensure and for employment as a Registered Nurse.

The Master of Science in Nursing:

The MSN degree provides an entry-level focus in healthcare technology and transitional care while allowing for further graduate nursing education into multiple pathways of graduate nursing studies

A.M.N.P. Program Goals

The MSN program of study is designed to prepare nurses who: synthesize research, theoretical formulations, and principles of scientific inquiry to provide evidence-based practice; assume leadership in managing and evaluating continuous quality improvement processes; use information systems/technology to evaluate programs of care, outcomes of care and care systems; advocate and implement health care policies that improve access, equity, efficiency, and social justice in the delivery of health care; design innovative educational programs for patients, nursing staff, and nursing students using teaching and learning principles; provide ethical, culturally sensitive care in an advanced nursing role independently and collaboratively with professionals from multiple disciplines; monitor the quality of one’s own nursing practice based on professional practice standards and relevant statutes and regulations; and apply theories and principles of marketing, economics, consultation, management, and leadership to comprehensively perform an advanced nursing role.

Master of Science in Nursing

Program Description

The Master of Science in Nursing (MSN) curriculum prepares nurses for advanced nursing practice and generalist practice. MSN graduates are prepared to practice in a variety of roles in a health care system requiring advanced knowledge of patient/client care delivery and a high level of critical thinking. In addition, MSN graduates have a foundation for future doctoral study in nursing.

• Preparation as a nurse practitioner in family; adult/gerontology; pediatric primary, dual (primary and acute) pediatric care; neonatal acute and continuing care; women’s health, or psychiatric-mental health

• Preparation in the rapidly evolving area of nursing and health systems management

• Preparation as a clinical nurse leader

Students may also select: the Registered Nurse First Assist (RNFA), forensics, palliative care, oncology, emergency care, and education subspecialty course work are also available.

PROGRAM SCHEDULING: Students admitted to a master’s study in the summer and fall terms in most specialty tracks. Students will follow a part-time program of study. Students follow prescribed courses; however, individual needs are considered. All core courses and selected specialty courses are available via distance education. Additionally, please refer to the UAB online website to ensure we are approved in your state https://www.uab.edu/elearning/students/state-authorization

CLINICAL SCHEDULE: Clinical experiences for the MSN student are coordinated with your faculty. The student contracts to work with a clinical preceptor who is a certified registered nurse practitioner, a registered nurse, or a physician. The total number of clinical hours required varies depending on the specialty. Students must have a current RN license in the state where they do their clinical practice prior to enrolling in the advanced practice courses.
NURSE PRACTITIONER ACUTE AND CONTINUING CARE

Acute and continuing care nursing at UAB School of Nursing is a holistic approach to health care that focuses on the needs and strengths of the acutely or critically ill adult, neonate, or pediatric client. Further concentration in cardiovascular, neuroscience, or oncology may be available to those who select the adult acute care nurse practitioner option.

NURSE PRACTITIONER PRIMARY CARE

Primary care nursing is a holistic approach to health care that focuses on the needs and strengths of the whole person within families and communities; health promotion; disease prevention, and the identification and management and/or referral of health problems. Students with an interest in primary care may select advanced study in adult, family, pediatric, or women’s health nursing. Secondary specialization in occupational health is available in conjunction with a primary care nurse practitioner track.

OTHER OPTIONS

Other options in the graduate program include an, a post-baccalaureate certificates preparing students to teach in nursing; a post-master’s program of study to prepare nurse practitioners, a RN-BSN and a RN-MSN track which incorporates course work at the master’s level and a BSN-PhD option. For more information on all options, please visit https://www.uab.edu/nursing/home/academics/masters

NURSING AND HEALTH SYSTEMS MANAGEMENT

Nurses enrolled in this option may elect to study Nursing and Health Systems Administration or Nursing Informatics. Informatics is one of the fastest growing areas in health care. Informatics may be defined as a combination of computer science, information science and nursing designed to assist in the management and processing of nursing data, information, and knowledge designed to support the practice of nursing and delivery of nursing care. The focus of nursing informatics practice is the organization, analysis, and dissemination of information.

CLINICAL NURSE LEADER

The Clinical Nurse Leader (CNL) is a leader in the health care delivery system. The CNL assumes accountability for patient care outcomes through the application of research-based information to design, implement, and evaluate patient plans of care. The CNL is a provider and manager of care at the point of care to patients and cohorts of patients within a healthcare setting. The role includes the design, implementation, and evaluation of patient care outcomes by coordinating, delegating, and supervising the care provided by the health care team, including licensed nurses, technicians, and other health professionals.

Non-Degree Options at the MSN Level

The Post-Master of Science in Nursing (MSN) certificate track curriculum prepares nurses for advanced nursing practice as a nurse practitioner. This option is available for nurses who hold or are eligible for an advanced practice certification. MSN graduates who wish to take a designated program of study in preparation for sitting for one of the nurse practitioner certification examinations may apply for non-degree graduate status. Applicants for the Post MSN NP Option are considered on an individual basis, depending on NP practice experience and previous coursework. Applicants that are determined to be ineligible for the Post MSN NP Option will be encouraged to apply for a second MSN degree. Post-master’s non-degree students will not be awarded a degree.

M.S.N. Program Goals

The MSN program of study is designed to prepare nurses who: synthesize research, theoretical formulations, and principles of scientific inquiry to provide evidence-based practice; assume leadership in managing and evaluating continuous quality improvement processes; use information systems/technology to evaluate programs of care, outcomes of care and care systems; advocate and implement health care policies that improve access, equity, efficiency, and social justice in the delivery of health care; design innovative educational programs for patients, nursing staff, and nursing students using teaching and learning principles; provide ethical, culturally sensitive care in an advanced nursing role independently and collaboratively with professionals from multiple disciplines; monitor the quality of one’s own nursing practice based on professional practice standards and relevant statutes and regulations; and apply theories and principles of marketing, economics, consultation, management, and leadership to comprehensively perform an advanced nursing role.

M.S.N. Admission Requirements

To apply to the MSN program please visit: https://www.uab.edu/nursing/home/apply-now

For more information please visit please contact UAB School of Nursing Office for Student Success at 205-975-7529 or go to https://www.uab.edu/nursing/home/msn-specialty-tracks for more information on specialty and subspecialty course options.
Requirements for admission for the MSN degree include the following:

- BSN degree from a regionally accredited institution, equivalent to the one offered by the School of Nursing, UAB;
- Cumulative grade point average of at least 3.0 on a 4.0 scale or on the last 60 semester hours; (Graduates of baccalaureate degree programs in countries other than the United States must have their baccalaureate degree transcripts evaluated by the Educational Credential Evaluators, Inc. OR The World Education Services Organization);
- Combined score of 297 on verbal and quantitative sections of the GRE; or score of 410 on the MAT; or score of 480 on the GMAT; Test scores submitted to UAB from the GRE, GMAT, or MAT must not be over 5 years old. Applicants with a 3.2 GPA or better may waive the Test Score requirement if they meet the criteria, please see: GRE/GMAT/MAT Waiver Process for degree seeking MSN students;
- International students must achieve a TOEFL examination score of at least 550; and
- Three (3) letters of professional reference attesting to the applicant’s potential for graduate study.
- All prospective students that desire to apply to UAB SON must do so through the application link at: http://www.uab.edu/nursing/home/apply-now

*For non-nursing bachelor’s prepared students, an alternate master’s in nursing option is available: https://www.uab.edu/nursing/home/academics/masters/amnp

**The following individuals are not eligible for the GRE waiver process:

- International applicants
- Non-Native English speaking applicants
- Dual degree seeking program applicants MSN/MPH

For International Students:

- This program is distance-accessible and therefore not eligible for applicants entering the US in F-1 or J-1 student status
- If you plan to enroll with an immigration status other than F or J, please email UAB International Admissions at IntlAdmin@uab.edu for confirmation of your eligibility for the program
- All foreign transcripts evaluated by the Educational Credential Evaluators, Inc www.ece.org OR the World Education Services www.wes.org, sent from the evaluators directly to the School of Nursing with a course by course evaluation
- A degree equivalent to a bachelor’s degree from a regionally accredited educational college/university in the United States
- A score of 500 or higher on the Test of English as a Foreign Language, TOEFL
- Standardized test score. A minimum combined score of 297 on the verbal and quantitative sections of the Graduate Record Examination (GRE).
- Possess an unencumbered and unrestricted nursing license to practice nursing in the state where you plan to conduct your clinical practicum

Master of Science in Nursing-Nurse Practitioner Core & Foundation Courses

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUR 737</td>
<td></td>
</tr>
<tr>
<td>Interprofessional Leadership and Role Development for Practice Excellence (or NUR 604)</td>
<td>3</td>
</tr>
<tr>
<td>NUR 612</td>
<td></td>
</tr>
<tr>
<td>Advanced Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NUR 735</td>
<td></td>
</tr>
<tr>
<td>Population Health in Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 729</td>
<td></td>
</tr>
<tr>
<td>Evidence-Based Practice Design and Translation</td>
<td>3</td>
</tr>
<tr>
<td>NUR 613</td>
<td></td>
</tr>
<tr>
<td>Pharmacology and Therapeutics</td>
<td>3</td>
</tr>
<tr>
<td>NUR 614</td>
<td></td>
</tr>
<tr>
<td>Assessment and Diagnostic Reasoning for Advanced Nursing Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 18

Adult-Gerontology Primary Care Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAH 618L</td>
<td></td>
</tr>
<tr>
<td>Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NAH 621</td>
<td></td>
</tr>
<tr>
<td>Advanced Adult Gerontology Nursing I - Primary Care</td>
<td>5</td>
</tr>
<tr>
<td>NAH 685L</td>
<td></td>
</tr>
<tr>
<td>Practicum I: Adult/Gerontology Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NAH 622</td>
<td></td>
</tr>
<tr>
<td>Advanced Adult Gerontology Nursing II - Primary Care</td>
<td>4</td>
</tr>
<tr>
<td>NAH 686L</td>
<td></td>
</tr>
<tr>
<td>Practicum II: Adult/Gerontology Nurse Practitioner - Primary Care</td>
<td>3</td>
</tr>
<tr>
<td>NAH 623</td>
<td></td>
</tr>
<tr>
<td>Advanced Adult Gerontology Nursing III - Primary Care</td>
<td>5</td>
</tr>
<tr>
<td>NAH 692L</td>
<td></td>
</tr>
<tr>
<td>Practicum III: Adult/Gerontology Nurse Practitioner - Primary Care</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours 27

Pediatric Acute Care Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC 622</td>
<td></td>
</tr>
<tr>
<td>Advanced Pediatric Nursing II - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCC 618L</td>
<td></td>
</tr>
<tr>
<td>Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NCC 621</td>
<td></td>
</tr>
<tr>
<td>Advanced Pediatric Nursing I - Acute Care</td>
<td>5</td>
</tr>
<tr>
<td>NDC 625</td>
<td></td>
</tr>
<tr>
<td>Advanced Dual Option Pediatric Nurse Practitioner</td>
<td>2</td>
</tr>
<tr>
<td>NCC 685L</td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum I: Advanced Pediatric Nursing - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCC 686L</td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum II: Advanced Pediatric Nursing - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCC 692L</td>
<td></td>
</tr>
<tr>
<td>Clinical Practicum III: Advanced Pediatric Nurse Practitioner - Acute Care</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours 23

Pediatrics Primary Care Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPE 618L</td>
<td></td>
</tr>
<tr>
<td>Focus on Advanced Nursing Practice Specialization</td>
<td>2</td>
</tr>
<tr>
<td>NPE 621</td>
<td></td>
</tr>
<tr>
<td>Advanced Pediatric Nursing I - Primary Care</td>
<td>5</td>
</tr>
<tr>
<td>NPE 685L</td>
<td></td>
</tr>
<tr>
<td>Practicum I: Pediatric Nurse Practitioner –Primary Care</td>
<td>3</td>
</tr>
<tr>
<td>NPE 622</td>
<td></td>
</tr>
<tr>
<td>Advanced Pediatric Nursing II - Primary Care</td>
<td>4</td>
</tr>
<tr>
<td>NPE 686L</td>
<td></td>
</tr>
<tr>
<td>Practicum II: Pediatric Nurse Practitioner –Primary Care</td>
<td>3</td>
</tr>
<tr>
<td>NPE 623</td>
<td></td>
</tr>
<tr>
<td>Advanced Pediatric Nursing III - Primary Care</td>
<td>5</td>
</tr>
<tr>
<td>NPE 692L</td>
<td></td>
</tr>
<tr>
<td>Practicum III: Pediatric Nurse Practitioner –Primary Care</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours 26
Dual Pediatric Acute and Primary Care Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDP 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NPE 621 Advanced Pediatric Nursing I - Primary Care</td>
<td>5</td>
</tr>
<tr>
<td>NCC 621 Advanced Pediatric Nursing I - Acute Care</td>
<td>4</td>
</tr>
<tr>
<td>NPE 622 Advanced Pediatric Nursing II - Primary Care</td>
<td>4</td>
</tr>
<tr>
<td>NCC 622 Advanced Pediatric Nursing II - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NPE 685L Practicum I: Pediatric Nurse Practitioner –Primary Care</td>
<td>3</td>
</tr>
<tr>
<td>NPE 686L Practicum II: Pediatric Nurse Practitioner –Primary Care</td>
<td>3</td>
</tr>
<tr>
<td>NCC 685L Clinical Practicum I: Advanced Pediatric Nursing - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCC 686L Clinical Practicum II: Advanced Pediatric Nursing - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NPE 623 Advanced Pediatric Nursing III - Primary Care</td>
<td>4-5</td>
</tr>
<tr>
<td>NPE 692L Practicum III: Pediatric Nurse Practitioner –Primary Care</td>
<td>1-6</td>
</tr>
<tr>
<td>NCC 623 Advanced Pediatric Nursing III - Acute Care</td>
<td>5</td>
</tr>
<tr>
<td>NCC 692L Clinical Practicum III: Advanced Pediatric Nurse Practitioner - Acute Care</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours: 45-51

Neonatal Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNE 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NNE 621 Advanced Neonatal Nursing I</td>
<td>3-5</td>
</tr>
<tr>
<td>NNE 684L Practicum I: Neonatal Nurse Practitioner</td>
<td>2-3</td>
</tr>
<tr>
<td>NNE 622 Advanced Neonatal Nursing II</td>
<td>4-5</td>
</tr>
<tr>
<td>NNE 685L Practicum II: Neonatal Nurse Practitioner</td>
<td>2-3</td>
</tr>
<tr>
<td>NNE 623 Advanced Neonatal Nursing III</td>
<td>4-5</td>
</tr>
<tr>
<td>NNE 692L Practicum III: Neonatal Nurse Practitioner</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Total Hours: 19-30

Family Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFH 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NFH 621 Advanced Family Nursing I</td>
<td>3-5</td>
</tr>
<tr>
<td>NFH 622 Family Nurse Practitioner II</td>
<td>3-4</td>
</tr>
<tr>
<td>NFH 623 Family Nurse Practitioner III</td>
<td>5</td>
</tr>
<tr>
<td>NFH 685L Practicum I: Family Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NFH 686L Practicum II: Family Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NFH 692L Practicum III: Family Nurse Practitioner</td>
<td>3-6</td>
</tr>
</tbody>
</table>

Total Hours: 23-29

Adult-Gerontology Acute Care Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCA 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NCA 621 Advanced Adult/Gerontology Nursing I - Acute Care</td>
<td>5</td>
</tr>
<tr>
<td>NCA 685L Practicum I: Adult/Gerontology Nurse Practitioner - Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCA 622 Adult Gerontology Acute Care Nursing Practice II</td>
<td>4</td>
</tr>
<tr>
<td>NCA 686L Practicum II: Adult/Gerontology Nurse Practitioner-Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCA 623 Advanced Adult/Gerontology Nursing III -Acute Care</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Hours: 27

Adult-Gerontology Acute Care NP with Registered Nurse First Assistant

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCA 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NCA 621 Adult Gerontology Nursing I - Acute Care</td>
<td>5</td>
</tr>
<tr>
<td>NCA 685L Practicum I: Adult/Gerontology Nurse Practitioner- Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCA 622 Adult Gerontology Acute Care Nursing Practice II</td>
<td>4</td>
</tr>
<tr>
<td>NCA 686L Practicum II: Adult/Gerontology Nurse Practitioner- Acute Care</td>
<td>3</td>
</tr>
<tr>
<td>NCA 692L Practicum III: Adult/Gerontology Nurse Practitioner- Acute Care</td>
<td>4</td>
</tr>
<tr>
<td>NCA 623 Advanced Adult/Gerontology Nursing III - Acute Care</td>
<td>5</td>
</tr>
<tr>
<td>NFA 20 Surgical Techniques</td>
<td>3</td>
</tr>
<tr>
<td>NFA 621</td>
<td>5</td>
</tr>
<tr>
<td>NFA 621 Advanced Perioperative Nursing I</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Total Hours: 36-38

Women’s Health Care Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWH 618L Focus on Advanced Nursing Practice Women</td>
<td>3</td>
</tr>
<tr>
<td>NWH 631 Advanced Women’s Health Nursing I</td>
<td>5</td>
</tr>
<tr>
<td>NWH 685L Practicum I: Women’s Health Care Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NWH 632 Advanced Women’s Health Nursing II</td>
<td>4</td>
</tr>
<tr>
<td>NWH 686L Practicum II: Women’s Health Care Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NWH 692L Practicum III: Women’s Health Care Nurse Practitioner</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours: 22

Psychiatric/Mental Health Nurse Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPN 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NPN 621 Advanced Psych Mental Health Nursing I</td>
<td>5</td>
</tr>
<tr>
<td>NPN 685L Practicum I: Psychiatric Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NPN 622 Advanced Psychiatric/ Mental Health Nursing II</td>
<td>5</td>
</tr>
<tr>
<td>NPN 686L Practicum II: Psychiatric/ Mental Health Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NPN 623 Advanced Psychiatric/ Mental Health Nursing III</td>
<td>4</td>
</tr>
<tr>
<td>NPN 692L Practicum III: Psych Mental Health Nurse Practitioner</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Hours: 27

MSN Nurse-Midwifery Pathway

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMW 618L Focus on Advanced Nursing Practice Specialization</td>
<td>3</td>
</tr>
<tr>
<td>NMW 620 Nurse Midwifery Management I</td>
<td>3</td>
</tr>
<tr>
<td>NMW 621 Nurse Midwifery Management II</td>
<td>5</td>
</tr>
<tr>
<td>NMW 622 Nurse Midwifery Management III</td>
<td>5</td>
</tr>
<tr>
<td>NMW 623 Nurse Midwifery Management IV</td>
<td>4</td>
</tr>
<tr>
<td>NMW 685L Nurse-Midwifery Practicum I</td>
<td>4</td>
</tr>
<tr>
<td>NMW 686L Nurse-Midwifery Practicum II</td>
<td>4</td>
</tr>
<tr>
<td>Requirements</td>
<td>Hours</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>NTC 660 Foundations of Evidence-Based Nursing Education</td>
<td>3</td>
</tr>
<tr>
<td>NTC 650 Instructional Strategies For Teaching in Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NTC 658 Simulation and Classroom Technologies for Student Learning</td>
<td>2-3</td>
</tr>
<tr>
<td>NTC 652 Program and Curriculum Development</td>
<td>3</td>
</tr>
<tr>
<td>NTC 654 Evaluation of Instruction in Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NTC 683L Teaching Practicum in Nursing</td>
<td>1-3</td>
</tr>
<tr>
<td>Total Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

Nursing Health Systems Administration

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHSA 617L Nursing Financial Management Practicum</td>
<td>2</td>
</tr>
<tr>
<td>NHSA 618 Human Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>NHSA 631 Advanced Quality and Patient Safety</td>
<td>4</td>
</tr>
<tr>
<td>NHSA 681L Advanced Quality and Patient Safety Practicum</td>
<td>4</td>
</tr>
<tr>
<td>NHSA 681L Human Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>NHSA 682L Nursing and Health Systems Administration</td>
<td>2</td>
</tr>
<tr>
<td>NHSA 683L Nursing and Health Systems Administration</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>38</td>
</tr>
</tbody>
</table>

Additional Requirements

Candidates for the MSN degree must complete the following requirements: Completion of all coursework and clinical experiences based on the student's Program of Studies, with an overall GPA of 3.0 or better, and grades of B or better in all required courses in the School of Nursing.

Prospective students should use this checklist to obtain specific admissions requirements on how to apply to Graduate School.

- Degree Offered: D.N.P.
- Director (Nurse Anesthesia): Dr. Susan P. McMullan
- Phone: (205) 934-6587
- Email: susanpmcm@uab.edu
- Website: www.uab.edu/na

Post-BSN to Doctor of Nursing Practice Pathway for Nurse Anesthesia

A Nurse Anesthetist, or Certified Registered Nurse Anesthetist (CRNA), is a licensed advanced practice nurse. After completing extensive didactic and clinical education and training, CRNAs become nationally certified. CRNAs safely administer over 40 million anesthetics to patients each year in the United States. They practice in a variety of settings in the private and public sectors and in the U.S. military, including traditional hospital surgical suites and obstetrical delivery rooms, ambulatory surgery centers, pain clinics, and physicians' and dentist offices.

The Post-BSN to DNP Pathway for Nurse Anesthesia is accredited by the Council on Accreditation of Nurse Anesthesia Educational Programs (COA) with full continued accreditation through May 2031.

The Post-BSN to DNP Pathway for Nurse Anesthesia also received IFNA Accreditation in August 2021 having completed all requirements of the Anesthesia Program Approval Process established by the International Federation of Nurse Anesthetists (Date of next review: July 2026).

Professional Program Admission Requirements

Prospective students must meet the following requirements for admission:

- A minimum of a bachelor's degree in nursing (BSN) from a regionally accredited institution or the equivalent (e.g., entry-level masters in nursing degree such as the UABSON Accelerated Master's in Nursing Pathway for individuals with a minimum of a bachelor's degree in a non-nursing field).
The Nurse Anesthesia Program begins in the fall semester of each year. It comprises 67 semester hours of didactic instruction and requires 27 months of full-time commitment. Students complete all foundation courses before beginning the clinical practicum, which starts after the first (ten) months of enrollment. The curriculum does not permit enrollment on a part-time basis. The Nurse Anesthesia DNP Pathway has eight components: a central component in Birmingham and seven regional components located in Alabama (Dothan, Florence, Huntsville, Mobile, Montgomery, Tuscaloosa, and Mississippi). The first semester is completely online. Semesters 2, 3, 4 will meet face-to-face in Birmingham. The remaining semesters are an integration of clinical and online didactic education. Regardless of component, students will be required to come to Birmingham for periodic intensive learning and examination. In order to obtain clinical case numbers students are also expected to travel to clinical sites.

Doctor of Nursing Practice—Nurse Anesthesia

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA 720 Anesthesia Pharmacology I</td>
<td>3</td>
</tr>
<tr>
<td>NA 733 Informatics for Nurse Anesthetists</td>
<td>3</td>
</tr>
<tr>
<td>NA 740 Health Policy and Politics: Implications in Health Care</td>
<td>3</td>
</tr>
<tr>
<td>NA 751 Biochemistry & Physics for Nurse Anesthetists</td>
<td>4</td>
</tr>
<tr>
<td>NA 702 Anatomy & Physiology for Nurse Anesthetists</td>
<td>6</td>
</tr>
<tr>
<td>NA 700 Clinical Data Management and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NA 735 Population Health in Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NA 721 Anesthesia Pharmacology II</td>
<td>3</td>
</tr>
<tr>
<td>NA 770 Anesthesia Pathophysiology I</td>
<td>3</td>
</tr>
<tr>
<td>NA 740 Anesthesia Principles I</td>
<td>4</td>
</tr>
<tr>
<td>NA 614 Assessment and Diagnostic Reasoning for Advanced Nursing Practice</td>
<td>3</td>
</tr>
<tr>
<td>NA 708L Anesthesia Practicum I</td>
<td>2</td>
</tr>
<tr>
<td>NA 718L Focus on Advanced Nursing Practice Specialization</td>
<td>4</td>
</tr>
<tr>
<td>NA 741 Anesthesia Principles II</td>
<td>3</td>
</tr>
<tr>
<td>NA 750 Regional Anesthesia</td>
<td>3</td>
</tr>
<tr>
<td>NA 771 Anesthesia Pathophysiology II</td>
<td>3</td>
</tr>
<tr>
<td>NA 729 Evidence-Based Practice Design and Translation</td>
<td>3</td>
</tr>
<tr>
<td>NA 742 Anesthesia Principles III</td>
<td>3</td>
</tr>
<tr>
<td>NA 745 Professional Aspects</td>
<td>4</td>
</tr>
<tr>
<td>NA 709L Anesthesia Practicum II</td>
<td>3</td>
</tr>
<tr>
<td>NA 743 Evidence-Based Practice Strategies</td>
<td>3</td>
</tr>
<tr>
<td>NA 710L Anesthesia Practicum III</td>
<td>5</td>
</tr>
<tr>
<td>NA 742 Program Evaluation and Methods</td>
<td>3</td>
</tr>
<tr>
<td>NA 795 Critical Concepts I</td>
<td>3</td>
</tr>
<tr>
<td>NA 711L Anesthesia Specialty Immersion I</td>
<td>5</td>
</tr>
<tr>
<td>NA 796 Critical Concepts II</td>
<td>3</td>
</tr>
<tr>
<td>NA 739L DNP Project Implementation and Evaluation</td>
<td>Students will take multiple semesters for 7 hours total</td>
</tr>
<tr>
<td>NA 712L Anesthesia Specialty Immersion II</td>
<td>5</td>
</tr>
<tr>
<td>NA 738L DNP Project Development</td>
<td>2-3</td>
</tr>
<tr>
<td>NA 797 Critical Concepts III</td>
<td>3</td>
</tr>
<tr>
<td>NA 713L Anesthesia Specialty Immersion III</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Hours 104-108

Application Procedure

Applicants interested in the Nurse Anesthesia Program at the University of Alabama at Birmingham (UAB) should visit Post-BSN to DNP Nurse Anesthesia - School of Nursing | UAB for application information.
Note: See the summarized fact sheet for experience requirements.

Application Deadlines

<table>
<thead>
<tr>
<th>Entry Date</th>
<th>Deadline</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>May 1</td>
<td>Deadline for Submission of Application</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>Scheduling and Notification of Applicant Interview</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>Interviews _ Decision notification two weeks post interview</td>
</tr>
<tr>
<td></td>
<td>Summer semester of following year</td>
<td>Admitted students matriculate</td>
</tr>
</tbody>
</table>

Funding

The School of Nursing at UAB has excellent scholarship, traineeship, fellowship and loan programs in which many students participate. Please visit "funding" for more information.

Outcomes

- Synthesize scientific evidence for the development of clinical interventions for practice.
- Evaluate policy, healthcare delivery, and organizational systems for current and future health care needs.
- Translate scientific, theoretical, and ethical principles into healthcare for individuals, families, and populations.
- Incorporate knowledge of current and emerging health technologies to improve healthcare delivery and organizational systems.
- Advocate for social justice, equity, and ethical policies in healthcare.
- Demonstrate intra- and inter-professional collaboration to address health disparities and to improve the quality of healthcare across diverse populations and cultures.
- Assume complex leadership roles to advance clinical practice and healthcare delivery at the organizational and systems level and to improve health outcomes of individuals and populations.

Graduates can apply to take the certification examination administered by the NBCRNA. Satisfactory performance on this examination is necessary in order to practice as a certified registered nurse anesthetist.

Information for International Students

NOTE: Prospective International students must first contact UAB International Admissions to determine eligibility to study in the U.S. and/or submit an application for admission to UAB.

UAB International Admissions
Email: IntlAdmin@uab.edu
Phone: (205) 934-4686
Fax: (205) 934-8664

Please check the UAB School of Nursing website for additional eligibility requirements.

Application Requirements

- Prospective students must have a master’s degree in nursing equivalent to that offered by the U.S. regionally accredited educational institution.
- This program is distance-accessible and therefore not eligible for applicants who plan to enter the US in F-1 or J-1 student status.
- For Graduate Clinical Programs such as the Masters of Science in Nursing (MSN) Program, prospective students must also be licensed as a registered nurse in the U.S., in the state in which they will reside while completing the program.
- International applicants must, as part of their application, provide a detailed course by course evaluation of their academic transcripts and verification of their academic credentials. Students may use one of the following firms for transcript evaluation; a report of the evaluation must be submitted directly to the UAB School of Nursing prior to admission decisions.
 - Educational Credential Evaluators, Inc.
 P.O. Box 514070
 Milwaukee, WI 53203-3470 USA
 Website: www.ece.org
 - World Education Services
 Bowling Green Station
 P.O. Box 5087
 New York, NY 10274-5087 USA
 Website: www.wes.org
- Applicants must have a minimum grade point average (GPA) of 3.0 on a 4.0 scale on prior college/university course work.
- Applicants must complete and submit their scores from the Graduate Record Examination (GRE) as part of the application process. If the GRE was completed prior to application, only scores completed within the previous 5 years are accepted.
- Completion of a formal admission interview.
- Meet English language requirements. Students must submit scores on Tests of English Language (TOEFL or IELTS) and achieve the following minimum scores:
 - TOEFL iBT 80 and minimum of 18 in each of the 4 test sections,
 - IELTS 6.5 and minimum of 6.0 in at least 2 of the 4 test sections.

For More Information Contact:

UAB International Admissions
Email: IntlAdmin@uab.edu
Phone: (205) 934-4686
Fax: (205) 934-8664

Degree Offered: D.N.P.
Director (D.N.P.): Dr. Curry Bordelon
Phone: (205) 934-0479
E-mail: cjborde@uab.edu

Doctor of Nursing Practice

D.N.P. Program Description

The DNP is a practice-focused terminal degree to prepare graduates to practice at the highest level in specialty practice or to assume leadership positions in healthcare. Graduates of the DNP program will focus on providing care to populations and communities with an emphasis on improving quality and access to underserved, diverse populations. The
of Nurse Practitioner, Nurse Anesthetist, Nurse Midwife, Clinical Nurse Specialist or a Health Systems Leader in Nursing Health Systems Administration or Nursing Informatics. The Post-MSN to DNP curriculum builds on the MSN curriculum with a core program of study that includes didactic and clinical immersion experiences that prepare students to lead improvements in practice supportive of population health and health system change. The Pathway is offered in a distance-accessible format that combines online didactic coursework with face-to-face clinical practicum experiences. In addition, students are required to attend an annual on-campus DNP intensive, as well as an on-campus orientation.

Post-MSN to DNP Pathway for Nurse Executives

The Nurse Executive Pathway is a practice-focused terminal degree that prepares experienced nurse managers/leaders for executive health system leadership roles including but not limited to the Chief Nursing Officer (CNO) or Chief Nursing Informatics Officer (CNIO) roles. The curriculum builds on a master’s level curriculum in nursing or a master’s degree in business or health administration. The Pathway is offered in a distance-accessible format that combines online didactic coursework with face-to-face clinical practicum experiences. Students are required to attend an on-campus orientation.

Post-BSN to DNP Pathway for Nurse Practitioners

This pathway is for nurses who have not completed an advanced practice specialty at the MSN level. The pathway curriculum integrates the DNP core curriculum with the curriculum for a variety of nurse practitioner specialties including Family NP, Adult-Gerontology Primary Care NP, Adult-Gerontology Acute Care NP, Pediatric Primary Care NP, Pediatric Acute Care NP, Neonatal NP, and Women’s Health Care NP. Upon completion of the curriculum, applicants are prepared to apply to sit for certification as a nurse practitioner in a specific specialty area. The Pathway is offered in a distance accessible format that combines online didactic coursework with face-to-face clinical practicum experiences and on-campus clinical specialty track intensives. In addition, students are required to attend an annual on-campus DNP intensive and an orientation.

Dual DNP-PhD Degree

A dual DNP-PhD degree prepares graduates to lead improvements in practice supportive of population health and health system change, and expand that focus into a related research area to generate new knowledge. The curriculum combines the core content from the two programs to prepare a clinical nurse scholar who desires to merge clinical leadership with scientific inquiry to advance nursing science and improve clinical practice. This pathway is open to MSN-prepared nurses with certification in an advanced practice role.

Post-BSN to DNP Pathway for Nurse Practitioners common courses to all NP concentrations

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUR 737 Interprofessional Leadership and Role Development for Practice Excellence</td>
<td>3</td>
</tr>
<tr>
<td>NUR 745 Foundations of Scholarly Writing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 735 Population Health in Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 731 Philosophical, Theoretical, and Conceptual Foundations for Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 729 Evidence-Based Practice Design and Translation</td>
<td>3</td>
</tr>
<tr>
<td>NUR 740 Health Policy and Politics: Implications in Health Care</td>
<td>3</td>
</tr>
</tbody>
</table>
NUR 733 Informatics for Advanced Practice Nursing 3
NUR 700 Clinical Data Management and Analysis 3
NUR 612 Advanced Pathophysiology 3
NUR 613 Pharmacology and Therapeutics 3
NUR 742 Program Evaluation and Methods 3
NUR 614 Assessment and Diagnostic Reasoning for Advanced Nursing Practice
NUR 743 Evidence-Based Practice Strategies 3
NUR 738L DNP Project Development 2-3
NUR 739L DNP Project Implementation and Evaluation (Students will also take NQI 702 for 3 credit hours)
May be repeated multiple times for minimum total of 7 hours

Total Hours 42-47

Students will also take NQI 702 for 3 credit hours

Family Nurse Practitioner Concentration additional required courses

Requirements
NHF 618L Focus on Advanced Nursing Practice Specialization 3
NHF 721 Advanced Family Nursing I 5
NHF 722 Advanced Family Nursing II 4
NHF 723 Advanced Family Nursing III 5
NHF 785L Practicum I: Family Nurse Practitioner 3
NHF 786L Practicum II: Family Nurse Practitioner 3
NHF 792L Practicum III: Family Nurse Practitioner 4

Total Hours 27

Neonatal Nurse Practitioner Concentration additional required courses

Requirements
NNE 618L Focus on Advanced Nursing Practice Specialization 3
NNE 721 Advanced Neonatal Nursing I 5
NNE 722 Advanced Neonatal Nursing II 4
NNE 723 Advanced Neonatal Nursing III 5
NNE 784L Practicum I: Neonatal Nurse Practitioner 3
NNE 785L Practicum II: Neonatal Nurse Practitioner 3
NNE 792L Practicum III: Neonatal Nurse Practitioner 4

Total Hours 27

Adult Gerontology Acute Care Nurse Practitioner Concentration additional required courses

Requirements
NCA 618L Focus on Advanced Nursing Practice Specialization 3
NCA 721 Advanced Adult/Gerontology Nursing I - Acute Care 5
NCA 722 Advanced Adult/Gerontology Nursing II - Acute Care 4
NCA 723 Advanced Adult/Gerontology Nursing III - Acute Care 5
NCA 785L Practicum I: Adult/Gerontology Nurse Practitioner-Acute Care 3
NCA 786L Practicum II: Adult/Gerontology Nurse Practitioner-Acute Care 3
NCA 792L Practicum III: Adult/Gerontology Nurse Practitioner-Acute Care 4

Total Hours 27

Pediatric Primary Care Nurse Practitioner Concentration additional required courses

Requirements
NPE 618L Focus on Advanced Nursing Practice Specialization 3
NPE 721 Advanced Pediatric Nursing I - Primary Care 5
NPE 722 Advanced Pediatric Nursing II - Primary Care 4
NPE 723 Advanced Pediatric Nursing III - Primary Care 5
NPE 785L Practicum I: Pediatric Nurse Practitioner - Primary Care 3
NPE 786L Practicum II: Pediatric Nurse Practitioner -Primary Care 3
NPE 792L Practicum III: Pediatric Nurse Practitioner - Primary Care 4

Total Hours 27

Psychiatric/Mental Health Nurse Practitioner Concentration additional required courses

Requirements
NPN 618L Focus on Advanced Nursing Practice Specialization 3
NPN 721 Advanced Psychiatric/Mental Health Nursing I 5
NPN 722 Advanced Psychiatric/Mental Health Nursing II 5
NPN 723 Advanced Psychiatric/Mental Health Nursing III 5
NPN 785L Practicum I: Psychiatric/Mental Health Nurse Practitioner 3
NPN 786L Practicum II: Psychiatric/Mental Health Nurse Practitioner 3
NPN 792L Practicum III: Psych Mental Health Nurse Practitioner 4

Total Hours 28

Adult-Gerontology Primary Care Nurse Practitioner Concentration additional required courses

Requirements
NAH 618L Focus on Advanced Nursing Practice Specialization 3
NAH 721 Advanced Adult Gerontology Nursing I - Primary Care 5
NAH 722 Advanced Adult Gerontology Nursing II - Primary Care 4
NAH 723 Advanced Adult Gerontology Nursing III - Primary Care 5
NAH 785L Practicum I: Adult/Gerontology Nurse Practitioner - Primary Care 3
NAH 786L Practicum II: Adult/Gerontology Nurse Practitioner - Primary Care 3
NAH 792L Practicum III: Adult-Gerontology Nurse Practitioner 4

Total Hours 27

Pediatric Acute Care Nurse Practitioner Concentration additional required courses

Requirements
NCC 618L Focus on Advanced Nursing Practice Specialization 3
NCC 721 Advanced Pediatric Nursing I - Acute Care 5
NCC 722 Advanced Pediatric Nursing II - Acute Care 4
NCC 723 Advanced Pediatric Nursing III - Acute Care 5
NCC 785L Practicum I: Pediatric Nurse Practitioner Acute Care 3
NCC 786L Practicum II: Pediatric Nurse Practitioner - Acute Care 3
NCC 792L Practicum III: Pediatric Nurse Practitioner - Acute Care 4

Total Hours 27

Graduate Catalog 2023-2024 463
Women's Health Care Nurse Practitioner Concentration

Additional required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWH 618L</td>
<td>Focus on Advanced Nursing Practice Women</td>
<td>3</td>
</tr>
<tr>
<td>NWH 731</td>
<td>Advanced Women's Health Nursing I</td>
<td>5</td>
</tr>
<tr>
<td>NWH 732</td>
<td>Advanced Women's Health Nursing II</td>
<td>4</td>
</tr>
<tr>
<td>NWH 733</td>
<td>Advanced Women's Health Nursing III</td>
<td>5</td>
</tr>
<tr>
<td>NWH 785L</td>
<td>Practicum I: Women's Health Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NWH 786L</td>
<td>Practicum II: Women's Health Nurse Practitioner</td>
<td>3</td>
</tr>
<tr>
<td>NWH 792L</td>
<td>Practicum III: Women's Health Nurse Practitioner</td>
<td>4</td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

Master of Science in Nursing to Doctor of Nursing Practice Pathway

Admissions Requirements

- A master's degree in an area of advanced nursing practice (nurse practitioner, clinical nurse specialist, nursing administration, or nurse anesthetist) from a regionally accredited institution, equivalent to that in the UAB School of Nursing. Students must hold an advanced practice certification or be eligible to sit for advanced certification and pass their specific certification exam prior to completing 12 credit hours of coursework. Until advanced certification is achieved, students will be considered as a conditional admit.
- A graduate grade point average of at least 3.0 overall (based on a 4.0 scale) or in the last 60 hours of earned credit.
- Three favorable completed Evaluation Forms from persons who have knowledge of the applicant's potential for success for graduate nursing studies and advanced-practice nursing.
- Current professional certification as an advanced practice nurse where applicable.
- Evidence of an unencumbered license as a (1) registered nurse, and (2) advanced nursing practice or eligibility in the state in which they plan to practice plus (3) CPR certification; all documents must be notarized if applicant is not a licensed nurse in Alabama.
- Personal goal statement that is congruent with the program goals (300 words or less)
- Resume or curriculum vitae.
- A personal interview by phone or in person with a School of Nursing faculty member or designee may be requested to verify application data.

Degree Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUR 701</td>
<td>Writing for Publication</td>
<td>3</td>
</tr>
<tr>
<td>NUR 729</td>
<td>Evidence-Based Practice Design and Translation</td>
<td>3</td>
</tr>
<tr>
<td>NUR 731</td>
<td>Philosophical, Theoretical, and Conceptual Foundations for A.P. Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 733</td>
<td>Informatics for A.P. Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 735</td>
<td>Population Health in Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 737</td>
<td>Interprofessional Leadership and Role Development for Practice Excellence</td>
<td>3</td>
</tr>
<tr>
<td>NUR 738L</td>
<td>DNP Project Development</td>
<td>3</td>
</tr>
<tr>
<td>NUR 739L</td>
<td>DNP Project Implementation and Evaluation (Students will take 739L multiple time for a minimum of 7 hours)</td>
<td>1-7</td>
</tr>
<tr>
<td>NUR 740</td>
<td>Health Policy and Politics: Implications in Health Care</td>
<td>3</td>
</tr>
<tr>
<td>NUR 742</td>
<td>Program Evaluation and Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

NUR 743 Evidence-Based Practice Strategies 3
NUR 745 Foundations of Scholarly Writing 3
702 for 3 credit hours

Total Hours 34-40

1 May be repeated, minimum 7 to graduate

MSN to DNP Pathway for Nurse Executives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEX 701</td>
<td>Culture of Health, Quality & Safety</td>
<td>3</td>
</tr>
<tr>
<td>NEX 703</td>
<td>Models & Theory for Healthcare Development & Improvement</td>
<td>3</td>
</tr>
<tr>
<td>NEX 744</td>
<td>Organization Improvement & Program Evaluation Strategies</td>
<td>5</td>
</tr>
<tr>
<td>NEX 704</td>
<td>Healthcare Technologies, Innovations & Analytics for Executive Leaders</td>
<td>5</td>
</tr>
<tr>
<td>NEX 705</td>
<td>Healthcare Finance Strategies</td>
<td>3</td>
</tr>
<tr>
<td>NEX 708</td>
<td>Strategic Leadership for Healthcare System Transformation</td>
<td>6</td>
</tr>
<tr>
<td>NEX 706</td>
<td>Contemporary Issues: Global & National Perspectives</td>
<td>3</td>
</tr>
<tr>
<td>NEX 709</td>
<td>Population Health for Healthcare Transformation Students</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours 31

Nurse Leadership in Population Health Pathway

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHP 701</td>
<td>Essentials of Population Health Science</td>
<td>3</td>
</tr>
<tr>
<td>NHP 702</td>
<td>Population Health: Organization, Delivery, and Financing</td>
<td>3</td>
</tr>
<tr>
<td>NHP 703</td>
<td>Principles of Epidemiology and Population Health Analytics</td>
<td>3</td>
</tr>
<tr>
<td>NHP 704</td>
<td>Population Health: Quality and Safety Supporting Accountable Care</td>
<td>3</td>
</tr>
<tr>
<td>NHP 705</td>
<td>Population Health: Program Design and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>NHP 706</td>
<td>Population Health: Program Design and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>NHP 707</td>
<td>Population Health Practicum I</td>
<td>2</td>
</tr>
<tr>
<td>NHP 708</td>
<td>Population Health Practicum II</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Hours 22

Additional Requirements for Completion

Candidates for the DNP degree must complete the following requirements: Completion of all coursework and clinical experiences based on the student's Program of Studies, with an overall GPA of 3.0 or better, and grades of B or better in all required courses in the School of Nursing.

Dual DNP-PhD Pathway

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUR 737</td>
<td>Interprofessional Leadership and Role Development for Practice Excellence</td>
<td>3</td>
</tr>
<tr>
<td>NUR 735</td>
<td>Population Health in Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 740</td>
<td>Health Policy and Politics: Implications in Health Care</td>
<td>3</td>
</tr>
<tr>
<td>NUR 729</td>
<td>Evidence-Based Practice Design and Translation</td>
<td>3</td>
</tr>
<tr>
<td>NUR 742</td>
<td>Program Evaluation and Methods</td>
<td>3</td>
</tr>
<tr>
<td>NUR 733</td>
<td>Informatics for Advanced Practice Nursing</td>
<td>3</td>
</tr>
<tr>
<td>NUR 743</td>
<td>Evidence-Based Practice Strategies</td>
<td>3</td>
</tr>
</tbody>
</table>
The Doctor of Philosophy in Nursing is designed to prepare professional nurses as scholars, leaders, and researchers who will make a substantive contribution to the body of knowledge for the discipline of nursing and thereby improve health outcomes for those who receive nursing care. The program of studies builds on preparation at the master's or baccalaureate level. Graduates are prepared for culturally effective leadership roles in research and science, education, health policy, and health care.

Ph.D. Program Description

The Doctor of Philosophy in Nursing is designed to prepare professional nurses as scholars, leaders, and researchers who will make a substantive contribution to the body of knowledge for the discipline of nursing and thereby improve health outcomes for those who receive nursing care. The program of studies builds on preparation at the master's or baccalaureate level. Graduates are prepared for culturally effective leadership roles in research and science, education, health policy, and health care.

Ph.D. Program Goals

The PhD curriculum prepares graduates to examine models, concepts and theories for their application in expanding the body of nursing and health care knowledge to: contribute to nursing science and health care through research that is disseminated in professional publications and presentations to the scientific communities and health care consumers; to conduct health care investigations based upon scientifically sound conceptual and methodological decisions about research designs, measures, and analytic methods; to reflect a consistent commitment to scientific integrity in the design, conduct, and dissemination of research; to initiate and collaborate in interdisciplinary research and scholarly endeavors that contribute to health outcomes in a culturally effective manner; and to assume leadership roles in research and scholarship.

Ph.D. Admission Requirements

- A Master of Science in Nursing (MSN) degree from an accredited institution in the United States, or approved by the Minister of Education for schools of nursing in foreign countries, equivalent to that in the UAB School of Nursing;
- A minimum grade point average of 3.0 overall (based on a 4.0 scale) on all graduate level coursework;
- Completion of GRE within the past 5 years;
- For applicants from non-English speaking countries: a satisfactory TOEFL score (minimum 550);
- Computer literacy and access is required, with proficiency in word processing and e-mail correspondence, as well as familiarity and experience with the Internet. It is recommended that each student have their own personal computer meeting the specifications of the School of Nursing. (Specifications are available from the School of Nursing website);
- Eligibility for licensure as a Registered Nurse in the United States;
- A written goal statement which evidences congruence between the applicant’s research interests and School of Nursing faculty research;
- At least one sample of independent written work (in English) that demonstrates the applicant’s scholarship potential. Representative examples include a paper, proposal, report, or publication;
- A current curriculum vitae;
- Three references from individuals with expertise to comment on the applicant’s capability for research and scholarship (for example, University professors, employers); at least one of the references must be from a doctorally prepared nurse, and;
- A personal interview.

Note: For the Post-Baccalaureate PhD option, the corresponding requirements are:

- A Bachelor of Science in Nursing (BSN) degree from an accredited institution in the United States, or approved by the Minister of Education for schools of nursing in foreign countries, equivalent to that in the UAB School of Nursing;
- A minimum grade point average of 3.0 overall (based on a 4.0 scale) on all undergraduate level coursework;
- Completion of GRE within the past 5 years;
- For applicants from non-English speaking countries: a satisfactory TOEFL score (minimum 550);
- Computer literacy and access is required, with proficiency in word processing and e-mail correspondence, as well as familiarity and experience with the Internet. It is recommended that each student have their own personal computer meeting the specifications of the School of Nursing. (Specifications are available from the School of Nursing website);
- A Master of Science in Nursing (MSN) degree from an accredited institution in the United States, or approved by the Minister of Education for schools of nursing in foreign countries, equivalent to that in the UAB School of Nursing;
- A minimum grade point average of 3.0 overall (based on a 4.0 scale) on all graduate level coursework;
- Completion of GRE within the past 5 years;
- For applicants from non-English speaking countries: a satisfactory TOEFL score (minimum 550);
- Computer literacy and access is required, with proficiency in word processing and e-mail correspondence, as well as familiarity and experience with the Internet. It is recommended that each student have their own personal computer meeting the specifications of the School of Nursing. (Specifications are available from the School of Nursing website);
have their own personal computer meeting the specifications of the School of Nursing. (Specifications are available from the School of Nursing website);

- Eligibility for licensure as a Registered Nurse in the United States;
- A written goal statement which evidences congruence between the applicant’s research interests and School of Nursing faculty research;
- At least one sample of independent written work (in English) that demonstrates the applicant’s scholarship potential. Representative examples include a paper, proposal, report, or publication;
- A current curriculum vitae;
- Three references from individuals with expertise to comment on the applicant’s capability for research and scholarship (for example, University professors, employers); at least one of the references must be from a doctorally prepared nurse, and;
- A personal interview.

Ph.D. Degree Requirements

Candidates for the degree of Doctor of Philosophy in Nursing must complete the following requirements:

- Coursework and experiences based on the student’s background and substantive area, with an overall GPA of 3.0 or better, and grades of B or better in all required courses on the approved program of studies;
- A comprehensive examination administered upon completion of an individualized program of studies; and
- A written dissertation demonstrating competence in research, individual inquiry, critical analysis using sophisticated statistical and/or qualitative techniques, and in-depth treatment of a health care problem in the selected content area. The investigation must make a genuine scientific contribution to knowledge, concepts, and theories in nursing. A final defense of the dissertation is required.

Postdoctoral Study

Postdoctoral studies in nursing are individually arranged based on a student’s learning needs in specific areas of interest that match the strengths of the graduate faculty. The focus of postdoctoral study is on expanding and extending the student’s knowledge base in nursing theory, practice, research, statistics and data management, and generally centers on a research effort of mutual interest to the student and faculty mentor.

Dual DNP-PhD Degree

A dual DNP-PhD degree prepares graduates to lead improvements in practice supportive of population health and health system change, and expand that focus into a related research area to generate new knowledge. The curriculum combines the core content from the two programs to prepare a clinical nurse scholar who desires to merge clinical leadership with scientific inquiry to advance nursing science and improve clinical practice. This pathway is open to MSN-prepared nurses with certification in an advanced practice role. Please see the DNP page for information on coursework.

NA-Nursing Anesthesia Courses

NA 697. Special Topics. 3 Hours.

Review of specialty concepts as presented in Anesthesia Pathophysiology I, Anesthesia Pathophysiology II, and Anesthesia for Surgical Specialties.

NA 698. Graduate Project. 2 Hours.

Critical review of literature for an anesthesia topic with preparation of a scholarly product for dissemination.

NA 702. Anatomy & Physiology for Nurse Anesthetists. 6 Hours.

This course is a study of histology, genetics, human anatomy and physiology, with an emphasis in neuroanatomy and neurophysiology. NA 702 integrates the structure, function, and organization of nervous tissue from the cellular through gross anatomic aspects including central, peripheral, and autonomic portions of the system. The course includes a series of clinical correlation laboratory experiences, team-based learning projects, and lectures designed to support and augment basic science content.

Prerequisites: NA 720 [Min Grade: B]

NA 708L. Anesthesia Practicum I. 2 Hours.

This course is designed to provide a foundation in the basic principles and practice of nurse anesthesia. During this semester, clinical experiences are designed to provide the students with development of anesthesia practice, and to apply knowledge of basic and advanced principles of anesthetic management in surgical specialty areas.

Prerequisites: NA 721 [Min Grade: B] and NA 740 [Min Grade: B] and NA 770 [Min Grade: B] and NUR 614 [Min Grade: B]

NA 709L. Anesthesia Practicum II. 3 Hours.

This course is designed to provide a foundation in the basic principles and practice of nurse anesthesia. During this semester, clinical experiences are designed to provide the students with continues development of anesthesia practice, and to apply knowledge of basic and advanced principles of anesthetic management in surgical specialty areas.

Prerequisites: NA 708L [Min Grade: P] and NA 741 [Min Grade: B] and NA 750 [Min Grade: B] and NA 771 [Min Grade: B]

NA 710L. Anesthesia Practicum III. 5 Hours.

This course is designed to provide a foundation in the basic principles and practice of nurse anesthesia. During this semester, clinical experiences are designed to provide the students with continued development of anesthesia practice, and the apply knowledge of basic and advanced principles of anesthetic management in surgical specialty areas.

Prerequisites: NA 709L [Min Grade: P] and NA 745 [Min Grade: B] and NA 733 [Min Grade: B]

NA 711L. Anesthesia Specialty Immersion I. 5 Hours.

This course is designed to provide advanced clinical experiences requisite for preparation consistent with a doctoral evidence-based practice of nurse anesthesia. During this semester, clinical experiences are designed to provide the advanced student with clinical experiences to further their knowledge base towards a doctoral level.

Prerequisites: NA 710L [Min Grade: P] and NA 740 [Min Grade: B] and NA 742 [Min Grade: B]

NA 712L. Anesthesia Specialty Immersion II. 5 Hours.

This course is designed to provide advanced clinical experiences requisite for preparation consistent with a doctoral evidence-based practice of nurse anesthesia. During this semester, clinical experiences are designed to provide the advanced students with clinical experiences to further their knowledge base towards a doctoral level.

Prerequisites: NA 711L [Min Grade: P] and NA 795 [Min Grade: P] and NUR 738L [Min Grade: P]
NA 713L. Anesthesia Specialty Immersion III. 5 Hours.
This course is designed to provide advanced clinical experiences requisite for preparation consistent with a doctoral evidence-based practice of nurse anesthesia. During this semester, clinical experiences are designed to provide the advanced student with clinical experiences to further their knowledge base towards a doctoral level.
Prerequisites: NA 712L [Min Grade: P] and NA 796 [Min Grade: P] and NUR 739L [Min Grade: P]

NA 718L. Focus on Advanced Nursing Practice Specialization. 4 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational material for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: NA 702 [Min Grade: B] and NA 731 [Min Grade: B] and NUR 735 [Min Grade: B] and NQI 702 [Min Grade: B]

NA 720. Anesthesia Pharmacology I. 3 Hours.
This course is designed to provide the nurse anesthesia student with knowledge of various non-anesthetic pharmacological agents and their anesthetic implications. During this course, students will learn pharmacological principles related to advanced practice nursing at the doctoral level.

NA 721. Anesthesia Pharmacology II. 3 Hours.
This course is designed to provide the nurse anesthesia student with knowledge of various anesthetic pharmacological agents and their anesthetic implications. During this course, students will build upon knowledge gained from NA 720, and further master advanced pharmacological principles related to advanced practice nursing at the doctoral level.
Prerequisites: NA 702 [Min Grade: B] and NA 731 [Min Grade: B]

NA 731. Biochemistry & Physics for Nurse Anesthetists. 4 Hours.
This course provides a solid chemistry, biochemistry, and physics foundation that is necessary for the safe practice of nurse anesthesia. Students will gain an understanding of these sciences, their clinical relevance, and how they apply to human beings and anesthesia equipment. This course is foundational in nature and success will help the student prepare for upcoming clinical anesthesia management courses.
Prerequisites: NA 720 [Min Grade: B]

NA 733. Informatics for Nurse Anesthetists. 3 Hours.
The purpose of this course is to provide an introduction to the field of nursing informatics for nurse anesthetists. This course focuses on the collection, organization, analysis, and dissemination of information in nurse anesthesia and health care. Students are introduced to the information system life-cycle and the use of technology to enhance nursing care delivery and patient safety in perioperative settings.

NA 740. Anesthesia Principles I. 4 Hours.
The purpose of this course is to provide a beginning foundation for students to plan and implement safe anesthesia care in healthy patients. The focus of this course is the study of scientific foundations of nurse anesthesia practice. The emphasis on designing and implementing individualized anesthesia care plans, principles of anesthesia induction, maintenance, emergence, anesthesia complications on the health patient, routine and difficult airway management, and the principles of nurse anesthesia role transition and practice standards.
Prerequisites: NA 702 [Min Grade: B] and NA 731 [Min Grade: B]

NA 741. Anesthesia Principles II. 3 Hours.
This course is for the student who has a foundation in the basic principles and practice of nurse anesthesia. During this course, students will learn anesthetic management principles for surgical specialty areas. Upon course completion the student will demonstrate mastery of related anatomic, physiologic, pathophysiologic, and pharmacologic principles for each of the surgical specialty areas in the context of advanced nursing practice at the doctorate level.
Prerequisites: NA 721 [Min Grade: B] and NA 740 [Min Grade: B] and NA 770 [Min Grade: B]

NA 742. Anesthesia Principles III. 3 Hours.
Students will learn anesthesiology management principles for parturients, neonates, infants and children. During this course, students will learn anesthetic management principles for surgical specialty areas. Upon course completion the students will demonstrate mastery of related anatomic, physiologic, pathophysiologic, and pharmacologic principles across special populations in the context of advanced nursing practice at the doctorate level.
Prerequisites: NA 708L [Min Grade: P] and NA 741 [Min Grade: B] and NA 750 [Min Grade: B] and NA 771 [Min Grade: B]

NA 745. Professional Aspects. 4 Hours.
This course is designed to provide the foundation of the professional aspects of becoming a CRNA. The students will demonstrate understanding of the principles associated with the business of anesthesia including finance, practice management, as well as intra and inter-professional healthcare collaboration.
Prerequisites: NA 708L [Min Grade: P] and NA 741 [Min Grade: B] and NA 750 [Min Grade: B] and NA 771 [Min Grade: B]

NA 750. Regional Anesthesia. 3 Hours.
The purpose of this course is the study of the theoretical and practical considerations involved in the administration and management of regional anesthesia and pain management. Related anatomy, physiology, and pharmacology will be reviewed as applied to the administration and management of regional anesthesia and pain management, using ultrasound and radiological techniques. Various regional anesthesia, both central and peripheral, are discussed as a component of a safe and effective anesthetic.
Prerequisites: NA 721 [Min Grade: B] and NA 740 [Min Grade: B] and NA 770 [Min Grade: B] and NUR 614 [Min Grade: B]

NA 770. Anesthesia Pathophysiology I. 3 Hours.
This Pathophysiology course is designed to promote the understanding of the principles associated with the business of anesthesia including finance, practice management, as well as intra and inter-professional healthcare collaboration.
Prerequisites: NA 708L [Min Grade: P] and NA 741 [Min Grade: B] and NA 750 [Min Grade: B] and NA 771 [Min Grade: B]
NAH 622. Advanced Adult Gerontology Nursing II - Primary Care. 3-5 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of adult/gerontology patients. The focus of this course is on health promotion and disease prevention and management strategies from interprofessional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care to adult/gerontology patients.
Prerequisites: (NAH 621 [Min Grade: B] or NAH 621 [Min Grade: B]) and (NAH 685L [Min Grade: P] or NAH 685L [Min Grade: P])

NAH 623. Advanced Adult Gerontology Nursing III - Primary Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to adults/gerontology patients. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: (NAH 622 [Min Grade: B] or NAH 622 [Min Grade: B]) and (NAH 686L [Min Grade: P] or NAH 686L [Min Grade: P])

NAH 685L. Practicum I: Adult/Gerontology Nurse Practitioner. 2-3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to adult/gerontology patients. The focus of this course is on the delivery of health care services to adult/gerontology patients. The emphasis of this course is on improving the progression of competence within the Advanced Practice Nursing role.
Prerequisites: (NAH 610 [Min Grade: B] or NUR 610 [Min Grade: B]) and NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B] and NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B]

NAH 686L. Practicum II: Adult/Gerontology Nurse Practitioner - Primary Care. 2-3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to adult/gerontology patients. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for adult/gerontology patients. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NAH 621 [Min Grade: B] or NAH 621 [Min Grade: B]) and (NAH 685L [Min Grade: P] or NAH 685L [Min Grade: P])

NAH 692L. Practicum III: Adult/Gerontology Nurse Practitioner - Primary Care. 2-4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to adult/gerontology patients. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of adult/gerontology patients.
Prerequisites: (NAH 622 [Min Grade: B] or NAH 622 [Min Grade: B]) and (NAH 686L [Min Grade: P] or NAH 686L [Min Grade: P])
NAH 721. Advanced Adult Gerontology Nursing I - Primary Care. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of the course is to prepare the student to implement the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to pediatric, adult, and elderly populations.
Prerequisites: (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B]) and NAH 618L [Min Grade: P]

NAH 722. Advanced Adult Gerontology Nursing II - Primary Care. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness for adult/gerontology population in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of the adult/gerontology population.
Prerequisites: NAH 721 [Min Grade: B] and NAH 618L [Min Grade: P]

NAH 723. Advanced Adult Gerontology Nursing III - Primary Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care as a Doctor of Nursing Practice prepared Advanced Practice Nurse to the adult/gerontology population. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: NAH 722 [Min Grade: B] and NAH 786L [Min Grade: P]

NAH 785L. Practicum I: Adult/Gerontology Nurse Practitioner - Primary Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to the adult/gerontology population. The focus of this course is on the delivery of health care services to the adult/gerontology population. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse.

NAH 786L. Practicum II: Adult/Gerontology Nurse Practitioner - Primary Care. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to the adult/gerontology population. The focus of this course is to provide the student with opportunities to integrate in-depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced practice Nurse to provide care for the adult/gerontology population. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: NAH 721 [Min Grade: B] and NAH 785L [Min Grade: P]

NAH 792L. Practicum III: Adult-Gerontology Nurse Practitioner. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to the adult/gerontology population. The focus of this course is to evaluate progress toward achievement of competencies of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of the adult/gerontology population.
Prerequisites: NAH 722 [Min Grade: B] and NAH 786L [Min Grade: P]

NBB-Nursing - Biobehavioral Courses

NBB 761. Biobehavioral Research: State of the Sciences. 3 Hours.
Focuses on in-depth exploration and critical analysis of current biobehavioral interaction research including conceptual and methodological issues. Examines the effectiveness of interventions on biobehavioral domains and health outcomes and identifies future directions for research.

NCA-Nursing - Critical Care Courses

NCA 616. Diagnostic and Therapeutic Procedures for Advanced Acute Care Nursing Practice. 2 Hours.
This course is designed to provide the student with opportunities to obtain advanced knowledge of and to learn advanced clinical skills in diagnostic or therapeutic procedures related to the role of the advanced practice nurse in acute and critical care. Specific content and skills in this course will focus on procedures associated with diagnostic and evaluative monitoring of acutely or critically ill patient. COREQ: NCA 621.

NCA 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 773 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B](Can be taken Concurrently)

NCA 621. Advanced Adult/Gerontology Nursing I - Acute Care. 4-5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of the Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to the emancipated minor (age 13 and older), adult, and geriatric populations.
Prerequisites: (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) and (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B]) or (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B])
NCA 622. Adult Gerontology Acute Care Nursing Practice II. 3-4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of the emancipated minor (age 13 and older), adult, and geriatric populations. The focus of this course is on health promotion and disease prevention and management strategies from inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of the emancipated minor (age 13 and older), adult, and geriatric populations.
Prerequisites: (NCA 621 [Min Grade: B] or NCA 621 [Min Grade: B]) and (NCA 685L [Min Grade: P] or NCA 685L [Min Grade: P])

NCA 623. Advanced Adult/Gerontology Nursing III -Acute Care. 3-5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to the emancipated minor (age 13 and older), adult, and geriatric populations. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: (NCA 622 [Min Grade: B] or NCA 622 [Min Grade: B]) and (NCA 685L [Min Grade: P] or NCA 685L [Min Grade: P])

NCA 685L. Practicum I: Adult/Gerontology Nurse Practitioner- Acute Care. 1-3 Hour.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to the emancipated minor (age 13 and older), adult, and geriatric populations. The focus of this course is on the delivery of health care services to the emancipated minor (age 13 and older), adult, and geriatric populations. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.
Prerequisites: (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B]) or NUR 614 [Min Grade: B])

NCA 686L. Practicum II: Adult/Gerontology Nurse Practitioner-Acute Care. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to the emancipated minor (age 13 and older), adult, and geriatric populations. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for the emancipated minor (age 13 or older), adult, and geriatric populations. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NCA 621 [Min Grade: B] or NCA 621 [Min Grade: B]) and (NCA 685L [Min Grade: P] or NCA 685L [Min Grade: P])

NCA 692L. Practicum III: Adult/Gerontology Nurse Practitioner-Acute Care. 3-6 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to the emancipated minor (age 13 or older), adult, and geriatric population. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of the emancipated minor (age 13 or older), adult, and geriatric population.
Prerequisites: (NCA 622 [Min Grade: B] or NCA 622 [Min Grade: B]) and (NCA 686L [Min Grade: P] or NCA 686L [Min Grade: P])

NCA 721. Advanced Adult/Gerontology Nursing I -Acute Care. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role Doctor of Nursing Practice prepared Advanced Practice Nurse. The Emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to the emancipated minor (age 13 and older), adult, and geriatric populations.
Prerequisites: (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B]) and NUR 618L [Min Grade: P]

NCA 722. Advanced Adult/Gerontology Nursing II -Acute Care. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness for the emancipated minor (age 13 and older), adult, and geriatric populations in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of the emancipated minor (age 13 and older), adult, and geriatric populations.
Prerequisites: NCA 721 [Min Grade: B]

NCA 723. Advanced Adult/Gerontology Nursing III -Acute Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is to integrate theoretical and clinical practice to improve the health status of the emancipated minor (age 13 and older), adult, and geriatric population. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse.
Prerequisites: NCA 722 [Min Grade: B] and NCA 786L [Min Grade: P]

NCA 785L. Practicum I: Adult/Gerontology Nurse Practitioner-Acute Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for delivery of care to the emancipated minor (age 13 and older), adult, and geriatric populations. The focus of this course is on the delivery of high quality care to the emancipated minor (age 13 and older), adult, and geriatric populations. The emphasis of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care as a Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of the emancipated minor (age 13 and older), adult, and geriatric populations.
Prerequisites: NCA 721 [Min Grade: B]
NCC 786L. Clinical Practicum II: Adult/Gerontology Nurse Practitioner-Acute Care. 3 Hours.
The purposes of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: NCC 621 [Min Grade: B] or NCC 685L [Min Grade: P]

NCC 623. Advanced Pediatric Nursing III - Acute Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to pediatric patients and their families. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: (NCC 622 [Min Grade: B] or NCC 622 [Min Grade: B]) and (NCC 686L [Min Grade: P] or NCC 686L [Min Grade: P])

NCC 685L. Clinical Practicum I: Advanced Pediatric Nursing - Acute Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to children, adolescents and their families. The focus of this course is on the delivery of health care services to children, adolescents and their families. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.

NCC 686L. Clinical Practicum II: Advanced Pediatric Nursing - Acute Care. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to children, adolescents and their families. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for children, adolescents and their families. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NCC 621 [Min Grade: B] or NCC 621 [Min Grade: B]) and (NCC 685L [Min Grade: B] or NCC 685L [Min Grade: B])

NCC-Nursing - Child/Adolescent Courses

NCC 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B]) and NUR 614 [Min Grade: B] (Can be taken Concurrently)

NCC 621. Advanced Pediatric Nursing I - Acute Care. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of the Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to children, adolescents and their families.
Prerequisites: (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) or (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B]) or (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B])

NCC 622. Advanced Pediatric Nursing II - Acute Care. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of children, adolescents and their families. The focus of this course is on health promotion and disease prevention and management strategies from inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care to children, adolescents and their families.
Prerequisites: (NCC 621 [Min Grade: B] or NCC 621 [Min Grade: B]) and (NCC 685L [Min Grade: B] or NCC 685L [Min Grade: B])

NCC 623. Advanced Pediatric Nursing III - Acute Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to pediatric patients and their families. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: (NCC 622 [Min Grade: B] or NCC 622 [Min Grade: B]) and (NCC 686L [Min Grade: P] or NCC 686L [Min Grade: P])

NCC 685L. Clinical Practicum I: Advanced Pediatric Nursing - Acute Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to children, adolescents and their families. The focus of this course is on the delivery of health care services to children, adolescents and their families. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.

NCC 686L. Clinical Practicum II: Advanced Pediatric Nursing - Acute Care. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to children, adolescents and their families. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for children, adolescents and their families. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NCC 621 [Min Grade: B] or NCC 621 [Min Grade: B]) and (NCC 685L [Min Grade: B] or NCC 685L [Min Grade: B])

NCC 688L. Child/Adolescent Acute and Continuing Care Nurse Practitioner Practicum III. 2 Hours.
This course prepares the student in the Pediatric Nurse Practitioner role. The student develops the Pediatric NP role with patients/clients by providing pediatric health care services to clients (i.e. individuals, families, groups) emphasizing the promotion of health and the prevention of disease throughout the course of clinical experiences over two or three academic terms. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. It is anticipated that the student will be increasingly independent and skilled as each clinical experience progresses, allowing him/her to become more proficient and to contribute to the management of more complex health problems. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity and social issues. The advanced practice role emphasis in this course encompasses a trajectory of the nurse practitioner experience from novice to beginning expert, including interdisciplinary collaboration, coach, educator, consultant roles. Prerequisite: NCC 622 and NCC 686L. Corequisite: NCC 623.
Prerequisites: (NCC 622 [Min Grade: B] and NCC 686L [Min Grade: P]) or (NCC 622 [Min Grade: B] and NCC 686L [Min Grade: P])
NCC 692L. Clinical Practicum III: Advanced Pediatric Nurse Practitioner - Acute Care. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to pediatric patients and their families. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of pediatric patients and their families.
Prerequisites: (NCC 622 [Min Grade: B] or NCC 622 [Min Grade: B]) and (NCC 686L [Min Grade: P] or NCC 686L [Min Grade: P])

NCC 721. Advanced Pediatric Nursing I - Acute Care. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood.
Prerequisites: (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B]) or NUR 614L [Min Grade: B] and (NCC 618L [Min Grade: P] or NDP 618L [Min Grade: P])

NCC 722. Advanced Pediatric Nursing II - Acute Care. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on health promotion and disease prevention and management strategies from inter professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood.
Prerequisites: NCC 721 [Min Grade: B] and NCC 785L [Min Grade: P]

NCC 723. Advanced Pediatric Nursing III - Acute Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care as a Doctor of Nursing Practice prepared Advanced Practice Nurse to children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: NCC 722 [Min Grade: B] and NCC 786L [Min Grade: P]

NCC 785L. Practicum I: Pediatric Nurse Practitioner Acute Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood. The focus of this course is on the delivery of health care services to children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse.
Prerequisites: (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B]) and (NCC 618L [Min Grade: P] or NDP 618L [Min Grade: P])

NCC 786L. Practicum II: Pediatric Nurse Practitioner - Acute Care. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse, to provide care for children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: NCC 721 [Min Grade: B] and NCC 785L [Min Grade: P]

NCC 792L. Practicum III: Pediatric Nurse Practitioner - Acute Care. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood. The focus of this course is to evaluate progress toward achievement of competencies of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of children with complex acute, critical and chronic illness across the entire pediatric age spectrum, from birth to young adulthood.
Prerequisites: NCC 721 [Min Grade: B] and NCC 785L [Min Grade: P]

NCH-Nursing -Child Health Courses

NCH 760. Child Health Theories and Concepts. 3 Hours.
This course will focus on selected theories and concepts related to child health, child health nursing and child health nursing education. Emphasis will be on the theoretical underpinnings of the theories and concepts, major theorists associated with the theories and concepts, measurement strategies and instruments, and implications for research, education, and practice.

NCH 761. Emerging Issues in Child-Health Nursing. 3 Hours.
This course will focus on emerging issues in child health, child health nursing and child health nursing education. Emphasis is on current thought, state of the science and research related to topics which affect the health and lives of infants, children, and adolescents. Pivotal MCH, public health resources and the latest research and information will be used to guide discussion.

NCL-Nursing-Clinical Nur Lead Courses

NCL 618L. Focus on Advanced Nursing Practice Specialization. 2 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 606 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B])
NCL 620. Systems in Population-based Care I. 4 Hours.
This course is designed to provide the student with opportunities to integrate in-depth knowledge of theoretical and practical concepts required to measure and improve healthcare quality, outcomes and safety. The student will focus on 5 roles required for the beginning Clinical Nurse Leader: Clinician, Member of Profession, Interdisciplinary Healthcare Team Manager, Outcomes Manager and Lifelong Learner. The course explores theories of change, complexity, horizontal and lateral leadership, microsystems and decision-making and their relationship to nursing and the health care system. The following elements are integrated into this course: critical thinking, research, scholarly writing, scientific integrity, ethics, cultural diversity, and social issues.

NCL 621. Systems in Population-based Care II. 3 Hours.
This course is designed to provide the student with opportunities to develop additional knowledge of theoretical and practical concepts required to measure and improve healthcare quality, outcomes and safety. The student will focus on the four additional roles required for the beginning Clinical Nurse Leader: Information Manager, Systems Analyst/Risk Manager, Advocate, and Educator. The student will be expected to expand proficiency of previously learned Clinical Nurse Leader roles: Clinician, Member of a Profession, Team Manager, Outcomes Manager and Lifelong Learner. At the completion of this course the student will have explored all of the nine CNL roles as defined by the American Association of Colleges of Nursing's White Paper. The following elements are integrated into this course: critical thinking, research, scholarly writing, professional presentation, scientific integrity and ethics, cultural diversity, and social issues. Prerequisite: NCL 620 and NCL 685L. Corequisite: NCL 686L.

Prerequisites: NCL 620 [Min Grade: B] and NCL 685L [Min Grade: P] and (NUR 512 [Min Grade: B] or NUR 612 [Min Grade: B])

NCL 685L. CNL Practicum I. 2-3 Hours.
This course provides the student, at an introductory level, the opportunity to observe and apply in a clinical setting five of the nine CNL role functions: Clinician, Member of a Profession, Team Manager, Outcomes Manager and Lifelong Learner. The student will use these skills to focus on improving quality of care and patient safety. The student will be expected to utilize principals of critical thinking, evidence based research, scientific integrity and ethics, cultural diversity, and social issues to achieve above objectives. Prerequisite: NUR 600 and NUR 643. Corequisite: NCL 620.

NCL 686L. CNL Practicum II. 2 Hours.
Building on the preceding practicum, this course provides the student the opportunity to observe and apply in a clinical setting the remaining four of the CNL role functions. This course will focus on the student developing the CNL roles of information manager, systems analyst/risk manager, advocate, and educator. The student will be expected to expand proficiency of the previous CNL roles of clinician, professional, interdisciplinary team manager, outcomes manager and lifelong learner. The student will use this knowledge and skill to evaluate, design and implement interventions to improve quality of care and patient safety. At the completion of this course the student will have explored all of the nine CNL roles as defined by the American Association of Colleges of Nursing's White Paper. Prerequisite: NCL 620 and NCL 685L. Corequisite: NCL 621.

Prerequisites: NCL 620 [Min Grade: B] and NCL 685L [Min Grade: B]

NCL 692L. CNL Capstone Practicum. 5 Hours.
This course provides the student the opportunity to integrate and apply in an intensive clinical rotation the nine CNL roles. The student will be expected to expand their proficiency in the roles of advocate, professional, team manager, information manager, systems analyst/risk manager, clinician, outcomes manager, educator and lifelong learner. The student will use these skills to design, implement, evaluate, and disseminate plans of care to improve quality and patient safety. At the completion of this course the student will demonstrate, at novice level, the nine CNL roles as defined by the American Association of Colleges of Nursing's White Paper. Prerequisites: NCL 620 [Min Grade: B] and NCL 685L [Min Grade: P]

NCS-Nursing - Clinical Spec Courses

NCS 617. Phenomenon of Concern to Advanced Practice Nurses. 1 Hour.
This graduate specialty course focuses on phenomena of concern to advanced practice nurses and is designed to give the Clinical Nurse Specialist student the theoretical underpinnings of selected non-disease based causes of illness. Clinical/didactic information regarding symptoms, functional problems, and risk behaviors will be included to assist the student operationalize the role of the CNS in the patient/client sphere of influence, the nurse/nursing service sphere of influence, and the organization sphere of influence.

NCS 685L. Prac I: Clinical Specialization in Adult Health Nursing. 1,2 Hour.
This course is the first clinical practicum in the Clinical Nurse Specialist option. The student is provided the opportunity to develop the CNS role with a focus on the care of non-disease based etiologies of symptoms, functional problems, and risk behaviors among patients/ clients within a defined specialty. This practicum may include experiences in outpatient or inpatient settings. The student is expected to design evidence-based interventions for acute and/or chronic health problems commonly occurring within a defined specialty area. The following elements are integrated into this course: critical thinking, health promotion and disease prevention, research, ethics, cultural diversity, and social issues. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NUR 614L. Corequisite: NCA 621.

Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B]) or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B]

NCS 686L. Practicum II: Clinical Specialization in Adult Health Nursing. 1-2 Hour.
This course further prepares the student in the Clinical Nurse Specialist role. The student continues to apply knowledge and current research findings to the management of selected acute and chronic health problems commonly occurring in the target population. While focusing on the care of acutely ill clients, the student develops the CNS role with nursing personnel through identifying and defining problems and opportunities; identifying and articulating factors contributing to resource management needs and outcomes; developing innovative solutions; and evaluating the effect of solutions. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NCA 621 and NCS 685L. Corequisite: NCA 622.

Prerequisites: (NCS 685L [Min Grade: P] or NCS 685L [Min Grade: P]) and (NCA 621 [Min Grade: B] or NCA 621 [Min Grade: B])
NCS 687L. Practicum III: Clinical Specialization in Adult Health Nursing. 1-2 Hour.
This course further prepares the student in the Clinical Nurse Specialist role. The student continues to apply knowledge and current research findings to the management of selected acute and chronic health problems commonly occurring in the target population. While focusing on the care of acutely ill clients, the student develops the CNS role with nursing personnel through identifying and defining problems and opportunities; identifying and articulating factors contributing to resource management needs and outcomes; developing innovative solutions; and evaluating the effect of solutions. An Objective Structured Patient Experience held during this course will determine if the student can progress into 6 hours of the final residency course, NCA 692L. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NCS 686L. Corequisite: NCA 623.

Prerequisites: (NCA 622 [Min Grade: B] or NCA 622 [Min Grade: B]) and (NCS 686L [Min Grade: P] or NCS 686L [Min Grade: P])

NCS 692L. Residency in Clinical Specialization. 2-4 Hours.
This course is the culminating experience for the student to practice in the role of the CNS. This course emphasizes the application of previously learned theories and knowledge from nursing and other disciplines. The student will implement the role of the CNS to manage the health care of adult clients, teaching, nurses and clients, discussing employment issues and evaluating products for use in clinical practice. Students arrange their own clinical sites with assistance/approval from clinical faculty. A comprehensive examination is given during this residency course. Failure to pass the comprehensive examination will delay graduation. Prerequisite: NCA 623 and NCA 687L.

Prerequisites: (NCA 623 [Min Grade: B] and NCS 687L [Min Grade: P]) or (NCA 623 [Min Grade: B] and NCS 687L [Min Grade: P])

NCP-Nursing - Cardiovascular Courses

NCP 631. Electrocardiography for Advanced Nursing Practice. 3 Hours.
Concepts presented in the course include the biophysical, psychological, developmental, and adaptive nature of the human being as it relates to the formation, function, and regulation of the cardiac electrical system. Concepts of cardiovascular adaptation to biophysical and psychosocial variables are emphasized. Explanations for electrophysiologic and electrocardiographic phenomena are offered, as are nursing and medical interventions for cardiac electrical abnormalities. Content focuses on the concepts of electrophysiology and electrocardiography, interpreting cardiac electrical abnormalities, and analyzing the various medical and nursing therapies for the electrical abnormalities and their applications to the practice of advanced nursing. May be taken as an elective.

NDS-Nursing - Dual Pediatric Courses

NDS 613. Dual Option Pediatric Pharmacology. 2 Hours.
This course is a supplement to the current pharmacology course, NUR 613, required of all MSN Advanced Practice students. The content is specific to infants, children and adolescents with their unique physiologic and metabolic characteristics. Pre or corequisite: NUR 613.

Prerequisites: NUR 613 [Min Grade: B](Can be taken Concurrently) or NUR 613 [Min Grade: B](Can be taken Concurrently)

NDS 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies. Prerequisites: (NUR 606 [Min Grade: B] or NUR 606 [Min Grade: B]) or (NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B](Can be taken Concurrently)

NDS 621. Dual Option Pediatric I. 4-5 Hours.
This course provides a theoretical and practical base for students to diagnose and manage primary, acute, and continuing health problems of children and adolescents. Content includes management strategies from the domains of nursing, medicine, and pharmacological therapeutics, and emphasizes direct care to children, adolescents and their families. This course utilizes an on-line lecture/discussion and case study format to assist the student in the clinical assessment and decision-making to provide direct patient care to children, adolescents and their families within the scope of practice of primary and acute care child/adolescent nurse practitioners. The student is expected to apply the concepts and theories discussed in class to the care of children and adolescents during the clinical course taken in conjunction with this course. The following elements are integrated into this course: critical thinking, crisis management, health promotion and disease prevention, research, ethics, cultural diversity, cultural competence, and social issues. Prerequisites: NUR 613 [Min Grade: B](Can be taken Concurrently) or NUR 613 [Min Grade: B](Can be taken Concurrently) and (NUR 614 [Min Grade: B]) or NUR 614L [Min Grade: B] and (NUR 614L [Min Grade: B])

NDS 622. Dual Option Pediatric II. 3-5 Hours.
This course is designed to provide the students with opportunities to integrate in-depth knowledge of management of acute and continuing health care problems, family crises, case management, education and consultation roles and skills and procedures required by children, adolescents and their families who experience chronic, complex and life-threatening health problems. Students will have the opportunity to develop strategies to present information about acute and continuing health care problems to peers and colleagues. The following elements are incorporated into the course: critical thinking, crisis management, health promotion and disease prevention, scientific integrity and ethics, human diversity, cultural competence, social issues and professional role development. Prerequisites: (NUR 621 [Min Grade: B] or NUR 621 [Min Grade: B]) and (NUR 685L [Min Grade: P]) or NUR 685L [Min Grade: P]
NDP 623. Dual Option Pediatric III. 4-5 Hours.
This course provides a theoretical and practical base for students to diagnose and manage chronic health problems of children and adolescents. Additionally, students will be provided with opportunities to integrate in-depth knowledge of management of chronic health care problems, family crises, case management, education and consultation roles and skills and procedures required by children, adolescents and their families who experience chronic, complex health problems. Content includes management strategies from the domains of nursing, medicine, and pharmacological therapeutics, and emphasizes direct care to children, adolescents and their families. This course utilizes an on-line lecture/discussion and case study format to assist the student in the clinical assessment and decision-making to provide direct patient care to children, adolescents and their families within the scope of practice of primary and acute care pediatric nurse practitioners. Students will have the opportunity to develop strategies to present information about chronic health care problems to peers and colleagues. The student is expected to apply the concepts and theories discussed in class to the care of children and adolescents during the clinical course taken in conjunction with this course. The following elements are integrated into this course: critical thinking, crisis management, health promotion and disease prevention, research, ethics, cultural diversity, cultural competence, and social issues.

Prerequisites: (NDP 622 [Min Grade: B] or NDP 622 [Min Grade: B]) and (NDP 686L [Min Grade: P] or NDP 686L [Min Grade: P])

NDP 624. Dual Option Pediatric IV. 3-5 Hours.
This course provides a theoretical and practical base for students to diagnose and manage critical illnesses in children and adolescents. Additionally, students will be provided with opportunities to integrate in-depth knowledge of management of critical health care problems, family crises, case management, education and consultation roles and skills and procedures required by children, adolescents and their families who experience critical and complex health problems. Content includes management strategies from the domains of nursing, medicine, and pharmacological therapeutics, and emphasizes direct care to children, adolescents and their families. This course utilizes an on-line lecture/discussion and case study format to assist the student in the clinical assessment and decision-making to provide direct patient care to children, adolescents and their families within the scope of practice of primary and acute care pediatric nurse practitioners. Students will have the opportunity to develop strategies to present information about critical health care problems to peers and colleagues. The student is expected to apply the concepts and theories discussed in class to the care of children and adolescents during the clinical course taken in conjunction with this course. The following elements are integrated into this course: critical thinking, crisis management, health promotion and disease prevention, research, ethics, cultural diversity, cultural competence, and social issues.

Prerequisites: NDP 623 [Min Grade: B] and NDP 687L [Min Grade: P]

NDP 625. Advanced Dual Option Pediatric Nurse Practitioner. 2 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to primary and acute care pediatric patients and their families. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.

Prerequisites: NCC 622 [Min Grade: C] and NCC 686L [Min Grade: C]

NDP 685L. Dual Option Pediatric Nurse Practitioner Practicum I. 3 Hours.
This course prepares the student in the Dual Option Pediatric Nurse Practitioner role. The student develops the NP role with patients/clients by providing health care to individual children, adolescents, families, and groups at any point of the continuum of health statuses in acute and continuing care settings. The student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include acute and chronic health problems and human responses to disease in children, adolescents and their families. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity, cultural sensitivity and social issues. The advanced practice role emphasis in this course provides experiences for the developing Dual Option Pediatric Nurse Practitioner including interdisciplinary collaboration, case management, educator, and consultant roles.

NDP 686L. Dual Option Pediatric Nurse Practitioner Practicum II. 3 Hours.
This course prepares the student in the Pediatric Nurse Practitioner role. The student develops the Pediatric NP role with patients/clients by providing pediatric health care services to clients (i.e. individuals, families, groups) emphasizing the promotion of health and the prevention of disease throughout the course of clinical experiences over two or three academic terms. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. It is anticipated that the student will be increasingly independent and skilled as each clinical experience progresses, allowing him/her to become more proficient and to contribute to the management of more complex health problems. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity and social issues. The advanced practice role emphasis in this course encompasses a trajectory of the nurse practitioner experience from novice to beginning expert, including interdisciplinary collaboration, coach, educator, consultant roles.

Prerequisites: (NDP 621 [Min Grade: B] or NDP 621 [Min Grade: B]) and (NDP 685L [Min Grade: P] or NDP 685L [Min Grade: P])

NDP 687L. Dual Option Pediatric Nurse Practitioner Practicum III. 3 Hours.
This course prepares the student in the Pediatric Nurse Practitioner role. The student develops the Pediatric NP role with patients/clients by providing pediatric health care services to clients (i.e. individuals, families, groups) emphasizing the promotion of health and the prevention of disease throughout the course of clinical experiences over two or three academic terms. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. It is anticipated that the student will be increasingly independent and skilled as each clinical experience progresses, allowing him/her to become more proficient and to contribute to the management of more complex health problems. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity and social issues. The advanced practice role emphasis in this course encompasses a trajectory of the nurse practitioner experience from novice to beginning expert, including interdisciplinary collaboration, coach, educator, consultant roles.

Prerequisites: (NDP 622 [Min Grade: B] or NDP 622 [Min Grade: B]) and (NDP 686L [Min Grade: P] or NDP 686L [Min Grade: P])
NDF 688L. Dual Option Pediatric Nurse Practitioner Practicum III. 3 Hours.
NDF 688L prepares the student in the Dual Option Pediatric Nurse Practitioner role. The student develops the NP role with patients/clients by providing health care to individual children, adolescents, families, and groups at any point of the continuum of health statuses in acute and continuing care settings. The student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include acute and chronic health problems and human responses to disease in children, adolescents and their families. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity, cultural sensitivity and social issues. The advanced practice role emphasis in this course provides experiences for the developing Dual Option Pediatric Nurse Practitioner including interdisciplinary collaboration, case management, educator, and consultant roles.
Prerequisites: (NDF 621 [Min Grade: B] or NDF 621 [Min Grade: B]) and (NDF 685L [Min Grade: P] or NDF 685L [Min Grade: P]) and (NDF 622 [Min Grade: B] or NDF 622 [Min Grade: B]) and (NDF 686L [Min Grade: P] or NDF 686L [Min Grade: P]) and (NDF 623 [Min Grade: B] or NDF 623 [Min Grade: B]) and (NDF 687L [Min Grade: P] or NDF 687L [Min Grade: P])

NDF 692L. Residency: Dual Option Pediatric Nurse Practitioner. 4 Hours.
This course prepares the student in the Pediatric Nurse Practitioner role to be a beginning expert in the diagnosis and management of pediatric patient problems. In the residency, the student is expected to continue to grow toward becoming an independent practitioner, specializing in the care of children. The student further develops the pediatric NP role with patients/clients by providing pediatric health care services to clients (i.e. individuals, families, groups) emphasizing the promotion of health and the prevention of disease. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human response to disease.
Prerequisites: (NCC 622 [Min Grade: B] or NCC 622 [Min Grade: B]) and (NCC 686L [Min Grade: P] or NCC 686L [Min Grade: P])

NFA - RN First Assist Courses
NFA 620. Surgical Techniques. 3 Hours.
This course will focus on the expanded functions unique to the RNFA role during operative and invasive procedures. The course includes the recommended content of the Core Curriculum for the RN First Assist and is designed to develop the beginning knowledge and skills needed for safe RNFA practice. Surgical practice and techniques such as sterile technique, positioning and draping, using instruments and medical devices, providing exposure, handling and cutting tissue, providing hemostasis, and suturing will be emphasized in a "hands-on" swine laboratory experience. The course will be taught in a blended distance accessible format and on-campus 1-day intensive session in the Nursing Competency Labs. The purpose of the course is to enable each student to apply surgical principles and techniques.
Prerequisites: NFA 620 [Min Grade: B]

NFA 621. Advanced Perioperative Nursing I. 3 Hours.
This course will focus on the expanded functions unique to the RNFA role during operative and invasive procedures. The course includes the recommended content of the Core Curriculum for the RN First Assist and is designed to develop the beginning knowledge and skills needed for safe RNFA practice. The course will emphasize surgical and medical devices, providing exposure, handling, and cutting tissue, providing hemostasis, and suturing will be emphasized in a "hands-on" swine laboratory experience. The course will be taught in a blended distance accessible format and on-campus 1-day intensive session in the Nursing Competency Labs. The purpose of the course is to enable each student to apply surgical principles and techniques.
Prerequisites: NFA 620 [Min Grade: B]

NFA 622. Advanced Perioperative Nursing I: Practicum. 1-3 Hour.
This course prepares the advanced perioperative student to function in the expanded role of first assistant to the surgeon. In this practicum, the student is expected to continue to grow toward becoming a competent advanced perioperative nurse, specializing in problems requiring surgical interventions and management and the full scope of RNFA practice. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common surgical diseases and human responses to disease. The following elements are integrated into the course: critical thinking, research utilization, scientific integrity and ethics, human diversity, and awareness of social and professional issues. The advanced perioperative practice role emphasis in this course continues the trajectory of the RNFA as a beginning expert and includes role components such as interdisciplinary collaborator, educator, and consultant. Prerequisite: NFA 620 and NFA 621.
Prerequisites: (NFA 620 [Min Grade: B] and NFA 621 [Min Grade: B]) or (NFA 620 [Min Grade: B] and NFA 621 [Min Grade: B])

NFH-Nursing - Family Courses
NFH 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B](Can be taken Concurrently)

NFH 621. Advanced Family Nursing I. 3-5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of the Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to pediatric, adult and elderly populations.
Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B]) and (NUR 610 [Min Grade: B] or NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B])
NFH 622. Family Nurse Practitioner II. 3-4 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to pediatric, adult and elderly populations. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for pediatric, elderly and adult populations. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.

Prerequisites: (NFH 621 [Min Grade: B] or NFH 621 [Min Grade: B]) and (NFH 685L [Min Grade: P] or NFH 685L [Min Grade: P])

NFH 623. Family Nurse Practitioner III. 5 Hours.
This course is designed to provide the student with opportunities to integrate in-depth knowledge of health assessment and management skills to provide care for clients with commonly occurring chronic and complex health problems with diverse cultures over the life span. Students will also have the opportunity to develop strategies to market the nurse practitioner role, to create a specific practice position and to explore strategies to market their role in family health care. The following elements are integrated into the course: critical thinking, health promotion and disease prevention, scientific integrity and ethics, human diversity and social issues and professional role development.

Prerequisites: NFH 622 [Min Grade: B]

NFH 623L. Family Nurse Practitioner III. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to pediatric, adult, and elderly populations. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.

Prerequisites: (NFH 622 [Min Grade: B] or NFH 622 [Min Grade: B]) and (NFH 686L [Min Grade: P] or NFH 686L [Min Grade: P])

NFH 685L. Practicum I: Family Nurse Practitioner. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to pediatric, adult and elderly populations. The focus of this course is on the delivery of health care services to pediatric, adult and elderly populations. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.

Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B])

NFH 686L. Practicum II: Family Nurse Practitioner. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to pediatric, adult and elderly populations. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for pediatric, adult and elderly populations. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.

Prerequisites: (NFH 621 [Min Grade: B] or NFH 621 [Min Grade: B]) and (NFH 685L [Min Grade: P] or NFH 685L [Min Grade: P])

NFH 692L. Practicum III: Family Nurse Practitioner. 3-6 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to pediatric, adult and elderly populations. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of pediatric, adult and elderly populations.

Prerequisites: (NFH 622 [Min Grade: B] or NFH 622 [Min Grade: B]) and (NFH 686L [Min Grade: P] or NFH 686L [Min Grade: P])

NFH 721. Advanced Family Nursing I. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of the course is to prepare the student to implement the role Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to pediatric adult and elderly populations.

Prerequisites: (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B]) and NFH 618L [Min Grade: P]

NFH 722. Advanced Family Nursing II. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness for pediatric, adult and elderly populations in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of pediatric, adult and elderly populations.

Prerequisites: NFH 721 [Min Grade: B] and NFH 618L [Min Grade: P]

NFH 723. Advanced Family Nursing III. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course in on the utilization of complex models and systems of practice to deliver high quality evidence-based care to pediatric, adult and elderly populations. The emphasis of the course in on the critical analysis of the evidence for applications that optimize health outcomes.

Prerequisites: NFH 722 [Min Grade: B] and NFH 786L [Min Grade: P]

NFH 785L. Practicum I: Family Nurse Practitioner. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to pediatric, adult and elderly populations. The focus of this course is on the delivery of health care services to pediatric, adult and elderly populations. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse.

Prerequisites: NFH 618L [Min Grade: P]

NFH 786L. Practicum II: Family Nurse Practitioner. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to pediatric, adult, and elderly populations. The focus of this course is to provide the student with opportunities to integrate in-depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse to provide care for pediatric, adult, and elderly populations. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.

Prerequisites: NFH 721 [Min Grade: B] and NFH 785L [Min Grade: P]
NFH 792L. Practicum III: Family Nurse Practitioner. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to pediatric, adult, and elderly populations. The focus of this course is to evaluate progress toward achievement of competencies of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of pediatric, adult, and elderly populations.
Prerequisites: NFH 722 [Min Grade: B] and NFH 786L [Min Grade: P]

NGN-Nursing - Gerontological Courses

NGN 630. Advanced Practice Gerontology Nursing. 2 Hours.
This course is designed to provide students in all advanced practice nursing tracks with the ability to integrate knowledge of gerontology and geriatrics with other specialty knowledge concerning the management of health care of adults. The emphasis in the course is on providing students with the background to apply this knowledge with elders and their families.

NGN 631. Gerontology and Geriatrics for Advanced Nursing Practice. 3 Hours.
This course is designed to provide students with the opportunity to integrate knowledge of gerontology and geriatrics with previously acquired knowledge concerning the management of health care of adults. It is the required support course for students in the gerontological nurse practitioner option and may be taken as an elective by students in other options. In this course students acquire knowledge of gerontology and geriatrics that is relevant to the nursing and medical management of health care of elders. This knowledge is applied in the required clinical course.

NGN 632. Chronic Health Conditions for Advanced Nursing Practice. 3 Hours.
This is a required support course for students in the gerontological nurse practitioner option, and may be taken as an elective by students in other options. In this course students acquire knowledge of a variety of clinical topics that are relevant to the nursing and medical management of health care of persons with complex chronic disorders such as urinary/fecal incontinence, chronic wounds and psychiatric disorders. The course is designed to provide students with the opportunity to integrate knowledge of selected chronic conditions with previously acquired knowledge concerning the management of health care of patients.

NGN 685L. Practicum I: Gerontological Nurse Practitioner. 2 Hours.
This is the first of two gerontological practica courses for the dual adult/gerontology nurse practitioner specialty. In selected clinical settings students are expected to integrate the knowledge and competencies gained from foundation courses and didactic content to further develop the Gerontological Nurse Practitioner role. This course allows the student to develop the role by providing health care services to individuals, families, and groups, while emphasizing the promotion of health and prevention of disease. The student addresses the management of actual and potential health problems including common diseases and human responses to diseases. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity, and social issues. Prerequisite: NUR 614L. Corequisite: NAH 621.
Prerequisites: NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B]

NGN 686L. Practicum II: Gerontological Nurse Practitioner. 2 Hours.
This is the second of two gerontological practica courses for the dual adult/gerontology nurse practitioner specialty. In selected clinical settings students are expected to integrate the knowledge and competencies gained from foundation courses and didactic content to further develop the Gerontological Nurse Practitioner role. This course allows the student to develop the role by providing health care services to individuals, families, and groups, while emphasizing the promotion of health and prevention of disease. It is anticipated that the student will be increasingly independent and skilled as the clinical experience progresses, allowing the student to contribute more toward the management of health problems. The advanced practice role emphasis in this course encompasses a trajectory of the nurse practitioner experience from novice to beginning expert, and includes role components such as interdisciplinary collaborator, coach, educator, and consultant. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity, and social issues. Prerequisite: NAH 621 and NGN 685L. Corequisite: NAH 622.
Prerequisites: (NAH 621 [Min Grade: B] and NAH 658L [Min Grade: P]) or (NAH 621 [Min Grade: B] and NAH 621 [Min Grade: P])

NGN 692L. Residency: Gerontological Nurse Practitioner. 1-4 Hour.
This course is the third of three clinical practicum courses and is designated as the culminating practical experience for Gerontology nurse practitioner students. This course encourages the student to apply knowledge and theories from the core courses as well as previous clinical and clinical support courses. A comprehensive examination is given during this residency course. Failure to pass the comprehensive examination will delay graduation. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NGN 686L.
Prerequisites: NAH 686L [Min Grade: P] or NAH 686L [Min Grade: P]

NGN 731. Advanced Practice Gerontological Nursing I. 3 Hours.
This course is designed to provide DNP students who are already adult, adult acute, and/or family nurse practitioners and who are delivering care to a majority of gerontological patients, with an advanced theoretical and empirical knowledge of aging. This level of specialized gerontological nursing knowledge is beyond what would be obtained in an acute, adult, or family nurse practitioner program. The content in NGN 731Q and NGN 732Q satisfies the ANCC didactic requirements for a secondary certification as a gerontological nurse practitioner under the alternative eligibility requirements. This course and NGN 732Q should be considered for students interested in a secondary licensure and is not intended for initial licensure as an advanced practice gerontological nurse. Documentation of clinical hours required by the ANCC is incumbent upon the student, not the UASON. Questions concerning the alternative eligibility requirements may be addressed by course faculty or the ANCC registrar.
NGN 732. Advanced Practice Gerontological Nursing II. 3 Hours.
This course is designed to provide DNP students who are already adult, adult acute, and/or family nurse practitioners and who are delivering care to a majority of gerontological patients, with an advanced theoretical and empirical knowledge of aging. This level of specialized gerontological nursing knowledge is beyond what would be obtained in an acute, adult, or family nurse practitioner program. The content in NGN 731Q and NGN 732Q satisfies the ANCC didactic requirements for a secondary certification as a gerontological nurse practitioner under the alternative eligibility requirements. This course and NGN 731Q should be considered for students interested in a secondary licensure and is not intended for initial licensure as an advanced practice gerontological nurse. Documentation of clinical hours required by the ANCC is incumbent upon the student, not the UASON. Questions concerning the alternative eligibility requirements may be addressed by course faculty or the ANCC registrar.

NHSA-Nursing and Health Admin Courses

NHSA 616. Nursing Financial Management. 4 Hours.
Nurse leaders play an important role in managing the financial responsibilities for providing high quality care. This course explores health care economics and health care policy as it applies to access, costs, and quality, current and future mechanisms for financing health care services, and organization and unit level budgeting principles. Content will include creating, monitoring, and analyzing a budget, interpreting financial information, and capital budgeting. Corequisite: NHSA 617L.

NHSA 617L. Nursing Financial Management Practicum. 2-3 Hours.
This course provides a practical base for students to apply financial concepts in a health care organization. Students will work with healthcare administrators to create, monitor, and/or analyze budgets, examine revenue cycle for opportunities for improvement, and develop a business case for a new product or service.

NHSA 618. Human Resource Management. 3 Hours.
This course provides a theoretical basis for students to learn and apply human resources and organizational concepts, theories, and behaviors. The course will facilitate the individual growth and development of the nurse leader. Content includes human resource management issues; recruitment and retention; staff development; roles clarification; leadership development and succession planning; teamwork and collaborative practice; conflict management; performance management; cultural competence and the work environment; personnel policies, standards, and laws; and decision making and governance models. Students will begin developing a professional portfolio. Successful completion of field experience is required.

NHSA 620. Nursing and Health Systems Administration I. 3 Hours.
This course provides a theoretical base for students to develop the role of nursing and health systems administrator at the unit level. Emphasis is placed on the development of the knowledge and skills necessary for implementing the management role. Students will develop specific administrative competencies to include the ability to: understand self and others, communicate effectively, develop subordinates, manage conflict, monitor personal and individual performance, manage projects, delegate effectively, manage time and stress, foster a productive work environment, live with change, and build and maintain a power base. Content builds on the theoretical foundations of leadership, organizational behavior, and capital management applied to the structure of nursing and health organizations, patient care delivery and classification systems, staffing, budgeting, quality standards and improvement, risk management, leadership development, strategic planning, and change management. The following elements are integrated into this course: critical thinking, research, scholarly writing, professional presentation, scientific integrity and ethics, cultural diversity, and social issues. The role emphasis of this course is that of beginning nurse manager. Prereq: Admission to the Nursing and Health Systems Administration option.
Prerequisites: NUR 601 [Min Grade: B] and (MBA 609 [Min Grade: C] or HCO 615 [Min Grade: C]) and (MBA 632 [Min Grade: C] or HA 631 [Min Grade: C]) and NUR 602 [Min Grade: C]

NHSA 621. Nursing and Health Systems Administration II. 2.4 Hours.
This course provides a theoretical and experiential base for students to develop and implement the role of nursing and health systems administrator at the division/department level. Emphasis is placed on the synthesis of knowledge and skills from the disciplines of nursing and business management that is necessary to apply when assuming the middle management role. Students will develop specific administrative competencies to include the ability to manage collective performance, design and organize projects, negotiate agreement and commitment, and create change. Content includes analysis of administrative roles and functions, strategies for coordination of quality care within and across departments and systems, strategies for service as an expert resource, business planning, cost and productivity, redesigning practice to achieve goals, models of practice and service delivery, utilization of consultants, managing product/service lines, and utilization of research for improving nursing processes and patient care outcomes. The following elements are integrated into this course: critical thinking, research, scholarly writing, professional presentation, scientific integrity and ethics, cultural diversity, and social issues. The role emphasis of this course is that of mid-level manager. Prerequisite: NHSA 620. Corequisite: NHSA 685L.

Prerequisites: NHSA 620 [Min Grade: B]
NHSA 622. Nursing and Health Systems Administration III. 2 Hours.
This course continues to provide a theoretical and experiential base for students to develop and implement the role of nursing and health systems administrator at the executive level. Through seminar discussion and with an executive level preceptor, emphasis is placed on the application, synthesis, and integration of knowledge and skills necessary for effective and efficient management of human and material resources, while incorporating the ethical, social, legal, financial, and economic aspects of health care delivery, health policy, and regulatory requirements for both staff and the organization. Students will develop specific administrative competencies to include the ability to manage organizational performance, manage across functions, present ideas, think creatively, and develop a vision, mission, strategic plan, and set goals. Content includes health care regulation and policy, practice plans and financing, internal and external environmental influences on nursing and health care systems, information system development and management, quality improvement, and managed care systems. The following elements are integrated into this course: critical thinking, research, scholarly writing, professional presentation, scientific integrity and ethics, cultural diversity, and social issues. The role emphasis of this course is that of chief nurse executive. Prerequisite: NHSA 621 and NHSA 685L. Corequisite: NHSA 686L.
Prerequisites: NHSA 621 [Min Grade: B]

NHSA 630. Health Services Marketing Management. 3 Hours.
The redesign of healthcare organizations has mandated larger spans of control for nurse managers with expertise and leadership skills in organizational, human resource, and financial management. The need for the integration of clinical skills with business know-how has been fueled by a more diverse work force with direct responsibility for non-nursing staff, an increased emphasis on customer service and risk management, and the ability to design and implement care delivery models that extend beyond the walls of the organization into the community and its stakeholders. Health systems across the country (and internationally), including home health agencies, managed care entities, public and private sector hospitals, long-term and ambulatory care facilities, and insurance companies, are searching for advanced level nurses for management and executive level positions.

NHSA 631. Advanced Quality and Patient Safety. 1-4 Hour.
This course examines current issues in quality improvement and patient safety activities. The course includes a review of past and current efforts, tools, and theories of quality assessment, assurance, utilization management, and measuring and improving outcome. In addition, the course looks at new initiatives to improve quality and safety through regulation, reporting and financial incentives.

NHSA 632. Nursing and Health Systems Administration I. 2-4 Hours.
This course provides a theoretical base for students to develop the role of nursing and health systems administrator. Emphasis is placed on development of knowledge and skills necessary for implementing the management role. Students will develop specific administrative competencies to include the ability to: understand self and others; communicate effectively, develop subordinates, manage conflict, monitor personal, individual, and team performance, manage projects, delegate effectively, manage time and stress, foster a productive work environment, live with change, and build and maintain a power base. Content builds on the theoretical foundations of leadership, organizational behavior, financial management, patient care delivery, quality standards and improvement, risk management, leadership development, and change management. The following elements are integrated into this course: critical thinking, research, scholarly writing, professional presentation, scientific integrity and ethics, cultural diversity, and social issues. The role emphasis of this course is for entry and mid-level nurse leaders. Prerequisite: Admission to the Nursing and Health Systems Administration option.
Prerequisites: NHSA 616 [Min Grade: B] and NHSA 617L [Min Grade: P] and NHSA 618 [Min Grade: B] and NHSA 631 [Min Grade: B] and NHSA 681L [Min Grade: P]

NHSA 633. Nursing and Health Systems Administration II. 4 Hours.
This course offers a theoretical base for students to develop and implement the role of nursing and health systems administrator at the service line/division or higher level. Emphasis is on the synthesis of knowledge and skills from multiple disciplines including nursing and business necessary when assuming a mid-level to senior level leadership role. A primary focus of this course is to develop the nurse leader as an expert to influence patient care, systems and community outcomes in a variety of settings such as ambulatory clinics, long-term care, acute care, community, managed care and policy-making. Content includes strategic management, health care policy and regulation, internal and external environmental assessments, disaster preparedness, and organizational and professional accountability. The following elements are integrated into this course: critical thinking, research, scholarly writing, professional presentation, scientific integrity and ethics, cultural diversity, and social issues. The role emphasis of this course is mid-level to senior level leadership roles.
Prerequisites: NHSA 632 [Min Grade: B] and NHSA 682L [Min Grade: P]

NHSA 640. Economics for Nursing. 3 Hours.
Nurses care for people and caring is the central concept of modern nursing. Yet caring takes many forms, including caring about the economics of services provided. Changes in payment systems, organizational structure and the U.S.healthcare market have led to new interests in the economics of care delivery. Nurses play a major role in this care delivery, as clinicians, administrators and scholars. Topics for the completely on-line course include a basic introduction to economics as it applies to nursing, the nursing labor and service markets and critical professional economic issues facing nursing today.

NHSA 681L. Advanced Quality and Patient Safety Practicum. 2-3 Hours.
This course provides an experiential base for students to develop and implement the role of nursing and health systems quality and outcomes manager within a healthcare organization. Students will analyze outcomes measurement and quality improvement in a health care setting from a strategic perspective and engage, as leaders and participants, in efforts to improve the quality of health services.
NHSA 682L. Nursing and Health Systems Administration I Practicum. 2-4 Hours.

This course is the third of four required practicum courses for the nursing and health systems administration student. Students in this course will synthesize theoretical concepts for administration practice and apply knowledge and skills obtained in masters core courses and prerequisite support courses to meet the objectives of the course. Students will arrange their own clinical site(s) with assistance/approval from clinical faculty.

Prerequisites: NHSA 616 [Min Grade: B] and NHSA 617L [Min Grade: P] and NHSA 618 [Min Grade: B] and NHSA 631 [Min Grade: B] and NHSA 681L [Min Grade: P]

NHSA 683L. Nursing and Health Systems Administration II Practicum. 2 Hours.

This course is the last of four practicum courses for the nursing and health-systems administration student. Students in this course will synthesize theoretical concepts for administration practice and apply knowledge and skills obtained in masters core courses and prerequisite support courses to meet the objectives of the course. Emphasis is placed on the synthesis of knowledge and skills from the disciplines of nursing and business management that is necessary to apply when assuming a mid- or senior level management/leadership role. Students will arrange their own clinical sites with assistance/approval from clinical faculty.

Prerequisite: NHSA 632 and NHSA 682L. Corequisite: NHSA 633.

Prerequisites: NHSA 632 [Min Grade: B] and NHSA 682L [Min Grade: P]

NHSA 685L. Nursing and Health Systems Administration Practicum I. 1-2 Hour.

This course is the first of two required application courses for the nursing and health-systems administration student. Students in this course will synthesize theoretical concepts for administration practice and apply knowledge and skills obtained in masters core courses and prerequisite support courses to meet the objectives of the course. Students arrange their own clinical sites with assistance/approval from clinical faculty.

Prerequisite: NHSA 620. Corequisite: NHSA 621.

Prerequisites: NHSA 620 [Min Grade: B]

NHSA 686L. Nursing and Health Systems Administration/Quality Management Practicum II. 4 Hours.

Nursing and Health Systems Administration/Quality and Outcomes Management in Health Systems: This course provides an experimental base for students to develop and implement the role of nursing and health systems administrator and quality and outcomes manager at the executive level. Emphasis is placed on the synthesis of knowledge and skills from the disciplines of nursing and business management that is necessary to apply when assuming a management and leadership role.

Students will analyze outcomes measurement and quality improvement in a health care setting from a strategic perspective and engage, as leaders and participants, in efforts to improve the quality of health services. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NHSA 621 and NHSA 685L. Corequisite: NHSA 622.

Prerequisites: NHSA 621 [Min Grade: B] and NHSA 685L [Min Grade: P]

NHSL - Nursing Hlth Sys Leader Courses

NHSL 604. Developing the Advanced Nurse Leader. 3 Hours.

The purpose of this course is to provide core content in leadership theories and models for MSN students in the Health Systems Leadership division. The focus of this course is on major theoretical leadership perspectives and change management providing rigorous evidence for systems' practice application and innovation. Emphasis is on specialty role competencies integrating leadership skills for emerging leaders are included through professional development experiences. This course will include a range of practical skills and special topics on major trends in contemporary leadership, including communication, relationship building, negotiation and conflict, change management, ethical and moral leadership, and team science.

NHSL 606. Evidence-Based Translation and Management. 3 Hours.

In this course, the graduate student nurse in the leadership core will learn about and apply the activities of retrieval, rating, grading, synthesis, and translation of evidence to support change to improve quality, safety, efficiency, and outcomes for systems and population. The course stresses the interdependence and fluidity of various approaches to evidence-based practice with an emphasis on developing your skills in scientific inquiry, critical appraisal, and translation. You will examine the use of evidence in the nurse leader practice and use the knowledge and skills gained in this course to apply to future scholarly projects.

Prerequisites: NHSL 610 [Min Grade: B] and NHSL 604 [Min Grade: B]

NHSL 610. Health Care Systems for Advanced Leaders. 3 Hours.

The purpose of this course is to provide graduate nurse leader students with the fundamental knowledge and skills necessary to assume leadership, fiscal, and system responsibilities for providing high-quality services in healthcare organizations. This course focuses on healthcare systems, organizational structures, economics concepts, fiscal management, health policy, and delivery of population health services across the continuum of care. Emphasis is on the integration and use of system concepts, organization theories, fiscal responsibilities, resource management, and legal and ethical issues driving strategic decision-making in healthcare organizations.

NMD - Nursing - Diabetes Mnmgt Courses

NMD 621. Advanced Management of Diabetes I. 3 Hours.

A variety of management strategies will be presented from multiple healthcare disciplines. The perspectives of the multi-disciplinary team in assisting persons to achieve self-care goals is an important theme throughout this course as are the current controversies, issues, and research findings underlying present approaches to treatment and patient/family education. Topics presented are based on the curriculum blueprint of the American Diabetes Educators Program recommendations for the ANCC/ADE Advanced Diabetes Management certification examination for clinical nurse specialist and/or nurse practitioners. The topics addressed in this course include: recognition of early signs of diabetes mellitus, self glucose monitoring, diabetes among: minorities, and those residing in rural settings. Pre-req: NUR 600, NUR 614, NCA 621 and NCA 685L or equivalent or ANCC certification as a Nurse Practitioner.
NMD 622. Advanced Management of Diabetes II. 3 Hours.
This online course is the second in a program of study focusing on advanced diabetes management across the lifespan. Two didactic and three clinical courses are offered that will provide a multi-disciplinary framework for the identification of those at risk for or who already possess the metabolic syndrome, prediabetes, frank type 1 or 2 diabetes mellitus and/or the associated complications. A variety of management strategies will be presented from multiple healthcare disciplines. The perspectives of the multi-disciplinary team in assisting persons to achieve self-care goals is an important theme throughout this course as are the current controversies, issues, and research findings underlying present approaches to treatment and patient/family education. Topics presented are based on the curriculum blueprint of the American Diabetes Educators Program recommendations for the ANCC/AADEd Advanced Diabetes Management certification examination for clinical nurse specialist and/or nurse practitioners. Topics presented will be based on the curriculum of the American Diabetes Educators Program recommendations for the Certified Diabetes Educator. These topics include: family planning, gestational diabetes, poly cystic ovarian syndrome (PCOS), orthopedic sequelae of diabetes, transplantation, glucose monitoring, insulin pump and other advanced diabetes technologies, diabetes in: rural minorities, elderly, children; diabetes in persons with disabilities, insurance issues, cultural issues, economic issues, mood disorders, eating disorders, hypoglycemia, pain management, foot care, risks of ESRD, hypertension, obesity, dental concerns and provider reimbursement issues regarding diabetes education services. Prerequisites: NMD 621 and NMD 685L or ANCC certification as a nurse practitioner.
Prerequisites: NMD 621 [Min Grade: B] or NMD 621 [Min Grade: B]
NMD 685L. Practicum I: Advanced Management of Diabetes. 3 Hours.
NMD 685L allows the student to begin the development of the Advanced Diabetes Management role by providing health care services to clients across the lifespan (i.e., individuals, families, groups) in a variety of settings and emphasizing the promotion of health and the prevention of disease. Further, the student applies knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. It is anticipated that the student will be increasingly independent and skilled as each clinical experience progresses, allowing him/her to become proficient and to contribute to the management of more complex health problems. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity and awareness of social and professional issues. The advanced practice role emphasis in this course begins the trajectory of the NP experience from novice to beginning expert, and includes role components such as interdisciplinary collaborator, coach, teacher, manager, researcher, and consultant. Students arrange their own clinical sites with assistance/approval from clinical faculty. Corequisite: NMD 621.

NNE-Nursing - Neonatal Courses

NNE 613. Neonatal Pharmacology and Therapeutics. 3 Hours.
This course focuses on the analysis and utilization of principles of pharmacology and pharmacokinetics for the purpose of planning, implementing, and evaluating therapeutic pharmacological interventions within the specified population. The unique characteristics of the neonatal population, related to therapeutic needs, as well as drug absorption, metabolism and excretion are defined.

NNE 614L. Assessment and Diagnostic Reasoning for Advanced Nursing Practice. 4 Hours.
This course is designed to provide students with an advanced level of skill and knowledge in critical thinking, procedures and skills, and diagnostic reasoning for conducting health assessments and planning care for wholistic, adaptive human beings. The following elements are integrated into the course: professional presentations, critical thinking, scientific integrity and ethics, human diversity and social issues. Pre or Corequisite: NUR 612.
Prerequisites: NUR 612 [Min Grade: B] (Can be taken Concurrently) or NUR 612 [Min Grade: B] (Can be taken Concurrently)
NNE 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: [NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B] and (NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B] (Can be taken Concurrently)
NNE 621. Advanced Neonatal Nursing I. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of the Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to neonates, infants, and young toddlers up to two years of age.
Prerequisites: NUR 612 [Min Grade: B] and (NUR 610 [Min Grade: B] or NUR 735 [Min Grade: B]) and NUR 613 [Min Grade: B] and (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B])
NNE 622. Advanced Neonatal Nursing II. 4-5 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of neonates, infants, and young toddlers up to the age of two. The focus of this course is on health promotion and disease prevention and management strategies from inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care to neonates, infants, and young toddlers up to the age of two.
Prerequisites: [NNE 621 [Min Grade: B] or NNE 621 [Min Grade: B] and (NNE 684L [Min Grade: P] or NNE 684L [Min Grade: P])]
NNE 623. Advanced Neonatal Nursing III. 4-5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to neonates, infants, and young toddlers up to the age of two. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: [NNE 622 [Min Grade: B] or NNE 622 [Min Grade: B] and (NNE 685L [Min Grade: P]) or NNE 685L [Min Grade: P]]
NNE 684L. Practicum I: Neonatal Nurse Practitioner. 2-3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to neonates, infants, and young toddlers up to the age of two. The focus of this course is on the delivery of health care services to neonates, infants, and young toddlers up to the age of two. The emphasis of this course is on the progression of competence within the Advanced Practice Nursing role.
Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B])

NNE 685L. Practicum II: Neonatal Nurse Practitioner. 2-3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to neonates, infants, and toddlers up to the age of two. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for neonates, infants, and toddlers up to the age of two. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NNE 621 [Min Grade: B] or NNE 621 [Min Grade: B]) and (NNE 684L [Min Grade: P] or NNE 684L [Min Grade: P])

NNE 686L. Practicum III: Neonatal Nurse Practitioner. 1-3 Hour.
This course is the second of two practicum courses that will be followed by a residency. In selected clinical settings, students are expected to integrate the knowledge and competencies gained from foundation courses to begin to further develop the NNP Role.
Prerequisites: NNE 622 [Min Grade: B] (Can be taken Concurrently) or NNE 622 [Min Grade: B] (Can be taken Concurrently)

NNE 692L. Practicum III: Neonatal Nurse Practitioner. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to neonate, infant, and young toddler up to the age of two. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of neonate, infant, and young toddler up to the age of two.
Prerequisites: (NNE 622 [Min Grade: B] or NNE 622 [Min Grade: B]) and (NNE 685L [Min Grade: P] or NNE 685L [Min Grade: P])

NNE 721. Advanced Neonatal Nursing I. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of Doctor of Nursing Practice prepared Advanced Practice Nurse. The Emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to neonates.
Prerequisites: NNE 618L [Min Grade: P] and (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B])

NNE 722. Advanced Neonatal Nursing II. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness for neonates in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of neonates.
Prerequisites: NNE 721 [Min Grade: B]

NNE 723. Advanced Neonatal Nursing III. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care as a Doctor of Nursing Practice prepared Advanced Practice Nurse to neonates. The emphasis of this course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: NNE 722 [Min Grade: B] and NCA 785L [Min Grade: P]

NNE 784L. Practicum I: Neonatal Nurse Practitioner. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to neonates. The focus of this course is on the delivery of health care services to neonates. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse.
Prerequisites: NNE 618L [Min Grade: P]

NNE 785L. Practicum II: Neonatal Nurse Practitioner. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to neonates. The focus of this course is to provide the student with opportunities to integrate in-depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse to provide care for neonates. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: NNE 721 [Min Grade: B] and NNE 784L [Min Grade: P]

NNE 786L. Practicum II: Neonatal Nurse Practitioner. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to neonates. The focus of this course is to provide the student with opportunities to integrate in-depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse to provide care for neonates. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: NNE 721 [Min Grade: B] and NNE 784L [Min Grade: P]

NNE 792L. Practicum III: Neonatal Nurse Practitioner. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to neonates. The focus of this course is to evaluate progress toward achievement of competencies of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The Emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of neonates.
Prerequisites: NNE 722 [Min Grade: B] and (NNE 785L [Min Grade: P] or NNE 786L [Min Grade: P])

NNI-Nursing - Informatics Courses

NNI 621. Conceptual Basis for Informatics Practice. 3 Hours.
This course is based on the concepts underpinning nursing informatics practice as delineated in the American Nurses Association’s Scope and Standards of Nursing Informatics Practice. Students will explore theories of adult education, communication, systems, decision making, human-computer interaction and the concepts of data, information and knowledge. They will have the opportunity to learn how these theories and concepts are utilized in informatics practice.
Prerequisite: NUR 643.
Prerequisites: NUR 643 [Min Grade: C](Can be taken Concurrently)
NNI 622. The Information System Life Cycle. 3 Hours.
This offering is designed to be the culminating course of the nursing informatics specialist curriculum. This course ties together all previous work in the course and in the curriculum. The course is designed to be taken in conjunction with a clinical experience in which the student will be exposed to aspects of the hands on application of course content.
Prerequisites: NUR 643 [Min Grade: C] and NNI 621 [Min Grade: B]

NNI 625. Organizational Process and Behavior. 3 Hours.
This course will assist the Nurse Informatician to understand and evaluate how organizations change and innovate with new information technologies to compete in the marketplace, collaborate with partners, provide customer service, motivate employees, and improve operations. This course provides the students with the opportunities to: learn the main theoretical perspectives on managing IT change through innovations; familiarize with current best practices and models of change of innovation through IT; and develop innovation skills in various organizational settings and within the framework of project management.
Prerequisites: (NUR 610 [Min Grade: C] or NUR 610 [Min Grade: C]) and (NHSA 631 [Min Grade: C] or NHHSA 631 [Min Grade: C]) and NUR 643 [Min Grade: C] (Can be taken Concurrently)

NNI 630. Biomedical Informatics Research. 3 Hours.
This course provides an overview of the field of biomedical informatics, including subfields ranging from bioinformatics to public health informatics, from the perspective of research accomplishments and challenges. Each topic will be taken from a historical perspective—where we are now and how did we get here 0 and then explore the current research directions. There will be emphasis on underlying concepts, theories, and methods. Although this course can serve as a survey of the field, it is also intended for students who will pursue research in some area of biomedical informatics. This course would be useful for any students doing research using healthcare data.

NNI 631. Foundations of Nursing Informatics—Scope of Practice, Models, Standards, and Theories. 3 Hours.
In this course, the graduate nursing informatics student will be grounded in the Scope and Standards of Nursing Informatics (NI)Practic beginning with forming an understanding of the foundational model of all informatics: data to information to knowledge to wisdom (DIKW). NI students will then apply the DIKW model to an examination of concept oriented, standardized terminologies and the impact of this on evidence formation, outcomes, evaluation, and the calculation of the value of nursing. The graduate nursing informatics student will explore standards guiding interoperability, security, and data transfer. Lastly, the nursing informatics student will analyze and evaluate the role of the Informatics Nurse Specialist in leadership change using relevant informatics theories.
Prerequisites: NHSL 604 [Min Grade: B] and NHSL 610 [Min Grade: B]

NNI 632. Nursing Informatics Systems Analysis and Design. 4 Hours.
Information systems development and implementation is a process in which technical, organizational, and human aspects of a system are analyzed with the goal of creating an improved and more efficient system. The process of systems analysis and design contains best practice process but is still largely an art. There is a high dependence on the skills of individual analysts and designers even though there are established principles, methods, and tools. This course will give nursing informatics graduate students an understanding of the most common tools, techniques, and theories currently used in healthcare information systems analysis and design.
Prerequisites: NNI 631 [Min Grade: B]

NNI 633. Informatics and Information Technology Review to Advance Care. 3 Hours.
In this course, the graduate informatics nurse student will be presented with the latest federal policies directing the infusion of technology at the point of care and the broad goals of expected impact on the health of the nation. A survey and critical appraisal of the latest technologies used in administrative, clinical, research, educational, and consumer spaces will be facilitated along with best practice implementation strategies and research to support optimal outcomes and quality.
Prerequisites: NNI 631 [Min Grade: B]

NNI 634. Informatics Project Evaluation/Human Factors. 3 Hours.
In this course, the graduate student informatics nurse will gain the knowledge and skills to effectively develop an evaluation protocol for the implementation of a health information technology. This course will assist the student to understand the challenges of evaluation in this specialization. Students will: determine objectives for study; design a study methodology; offer possible measurement tools; and will compare and contrast analyses. This course will include a review of human factors as part of the measurement process.
Prerequisites: NNI 632 [Min Grade: B] and NNI 633 [Min Grade: B] and NHSA 631 [Min Grade: B]

NNI 635. Essentials of Project Management for Nursing Information Specialists. 3 Hours.
This course emphasizes the application of nursing informatics theories, models, and skill to the role of the informatics nurse specialist as a project manager. In this course, students will demonstrate the application of the concepts, principles, and practices of formal informatics project management through the knowledge, skills, and competencies of an informatics nurse specialist. An informatics project will be planned, implemented, and evaluated in a selected healthcare-related setting.
Prerequisites: NNI 632 [Min Grade: B] or NNI 633 [Min Grade: B] or NHSA 631 [Min Grade: B]

NNI 636. Data Analytics for the Informatics Nurse Specialist. 3 Hours.
The purpose of this course is to provide the informatics nurse specialist graduate students with an overarching knowledge of Big Data, Data Lifecycle, and the use of advanced technologies with Big Data in healthcare while considering the current challenges. The focus of the course will be to master the domain knowledge and appropriate theories while mastering the use of analytics software using a real-life large dataset. The emphasis of this course will be for the students to apply this knowledge through the use and application of data visualization software to answer healthcare questions/problems. Students will: propose study questions/problems; visually display data results through a data visualization software (Tableau); and synthesize their questions and answers. A presentation of results will be the culminating experience.
Prerequisites: NHSL 604 [Min Grade: B] and NHSL 606 [Min Grade: B] and NHHSA 610 [Min Grade: B] and NNI 631 [Min Grade: B] and NNI 632 [Min Grade: B] and NNI 634 [Min Grade: B]

NNI 685L. Nursing Informatics: Practicum I. 2 Hours.
This course provides an experimental base for students to develop and implement the role of the informatics nurse specialist. Emphasis is placed on the synthesis and application of the theories and concepts that provide the basis of informatics practice. Students will develop the ability to collaborate in multidisciplinary groups, identifying areas for the design and implementation of administrative and clinical technological applications. Students will spend 100 hours during the semester working with a clinical informatics specialist in practice.
NUR 686L. Nursing Informatics: Practicum II. 2 Hours.
This course provides an experimental base for students to develop and implement the role of the informatics nursing specialist at the organizational level. Students will be paired with a nursing informatics specialist working on aspects of system analysis, design, implementation and evaluation. This experience requires the student to synthesize knowledge gained in all previous courses in the curriculum. This course includes 100 hours of clinical practice and is designed to function as the clinical capstone to the NNI curriculum. A comprehensive examination is given during this residency course. Failure to pass the comprehensive examination will delay graduation.
Prerequisites: NNI 685L [Min Grade: P]

NNO 625. Principles and Practice of Occupational Safety, Ergonomics, and Industrial Hygiene. 3 Hours.
The purpose of this course is to introduce major concepts from occupational safety, ergonomics, and industrial hygiene and the collaborative relationship among occupational health and safety professionals. Emphasis is on exploring risk factors in disciplines to control injury and illness in the national and international workplace. Students will also develop an appreciation of the history of occupational health along with an understanding of legal and regulatory influences on worker populations.

NPA-Nursing - Palliative Care Courses

NPA 621. Advanced Palliative Care Nursing I. 3 Hours.
The purpose of this course is to provide a theoretical and practical foundation for students to diagnose and manage the health needs of the patient and family in the delivery of palliative care across the lifespan. The focus of the course is on interdisciplinary, holistic palliative care management strategies. The emphasis of the course is on critical thinking, research, ethics, cultural competence, disease management, complication prevention and healthcare delivery as they apply to chronic disease management and quality of life for the palliative care patient and family.
Prerequisites: (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B])

NPA 622. Advanced Palliative Care Nursing II. 3 Hours.
The purpose of this course is to provide the student with opportunities to integrate in-depth knowledge of health assessment and management skills to provide care for clients with commonly occurring chronic and complex health problems as well as palliative care problems. The focus of the course is the development of strategies to market the nurse practitioner role, to create a specific practice position, and to explore strategies to market palliative care and their role in family health care. The emphasis of the course is on critical thinking, health promotion, disease prevention, scientific integrity and ethics, human diversity and social issues, professional role development, education and marketing.
Prerequisites: NPA 621 [Min Grade: B] or NPA 621 [Min Grade: B]

NPA 626. Palliative Care for Advanced Nursing Practice I. 3 Hours.
This course provides a theoretical and practical foundation for students to diagnose and manage the health needs of the palliative care patient and family in the delivery of culturally competent care across the life span. Content includes multidisciplinary management strategies to holistic healthcare delivery as it applies to administration of culturally competent palliative care. This course will utilize discussion, online activities for application of class content, readings, lecture and guest lecture approach to supplement text readings and online delivery of didactic content. The students are expected to apply culturally competent and palliative care theories to clinical assessment and decision-making strategies in order to provide direct patient care to the palliative care patient and family.
Prerequisite: NUR 614L. Corequisite: NPA 685L.
Prerequisites: NUR 614L [Min Grade: B] and NUR 613 [Min Grade: B] (Can be taken Concurrently) or NUR 613 [Min Grade: B] (Can be taken Concurrently)

NPA 627. Palliative Care for Advanced Nursing Practice II. 3 Hours.
This course is designed to provide the student with opportunities to integrate in-depth knowledge of health assessment and management skills to provide care for patients with commonly occurring palliative care problems. Students will also have the opportunity to develop strategies to market the advanced practice nurse role, to create a specific practice position and to explore strategies to market their role in health care. The following elements are integrated into the course: critical thinking, health promotion, disease prevention and palliative care, scientific integrity and ethics, human diversity and social issues and professional role development. Corequisite: NPA 685L.
Prerequisites: (NPA 626 [Min Grade: B] or NPA 626 [Min Grade: B])

NPA 685L. Practicum: Advanced Palliative Care. 2-4 Hours.
The purpose of this course is for the student to develop the Palliative Care Nurse Practitioner role by providing health and palliative care services to clients across the lifespan, families, and groups while emphasizing the promotion of health, the prevention of disease and the palliative care for life altering conditions. The focus of the course is on application of knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. The emphasis of this course encompasses a trajectory of the nurse practitioner experience from novice to beginning expert, and includes role components such as interdisciplinary collaborator, coach, educator, and consultant.
Prerequisites: (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B] (Can be taken Concurrently) or NPA 621 [Min Grade: B] (Can be taken Concurrently) or NPA 622 [Min Grade: B] (Can be taken Concurrently)
NPA 686L. Practicum: Culturally Competent Palliative Care Nurse Practitioner II. 3 Hours.
This course allows the student to develop the Culturally Competent Palliative Care Nurse Practitioner role by providing health and palliative care services to clients across the lifespan, families and groups while emphasizing the promotion of health, the prevention of disease and palliative care for life altering conditions throughout the course of clinical experiences over two academic terms. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. An Objective Structured Patient Experience held during this course will determine if the student can progress into 6 hours of the final residency course, NCA 692L. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NPA 621 and NPA 685L. Corequisite: NPA 622.
Prerequisites: NPA 685L [Min Grade: P] or NPA 685L [Min Grade: P]

NPA 692L. Residency: Culturally Competent Palliative Care Nurse Practitioner. 3-6 Hours.
This course prepares the student in the Culturally Competent Palliative Nurse Practitioner role to be a beginning expert in the diagnosis and management of client’s health problems. During residency, the student is expected to continue growth toward becoming an independent practitioner, specializing in the culturally competent care of clients from across the lifespan. The student further develops the Palliative Care Nurse Practitioner role with patient/clients by providing health care services to clients (i.e. individuals, families, groups) emphasizing the promotion of health, prevention of disease and/or palliation of symptoms of life-altering diseases. A comprehensive examination is given during this residency course. Failure to pass the comprehensive examination will delay graduation. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NPA 622 and NPA 686L.
Prerequisites: (NPA 627 [Min Grade: B] or NPA 627 [Min Grade: B]) and (NPA 685L [Min Grade: P] or NPA 685L [Min Grade: P]) and (NPA 686L [Min Grade: P] or NPA 686L [Min Grade: P])

NPE-Nursing - Pediatrics Courses

NPE 613. Primary Care Pediatric Pharmacology. 1 Hour.
This course is a supplement course for Primary Care Practitioner students to provide them with information necessary to safely and competently prescribe medications for infants, children and adolescents. It complements the information provided in NUR 613 Pharmacology and Therapeutics but focuses on the unique physiologic and metabolic characteristics of this population. Pre or corequisite: NUR 613.
Prerequisites: NUR 613 [Min Grade: B]Can be taken Concurrently) or NUR 613 [Min Grade: B]Can be taken Concurrently)

NPE 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B]) and (NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B]Can be taken Concurrently)

NPE 621. Advanced Pediatric Nursing I - Primary Care. 4-5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of the Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to primary care pediatric patients and their families.
Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) and (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) and (NUR 613 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B])

NPE 622. Advanced Pediatric Nursing II - Primary Care. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of primary care pediatric patients and their families. The focus of this course is on health promotion and disease prevention and management strategies from inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care to primary care pediatric patients and their families.
Prerequisites: (NPE 621 [Min Grade: B] or NPE 621 [Min Grade: B]) and (NPE 685L [Min Grade: P] or NPE 685L [Min Grade: P])

NPE 623. Advanced Pediatric Nursing III - Primary Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to primary care pediatric patients and their families. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: (NPE 622 [Min Grade: B] or NPE 622 [Min Grade: B]) and (NPE 686L [Min Grade: P] or NPE 686L [Min Grade: P])

NPE 686L. Practicum I: Pediatric Nurse Practitioner – Primary Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to primary care pediatric patients and their families. The focus of this course is on the delivery of health care services to primary care pediatric patients and their families. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.
Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B])

NPE 686L. Practicum II: Pediatric Nurse Practitioner – Primary Care. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to primary care pediatric patients and their families. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for primary care pediatric patients and their families. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NPE 621 [Min Grade: B] or NPE 621 [Min Grade: B]) and (NPE 685L [Min Grade: P] or NPE 685L [Min Grade: P])
NPE 687L. Practicum III: Primary Care Pediatric Nurse Practitioner. 2 Hours.
This course prepares the student in the Pediatric Nurse Practitioner role. The student develops the Pediatric NP role with patients/clients by providing pediatric health care services to clients (i.e. individuals, families, groups) emphasizing the promotion of health and the prevention of disease throughout the course of clinical experiences over two or three academic terms. Further, the student continues to apply knowledge and current research findings to the management of actual and potential health problems, which include common diseases and human responses to disease. It is anticipated that the student will be increasingly independent and skilled as each clinical experience progresses, allowing him/her to become more proficient and to contribute to the management of more complex health problems. The following elements are integrated into the course: critical thinking, professional presentations, research utilization, scientific integrity and ethics, human diversity and social issues. The advanced practice role emphasis in this course encompasses a trajectory of the nurse practitioner experience from novice to beginning expert, including interdisciplinary collaboration, coach, educator, consultant roles. Prerequisite: NPE 622 and NPE 686L.
Corequisite: NPE 623.
Prerequisites: (NPE 622 [Min Grade: B] and NPE 686L [Min Grade: P]) or (NPE 622 [Min Grade: B] and NPE 686L [Min Grade: P])

NPE 692L. Practicum III: Pediatric Nurse Practitioner – Primary Care. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to primary care pediatric patients and their families. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of primary care pediatric patients and their families.
Prerequisites: (NPE 622 [Min Grade: B] or NPE 622 [Min Grade: B]) and (NPE 686L [Min Grade: P] or NPE 686L [Min Grade: P])

NPE 721. Advanced Pediatric Nursing I - Primary Care. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of Doctor of Nursing Practice prepared Advanced Practice Nurse. The Emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to primary care pediatric patients and their families.
Prerequisites: NPE 618L [Min Grade: P] and (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B])

NPE 722. Advanced Pediatric Nursing II - Primary Care. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness for primary care pediatric patients and their families in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of primary care pediatric patients and their families.
Prerequisites: NPE 721 [Min Grade: B]

NPE 723. Advanced Pediatric Nursing III - Primary Care. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care as a Doctor of Nursing Practice prepared Advanced Practice Nurse to primary care pediatric patients and their families. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: NPE 722 [Min Grade: B] and NPE 786L [Min Grade: P]

NPE 785L. Practicum I: Pediatric Nurse Practitioner - Primary Care. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to primary care pediatric patients and their families. The focus of this course is on the delivery of health care services to primary pediatric patients and their families. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse.
Prerequisites: NPE 618L [Min Grade: P]

NPE 786L. Practicum II: Pediatric Nurse Practitioner – Primary Care. 3 Hours.
The purpose of this course is to prioritize management strategies and apply selected practice models for delivery of care to primary care pediatric patients and their families. The focus of this course is to provide the student with opportunities to integrate in-depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse to provide care for primary care pediatric patients and their families. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: NPE 721 [Min Grade: B] and NPE 785L [Min Grade: P]

NPE 792L. Practicum III: Pediatric Nurse Practitioner – Primary Care. 4 Hours.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to pediatric patients and their families. The focus of this course is to evaluate progress toward achievement of competencies of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The Emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of pediatric patients and their families.
Prerequisites: NPE 722 [Min Grade: B] and NPE 786L [Min Grade: P]

NPN-Psyc Mental Hlth Nur Prac Courses

NPN 613. Psychopharmacology for Advanced Practice Nursing. 3 Hours.
This course will provide advanced knowledge of psychobiological information in conjunction with the use of psychopharmacological interventions with patients. This course will focus on the pharmacokinetcs and clinical management including prescription of medications for psychiatric disorders. Prerequisite: NUR 613, NPN 621 and NPN 685L.
Prerequisites: (NUR 613 [Min Grade: B] and NPN 621 [Min Grade: B] and NPN 685L [Min Grade: P]) or (NUR 613 [Min Grade: B] and NPN 621 [Min Grade: B] and NPY 685L [Min Grade: P])
NPN 618L. Focus on Advanced Nursing Practice Specialization. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B]) and (NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B] (Can be taken Concurrently)

NPN 621. Advanced Psych Mental Health Nursing I. 4-5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice psychiatric nursing. The focus of this course is to prepare the student to implement the role of the Psychiatric Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to a psychiatric population across the lifespan.
Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) or (NUR 735 [Min Grade: B]) or NUR 735 [Min Grade: B] and (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B])

NPN 622. Advanced Psych/ Mental Health Nursing II. 4.5 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of psychiatric patients across the lifespan. The focus of this course is on health promotion and disease prevention and management strategies for psychiatric patients from inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care to psychiatric patients across the lifespan.
Prerequisites: (NPN 621 [Min Grade: B] or NPN 621 [Min Grade: B]) and (NPN 685L [Min Grade: P] or NPN 685L [Min Grade: P])

NPN 623. Advanced Psychiatric/ Mental Health Nursing III. 4 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice psychiatric nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to psychiatric patients across the lifespan. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health in psychiatric patients across the lifespan.
Prerequisites: (NPN 622 [Min Grade: B] or NPN 622 [Min Grade: B]) and (NPN 686L [Min Grade: P] or NPN 686L [Min Grade: P])

NPN 685L. Practicum I: Psychiatric Nurse Practitioner. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to psychiatric and substance use patients across the lifespan. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for psychiatric patients across the lifespan. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]) and (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B]) or (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B])

NPN 686L. Practicum II: Psychiatric/ Mental Health Nurse Practitioner. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to psychiatric patients across the lifespan. The focus of this course is on the delivery of health care services to psychiatric patients across the lifespan. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.
Prerequisites: (NPN 621 [Min Grade: B] or NPN 621 [Min Grade: B]) and (NPN 685L [Min Grade: P] or NPN 685L [Min Grade: P])

NPN 692L. Practicum III: Psych Mental Health Nurse Practitioner. 1-6 Hour.
The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to psychiatric patients across the lifespan. The focus of this course is to evaluate progress toward achievement of professional competencies in advanced practice psychiatric nursing. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of psychiatric patients across the lifespan.
Prerequisites: (NPN 622 [Min Grade: B] or NPN 622 [Min Grade: B]) and (NPN 686L [Min Grade: P] or NPN 686L [Min Grade: P])

NPN 721. Advanced Psychiatric/Mental Health Nursing I. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role Doctor of Nursing Practice prepared Advanced Practice Nurse. The Emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to the psychiatric population across the lifespan.
Prerequisites: NPN 618L [Min Grade: P] and (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B])

NPN 722. Advanced Psychiatric/Mental Health Nursing II. 5 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness for the psychiatric population across the life-span in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The focus of this course is on the health promotion and disease prevention and the management of strategies form inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care of the psychiatric patients across the lifespan.
Prerequisites: NPN 618L [Min Grade: P] and (NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B])

NPN 723. Advanced Psychiatric/Mental Health Nursing III. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice psychiatric nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care as a Doctor of Nursing Practice prepared Advanced Practice Nurse to the psychiatric population across the life-span. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: NPN 721 [Min Grade: B] and NPN 786L [Min Grade: P]
NPN 785L. Practicum I: Psychiatric/Mental Health Nurse Practitioner. 3 Hours.

The purpose of this course is to demonstrate management strategies and apply selected practice models for delivery of care to the psychiatric population. The focus of this course is on the delivery of health care services to the psychiatric population. The emphasis of this course is on promoting the progression of competence within the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse. **Prerequisites:** NPN 618L [Min Grade: P]

NPN 786L. Practicum II: Psychiatric/Mental Health Nurse Practitioner. 3 Hours.

The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to the psychiatric population across the life-span. The focus of this course is to provide the student with opportunities to integrate in-depth diagnostic, management, and leadership skills in the role of the Doctor of Nursing Practice prepared Advanced Practice Nurse to provide care for the psychiatric population across the life-span. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models. **Prerequisites:** NPN 721 [Min Grade: B] and NPN 785L [Min Grade: P]

NPN 792L. Practicum III: Psych Mental Health Nurse Practitioner. 4 Hours.

The purpose of this course is to enhance acquired management strategies and the use of best practice models in the delivery of high quality evidence-based care to the psychiatric population. The focus of this course is to evaluate progress toward achievement of competencies of the Doctor of Nursing Practice prepared Advanced Practice Nurse. The emphasis is on the incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of the psychiatric population. **Prerequisites:** NPN 722 [Min Grade: B] and NPN 786L [Min Grade: P]

NPP- NUR - Pediatric Pulmonary Courses

NPP 685. Interdisciplinary Pediatric Pulmonary Care I. 3 Hours.

This course provides the trainee with the opportunity to analyze ideas, concepts and theories relative to the delivery of healthcare to pediatric pulmonary patients. Emphasis will be focused on the acquisition of in-depth knowledge of all aspects of the well child. Chronic respiratory disease is presented as the model to demonstrate the effects of chronic illness of the child and family. Trainees are introduced to basic respiratory anatomy and physiology, diagnostic procedures and various treatment modalities. Throughout the term, trainees will be expected to apply the knowledge and skills acquired to selected clinical assignments.

NPP 686. Interdisciplinary Pediatric Pulmonary Care II. 3 Hours.

NPP 686 provides the trainee with the opportunity to analyze ideas, concepts and theories relative to the delivery of healthcare to pediatric pulmonary patients. Emphasis will be focused on the acquisition for in-depth knowledge of all aspects of the well child. Chronic respiratory disease is presented as the model to demonstrate the effects of chronic illness on the child and family. Trainees are introduced to basic respiratory anatomy and physiology, diagnostic procedures and various treatment modalities. Throughout the term, trainees will be expected to apply the knowledge and skills acquired to selected clinical assignments.

NPR-NUR Promo/Protect/Rest Hlt Courses

NPR 760. Conceptual Foundations for Promoting, Protecting, and Restoring Health. 3 Hours.

This course will be focused on theories, concepts and research related to promoting, protecting and restoring health. Students are expected to analyze cultural, social, racial and gender influences on health and research related to health promotion, protection and restoration. **Prerequisites:** NPN 721 [Min Grade: B] and NPN 785L [Min Grade: P]

NPR 761. Interventions to Promote, Protect, and Restore Health. 3 Hours.

This course will be focused on in-depth exploration and critical analysis of current intervention research including conceptual and methodological issues. In addition, the course will be focused on designing research to evaluate the outcomes of interventions designed to promote, protect or restore health on individuals or community groups.

NRM-Nursing - Research Methods Courses

NRM 750. Foundations of Quantitative Research. 3 Hours.

This course is a survey of quantitative research methods and the first required research core course in the PhD doctoral nursing program. The course is designed to prepare PhD doctoral nursing students with the research knowledge and skills to: (1) critically evaluate research; (2) use the process of research to examine questions identified in one's own nursing practice; and (3) contribute to expansion of nursing's knowledge base. This course will include integration of the following elements and/or activities: critical thinking, critique and synthesis of quantitative research literature in a focused area of interest, scholarly writing, scientific integrity and ethics, human diversity, and social issues. Students will apply criteria for the critique of research to assess the design, methods and validity of research findings. Students will be exposed to various critique frameworks for both quantitative and qualitative research. Strategies for conducting both systematic and integrated reviews will be addressed. The advanced practice role emphasis of this course is that of investigator, research collaborator, and content expert in a selected practice field.

NRM 752. Responsible Conduct of Research. 3 Hours.

This course is designed to prepare PhD doctoral nursing students with the research core course in the PhD doctoral nursing program. The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to the psychiatric population across the life-span. The focus of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models. **Prerequisites:** NPN 721 [Min Grade: B] and NPN 785L [Min Grade: P]

NPR-NUR Promo/Protect/Rest Hlt Courses

NPR 760. Conceptual Foundations for Promoting, Protecting, and Restoring Health. 3 Hours.

This course will be focused on theories, concepts and research related to promoting, protecting and restoring health. Students are expected to analyze cultural, social, racial and gender influences on health and research related to health promotion, protection and restoration. **Prerequisites:** NPN 721 [Min Grade: B] and NPN 785L [Min Grade: P]

NPR 761. Interventions to Promote, Protect, and Restore Health. 3 Hours.

This course will be focused on in-depth exploration and critical analysis of current intervention research including conceptual and methodological issues. In addition, the course will be focused on designing research to evaluate the outcomes of interventions designed to promote, protect or restore health on individuals or community groups.
NRM 761. Research in Children with Chronic Health Conditions. 3 Hours.
This course provides students with an understanding of the ethical developmental and regulatory considerations necessary for the responsible conduct of research in children with chronic illness. The focus of this course is on critical evaluation of published research in populations of children with chronic illness, understanding of scientific and methodological considerations necessary when conducting research involving children, and development of a mock research proposal focused on a question of importance to the field that addresses processes necessary to assure appropriate protection of pediatric research participants. Inter-professional enrollment on this course is encouraged.

NRM 770. Designs for Nursing Studies I. 3 Hours.
Designs For Nursing Studies I. In this course, special emphasis is placed upon the beginning phases of the research process, including formulation of research questions/aims, integration of theory and/or conceptual framework in the development of research, the critique and review of knowledge that support an identified area of research, and the discussion of the type of research design. Cultural implications and ethical standards for research will be addressed.

NRM 771. Methods/Measurement in Nursing Research. 3 Hours.
Instrumentation in nursing research involves measurement of biological, psychological and/or sociological aspects of human systems. This course is an overview of the theories, principles and techniques that yield reliable and valid measurement of human systems. Opportunities will be provided to evaluate the psychometric properties of selected measures and strategies. This course is designed to aid the student in writing the measurement section of a research proposal in the focal area. 999999.

NRM 772. Designs of Nursing Studies II. 3 Hours.
Designs for Nursing Studies II. This course focuses on sampling, collection of data, data analysis plans, presentation of findings, conclusions in various research designs and the reintegration of the findings into the body of knowledge in an identified area of research. Ethical and cultural issues related to the conduct of research will be addressed. Students will develop a research proposal.

NRM 773. Qualitative Research Methods. 4 Hours.
This core course focuses on sampling, design, analysis plans, presentation of results, findings, and conclusions in various research designs and the reintegration of the findings into the body of knowledge in an identified area of research. Ethical and cultural issues related to the conduct of research are also examined.

NRM 774. Designs and Methods for Research of Vulnerable Populations With Health Disparities. 3 Hours.
This course is designed for doctoral level students in nursing and other health-related disciplines. Special emphasis is placed on critical analysis of health disparities research, and the integration of theory and empirical evidence in designing studies of vulnerable populations such as minorities and other underserved populations. Issues of race, gender, age, ethnicity, social class and cultures are examined in relation to research design and successful implementation of research studies. Intervention approaches commonly used in health disparities research will be evaluated and ethical issues of relevance to vulnerable populations will be explored.

NRM 775. Research on Applied Cognitive Neuroscience for Health Professionals. 3 Hours.
This elective course for the PhD program provides the student with knowledge in the fundamentals of behavioral neuroscience and cognitive psychology as it relates to intervention studies and research designs. The student has an opportunity to practice cognitive assessment, develop behavioral intervention plans, and design research studies involving such knowledge.

NRM 777. Mixed Methods Research I: Introduction to the Field. 3 Hours.
The course will provide students with an introduction to the field of mixed methods research. The course will focus on understanding what constitutes mixed methods research, its fundamental principles, and the main trends, issues, and debates involved in the application of this research approach. Students will examine the process of mixed methods research, including its definition, rationale for using it, the key characteristics, major design applications, and means of assessing the quality of mixed methods inferences. In addition, students will learn how the mixed methods research process is shaped by personal, interpersonal, and social contexts and how mixed methods intersects with other quantitative and qualitative research approaches and designs.

NRM 778. Mixed Methods Research II: Designing and Conducting a Mixed Methods Study. 3 Hours.
Building on the foundation knowledge received in Mixed Methods Research I, the course will provide students with knowledge and skills of designing and conducting mixed methods studies in social and health sciences. The topics will include types of research problems addressed, specification of mixed methods purpose statements and research questions, types of mixed methods designs, data collection and analysis strategies within mixed methods designs, and procedures for reporting and evaluating mixed methods studies. Students will get applied knowledge of choosing an appropriate mixed methods design, following the steps in designing and conducting a mixed methods study, and visually presenting mixed methods procedures employed in the study. Students will develop a proposal for a mixed methods study with the major emphasis on the study methodology.

NRM 779. Mixed Methods Application in Community-Based Action Research. 3 Hours.
The course will provide students with a detailed overview of how mixed methods can be applied in designing and conducting community-based action research studies. The topics will include: community-based action research, its purposes and cross-disciplinary utilization; a mixed methods methodological framework for action research; steps in designing and conducting mixed methods action research studies in community settings; specific types of mixed methods action research designs; sampling, data collection, analysis, validation, and evaluation of mixed methods action research projects. Students will get applied knowledge of choosing an appropriate mixed methods action research design, of applying the steps to designing and conducting a mixed methods action research study, and visually presenting the procedures employed in the study. Students will develop a proposal for a mixed methods action research study with the major emphasis on the study methodology.
NRM 780. Application of Research Design Principles I. 3 Hours.
In this course, special emphasis is placed upon the beginning phases of the research process, including formulation of research questions/aims, integration of theory and/or conceptual framework in the development of research, the critique and review of knowledge that support an identified area of research, and the discussion of the type of research design. Cultural implications and ethical standards for research will be addressed. Prerequisites: (NRM 750 [Min Grade: B] or NRM 750 [Min Grade: B]) and (NST 755 [Min Grade: B] or NST 755 [Min Grade: B])

NRM 781. Quantitative Measurement in Research. 3 Hours.
The purpose of this course is to provide the student with the knowledge of how to best measure biological, psychological and/or sociological variables within individuals, families, and/or systems. This course includes an overview of the theories, principles and techniques that yield effective operationalization in order to obtain valid and reliable measurements. Prerequisites: NRM 750 [Min Grade: B]

NRM 782. Application of Research Design Principles II. 3 Hours.
This course focuses on proposal development to include design, sampling, data collection, and data analysis plans for a focal area of interest. Ethical and cultural issues related to the conduct of research will be addressed. Prerequisites: NRM 780 [Min Grade: B] and NRM 783 [Min Grade: B] and NST 778 [Min Grade: B] and NST 758 [Min Grade: B]

NRM 783. Foundations of Qualitative Research. 3 Hours.
The purpose of this course is to examine research traditions that guide the collection and analysis of qualitative data in the development of science. Included are naturalistic, conceptual, interpretive and analytical research methods such as phenomenology, grounded theory, ethnography, descriptive inquiry and narrative inquiry.

NRM 784. Qualitative Research: A Grounded Theory Approach. 3 Hours.
This course will provide students with in-depth knowledge of the historical origins, philosophical and theoretical foundations, methodological principles and applications of a grounded theory qualitative research approach. Students will explore types of research problems addressed, specification of the purpose statement and research questions, sampling, data collection and analysis strategies, establishing credibility and trustworthiness, and procedures for reporting a grounded theory study. The course will provide a structured field experience of designing and conducting a small-scale grounded theory study. The use of qualitative research software NVivo for data organization, management and analysis will be emphasized.

NRM 785. Qualitative Research: Analysis and Interpretation. 3 Hours.
The course will provide students with applied knowledge of data analysis and interpretation in qualitative inquiry. Students will understand the nature of qualitative data and explore different approaches to qualitative data analysis. The course will provide a structured experience of learning how to analyze, interpret, display and report qualitative data and results within five basic approaches to qualitative inquiry (narrative, case study, ethnography, grounded theory, and phenomenology). Students will develop basic skills in using qualitative research software NVivo for data organization, management and analysis.

NRM 786. Qualitative Research: Case Study and Ethnographic Approaches. 3 Hours.
The course will provide students with in-depth knowledge of the historical origins, philosophical and theoretical foundations, methodological principles and applications of case study and ethnographic qualitative research approaches. Students will explore types of research problems addressed, specification of the purpose statement and research questions, sampling data collection and analysis strategies, establishing credibility and trustworthiness, and procedures for reporting a case study and ethnography. The course will provide a structured field experience of designing and conducting a small-scale case study or an ethnographic study. The use of qualitative research software NVivo for data organization, management and analysis will be emphasized.

NRM 787. Qualitative Research: A Phenomenological Approach. 3 Hours.
The course will provide students with an in-depth knowledge of the historical origins, philosophical and theoretical foundations, methodological principles and applications of a phenomenological qualitative research approach. Students will explore types of research problems addressed, specification of the purpose statement and research questions, sampling, data collection and analysis strategies, establishing credibility and trustworthiness, and procedures for reporting a phenomenological study. The course will provide a structured field experience of designing and conducting a small scale phenomenological study. The use of qualitative research software NVivo for data organization, management and analysis will be emphasized.

NRM 798L. Research Immersion. 3-6 Hours.
The purpose of this course is to provide the student the opportunity to participate as a member of an established and funded research team. Research team members will mentor students taking part in relevant research experiences. Students will be expected to participate in various research activities including, but not limited to, research team meetings, consent of study participants, intervention implementation, data collection, data base management, data analysis, and manuscript preparation. Students will apply concepts and principles from research core courses in their research immersion experience. As part of an established funded research team, students will explore various research team roles and responsibilities. Additionally, students will take the opportunity to learn about and participate in various components of the UAB research enterprise. Through the research immersion experiences, students will learn about sources and mechanisms of research funding and strategies for dissemination of research findings. As appropriate, students will participate as a member of an established funded research team in preparation and dissemination of reports of research findings. Students will also have the opportunity to work with research team members in analysis, interpretation of findings and in the development manuscripts, research presentations and posters for dissemination. Prerequisites: NRM 750 [Min Grade: B] and NRM 752 [Min Grade: B]

NST- NUR - Statistical Methods Courses

NST 755. Data Mining & Statistical Techniques. 3 Hours.
This course covers major concepts and algorithms of data mining. The course will be taught using the SAS Enterprise Miner program. The final project will demonstrate all the data mining techniques covered in the course and furthermore expose students working with real data. At the end of the course students will be proficient in utilizing data mining techniques to exploit data patterns and behavior, gain insider understanding of the data, and produce new knowledge that healthcare decision-makers can act upon. Prerequisites: NUR 756 [Min Grade: B]
NST 758. Inferential Statistics I. 3 Hours.
The purpose of this course is to provide an underpinning for the understanding of statistical methods and findings. Students will gain an understanding of common statistical models and applications of probability, sampling distributions, parametric and non-parametric one and two sample tests, confidence intervals, applications of analysis of two-way contingency table data, simple linear regression, and simple analysis of variance.
Prerequisites: NST 778 [Min Grade: B]

NST 772. Data Mining and Statistical Learning I. 3 Hours.
NST 772 is an elective course for PhD students. This is the first course in a two-course series that provides further exposition of advanced statistical analysis and data mining techniques for students interested in doing research that involves considerable quantitative analysis in their dissertation and/or future professional work.

NST 773. Data Mining/Stats Learning II. 3 Hours.
NST 773 is an elective course for PhD students. This is the second course in a two-course series that provides further exposition of advanced statistical analysis and data mining techniques for students interested in doing research that involves considerable quantitative analysis in their dissertation and/or future professional work.
Prerequisites: NST 772 [Min Grade: B] or NST 772 [Min Grade: B]

NST 775. Introduction to Statistical Software Packages: SPSS and SAS. 2 Hours.
Special emphasis of this laboratory course will be on the use of the statistical packages, SAS and SPSS, in the creation of the data files, data entry, manipulation of data, descriptive analysis and selected statistical techniques.

NST 776. Linear Models For Clinical Nursing Research. 3 Hours.
Linear Models For Clinical Nursing Research. This course is designed as a survey course on the application of advanced General Linear Model and related techniques in health care research. The course will focus on application to research questions of importance to nursing, with an emphasis on practice-related problems.

NST 777. Multivariate Statistical Methods For Clinical Nursing Research. 3 Hours.
Multivariate Methods For Clinical Nursing Research. This course is designed as a survey course on the application of multivariate techniques in health care research. The course will focus on application of multivariate statistical methods to nursing-related research questions, with emphasis on interpretation within clinical nursing research problems.

NST 778. Data Management. 2 Hours.
A hands-on exposure to data management with common statistical software packages, including concepts of types of variables, data entry and cleaning, importing and converting datasets, merging and concatenating datasets, sorting, sub-setting, and producing reports and descriptive statistics.

NST 779. Statistical Modeling I - Linear Models. 3 Hours.
This course is designed as a survey course on the application of General Linear Models and Logistic Regression, with emphasis on health-related problems. These techniques are covered in detail including appropriate diagnostic and remedial measures.
Prerequisites: NST 758 [Min Grade: B]

NST 780. Statistical Model II - Topics in Multivariate Analysis. 3 Hours.
This course will extend concepts introduced in NST 779: Statistical Modeling I - Linear Models into multivariate applications. This course is designed as a survey course on the application of common multivariate methods, with emphasis on health-related data.
Prerequisites: NST 779 [Min Grade: B]

NTC-Nursing - Teaching Courses

NTC 618L. Focus on Advanced Nursing Practice Specialization. 2 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: [NUR 606 [Min Grade: B] or NUR 606 [Min Grade: B]] and [NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B]]

NTC 650. Instructional Strategies For Teaching in Nursing. 3 Hours.
This course is required for students in the Teacher in Nursing Certificate program and maybe chosen as an elective course by other graduate students. The content is general and applicable to a variety of teaching situations and learners. The course is an introduction to a systematic approach to developing and implementing adult learning experiences. This course emphasizes the application of a systematic approach (assessing, planning, implementing, and evaluating) to the design of an educational unit. The focus will be on assessing learning needs, identifying learning objectives, selection of resources, and development of teaching strategies for different learner populations.

NTC 652. Program and Curriculum Development. 3 Hours.
This course is a required for students in the Teaching Nursing Certificate program and may be chosen as an elective course by other graduate students. The content is general and applicable to course, educational program, and/or curriculum development. The course is an introduction to the educational development process. This course emphasizes the basic components of program/curriculum development, philosophy, goals, planning learning experiences, implementing learning experiences, and evaluation of the curriculum or an educational program. The focus is on an understanding of program/curriculum determinants (learning, knowledge, man, society) and their impact on curriculum and educational program planning. The impact of philosophy, organizing framework, goals, learning experiences, and evaluation on curricular and program design and development will be discussed.

NTC 654. Evaluation of Instruction in Nursing. 3 Hours.
This course is a required for students in the Teacher in Nursing Certificate program and may be chosen as an elective course by other graduate students. The content is general and applicable to a variety of health related educational settings and learners. This course is an introduction to educational testing and measurement, teaching effectiveness, and clinical performance appraisal. This course provides an overview of evaluation techniques that enable nurses to plan and implement a variety of education related evaluation approaches, including test construction, item analysis, teaching effectiveness, and clinical performance appraisals. Emphasis will be placed on classroom and clinical evaluation of learning and on the use of technology for evaluation purposes. Prereq: Admission to Graduate Studies in the School of Nursing or as a non-degree post-baccalaureate student or by permission of instructor;knowledge of statistics and writing measurable educational objectives int eh domains of knowledge, skills, and attitudes.
NTC 656. WebCT for Instructors and Designers. 3 Hours.
Provides students with an advanced level of skill and knowledge of WebCT. Students are introduced to WebCT tools in a sequence that will permit development of a new course using WebCT as a learning management system. This course is offered only when sufficient interest by students is generated.

NTC 658. Simulation and Classroom Technologies for Student Learning. 2-3 Hours.
Designed to introduce graduate nursing students to the use of technology and simulation in nursing education. Students will be introduced to simulation as an educational strategy addressing issues related to the development implementation and evaluation of simulations. The use of technology available to enhance the educational environment will also be explored. Students will analyze advantages and disadvantages of various technologies and determine appropriate application of these technologies.

NTC 660. Foundations of Evidence-Based Nursing Education. 3 Hours.
Designed to prepare graduate nursing students to understand the concepts fundamental to nursing education. Students will be expected to analyze the effects of student and faculty diversity, legal and ethical issues, evidence-based practice on nursing education.

NTC 683L. Teaching Practicum in Nursing. 1-3 Hour.
This course is a required practicum for students in the Teacher in Nursing Certificate program and may be taken as an elective course by other graduate students who are concurrently enrolled in one or more NTC courses. The practicum provides an opportunity for students to concurrently or retrospectively implement the knowledge and skills acquired in NTC 650, NTC 652, and NTC 654 to selected teaching (classroom and clinical) situations. This course provides opportunities for students to integrate previously or concurrently acquired knowledge concerning teaching, curriculum, and/or evaluation into selected classroom and clinical situations. This practicum course allows students to assume limited responsibilities in classroom and clinical teaching while under the guidance of an instructor and/or preceptor. Students will be expected to meet all the course objectives upon completion of the three credit hour practicum. The practicum should involve both didactic and clinical teaching. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: Admission to Graduate Studies in the School of Nursing or as a non-degree post-baccalaureate student. Prerequisite: NTC 650, NTC 652, and NTC 654.
Prerequisites: NTC 650 [Min Grade: B] and NTC 660 [Min Grade: B] and NTC 658 [Min Grade: B] and NTC 652 [Min Grade: B] and NTC 654 [Min Grade: B]

NTC 692L. Residency: Nurse Educator. 3-6 Hours.
A comprehensive examination is given during this residency course. Failure to pass the comprehensive examination will delay graduation. Students arrange their own clinical sites with assistance/approval from clinical faculty. Prerequisite: NTC 650, NTC 652 and NTC 654.
Prerequisites: (NTC 650 [Min Grade: B] or NTC 650 [Min Grade: B]) and (NTC 652 [Min Grade: B] or NTC 652 [Min Grade: B]) and (NTC 654 [Min Grade: B] or NTC 654 [Min Grade: B])

NTC 760. Transitions to Academic Nursing Education. 3 Hours.
This course provides content relevant to the role of the nurse educator in an academic setting. The course includes information on nurse educator competencies, trends in higher education, the nature of our students in the 21st century, and strategies for building a successful nurse-educator career, including building collegial relationships and integrating the teaching, research, and service missions of the university into one position. This course may be included in a program of study as an elective, or taken as a non-degree student. NTC 760 may also be taken by students in the Nurse Educator track in the MSN program.

NUR-Nursing Courses

NUR 519. Evidence-Based Nursing & Health Care Technology. 4 Hours.
The purpose of this course is to prepare students to translate current evidence, identify existing gaps, and use technology to improve care outcomes. The focus is on the knowledge and skills needed to deliver and coordinate care across multiple settings, apply research outcomes, resolve practice problems, and disseminate results. The emphasis is on leading continuous improvement processes individually or through an inter-professional team, implementing evidence-based practice and determining the appropriate technology to support evidence based care and health education.
Prerequisites: NUR 556 [Min Grade: C] and NUR 537L [Min Grade: P] and NUR 538 [Min Grade: C] and NUR 553L [Min Grade: P]

NUR 520. Foundational Competencies for the Professional Nurse. 3 Hours.
The purpose of this course is to introduce fundamental nursing concepts and processes of professional nursing that assist in providing safe, quality nursing care to clients and their families. The course focuses on the role of the nurse as a caregiver and educator of individuals and groups from diverse populations. Emphasis is on the professional attributes of the generalist nurse, legal and ethical implications for nursing practice, and beginning care competencies of the professional nurse.

NUR 521L. Foundational Skills for the Professional Nurse. 3 Hours.
The purpose of this course is to introduce fundamental nursing skills and professional behaviors needed to provide safe, quality patient/family centered nursing care to clients within diverse settings and communities. The focus is on applying the nursing process and developing clinical judgment and reasoning skills, emphasis is on clinical competencies including health assessment and history taking, foundational clinical nursing skills, basic nursing care for adult clients, and nursing documentation.

NUR 522. Mental Health Nursing. 3 Hours.
The purpose of this course is to introduce concepts of mental health and psychiatric illness throughout the lifespan with consideration given to therapeutic communication and evidence-based nursing interventions for clients and their families. The course focuses on the use of critical thinking and clinical decision-making skills in the promotion, maintenance and restoration of optimum mental health of vulnerable individuals and families. Emphasis is placed on the independent and collaborative roles of nursing in identifying risk factors for mental disorders, assessing mental health status, and designing and implementing psychobiological and psychosocial interventions associated with expected therapeutic outcomes.
NUR 524. Pharmacology for AMNP. 3 Hours.
The purpose of this course is to increase understanding of pharmacologic concepts needed by the generalist nurse. The course focuses on preparing the generalist nurse to apply acute pharmacological concepts in clinical practice and deliver safe, effective administration of medications. The emphasis of the course is a systematic overview of pharmacological concepts, pharmacokinetics, and pharmacodynamics.

NUR 526. Adult Health Nursing I: Managing Chronic and Episodic Health Conditions. 2 Hours.
The purpose of this course is to introduce concepts and processes needed to provide safe, quality family-centered nursing care to adults. The course focuses on the practice of professional nursing as an evidence-based, goal-directed activity designed to assist adult clients in achieving optimal health by meeting basic human needs, providing holistic care, and engaging in health promotion and disease/injury prevention strategies. Emphasis is on the individual and collaborative roles of nursing to identify risk factors, assess health status of adults, and design, implement, and evaluate nursing interventions associated with expected therapeutic outcomes for chronic disease and episodic health conditions such as heart disease, hypertension, type 2 diabetes, obesity, and arthritis.

NUR 527L. Nursing Practicum with Adults I. 2 Hours.
The purpose of this course is to apply fundamental nursing skills and professional behaviors needed to provide safe, quality client/family centered nursing care. The focus is on applying the nursing process and developing clinical judgment and reasoning skills with adult clients form diverse backgrounds and communities. Emphasis is on developing clinical competencies including health assessment and history taking, foundational clinical nursing skills, basic nursing care for adult clients, and nursing documentation.

NUR 528. Pathophysiology for AMNP. 2 Hours.
The purpose of this course is to increase understanding of pathophysiological concepts/processes needed to provide safe, quality client/family centered nursing care across the lifespan. The course focuses on preparing the generalist nurse to apply acute pathophysiological concepts in clinical practice. The emphasis of the course is a systematic study of pathophysiological concepts/processes associated with alterations in fluid and electrolytes, perfusion, oxygenation, intracranial regulation, metabolism, and infection.

NUR 533. Spirituality in Health Care. 3 Hours.
This course will focus on spirituality, including a greater understanding of different spiritual traditions, personal spiritual development, and the incorporation of spirituality into professional practice. The content will examine spirituality and health from the perspective of the major world religions and spiritual practices. The impact of spirituality on illness and healing will be examined. Spiritual care, including assessment and selected interventions, legal and ethical issues will be discussed with respect to individuals and families of varying developmental stages, socio-cultural backgrounds, and life situations. Students will be challenged to explore their own spirituality and its impact on their personal and professional lives. A foundation in computer utilization and accessing resources through use of the internet is strongly recommended.

NUR 534. Living With Loss. 3 Hours.
This course includes loss, grief, body-image changes, loss due to chronic conditions, and loss of life in childhood and adulthood explored from the viewpoint of a health-care professional.

NUR 537L. Nursing Practicum with Adults II. 3 Hours.
The purpose of this course is to apply nursing clinical skills and professional behaviors needed to provide safe, quality client/family centered nursing care in acute care settings for adult clients from diverse backgrounds and communities. The focus is on applying the nursing process and using clinical judgment and reasoning skills in acute care situations. Emphasis is on increasing competency in the design, coordination, and evaluation of client/family centered care of adults with acute disease or injury associated conditions.

Prerequisites: NUR 520 [Min Grade: C] and NUR 526 [Min Grade: C] and NUR 524 [Min Grade: C] and NUR 528 [Min Grade: C] and NUR 522 [Min Grade: C]

NUR 538. Pathophysiology for AMNP II. 2 Hours.
The purpose of this course is to increase understanding of pathophysiological concepts/processes needed to provide safe, quality client/family centered nursing care across the lifespan. The course focuses on preparing the generalist nurse to apply acute pathophysiological concepts in clinical practice. The emphasis of the course is a systematic study of pathophysiological concepts/processes associated with alterations in fluid and electrolytes, perfusion, oxygenation, intracranial regulation, metabolism, and infection.

Prerequisites: NUR 520 [Min Grade: C] and NUR 524 [Min Grade: C] and NUR 528 [Min Grade: C] and NUR 522 [Min Grade: C]

NUR 542. Health Promotion, Prevention, Populations, and Policy. 3 Hours.
The purpose of this course is to prepare the generalist nurse to lead population focused health promotion and prevention initiatives that address national and global health issues. The focus is on health hazards, social determinants, and regulatory, legal, and ethical issues that affect population health. Emphasis is on analyzing current data and best evidence to advocate through policy change for improved health status of individuals. Communities and diverse populations.

Prerequisites: NUR 520 [Min Grade: C] and NUR 526 [Min Grade: C] and NUR 524 [Min Grade: C] and NUR 528 [Min Grade: C] and NUR 522 [Min Grade: C]

NUR 546. Adult Health Nursing III: Managing Complex Health Conditions. 2 Hours.
The purpose of this course is to expand the knowledge of concepts and processes needed to provide safe, quality family-centered nursing care to adults with complex health conditions. The course focuses on the practice of professional nursing as an evidence-based, goal-directed activity designed to assist adult clients in achieving optimal health by meeting basic human needs, providing holistic care and engaging in health promotion and disease/injury prevention strategies. Emphasis is on the individual and collaborative roles in nursing used to identify risk factors for complex health conditions: assess health status of adults: and design implement, and evaluate nursing interventions associated with expected therapeutic outcomes associated with life-threatening cardiac conditions, traumatic injuries, immunodeficiency, and neurological events.

Prerequisites: NUR 556 [Min Grade: C] and NUR 552 [Min Grade: C] and NUR 538 [Min Grade: C] and NUR 542 [Min Grade: C]
NUR 547L. Nursing Practicum with Adults III. 1 Hour.
The purpose of this course is to apply nursing clinical skills and professional behaviors needed to provide safe, quality client/family centered nursing care in acute care settings for clients from diverse backgrounds and communities. The focus is on applying the nursing process and using clinical judgement and reasoning skills in client care situations with increasing complexity. Emphasis is on increasing competency in the design, coordination, and evaluation of client/family centered care and therapeutic outcomes for adults with complex disease and traumatic injury conditions.
Prerequisites: NUR 556 [Min Grade: C] and NUR 552 [Min Grade: C] and NUR 538 [Min Grade: C] and NUR 542 [Min Grade: C]

NUR 549. Synthesis Review Course. 1 Hour.
The purpose of this course is to prepare the student to successfully complete the NCLEX examination. The course focuses on all professional nursing roles. Emphasis is on the synthesis of knowledge from all nursing courses as well as humanities, and the social, behavioral, and natural sciences.

NUR 550. Professional Leadership and Role Transition. 4 Hours.
The purpose of this course is to expend the knowledge of concepts, processes, and strategies of leader and change agent needed to transition into the professional nurse role within the healthcare team and profession as a generalist nurse. The course focuses on evidence-based, goal-directed activities designed to control health care costs and promote continuous quality improvement for the individual and collaborative nursing roles used to identify hazards with the healthcare environment that create risks to health and safety, to enact evidence-based “nurse-sensitive” quality improvement processes, and to evaluate healthcare outcomes from a systems and financial perspective.
Prerequisites: NUR 556 [Min Grade: C] and NUR 552 [Min Grade: C] and NUR 538 [Min Grade: C] and NUR 542 [Min Grade: C]

NUR 551L. Nursing Practicum with Vulnerable Populations. 2 Hours.
The purpose of this course is to implement therapeutic communication and safe, quality, family-centered nursing care to individuals and groups among vulnerable populations in diverse healthcare and community settings. Focus is on developing roles of the generalist nurse in population health care as clinician, educator, health counselor, advocate, and care manager. Emphasis is on the professional attributes and nursing skills concerning legal, regulatory, ethical, and cultural implications for health promotion, illness and injury prevention, health maintenance, emergency preparedness, and coordination of health care across the lifespan for vulnerable populations.
Prerequisites: NUR 556 [Min Grade: C] and NUR 552 [Min Grade: C] and NUR 538 [Min Grade: C] and NUR 542 [Min Grade: C]

NUR 552. Nursing Care of Woman and Children. 4 Hours.
The purpose of this course is to obtain knowledge and skills to provide safe, quality client/family centered nursing care to women across the lifespan with special attention given to women of childbearing age and children. The course focuses on the practice of professional nursing as an evidence-based, goal-directed activity to assist clients to achieve optimal health, meet basic human needs, provide holistic care, and engage in health promotion and disease/injury prevention strategies. Emphasis is on the individual and collaborative roles of nursing to identify risk factors, assess health status, and design, implement, and evaluate nursing interventions to obtain therapeutic outcomes for neonates, infants, children, adolescents, and women across the lifespan in diverse family and care settings.
Prerequisites: NUR 520 [Min Grade: C] and NUR 526 [Min Grade: C] and NUR 524 [Min Grade: C] and NUR 528 [Min Grade: C] and NUR 522 [Min Grade: C]

NUR 553L. Nursing Practicum with Women and Children. 2 Hours.
The purpose of this course is to apply nursing clinical skills and professional behaviors needed to provide safe, quality client/family centered nursing to women and children from diverse backgrounds and communities. The focus is on applying the nursing process, using clinical judgment and reasoning skills in health care situations, and promoting health and preventing disease/injury among women and children. Emphasis is on increasing competency in the design, coordination, and evaluation of client/family centered care for this population.
Prerequisites: NUR 520 [Min Grade: C] and NUR 526 [Min Grade: C] and NUR 524 [Min Grade: C] and NUR 528 [Min Grade: C] and NUR 522 [Min Grade: C]

NUR 555. Adult Health Nursing II: Managing Acute Health Conditions. 4 Hours.
The purpose of this course is to obtain knowledge and skills to provide safe, quality client-family centered nursing care to adults with acute health problems. The course focuses on the practice of professional nursing as an evidence-based, goal-directed activity to assist adults achieve optimal health, meet basic human needs, provide holistic care, and engage in health promotion and disease/injury prevention strategies. Emphasis is on the individual and collaborative roles of nursing to identify risk factors, assess health status, and design, implement, and evaluate nursing interventions to obtain therapeutic outcomes for conditions such as myocardial infarction, stroke, acute renal failure, and exacerbations of respiratory and metabolic disorders.
Prerequisites: NUR 520 [Min Grade: C] and NUR 526 [Min Grade: C] and NUR 524 [Min Grade: C] and NUR 528 [Min Grade: C] and NUR 522 [Min Grade: C]

NUR 557. Leadership and Management in Professional Nursing for RNs. 3 Hours.
This course focuses on leadership and management theories and models, resource allocation and management, delegation, conflict resolution, legal implications of practice, managed care, evaluation of practice, continuous quality improvement, healthcare systems, and contemporary issues in the workplace. Emphasis is placed on the integration of all professional role behaviors, application of research, and leadership/management skills. For students enrolled in 557, this course is a transition course into the RN-MSN option for baccalaureate degree RN Mobility students. Evaluation methods for the course will be different from those used for students enrolled in NUR 457.
Prerequisites: NUR 574 [Min Grade: C](Can be taken Concurrently) and NUR 597 [Min Grade: C](Can be taken Concurrently)

NUR 558L. Clinical Synthesis and Role Immersion. 5 Hours.
The purpose of this course is the synthesis and assimilation of skills and nursing content from all previous courses and is intended to prepare students to function independently in the roles of the generalist nurse. The focus of the course is on the professional roles of direct caregiver, health policy advocate, translator/integrator of nursing scholarship, interprofessional team collaborator, nursing practice innovator, and leader of organizations and systems. The course emphasizes independent nursing practice as a generalist nurse under the supervision of a nursing preceptor, involvement in organizational/systems leadership, and application of best evidence to deliver safe, quality, client/family centered care.
Prerequisites: NUR 556 [Min Grade: C] and NUR 552 [Min Grade: C] and NUR 538 [Min Grade: C] and NUR 542 [Min Grade: C]
NUR 559L. Concepts of Transitional Care Coordination. 4 Hours.
The purpose of this course is to apply nursing knowledge and skills to promote safe, quality patient care in a variety of transitional care settings across the lifespan. The focus of this course will be to apply concepts of care coordination and transitional care in order to focus on achieving the outcomes of increasing access to care, preventing hospital readmissions, and promoting innovative, cost-effective, quality care for highly vulnerable and/or chronically ill clients during critical transitions. Emphasis will be upon coordination and promotion of care continuity within, between and across settings, as well as between providers. Additionally, emphasis will be placed on identification of required community resources, development of a mutually-agreeable plan of care with the client, coordination of care with all providers, the time-limited nature of transitional care services, client, family and caregiver education, identifying root causes of poor health outcomes, avoiding hospital readmissions and promoting optimal client outcomes.

NUR 574. Transition to Professional Nursing Practice for RNs. 4 Hours.
Using an online format, this course is designed to enhance the registered nurse's knowledge of the role of the professional nurse in meeting the healthier needs of society. Historical, legal, political, and ethical issues affecting the profession will be examined. The relationship between selected issues, trends, and theories and professional nursing practice will be analyzed. Students will examine behaviors related to various roles of the professional nurse, including caregiver, teacher, advocate, research consumer, and counselor. Additionally, this course addresses communication skills necessary to a professional nurse including writing and computer literacy. For students enrolled in NUR 574, this course is a transition course into the RN-MSN option for post-baccalaureate degree RN Mobility students.

NUR 587. Supplemental Academic Course for Support (SACS). 1-3 Hour.
The purpose of this distance-accessible course is to introduce a structured format for students to review nursing concepts and processes related to a specific patient population. The course focuses on the role of the nurse as caregiver. Emphasis is on test-taking strategies and the review of didactic content to strengthen the student's knowledge base.

NUR 596. Didactic Independent Study for Delayed Progression. 1 Hour.
The purpose of this course is to augment knowledge gained in nursing courses related to test taking, delegation, prioritization and critical thinking. The course focuses on the role of the nurse as caregiver, manager, collaborator, and education. Emphasis is on the nursing care and management of young, middle-age, and older adults.

NUR 597. Community and Public Health Nursing for RNs. 4 Hours.
This course is designed for RN students to build on existing clinical expertise and knowledge, broaden exposure to different roles of the professional nurse in the areas of community and public health, and apply knowledge learned throughout the BSN curriculum to meet the needs of population aggregates. Emphasis is on professional nurse role development focused on illness and injury prevention, health promotion, health education, public health preparedness and advocacy for population aggregates across the life span. For students enrolled in NUR 597, this course is a transition course into the RN-MSN option for post-baccalaureate degree RN Mobility students.
Prerequisites: NUR 574 [Min Grade: C] (Can be taken Concurrently)

NUR 600. Research and Statistics for Advanced Practice. 4 Hours.
This course is designed to prepare master's students with the research knowledge and skills to (1) use current research findings to improve practice, (2) use the process of research to examine questions identified in nursing practice, and (3) participate in collaborative research. This course will include integration of the following elements: critical thinking, current technologies for data management and statistical analysis, scholarly writing, scientific integrity and ethics and human diversity. Statistical procedures examined will include univariate and bivariate statistics, parametric and nonparametric procedures and selected epidemiological measures. Prerequisite: Under-graduate statistics. Prerequisites: NUST A or MA 180 [Min Grade: C] or PY 214 [Min Grade: C] or MA 480 [Min Grade: C] or QM 214 [Min Grade: C] or JS 120 [Min Grade: C] or (NUR 517 [Min Grade: C] and NUR 518L [Min Grade: P])

NUR 601. Role Development for Advanced Nursing Practice. 3 Hours.
This course is designed to prepare graduate nursing students to understand the concepts of advanced nursing practice and advanced practice nursing. Students will be expected to differentiate between advanced nursing practice and the practice of other nurses and health care providers. Concepts from a variety of models and theories from nursing and other disciplines will be discussed, and examples of how these concepts may be applied in advanced nursing practice will be offered. The concept of cultural competence will be explored as will its application when interacting with people from diverse ethnic and racial groups.

NUR 602. Issues Affecting Advanced Nursing Practice. 3 Hours.
This course prepares graduate nursing students to incorporate management and leadership skills in the practice arena. The health care environment and culture, selected organizational, economic, and financial theories, strategic planning, change theory, health care marketing and information and quality management will be explored in the context of contemporary issues such as bioterrorism and health care policy and regulation. This course will also include integration of the following elements: critical thinking, scholarly writing, research, theory evaluation and application, scientific integrity and ethics, human diversity and social issues.

NUR 603. Primary Health Care in Low Resource Countries. 3 Hours.
This course is designed for the Advanced Health Care Provider who plans to deliver primary health care in countries considered to be low resource areas as designated by the World Health Organization. These students will study the epidemiology, pathophysiology, diagnosis, and management of infectious and parasitic diseases throughout the global community. In addition, nutritional deficiencies and obstetric problems will be reviewed. Emphasis will be placed on those health problems which are not common in high resource countries. Implementation of the World Health Organization's Integrated Management standards will be included in the study of each disease as they apply to adults adolescents, and children. Potential personal safety issues for world travelers, and information designed to alleviate these issues will be studied. Each student will focus on a specific country or global area for a more in-depth learning experience.

NUR 604. Leadership in Advanced Nursing Practice Roles. 3 Hours.
The purpose of this course is to provide students with the foundation for an in-depth understanding of advanced nursing practice leadership. The focus of the course is on the principles and standards of advanced nursing practice. The emphasis of the course is on inter-professional collaboration in healthcare.
NUR 605. Research for Evidence-Based Practice. 3 Hours.
This core course is designed to prepare master’s nursing students with the research knowledge and skills to (1) use current research findings to improve practice, (2) use the process of research to examine questions identified in one’s own nursing practice, (3) develop an evidence-based advanced nursing practice, and (4) contribute to expansion of nursing’s knowledge base. This course will also include integration of the following elements and/or activities: critical thinking, informatics, current technologies for data management and statistical analysis, collaboration, scholarly writing, preparing/giving professional presentations, theory evaluation and application, scientific integrity and ethics, human diversity, and social issues. The advanced-practice role emphasis of this course is that of investigator, researcher collaborator, and content expert in a selected practice field. A graduate course in inferential statistics and a solid foundation in computer utilization and accessing scientific sources by internet is required.

NUR 606. Translating Evidence into Practice. 3 Hours.
The purpose of this course is to provide students with the knowledge and skills to evaluate and interpret evidence that supports application in practice. The focus of the course will be on the management and analysis of health care evidence and translation for practice. The emphasis of the course will be on evidence-based practice, safety and quality, informatics, emerging technologies, data management, applied statistics, evaluation and trend analysis.
Prerequisites: (NUR 604 [Min Grade: B] or NUR 604 [Min Grade: B] or NUR 737 [Min Grade: B]) or (NUR 612 [Min Grade: B] or NUR 612 [Min Grade: B] or MA 180 [Min Grade: C] or MA 480 [Min Grade: C] or PY 214 [Min Grade: C] or PY 216 [Min Grade: C] or QM 214 [Min Grade: C] or JS 120 [Min Grade: C] or NUST A) or (NUR 517 [Min Grade: C] and NUR 518L [Min Grade: P])

NUR 607. Interprofessional Global Health Service Learning I. 1 Hour.
This course provides students with an opportunity to apply principles of interprofessional collaboration, community partnerships, and global health in the development of a plan to address a global health problem in collaboration with a community partner. Students apply concepts and theories related to global health, interprofessional collaboration, team building, community partnerships, and the ecological framework developing a plan to address a specific global health problem with a community partner. The course focuses on planning a service learning project that will benefit a community partner. The project is planned and carried through by an interprofessional team. The course is primarily experiential, with students’ time spent on planning the project and learning leadership and project planning skills.

NUR 608. Interprofessional Collaboration (IPC) and Community Partnerships in Global Health. 1 Hour.
This course provides students with an understanding of principles of interprofessional collaboration and community partnerships that, together with key social and economic concepts of global health, enables them to participate in developing and implementing sustainable global health projects in collaboration with local and international community partners. Working in interdisciplinary teams, students apply concepts and theories related to global health, interprofessional collaboration, team building, community partnerships, and the socioecological framework to develop a plan to address a specific global health problem with a community partner.

NUR 609. Radiology for Advanced Practice. 3 Hours.
This course provides nurse practitioners and other mid-level providers with an introduction to radiography. The course provides the novice the opportunity to incorporate radiographic studies into working through a differential diagnosis. The course utilizes various common radiographic techniques including plain films, computed tomography and magnetic resonance imaging.

NUR 610. Health Care Systems for Advanced Nursing Practice. 3 Hours.
The purpose of this course is to provide students an opportunity to evaluate health care systems that influence advanced nursing practice. The focus of the course is on organizational theories of business practice and health care economics. The emphasis of the course is on the incorporation of business, legal, political, and organizational concepts in advanced nursing practice.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B]) (Can be taken Concurrently) and (NUR 604 [Min Grade: B] or NUR 737 [Min Grade: B]) (Can be taken Concurrently) and (NWH 618L [Min Grade: P]) or NPH 618L [Min Grade: P] or NNE 618L [Min Grade: P] or NFH 618L [Min Grade: P] or NPE 618L [Min Grade: P] or NDP 618L [Min Grade: P] or NAH 618L [Min Grade: P] or NCA 618L [Min Grade: P] or NCC 618L [Min Grade: P] or NCL 618L [Min Grade: P] (Can be taken Concurrently)

NUR 611. Management of Diabetes Mellitus (Type 1 and 2). 3 Hours.
This course will provide a multi-disciplinary framework for the identification of those at risk or who already possess the metabolic syndrome, frank type 2 diabetes mellitus and its complications. A variety of management strategies will be presented from the perspectives of multiple healthcare disciplines. The perspectives of the multi-disciplinary team in assisting persons to achieve self-care goals are an important theme throughout this course as are the current controversies, issues and research findings underlying present approaches to treatment and patient/family education.

NUR 612. Advanced Pathophysiology. 3 Hours.
The purpose of this course is to provide the student with an opportunity to build upon existing knowledge of basic physiology. The focus of this course is on the analysis and application of principles of anatomy and physiology. The emphasis is placed on the use of critical thinking to apply physiologic principles in explaining adaptations to pathogenic changes in the systems across the lifespan.
Prerequisites: NUR 604 [Min Grade: B] (Can be taken Concurrently) or NHS 604 [Min Grade: B] (Can be taken Concurrently) or NUR 737 [Min Grade: B] (Can be taken Concurrently)

NUR 613. Pharmacology and Therapeutics. 3 Hours.
The purpose of this course is to plan, implement, and evaluate therapeutic pharmacological interventions. The focus of this course is on the analysis and use of principles of pharmacology, pharmacodynamics, and pharmacokinetics. The emphasis is on characteristics of special populations related to therapeutic needs, as well as drug absorption, metabolism, and excretion.
Prerequisites: NUR 606 [Min Grade: B] (Can be taken Concurrently) or NUR 606 [Min Grade: B] (Can be taken Concurrently) or NWH 606 [Min Grade: B] (Can be taken Concurrently) or NHS 606 [Min Grade: B] (Can be taken Concurrently) or NUR 737 [Min Grade: B] (Can be taken Concurrently)
NUR 614. Assessment and Diagnostic Reasoning for Advanced Nursing Practice. 3 Hours.
The purpose of this course is designed to provide students with an advanced level of skill and knowledge in critical thinking and diagnostic reasoning. The focus is on conducting health assessments and planning care for patients across the lifespan. The emphasis of this course is on the integration of critical thinking, scientific ethics, human diversity, as well as the recognition of social issues in the care of and presentation of patients.
Prerequisites: NUR 720 [Min Grade: B] or NUR 604 [Min Grade: B] (Can be taken Concurrently) or NHSL 604 [Min Grade: B] (Can be taken Concurrently) or NUR 737 [Min Grade: B] (Can be taken Concurrently) and NUR 606 [Min Grade: B] (Can be taken Concurrently) or NHSL 606 [Min Grade: B] (Can be taken Concurrently) or NUR 729 [Min Grade: B] (Can be taken Concurrently) or NA 733 [Min Grade: B]

NUR 614L. Assessment and Diagnostic Reasoning for Advanced Nursing Practice. 3 Hours.
This course is designed to provide students with an advanced level of skill and knowledge in critical thinking and diagnostic reasoning for conducting health assessments and planning care for holistic, adaptive human beings. The following elements are integrated into the course: professional presentations, critical thinking, scientific integrity and ethics, human diversity, and social issues. Pre or corequisite: NUR 612.
Prerequisites: NUR 612 [Min Grade: B] (Can be taken Concurrently) or NUR 612 [Min Grade: B] (Can be taken Concurrently)

NUR 615. Sexuality Issues in Health and Illness: A Lifespan Approach. 3 Hours.
This course includes the ethical, social, biological, and psychological concepts of human sexuality.

NUR 616L. Focus on Advanced Nursing Practice Specialization. 2 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 606 [Min Grade: B]) and (NUR 613 [Min Grade: B] or NUR 613 [Min Grade: B])

NUR 617. Interprofessional Ethical Issues in Clinical Genetics. 2 Hours.
This course will incorporate basic knowledge of clinical genetics and build knowledge of ethical and legal issues related to genetics. The course focuses on interprofessional collaboration and team development of solutions and approaches for cases from clinical practice. Examination of clinical genetic competencies according to professional standards is highlighted.

NUR 618L. Clinical Diagnostic Reasoning. 4 Hours.
A modular organ system approach utilizing case studies will be used to pull together basic principles from pathophysiology, pharmacology and physical/health assessment to develop clinical diagnostic reasoning skills necessary for the nurse practitioner. This course is designed to provide students with an advanced level of skill and knowledge in critical thinking and diagnostic reasoning to apply in the subsequent clinical nursing courses. Students will utilize the knowledge and skills learned in NUR 618QL as they diagnose and manage the care of clients with acute, chronic, and episodic health problems throughout the life span.

NUR 619. Health Issues in Culturally Diverse Populations in the United States. 3 Hours.
This course provides students with an overview of health issues and health disparities confronting culturally diverse populations in the United States. The course also addresses genetic, cultural, historical and demographic factors that influence these health issues and disparities, implications for culturally effective health care, and for development of health policy.

NUR 620. Social Responsibility in Global Health. 1 Hour.
This course provides students with an understanding of key social and economic concepts of global health that, together with an understanding of interprofessional collaboration and community partnerships, will enable them to participate in developing and implementing sustainable global health projects in collaboration with local and international community partners. The course is open to undergraduate and graduate students who are enrolled in two co-requisite courses that are requirements for students participating in the interprofessional global health service learning program at the University of Alabama at Birmingham. Working in interdisciplinary teams, students apply concepts and theories related to global health, interprofessional collaboration, team building, community partnerships, and the socioecological framework to develop a plan to address a specific global health problem with a community partner.

NUR 625. Concepts of Addiction Across the Lifespan. 3 Hours.
The purpose of this course is to explore the concept of substance use, misuse and addiction across the lifespan from a nursing perspective. The course will focus on exploring substance use, misuse and addiction, a review of addictive substances and medications, an overview of the pathophysiological effects of substance use, misuse, addiction, and overdose, pertinent legislation, and the impact of substance use, misuse and addiction on the professional registered nurse. Emphasis will be placed upon the nurse’s role in screening, brief intervention, and referral to treatment for patients across the lifespan experiencing substance use, misuse, and addiction.

NUR 628. Men's Health Across the Lifespan. 3 Hours.
The purpose of this course is to provide an expansion of knowledge of health related issues for the pre-adolescent, adolescent, adult, and aging male population. The focus of this course is on physiologic and psychologic development, age related health complications, emotional challenges of adolescence, social determinants of health, policy, sexual health and related issues, and complications specific to aging males. The emphasis of the course is on promoting the progression of knowledge of health related issues of the male population.

NUR 630. Principles of Epidemiology. 3 Hours.
This course is intended to provide the advanced practice nurse with a working knowledge of epidemiology and biostatistics as they relate to nursing practice. Additionally, phenomena along the wellness continuum will be discussed. The Natural History of Disease Model will be applied to the study of health and illness in human populations.
Prerequisites: NUR 600 [Min Grade: C]

NUR 633. Growth and Development. 3 Hours.
The content of this course is centered on major theories of development including physiologic, psychoanalytic, social, stimulus-response, cognitive and moral. Current areas and findings of research are investigated and research designs and methods are critiqued. Self-selected in depth studies are made and shared. Contributions of the study of development to the functional practice of nursing are demonstrated.
NUR 634. Perspectives in Global Health Leadership. 3 Hours.
This course is designed to provide students with an understanding of global aspects of health care leadership. The course will focus on identification of characteristics of global health care leaders, leadership theories, and strategies to develop one's own personal leadership abilities. The course will provide students with a unique opportunity to interact with health care leaders from countries around the world, and develop projects related to an aspect of global health care leadership of interest to each student.

NUR 637. Genetic Principles and Issues. 3 Hours.

NUR 639. Complementary Therapies and Integrative Health Care. 3 Hours.
The focus of this elective course is on holistic nursing utilizing complementary and alternative therapies and integrative health care as an emerging paradigm in the health care arena. This course will examine both the concepts of integrative health care and major complementary therapies, including theoretical basis and research support, actions, uses, contraindications, and side effects. The socio-cultural, economic, legal and ethical issues associated with complementary therapies will be included as well as standards for practice and available resources. Students will be encouraged to explore ways in which they can counsel patients regarding complementary therapies as well as potential inclusion of the therapies in their own practice.

NUR 641. Herbals and Nutritional Supplements. 3 Hours.

NUR 642. Health Education and Social Welfare in a Global Community. 3 Hours.
The purpose of this course is to provide students with a cross-cultural experience in which they will spend time in a selected global community while learning about health, educational and social welfare issues. Students will participate in pre-trip seminar in Birmingham or on-line prior to travel. The seminar(s) will focus on an overview of the course, a model of assessing culture and an overview of selected global community’s culture. Students will also participate in seminars on a variety of health, education and social welfare topics provided by the course instructor and by resource persons from the selected global community.

NUR 643. Introduction to Nursing Informatics. 3 Hours.
The organizing framework for this course is based on the three concepts that form the theoretical basis of nursing informatics, data, information and knowledge. Students will explore how data can be organized into information for the generation of knowledge through the design, selection and implementation of clinical information systems. The course has two sections: theory and laboratory. The theoretical content will focus on the collection, organization, analysis and dissemination of information in nursing and healthcare. Laboratory work will familiarize the student with computer applications designed to manage nursing and healthcare information.

NUR 644. Principles of Developmental Care Newborn Infants. 3 Hours.
Provides students with an overview of principles of individualized developmental care for newborns and infants. The course also addresses principles of family-centered care as a key component of developmental care. Students review concepts and theories related to molecular biology, fetal, infant and family development, psychology and sociology in assessing and planning care to promote optimal development of high risk infants and families. Students explore roles of nurses and other interdisciplinary team members in developmental care are assessed, and develop plans to promote organizational change in order to incorporate developmental care principles in a clinical setting.

NUR 645. Sleep Across the Lifespan I. 3 Hours.
This course provides students with knowledge and skills required for: 1) screening, diagnosing, and treatment of adults (age 13 and beyond) with sleep disturbances and disorders, 2) understanding the articulation between physiologic, social, cultural, and environmental influences on sleep, sleep disturbances, and sleep disorders, 3) critical analysis of sleep, sleep disturbances and sleep disorders and how they relate to public policy, and law, 4) strategies for health promotion related to sleep, and 5) views of knowledge development, and scientific progress in sleep disturbances and disorders among diverse groups of adults.

NUR 653. A Global Health Approach to Health Promotion in the Rural South. 3 Hours.
The purpose of this course is to provide students with the knowledge, skills, and attitudes needed for global health competency development and apply global health principles to promote wellness in rural populations in the southern United States. The course focuses on the impact of the social determinants of health (SDOH) on outcomes and health disparities and draws parallels to similar rural populations in selected low- or middle-income countries. Emphasis is on the contributions of interprofessional health teams to address the complex issues that influence population health, health promotion, and health care delivery in low-resource rural settings.

NUR 667. Psychosocial Aspects of Evidence-Based Practice in Chronic Illness. 3 Hours.
This course is organized around the concepts of evidence-based practice, psychosocial nursing and chronic illness. The chronic illness trajectory across the individual’s and family’s life span and the needs of vulnerable populations with attention to disparity of care and cultural competence of involved health care providers is included. This course is designed to provide the undergraduate student with the basic knowledge and skills needed to provide evidence-based interventions and the graduate student to analyze needs for development of interventions to address the psychosocial needs of those with chronic illness.

NUR 670. Occupational Health Management Principles. 1 Hour.
This course provides the student with a working knowledge of management topics specific to planning, directing, and evaluating occupational health services.

NUR 671. Principles and Practice of Occupational Toxicology and Disease. 3 Hours.
This course is designed to provide the student with an opportunity to build upon existing knowledge of physiology and pathophysiology. Emphasis is placed on the use of critical thinking to assess risk, determine effects, and plan strategies to minimize effects of toxicant exposure and occupational diseases in worker populations.

NUR 673. Intervention Approaches to Family Violence Across the Lifespan. 3 Hours.
The purpose of this course is to provide an overview of contemporary issues in family violence in the US. This course focuses on intervention and prevention responses, best practices and public policy addressing family violence. Emphasis is placed on multidisciplinary responses to addressing the public health problem of family violence.
NUR 674L. Evaluation and Management of Occupational Health and Safety Programs. 2 Hours.
The aim of NUR 674QL is to provide the occupational health student with a working knowledge of program planning and managerial processes in occupational settings. This graduate course is designed to give the master's student an opportunity to actively explore factors which influence the delivery of occupational health and safety services and to critically evaluate the role functions of managers of those services. Decision-making processes related to financial management and resource allocation, along with management of health and safety programs, will be emphasized. Planning for and implementing a worksite occupational health and safety intervention in industry at the aggregate level will be a major part of the course.

NUR 686. Honors Seminar III: Project Implementation. 3 Hours.
This required course for Honors Program students provides opportunities for implementation of an innovative evidence-based practice strategy which integrates human responses to health and illness and professional practice roles. Course content includes clinical or research experiences in innovative practice approaches, discussions of implications for evidence-based practice and professional nursing roles, and guidelines for preparation of manuscript and presentations. Professional expectations include dissemination of findings through a public forum and collaboration with agencies for integration of findings into practice.

NUR 690. Independent Study in Nursing. 1-6 Hour.
Course allows concentration on a selected topic of interest relevant to the Program of Studies.

NUR 691. Independent Study in Clinical Nursing. 1-6 Hour.
Course provides for clinical learning activities which are in addition to the activities in the regular clinical sequence of a given option. Students apply or test out theories and knowledge obtained in established or independent study theory courses.

NUR 692. Clinical Practicum in Genetics. 1-2 Hour.
Course provides students with the opportunity to apply concepts related to Genetic Principles and Issues in a clinical practicum experience. Students will work with an approved preceptor in a clinical site that provides genetic services to prenatal clients and in a site that serves children with known or suspected genetic disorders. Students will conduct genetic assessments, apply the nursing process to develop culturally-appropriate and ethical plans of care, participate as a member of an interdisciplinary team and use genetic counseling principles in interactions with families and children who have known or suspected genetic problems. Students will also implement an educational program related to genetics for nurses in a clinical or community setting.

NUR 693. Genetics In Modern Healthcare and Personalized Medicine. 2-3 Hours.
This elective for graduate students is an advanced study of genetics and genetic technologies which have revolutionized both healthcare and research. The goal of this course is to: (1) Enable students to understand the biology of genes and genetics and their role in healthcare, (2) Educate students on the role of genetic testing, sequencing, gene therapy, CRISPR-Cas9 and personalized medicine in modern healthcare, and (3) Educate students in the use of genetic technologies and how they can be incorporated into their research programs. This included making students aware of the resources available at UAB and training in the use and interpretation of GWAS, Next Generation Sequencing, microbiome, genetic repositories and microarrays. The course has been designed to accommodate distance learning and may either be taken as a 2 credit online course with flexible schedule or as a 3 credit hybrid course which included hands-on labs and paper discussion.

NUR 697. Department of Transportation Medical Examiner Certification Review Course. 1 Hour.
The purposes of this course are to: (1) Introduce and assist the student to gain mastery of the regulations and guidelines set forth by the U.S. Department of Transportation related to medical fitness for duty determination of commercial motor vehicle drivers; and (2) Provide the student with an opportunity to demonstrate competency in conducting a DOT medical examination in the laboratory setting.

NUR 698. Research Practicum. 1-2 Hour.
This graduate course is designed to give the master's nursing student an opportunity to actively participate in the research process. This practicum course allows students to assume limited responsibilities in the development, execution, and/or dissemination of a research study by performing selected roles within the research team. It is acknowledged that given the limited time allotted to the practicum, students may only have the opportunity to participate in one phase of a study due to the extended period usually required to initiate and conduct a study, or to compile the data to present results to target audiences. This course may include integration of the a wide range of experiences such as: using informatics, data management, using statistical analysis software programs, scholarly writing, and preparing or giving presentations to professional or lay audiences. The advanced practice role emphasis of this course is that of investigator and research collaborator.

The thesis is the result of original research work undertaken by the student and the interpretation of those results. The document should also demonstrate the candidates' acquaintance with the literature of the field and with proper selection and execution of research methodology. The physical form of the thesis must comply with published departmental and university guidelines for theses and dissertations. The student works under the guidance of a major professor with a committee of faculty members. However, the obligations of research, accuracy, writing, and quality rest with the student. A public defense of this work is expected. A minimum of four hours of credit is required for completion of thesis hours, although a variable number of hours may be taken per term as necessary. The advanced practice role emphasis of this course is that of investigator, research collaborator, and author.

Prerequisites: GAC M

NUR 700. Clinical Data Management and Analysis. 3 Hours.
This required course provides students with the knowledge base to understand, collect, manage, and measure clinical data. Students will explore data collection and management processes, levels of measurement, basic statistics, and measurement for improvement in order to effectively use clinical data. Data entry exercises employed through analytical tools and statistical software packages will allow the students to practice and apply the basic data management and analysis skills needed for the evaluation of clinical data and evidence-based practice.

NUR 701. Writing for Publication. 3 Hours.
This course concerns the development of skills in writing, editing, and preparing manuscripts for publication from initial idea to submission of a publishable manuscript. The course emphasizes a writing process that encourages productivity and collegial peer review. Legal and ethical aspects of authorship prepare students for responsible practices expected of scholars. Students should have mastered basic writing skills, e.g., grammar, syntax, and computer skills, prior to enrolling in this course.
NUR 706. Theory Building in Nursing. 4 Hours.
This course focuses on the nature of knowledge in practice disciplines with an emphasis on philosophy of science as an underpinning for knowledge development and research; approaches to theory, statement, and conceptual development, and criteria for evaluation of theory. Students examine a variety of sources regarding the nature and modes of theory, model, and concept development in practice disciplines. They select research literature in their substantive area for isolation of concepts, theories, and research contexts to assess congruence between theoretical and operational systems, and suggest ways to remedy problems. They interpret research reports in their substantive area from a theory development and testing perspective, providing a visual schematic representation of their analysis. Through group interaction, they formulate conclusions about the state of the art and forecast directions for theory development as a basis for practice. Each student develops a personal philosophy of science. Admission to PhD program in nursing or permission of instructor.

NUR 729. Evidence-Based Practice Design and Translation. 3 Hours.
The purpose of this course is to provide students with models for evidence-based practice (EBP) design and improvement translation. Students learn to formulate clinical questions in answerable format, and search for and identify best research evidence. The focus of the course is to evaluate and critically appraise evidence for rigor and applicability to the clinical problem and is designed to improve clinical outcomes. Students will translate the evidence into practice environments for safe, high-quality care. Students will gain access to information that will support optimal clinical decision-making. Improvement translation sciences will also be introduced.
Prerequisites: NUR 310 [Min Grade: B]

NUR 730. Current Topics in Nursing. 1-3 Hour.
A special topic seminar with variable focus.

NUR 731. Philosophical, Theoretical, and Conceptual Foundations for Advanced Practice Nursing. 3 Hours.
This required core course in the Doctorate of Nursing Practice program provides an understanding of the use of theory and conceptual foundation to guide the complexity of specialty nursing practice at the doctoral level. The content is derived from the philosophical and scientific underpinnings of nursing, natural, and psycho-social sciences.(on-line) (Essential I).

NUR 732. Design and Statistical Methods for Advanced Practice Nursing. 3 Hours.
This required core course for the Doctorate of Nursing Practice program provides the student with the basis to search, retrieve, and manipulate statistical data. The focus of this course is on quantitative and qualitative methodologies, research design, and data analysis. The content provides essential knowledge for evaluation of research to guide evidence-based practice at the highest level. (Essential III).

NUR 733. Informatics for Advanced Practice Nursing. 3 Hours.
This course focuses on the collection, organization, analysis, and dissemination of information in nursing and health care. Students are introduced to the specialty of nursing informatics, the information system life-cycle, telemedicine, and the use of technology to enhance nursing care delivery and patient safety. Also, students learn how to design, use, and manipulate large and small patient databases for the analysis of patient outcomes.

NUR 734L. Advanced Experiential Clinical Course. 1-6 Hour.
This course provides the opportunity for DNP students to demonstrate excellence in providing complex care and leadership in healthcare settings.

NUR 735. Population Health in Advanced Practice Nursing. 3 Hours.
This course for the Doctor of Nursing Practice program prepares the student to implement specialty population-based disease prevention and health promotion activities to achieve national and international goals of improving worldwide health status. The course focuses on a spectrum of issues affecting health, which include emerging infectious diseases, emergency preparedness, disparities in health and healthcare services, and the impact of behavior and lifestyle choices on health.

NUR 736. Application of Best Practices. 3-4 Hours.
This course prepares the student to evaluate interdisciplinary clinical and health systems for best practices and outcomes in a specialty area. Students acquire the knowledge, skills and tools to support, promote, and implement evidence-based specialty practice in nursing and health care delivery systems to improve health outcomes. Emphasis is on the synthesis, critique, and application of evidence to support quality clinical and organizational practices.
Prerequisites: NUR 731 [Min Grade: C] and NUR 732 [Min Grade: C]

NUR 737. Interprofessional Leadership and Role Development for Practice Excellence. 3 Hours.
This course is a required core DNP course that focuses on organizational and systems leadership and knowledge with critical role development in independent and inter- and intra-disciplinary practice. Content includes communication, conflict resolution, collaboration and negotiation, leadership, and team functioning to maximize success in the establishment of safe, effective patient-centered care in complex environments.

NUR 738L. DNP Project Development. 2-3 Hours.
NUR 738L is a 3-hour seminar designed to assist the student in selecting an area of interest within a practice specialization, and in demonstrating professional competencies related to that area of interest. The student will document previously acquired abilities and competencies in a professional portfolio. Students will participate in the seminar to obtain guidance, be involved in discussion, and receive peer suggestions about the portfolio and project plans.
Prerequisites: (NUR 729 [Min Grade: B] or NUR 729 [Min Grade: B]) and (NUR 743 [Min Grade: B] or NUR 743 [Min Grade: B])

NUR 739L. DNP Project Implementation and Evaluation. 1-5 Hour.
This required course is the capstone clinical course in all advanced practice tracks. The student presents evidence of achievements and competencies in a professional portfolio. The practice residency is completed in a specialty area of the student's choice. One credit hour of each semester of the residency is devoted to classroom seminar. The seminar focuses on the aspects of the final practice project and interventions that promote health, prevent illness and disability, and alleviate health disparities. Small group sessions are formed for students who are at similar stages of completion of the course requirements. The final project is selected and planned by the student and the advisor, and is implemented during this course. The student completes the project, evaluates the outcomes, disseminates the findings, and makes a formal, scholarly presentation to faculty and peers.
Prerequisites: NUR 738L [Min Grade: P] (Can be taken Concurrently) or NUR 738L [Min Grade: P] (Can be taken Concurrently)
NUR 740. Health Policy and Politics: Implications in Health Care. 3 Hours.
This required core course in the Doctor of Nursing Practice program focuses on the basic principles of health policy and the influence of the political process as a systematic approach to health care in the United States and internationally. The course prepares students to assume complex leadership roles in order to advance specialty practice and health. This course focuses on the unique challenges of engaging and influencing health care policy in the U.S. and internationally. It is designed to develop skills, techniques, and approaches to the critical analysis of health policy proposals, health policies, and related issues from the perspective of consumers, nursing, other health professions, and other stakeholders in policy and public forums. The health policy framework is analyzed from a governmental, institutional, and organizational perspective.

Grants process and proposal writing in healthcare research using NIH predoctoral and postdoctoral applications. Strategies for successful proposal preparation include the production of elements required in PHS-398 research grant proposal.

NUR 742. Program Evaluation and Methods. 3 Hours.
The purpose of this course is to synthesize knowledge related to translational/implementation science models and strategies to improved health outcomes. The emphasis in the course is the use of program evaluation as a strategic planning tool to achieve positive changes in health status, to initiate quality improvement, to engage in risk anticipation, management and to facilitate organizational and system level changes.
Prerequisites: NUR 700 [Min Grade: B] (Can be taken Concurrently) or NUR 700 [Min Grade: B] (Can be taken Concurrently) and (NUR 729 [Min Grade: B] or NUR 729 [Min Grade: B])

NUR 743. Evidence-Based Practice Strategies. 3 Hours.
This course is a required core Doctor of Nursing Practice Program course, which expands on foundational evidence-based practice concepts to refine a problem statement and derive a searchable and answerable clinical question. Content includes conducting a systematic review of the literature to guide the selection of methods, strategies, tools and metrics needed to complete a successful scholarly project. The course also addresses targeted strategies for disseminating evidence associated with scholarly projects.
Prerequisites: (NUR 731 [Min Grade: B] or NA 731 [Min Grade: B]) and NUR 729 [Min Grade: B]

NUR 744. Program Evaluation and Methods. 3 Hours.
The purpose of this course is to synthesize knowledge related to translational/implementation science models and strategies to improve health outcomes. The emphasis in the course is the use of program evaluation as a strategic planning tool to achieve positive changes in health status, to initiate quality improvement, to engage in risk anticipation, management and to facilitate organizational and system level changes.
Prerequisites: NUR 700 [Min Grade: B] and NUR 729 [Min Grade: B] and NUR 743 [Min Grade: B]

NUR 745. Foundations of Scholarly Writing. 3 Hours.
The purpose of this course is to provide students with the skills necessary for articulating concepts in a logical and scholarly manner. The focus of the course is on the development of literacy skills needed to locate, analyze, and apply information using a variety of techniques and resources. The emphasis is on the development of skills in writing and editing the manuscript using scholarly grammar, syntax, punctuation, and sentence and paragraph structure.
Prerequisites: NUR 737 [Min Grade: B] (Can be taken Concurrently)

NUR 750. Quantitative Research Methods. 3 Hours.
This course is a survey of quantitative research methods and the first required, research core course in the doctoral nursing program. The course is designed to prepare doctoral nursing students with the research knowledge and skills to: (1) use current research findings to improve practice, (2) use the process of research to examine questions identified in one's own nursing practice, and (3) contribute to expansion of nursing's knowledge base. This course will also include integration of the following elements and/or activities: critical thinking, synthesis of quantitative research literature, scholarly writing, scientific integrity and ethics, human diversity, and social issues. The advanced practice role emphasis of this course is that of investigator, research collaborator, and content expert in a selected practice field. Students must have a solid foundation in computer utilization and accessing scientific sources by Internet.

NUR 751. Philosophical Foundations of Science. 3 Hours.
The purpose of this course is to introduce the student to the concept of truth, and scientific worldviews used to confirm or refute truth over the course of history and during specific periods of social and political contexts. The overall desired student outcome of students participating in the course is demonstrated skill in analysis and application of diverse approaches to knowledge development to research.

NUR 752. Responsible Conduct of Research: A Cross-Cultural Perspective. 3 Hours.
This course will examine a wide range of historical and modern treatises that have shaped ethical practice in the dominant western culture as well as medical ethical theories in other cultures. The course will emphasize comparing and contrasting various world views of ethical research practice from a cultural and global perspective. The content will focus on the pillars of liberal political theory which include respect for persons, autonomy, justice and rights-based codes. In addition, the expectations and regulations of Institutional Review Boards will be examined with an emphasis on developing effective strategies to anticipate procedural problems and expedite approval of student research applications. In addition, students will complete and provide proof of current completion of the UAB IRB training course (within 12 months) as an initial pass/fail learning activity. This course will also include integration of the following elements and/or activities: critical thinking, informatics, collaboration, scholarly writing, preparing/giving professional presentations, theory evaluation and application, human diversity, cultural competence, global concerns and health disparity issues. The advanced role emphasis of this course is that of investigator, research collaborator, and content expert in a selected practice field.

NUR 753. Nursing as a Scientific Discipline. 2 Hours.
The purpose of this course is to provide students with an overview of the processes of knowledge development and contributions of nursing to scientific knowledge. The course focuses on multiple ways of knowing and strategies for expanding knowledge to meet changing societal needs. Students will have an opportunity to appraise different modes of inquiry that contribute to knowledge development as well as integrate different scientific perspectives into a trajectory of research within nursing and multidisciplinary contexts.
NUR 754. Issues in Leadership and Health Policy. 3 Hours.
This graduate core course is designed to prepare doctoral nursing students with advanced theory in health care leadership and analysis of health policy: (1) examine theories of leadership behavior to improve the delivery and/or provision of nursing care, (2) examine aspects of leadership in policy analysis and advocacy, (3) develop an evidence-based foundation for practice as a nursing leader and (4) contribute to the improvement of patient care across the health care continuum through leadership. This course will also include integration of the following elements and/or activities: critical thinking, informatics, current technologies for information retrieval and data management, collaboration, scholarly writing, preparing/giving professional presentations, theory evaluation and application, scientific integrity and ethics, human diversity, cultural competence and health disparity issues. The advanced role emphasis of this course is that of research team leader, academic administrator, health policy advocate and content expert in a selected practice field. Admission to the Doctorate of Philosophy (PhD) Program of the School of Nursing.

NUR 755. Critical Analysis of Theories, Models, and Frameworks. 3 Hours.
The purpose of this course is to identify the underlying concepts and theories that will serve as the basis of conducting research in a focused area. Through literature review and discussion students will challenge each other to link the most relevant theory(s) including physiological, behavioral, and other theories of health and illness to their developing research questions. Students will perform a concept analysis relevant to their proposed area of research focus in order to begin to understand the complexity and issues of measurement and testing that will face as they undertake rigorous study.
Prerequisites: NUR 751 [Min Grade: B] and NUR 753 [Min Grade: B]

NUR 756. Applied Statistical Analysis Techniques. 4 Hours.
This required core course in the Doctor of Philosophy program is intended to provide the student with the basis to search, retrieve, and manipulate statistical data. It provides an underpinning for the understanding of research methods and findings, and supports clinical scholarship practice.

NUR 757. Health Services Research in Nursing. 3 Hours.
The purpose of this course is to introduce health services research to a nursing audience. Students will gain an understanding of the domains of health services research, to include organizational systems research, patient outcomes research, improvement science, and program evaluation through analyzing studies that seek to answer contemporary problems in our health care system, particularly as they apply to nursing aspects of patient care. They will have the opportunity to identify critical problems in health care delivery, pose research questions and hypotheses, explore existing and innovative indicators and sources of data, and develop skill in analyzing such data. Students will also develop an appreciation for the broad implications of health services research in nursing.

NUR 758. Research and Health Policy. 3 Hours.
This graduate core course is designed to prepare PhD nursing students for designing research and translating evidence so as to influence health policy. This course will include integration of the following elements and/or activities: critical thinking, informatics, current technologies for information retrieval and data management, collaboration, scholarly writing, preparing/giving professional presentations, theory evaluation and application, scientific integrity and ethics, human diversity, cultural competence and health disparity issues.

NUR 759. Writing the Career Development Grant Proposal. 1 Hour.
The purpose of this course is to prepare PhD students in the foundations of writing grants for external funding. The Course addresses the grants process and proposal writing in healthcare research using the NIH pre-doctoral application as a template. Strategies for successful proposal preparation including development of elements required in NIH research grant proposal are covered.
Prerequisites: NRM 750 [Min Grade: B](Can be taken Concurrently) and NRM 752 [Min Grade: B]

NUR 760. Scientific Dissemination. 1 Hour.
The purpose of this course is to provide the student an understanding of why dissemination is essential for scientific advancement, with particular emphasis on peer-reviewed journals. To accomplish this, students will be provided with the basic components of writing a peer-reviewed manuscript for publication. Students will be provided a framework for how to generate a detailed outline for a scientific manuscript. Topics to be addressed include but are not limited to plagiarism, self-plagiarism, referencing guidelines (e.g., Endnote), and strategies for improving dissemination productivity. Additional topics to be addressed include: rules and responsibilities of authorship, copyright and conflict of interest, how to select a journal (i.e., impact factors, pros and cons of open access journals), the role of the editor and reviewers, the importance of adhering to journal guidelines and instructions, how and why to contact the editor, how to negotiate electronic submission portals, the peer-review process, how to respond to journal reviewers’ feedback, and monitoring production details after the article is accepted (i.e., reviewing galley proofs, communication with production staff).

NUR 790. Independent Study in Nursing. 1-9 Hour.
Independent Study in Nursing.

NUR 791. Independent Study in Clinical Nursing. 1-9 Hour.
Independent Study in Clinical Nursing.

NUR 797. Writing the Dissertation. 3 Hours.
The purpose of this course is to guide students in the development of an internally consistent dissertation research proposal that can be successfully defended as they progress toward candidacy. In addition, students will explore strategies for discussing research results and their contributions to the state of the science and theory development. Students are to work closely with their dissertation chair and members of their dissertation committee while developing the proposal.
Prerequisites: NRM 781 [Min Grade: B] or (NRM 783 [Min Grade: B] and NRM 798L [Min Grade: B])

NUR 798. Research Practicum. 1-9 Hour.
Research Practicum. The research practicum is a series of course credits taken throughout the student's doctoral coursework to provide continuous experience under the supervision of the mentor.

Dissertation Research - Prerequisites: Comprehensive Examination and admission to candidacy.
Prerequisites: GAC Z

NWH-Nursing - Womens Health Courses

NWH 618L. Focus on Advanced Nursing Practice Women. 3 Hours.
The purpose of this course will be the study of specialty track specific topics. The focus of the course will be on providing foundational materials for specialized areas of advanced nursing practice. Emphasis is on exploring specific advanced nursing practice competencies.
Prerequisites: (NUR 606 [Min Grade: B] or NUR 729 [Min Grade: B] or NUR 737 [Min Grade: B]) and (NUR 613 [Min Grade: B]) and NUR 614 [Min Grade: B](Can be taken Concurrently)
NWH 631. Advanced Women’s Health Nursing I. 5 Hours.
The purpose of this course is to introduce essential concepts in the safe and effective provision of advanced practice nursing. The focus of this course is to prepare the student to implement the role of the Advanced Practice Nurse. The emphasis of this course is on the acquisition of the knowledge and skills necessary to deliver safe and effective care to women.
Prerequisites: (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) and (NUR 614L [Min Grade: B] or NUR 614L [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B])

NWH 632. Advanced Women’s Health Nursing II. 4 Hours.
The purpose of this course is to integrate prior theoretical and practical knowledge for diagnoses and management of the health and illness of women. The focus of this course is on health promotion and disease prevention and management strategies from inter-professional domains. The emphasis of this course is to examine current evidence that supports the delivery of safe and high quality evidence-based care to women.
Prerequisites: NWH 631 [Min Grade: B] or NWH 631 [Min Grade: B]

NWH 633. Advanced Women’s Health Nursing III. 5 Hours.
The purpose of this course is to synthesize in-depth knowledge and theoretical concepts as related to advanced practice nursing. The focus of this course is on the utilization of complex models and systems of practice to deliver high quality evidence-based care to women’s health patients. The emphasis of the course is on the critical analysis of the evidence for applications that optimize health outcomes.
Prerequisites: NWH 632 [Min Grade: B] and NWH 686L [Min Grade: P]

NWH 685L. Practicum I: Women’s Health Care Nurse Practitioner. 3 Hours.
The purpose of this course is to demonstrate management strategies and apply selected practice models for the delivery of high quality care to women. The focus of this course is on the delivery of health care services to women. The emphasis of this course is on promoting the progression of competence within the Advanced Practice Nursing role.
Prerequisites: (NUR 610 [Min Grade: B] or NUR 610 [Min Grade: B]) or (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) or (NUR 735 [Min Grade: B] or NUR 735 [Min Grade: B]) and (NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614 [Min Grade: B] or NUR 614L [Min Grade: B])

NWH 686L. Practicum II: Women’s Health Care Nurse Practitioner. 3 Hours.
The purposes of this course are to prioritize management strategies and apply selected practice models for delivery of care to women. The focus of this course is to provide the student with opportunities to integrate in depth diagnostic and management skills to provide care for women. The emphasis of this course is on the formulation and management of individualized treatment plans based on diagnostic findings and current practice models.
Prerequisites: (NWH 631 [Min Grade: B] or NWH 631 [Min Grade: B]) and (NWH 685L [Min Grade: P] or NWH 685L [Min Grade: P])

NWH 692L. Practicum III: Women’s Health Care Nurse Practitioner. 4 Hours.
The purpose of this course is to refine management strategies and best practice models in the delivery of high quality care to women. The focus of this course is to evaluate progress toward achievement of professional competencies. The emphasis is on incorporation of evidence and concepts from previous coursework and clinical practice to improve the health status of women.
Prerequisites: NWH 686L [Min Grade: P] or NWH 686L [Min Grade: P]
School of Optometry

Dean: Kelly K. Nichols, OD, MPH, PhD

Founded in 1969, The UAB School of Optometry (UABSO) earned the notable distinction of being the first optometry school to be located on an academic medical center campus. The School’s first Doctor of Optometry (O.D.) degrees were awarded in 1973 and since that time, the School has grown to include graduate degrees in Vision Science, post-doctoral optometry residency education, and the highly-unique OD/ MBA dual-degree program. With relatively small class sizes of less than 50 students, an integrated medical/professional program for 1st year students, and an esteemed reputation in vision science research, UABSO continually remains positioned among the top optometry schools in the nation.

Vision Science

Degree Offered: PhD, MS, OD/MS
Program Director: Michael Twa, OD, PhD
Program Manager: Stefanie B. Varghese, PhD
Phone: (205) 934-6743
E-mail: sbvarghese@uab.edu
Website: http://www.uab.edu/vsgp/

Program Information

Vision Science is a multidisciplinary field where basic scientists and clinicians focus on the discovery of new knowledge that will further our understanding of the eye and vision. This discovery includes virtually every scientific discipline where advances come from biologists, neuroscientists, optical engineers, epidemiologists, psychologists, optometrists, physicians and others.

The Vision Science Graduate Program at the University of Alabama at Birmingham provides comprehensive training for the next generation of leaders in vision science. Your decision to pursue graduate training in this program will place you at the center of one of the nation’s top biomedical research institutions and will immerse you in collaborative multidisciplinary research environment that is today’s model for biomedical research leadership. Moreover, our training environment will present opportunities for creative career paths such as dual degree programs with business, law and public health that will allow you to position yourself for a career as unique as your individual talents and interests.

Admission and Financial Aid

Applications for admission to the graduate program in vision science are reviewed by the Vision Science Graduate Program Admissions Committee. Qualified students admitted to the program may receive financial assistance in the form of annual stipends, tuition support, scholarships, and student health insurance.

Master of Science Degree

Two calendar years are generally required to complete the Master of Science degree (MS) in the Vision Science Graduate Program. Each candidate must complete a minimum of 30 hours of credit: 24 credit hours in vision science and 6 credit hours in related graduate courses.

In addition, the candidate must successfully complete and defend a research thesis.

Admission Requirements:

- GRE Required (subject tests are optional)
- TOEFL or IETLS tests required for international students (see program website for minimum scores)
- Undergraduate GPA of 3.0 on a 4.0 scale (B average)
- Strong background in the biological, physical or health sciences
- Three letters of recommendation

Doctor of Optometry / Master of Science—Dual Degree

Selected students in the UAB optometry professional program are encouraged to combine the clinical doctorate degree with additional research training in Vision Science. Financial assistance is available for qualified students. Potential candidates should have completed an undergraduate degree in a biological, physical, or health science field.

Admission Requirements:

- See Master Degree Requirements
- OAT scores can be used in lieu of GRE requirement

Doctor of Philosophy Degree

Doctoral research training leading to the PhD degree in vision science is based upon completion of graduate course work, a qualifying examination, research accomplishments, and successful defense of a dissertation. There is considerable flexibility in the coursework for the PhD in vision science. Each student is required to take the first-year core curriculum for their respective track, as well as courses in statistics and the ethical conduct of research. Students then take three additional courses, selected by the student in consultation with their academic advisor, which can include a wide range of interdisciplinary topics. Other graduate level courses can be substituted so that students can take maximum advantage of offerings in other programs at UAB. Individuals with previous clinical training will have opportunities for further clinical development and research integration. Students are also required to gain teaching experience.

Admission Requirements:

- GRE Required (subject tests are optional)
- TOEFL and/or IETLS tests required for international students (see program website for minimum scores)
- Undergraduate GPA of 3.0 on a 4.0 scale (B average)
- Strong background in the biological, physical or health sciences
- Three letters of recommendation

Additional Information

Deadline for Entry Term(s): Summer and Fall (No Spring admission)

Deadline for All Application Materials to be in the Graduate School Office: January 15th

Number of Evaluation Forms Required: Three
Entrance Tests: GRE (TOEFL and TWE also required for international applicants whose native language is not English.) OAT is considered for combined degree programs, e.g. OD/ MS.

Web site: http://www.uab.edu/vsgp/

For detailed information, contact the graduate program manager, Dr. Stefanie Varghese, UAB School of Optometry Vision Science Graduate Program, HPB 516, 1720 2nd Ave S., Birmingham, AL 35294-4390 (office location: Henry Peters Building, Room 516, 1720 University Blvd.).
Telephone 205-934-6743
E-mail sbvarghese@uab.edu
Web http://www.uab.edu/vsgp/

Courses

VIS 600. Clinical Vision Science Literature Review. 1 Hour.
Review, critical analysis and discussion of foundational literature and current topics in clinical vision science and evidence-based practice.

VIS 601. Fundamentals of Clinical Research. 2 Hours.
Introduction to fundamental principles of clinical research including: framing research questions, structured literature reviews, study design, sources of bias and their control, presentation and publication of research findings.

VIS 610. Ocular Anatomy and Biology. 4 Hours.
Anatomy, biochemistry, physiology, cellular and molecular biology of ocular tissues.

VIS 611. Biology and Pathology of Ocular Disease. 4 Hours.
Overview of ocular disease and pathology of the visual system including disease mechanisms and treatments.

VIS 612. Optics for Vision Science. 4 Hours.
Advanced topics in optics related to the eye and vision including paraxial, wave, and quantum optics, light safety, refraction, reflection, aberrations, interference, diffraction, polarization, Fourier optics, lasers, and fluorescence. The course will include applications for optical system design, biomedical imaging, microscopy, and clinical assessment of the eye and visual system.

VIS 613. Visual Neuroscience. 4 Hours.
Vision begins with photons and ends in the brain. How does it all work? This course introduces the student to the anatomical and physiological underpinnings of visual perception, stepping from single photoreceptors in the retina on through the cortical neural circuits devoted to capturing every facet of seeing the world. Lectures are supplemented with hands-on sessions where students can test their own vision.

VIS 615. The Body Electric: Electronics for Biologists. 3 Hours.
This course provides an overview of the fundamental concepts of electronics that are relevant to a biologist. The material is aimed at non-engineers who require a background in the circuit concepts needed for studying ion channels, electrophysiology, proper use of amplifiers and filters, and the use of computers to acquire and analyze data. There will be a mix of formal lectures and problem sets with practical hands-on experience.

VIS 670. Intermediate Orientation and Mobility Skills. 3 Hours.
Development of teaching skills in orientation and mobility in semi-independent settings with multihandicapped and blind students.

VIS 671. Intermediate Orientation and Mobility Seminar. 3 Hours.
Recent research practices and problem areas in special education. Focus on intermediate orientation and mobility for multihandicapped and blind students.

VIS 672. Advanced Orientation and Mobility Skills. 3 Hours.
Advanced orientation and mobility teaching techniques for travel in independent settings for multihandicapped and blind students.

VIS 673. Advanced Orientation and Mobility Seminar. 3 Hours.
Recent research practices and problem areas in special education. Focus on advanced orientation and mobility for people with multiple handicaps and blindness.

VIS 674. Orientation and Mobility Internship. 3-6 Hours.
Demonstrate skills in applying principles of special methods of teaching, designing instruction, conducting skills assessments, and in preparing written reports, and consulting and collaborating with professionals and parents to assure orientation and mobility programming for students with visual impairments.

Lab/research hours for master's students who have not entered into candidacy.

Lab/research hours for master's students who have entered into candidacy.

Prerequisites: GAC M

VIS 700. Vision Research Literature Review. 1 Hour.
Review, analysis, and discussion of foundational literature and current topics in basic and translational vision science.

VIS 701. Principles of Research. 2 Hours.
Principles and fundamentals of scientific thinking and practice including: framing the research question, critical thinking, literature review, use of modern information resources, experimental design, sources of bias and their control, reproducibility, presentation and publication of research findings, and case studies in failures of the scientific method.

VIS 702. Fundamental Techniques in Vision Science. 4 Hours.
This course is designed to provide graduate students with an overview of common laboratory techniques, both basic science techniques and clinical techniques, used in vision research.

VIS 703. Matlab: Imaging and Image Processing. 3 Hours.
This course is designed to provide graduate students with an introduction to the use of Matlab and its capabilities for analysis and quantification of image data. Students will learn the fundamentals of Matlab and the unique challenges of working with image data types.

VIS 704. Visual Communication for the Sciences. 3 Hours.
A workshop to develop visual communication skills using commonly encountered data in the quantitative sciences. Emphasis will be on the creation of clear figures that aim to appear in the professional literature.

VIS 705. Microscopic Anatomy of the Retina and Central Visu. 3 Hours.

VIS 710. Ocular Biochemistry and Molecular Biology. 3 Hours.
Ocular Biochemistry.

VIS 714. Ocular Biomechanics. 3 Hours.
This interdisciplinary course provides upper-division graduate students exposure to scientific principles and practices related to the biomechanics of soft-tissues and the eye. Knowledge of basic histology and ocular anatomy is assumed. The course will include lecture and laboratory exercises.
VIS 717. Research Ethics for the Clinician Scientists. 3 Hours.
Training in the principles of scientific integrity and research ethics with specific emphasis on issues encountered by clinician scientists engaged in clinical research (e.g. human subjects research, clinical trials, data safety monitoring, etc.).

VIS 729. Introduction to Neurobiology/Marine Biology. 4 Hours.

VIS 743. Optics and Imaging. 3 Hours.
Optical properties of the eye. Transparency, aberrations, modulation transfer functions of the eye. Use of coherent optics (lasers) invision research. MRI in vision research.

VIS 744. Ocular Anatomy, Physiology and Biochemistry of Anterior Segment. 3 Hours.
Anatomy of the eye. Biochemistry and physiology of ocular tissues, including tears, cornea, aqueous humor, lens, vitreous and sclera.

VIS 745. Ocular Anatomy-Physiology and Biochemistry II. 3 Hours.
Continued examination of ocular anatomy, biochemistry and physiology.

VIS 755. Electronic for Biologists. 3 Hours.
This course provides an overview of the fundamental concepts of electronics that are relevance to a biologist. The material is aimed at non-engineers who need a background in the circuit concepts needed for studying ion channels, electrophysiology, the basic use of amplifier and filter, and the use of computers to acquire and analyze data. There will be a mix of formal lectures and problem set with practical hands-on experience.

VIS 756. Visual Neuroscience. 4 Hours.
Vision begins with photons and ends in the brain. How does it all work? This course introduces the student to the anatomical and physiological underpinnings of visual perception, stepping from single photoreceptors in the retina on through the cortical neural circuits devoted to capturing every facet of seeing the world. Lectures are supplemented with hands-on sessions where students can test their own vision.

VIS 757. Functional MRI. 3 Hours.
In this course, we will explore the history of fMRI, design of fMRI experiments, and the analysis of fMRI data. We will also discuss several related techniques that are used in neuroimaging research. When designing fMRI experiments, it is important to know what techniques and statistical methods are available. It is also important to understand the kinds of hypotheses that can be tested with fMRI. By the end of this class, students will understand what led to the development of fMRI, when to use fMRI or related methods, limitations of experiments involving this technology, and different techniques for analyzing fMRI data. This class will be ‘hands-on’; each student will be required to design and execute an fMRI experiment.

VIS 760. Sensory Impairment Lit Review. 1 Hour.
Sensory Impairment and Deafblind literature review and presentation.

VIS 770. Advanced Graduate Seminar in Ocular Biology. 1-3 Hour.
Advanced graduate seminar in biology of the eye and visual system that will include critical review analysis, and discussion of fundamental literature and current topics.

VIS 771. Advanced Graduate Seminar in Ocular Surface. 1-3 Hour.
Review, analysis and discussion of current literature topics of ocular surface physiology and disease.

VIS 772. Advanced Graduate Seminar in Cornea and Anterior Segment. 1-3 Hour.
Advanced graduate seminar on topics related to the cornea and anterior segment that will include critical review and discussion of fundamental literature and current topics.

VIS 773. Advanced Graduate Seminar in Retinal Research. 1-3 Hour.
Advanced graduate seminar on topics related to retinal research that will include critical review, and discussion of fundamental literature and current topics.

VIS 774. Advanced Graduate Seminar in Visual Neurobiology. 1-3 Hour.
Advanced graduate seminar in visual neurobiology that will include critical review and discussion of fundamental literature and current topics.

VIS 775. Advanced Graduate Seminar in Ocular Motor Systems. 1-3 Hour.
Advanced graduate seminar in ocular motor systems that will include critical review analysis, and discussion of fundamental literature and current topics.

VIS 776. Advanced Graduate Seminar on Refractive Error. 1-3 Hour.
Advanced graduate seminar on topics related to refractive error, ocular growth, and development that will include critical review, and discussion of fundamental literature and current topics.

VIS 777. Advanced Graduate Seminar in Public Health and Vision. 1-3 Hour.
Advanced graduate seminar on topics in public health issues with a focus on visual disorders that will include critical review and discussion of fundamental literature and current topics.

VIS 778. Advanced Graduate Seminar on Vision Rehabilitation. 1-3 Hour.
Advanced graduate seminar on topics in visual rehabilitation, orientation and mobility that will include critical review and discussion of fundamental literature and current topics.

VIS 779. Advanced Graduate Seminar in Interdisciplinary Sciences. 1-3 Hour.
Advanced graduate seminar on topics related to research that spans faculty and student interests across traditional academic disciplines or boundaries. The course will include critical review, and discussion of fundamental literature and current topics relevant to the participants.

VIS 790. Individual Topics and Advanced Topics. 1-3 Hour.

Lab/research hours for doctoral students who have not entered into candidacy.

Lab/research hours for doctoral students who have entered into candidacy.

Prerequisites: GAC Z
School of Public Health

Dean: Paul C. Erwin, MD, DrPH
Associate Dean for Academic Affairs: Erika (Ela) Austin, PhD, MPH
Associate Dean for Public Health Practice: Lisa McCormick, DrPH, MPH
Associate Dean for Research: Paul Muntner, PhD, MPH
Assistant Dean for Accreditation: Kelley Swatzell, DrPH, MPH
Assistant Dean for Undergraduate Education: Amy Hutson Chatham, PhD, MSPH
Website: www.uab.edu/soph
Primary Email: soph@uab.edu

About the School of Public Health

Schools of public health were established to develop leaders and scientists who could bring academic rigor to the discipline of “assuring conditions in which people can be healthy.” Once the major challenges related to sanitation and clean water, vaccine-preventable diseases, and other communicable diseases were identified (although never fully solved!), public health as an academic discipline began to examine the larger issues of where and how we live, work, and play, and the influence these have on whether families, communities, and populations can live healthy lives.

The great challenges before us now are understanding the root causes — known as social determinants of health — that shape our capacity as individuals, families, communities, and populations to become and remain healthy. The COVID-19 pandemic unmasked the effects of these social determinants of health and their role in creating health inequities. We are just beginning to grasp how these determinants impact, and are impacted by, our environment, which in turn affects gene expression and individual susceptibilities to both communicable and non-communicable diseases. Connecting this understanding to the impacts of climate change on human health is a commitment the school is making through a new school-level faculty hiring initiative.

Our school engages with local leaders in Birmingham to address homicide as a public health crisis, supports community efforts to address the decades-long environmental injustices related to environmental contamination in north Birmingham, works with communities in the Black Belt of rural Alabama to understand the disparities in the development of hypertension, and develops novel methods of stemming the HIV/AIDS epidemic in Sub-Saharan Africa. Throughout the COVID-19 pandemic, public health leaders from our school have provided expert guidance to the University of Alabama System and UAB regarding COVID-19 related policies and procedures; we have been engaged in regular consultations with the Jefferson County Health Department in Birmingham, as well as with the Alabama Department of Public Health (ADPH); and we have supported the work of ADPH through our school’s Case Investigation/Contact Tracing activities, the establishment of a Regional Center for Infection Prevention and Control, and our management of COVID-19 testing in K-12 schools across the state.

Opportunities abound for students to explore connections between public health and other academic disciplines across the UAB campus. We offer practical and meaningful internship experiences through partnerships with state and local governmental agencies, local businesses and industry, and a global network of governmental and non-governmental organizations. Students have been at the forefront of our COVID-19 activities, most notably becoming Contact Tracers — simultaneously learning public health and DOING public health! Students in the UAB School of Public Health have life-changing opportunities to BE SOMEBODY and MAKE A DIFFERENCE! Come join us!

Admission Requirements

Our graduate programs in Biostatistics, Environmental Health Sciences, Epidemiology, Health Behavior, and Health Policy and Organization offer students intellectual tools to address complex problems with a global perspective. Whether you are looking for a highly-rated program that provides the opportunity to work next to leading researchers or you are a graduate student looking for information related to your studies, we have everything you need. Click the applicable link below for information related to your particular need.

The UAB Graduate School’s standard fee is $50 for domestic applicants and $60 for international applicants.

The cost for a SOPHAS application is $145 for the first school or program to which you apply. Any additional schools or programs to which you choose to apply will cost $55 per designation, even if you submit those schools or programs later in the application cycle. Still have questions? Send an email to soph@uab.edu or contact us by phone at (205) 934-4993.

If you’re applying to a stand-alone MPH, MSPH, or DrPH program, you will submit your primary application via sophas.org. All students admitted through SOPHAS must also complete a supplemental application to the UAB Graduate School. See our website for further information on program availability, where to apply, and when to apply.

Accelerated Learning Opportunities

Public Health offers both Fast-Track and Accelerated Bachelor’s/Masters (ABM) options for high-achieving undergraduate students.

The Fast Track Master of Public Health Program allows motivated undergraduate students to begin coursework for a Master of Public Health (MPH) degree while still completing their undergraduate degree requirements. We welcome students from any major to consider the Fast Track MPH program and will provide academic advising to assist students in planning their graduate coursework, which students can begin once they have completed 60 undergraduate credit hours (including 36 at UAB).

The Accelerated Bachelor’s to Master of Public Health Program allows motivated undergraduate students to begin coursework for a Master of Public Health (MPH) degree while still completing their undergraduate degree requirements. We welcome students from any major to consider the ABM program and will provide academic advising to assist students in planning their graduate coursework, which students can begin once they have completed 60 undergraduate credit hours (including 36 at UAB). As a major benefit of this program, up to
12 hours of graduate credit can be counted toward (shared) with the undergraduate degree, saving students time and money.

Maintaining Status in ABM

To maintain status in ABM, the student must:

- maintain a 3.25 GPA average in undergraduate courses
- receive a B (or better) in the MPH courses taken while still an undergraduate student
- maintain full-time student status at UAB

Early Acceptance

Early Acceptance Programs are designed for academically superior high-school students. They allow high-achieving students to be conditionally admitted into a graduate program at the same time they are admitted to an undergraduate program. Students who were admitted to the Early Acceptance Program may enroll in the MPH program when eligible provided they maintain a 3.5 UAB undergraduate GPA.

Additional Information

Deadlines for All Applications (Both US and International)

- **Fall Term (Domestic):** July 1; final deadlines vary by department
- **Spring Term (Domestic):** November 1 (with the exception of Biostatistics, which only admits in the Fall).
- **Summer Term (Domestic):** April 1 (with the exception of Biostatistics, which only admits in the Fall).

Doctoral Programs: Deadlines vary by department

Entrance Test:

- **GRE recommended but not required for admission to MPH programs**

International Transcripts:

International transcripts must be submitted to World Education Services (WES) or Educational Credential Evaluators (ECE) for an official course-by-course credential evaluation (document-by-document evaluations will not suffice).

Number of Evaluation Forms Required:

Three letters of recommendation from academic or professional references.

Apply Webpage:

- www.uab.edu/soph/home/apply

Master of Science in Public Health (MSPH)

Prospective students should [click here](http://www.uab.edu/soph/home/apply) to obtain specific admission requirements on how to apply.
Biostatistics Concentration: Biostatistics

Environmental Health Concentrations: Environmental and Occupational Health Sciences

Epidemiology Concentration: Applied Epidemiology

Health Policy and Organization Concentration: Outcomes Research Online

Public Health MSPH Coordinated Program: MSPH / Doctor of Medicine

Master of Science (MS)

Prospective students should click here to obtain specific admission requirements on how to apply.

Biostatistics Concentration: Biostatistics

Doctor of Philosophy (PhD)

Prospective students should click here to obtain specific admission requirements on how to apply.

Biostatistics Concentration: Biostatistics

Environmental Health Sciences Concentration: Environmental Health Sciences

Epidemiology Concentration: Epidemiology

Health Behavior Concentration: Health Behavior

Doctor of Public Health (DrPH)

Prospective students should click here to obtain specific admission requirements on how to apply.

Health Policy and Organization Concentrations: Health Policy and Organization

Maternal & Child Health Policy Concentration: Maternal & Child Health Policy

Outcomes Research Concentration: Outcomes Research

Biostatistics Concentration: Biostatistics

For detailed information about the graduate programs offered, please consult the School of Public Health website or visit the UAB School of Public Health:

Ryals Public Health Building
Room 130, Office of Student and Academic Services
1665 University Boulevard
Birmingham, AL 35294-0022
Telephone: (205) 934-4993
E-mail: soph@uab.edu
Website: www.uab.edu/soph
Facebook: www.facebook.com/UABSchoolofPublicHealth

BST-Biostatistics Courses

BST 601. Biostatistics. 4 Hours.

Logic and language of scientific methods in life science research; use of basic statistics in testing hypotheses and setting confidence limits. Simple and multiple regression and elementary experimental designs. BST 601 is a 4-credit course for MPH students. There are no formal prerequisites for this course; however, familiarity and comfort with basic mathematical concepts is essential. The minimum technical skills required include the ability to use Adobe Acrobat, Word, Excel, and PowerPoint. If you are deficient in any of these areas, it is your responsibility to improve your skills before starting the course.

Prerequisites: BST 611 [Min Grade: C] or BST 621 [Min Grade: C] or BST 611 [Min Grade: C] and BST 612 [Min Grade: C]

BST 603. Introductory Biostatistics for Graduate Biomedical Sciences. 3 Hours.

This course will utilize current statistical techniques to assess and analyze health science related data.

BST 611. Intermediate Statistical Analysis I. 3 Hours.

Students will gain a thorough understanding of basic analysis methods, elementary concepts, statistical models and applications of probability, commonly used sampling distributions, parametric and non-parametric one and two sample tests, confidence intervals, applications of analysis of two-way contingency table data, simple linear regression, and simple analysis of variance. Students are taught to conduct the relevant analysis using current software such as the Statistical Analysis System (SAS).

BST 612. Intermediate Statistical Analysis II. 3 Hours.

This course will introduce students to the basic principles of tools of simple and multiple regression. A major goals is to establish a firm foundation in the discipline upon which the applications of statistical and epidemiologic inference will be built. If prerequisite is not met, permission of instructor is required.

Prerequisites: BST 611 [Min Grade: C]

BST 613. Intermediate Statistical Analysis III. 3 Hours.

This course will introduce students to additional general concepts in biostatistics beyond an introductory level to include study design, power and sample size estimation, mixed-models, survival analysis, survey design and interpretation of research results. We recommend a prior statistics/biostatistics course that included hypothesis testing for proportions and means, ANOVA, correlation, simple and multiple linear regression, and logistic regression (with approval of the instructor).

Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C]

BST 619. Data Collection and Management. 3 Hours.

Basic concepts of study design, forms design, quality control, data entry, data management and data analysis. Hands-on experience with data entry systems, e.g., DBASE, and data analysis software, e.g., PC-SAS. Exposure to other software packages as time permits. Previous computer experience or workshop on microcomputers highly recommended.

Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] and BST 613 [Min Grade: C]

BST 620. Applied Matrix Analysis. 3 Hours.

Vector and matrix definitions and fundamental concepts; matrix factorization and application. Eigen-values and eigen-vectors, functions of matrices, singular and ill-conditioned problems.

Prerequisites: BST 622 [Min Grade: C]
BST 621. Statistical Methods I. 3 Hours.
Mathematically rigorous coverage of applications of statistical techniques designed for Biostatistics majors and others with sufficient mathematical background. Statistical models and applications of probability; commonly used sampling distributions; parametric and nonparametric one and two sample tests and confidence intervals; analysis of two-way contingency table data; simple linear regression; simple analysis of variance designs with equal or proportional subclass members; use of contrasts and multiple comparisons procedures; introduction to survival analysis; multivariate methods. Interested students must have a year of calculus sequence before enrolling in BST 621.

BST 622. Statistical Methods II. 3 Hours.
Mathematically rigorous coverage of applications of statistical techniques designed for Biostatistics majors and others with sufficient mathematical background. Statistical models and applications of probability; commonly used sampling distributions; parametric and nonparametric one and two sample tests and confidence intervals; analysis of contingency tables; simple linear regression; simple analysis of variance designs with equal or proportional subclass members; use of contrasts and multiple comparisons procedures; introduction to survival analysis; multivariate methods.

Prerequisites: BST 621 [Min Grade: B] (Can be taken Concurrently)

BST 623. General Linear Models. 3 Hours.
Simple and multiple regression using matrix approach; weighted and non-linear regression; variable selection methods; modeling techniques; regression diagnostics and model validation; systems of linear equations; factorial designs; blocking; an introduction to repeated measures designs; Coding schemes.

Prerequisites: BST 622 [Min Grade: B]

BST 624. Experimental Design. 3 Hours.
BST 624 provides intermediate level training for the design of experiments in biomedical research. It will cover classical experimental designs including factorial and nested (hierarchical) designs, Latin squares, incomplete block designs, and fractional factorials. It will use a matrix approach to analysis. In addition, it will emphasize statistical methodology and communication of procedures, results, and conclusions. Students are expected to have prior coursework in calculus and matrix algebra. Additional prerequisites include successful completion (B or higher) in either the BST 621/622 sequence or the BST 611/612 sequence.

Prerequisites: (BST 621 [Min Grade: B] and BST 622 [Min Grade: B]) or (BST 611 [Min Grade: B] and BST 612 [Min Grade: B])

BST 625. Design/Conduct Clinical Trials. 3 Hours.
Concepts of clinical trials; purpose, design, implementation and evaluation. Examples and controversies presented.

Prerequisites: (BST 611 [Min Grade: B] and BST 612 [Min Grade: B]) or (BST 611Q [Min Grade: B] and BST 612Q [Min Grade: B]) or (BST 621 [Min Grade: B] and BST 622 [Min Grade: B])

BST 626. Data Management and Reporting with SAS. 3 Hours.
This course is designed to provide an introduction to data management and reporting using the SAS system.

BST 630. Estimation & Inference. 3 Hours.
This course is an introduction to probability concepts and statistical inference. Topics include counting techniques, discrete and continuous univariate and multivariate random variables & common distributions, probability, expectation, variance, confidence intervals, the Central Limit Theorem, and hypothesis testing. Restricted to MSPH and DrPH students. Preq: Calculus II.

BST 631. Statistical Theory I. 4 Hours.
Fundamentals of probability; independence; distribution and density functions; random variables; moments and moment generating functions; discrete and continuous distributions; exponential families, marginal and conditional distributions; transformation and change of variables; convergence concepts, sampling distributions. Point and interval estimation; hypothesis and significance testing; sufficiency and completeness; ancillary statistics; maximum likelihood and moment estimators; asymptotic properties of estimators and tests; introduction to Bayesian inference. Prerequisites: Proficiency in Algebra and calculus is required.

BST 632. Statistical Theory II. 4 Hours.
Fundamentals of probability; independence; distribution and density functions; random variables; moments and moment generating functions; discrete and continuous distributions; exponential families, marginal and conditional distributions; transformation and change of variables; convergence concepts, sampling distributions. Point interval estimation; hypothesis and significance testing; sufficiency and completeness; ancillary statistics; maximum likelihood and moment estimators; asymptotic properties of estimators and tests; introduction to Bayesian inference.

Prerequisites: BST 631 [Min Grade: B]

BST 640. Nonparametric Methods. 3 Hours.
Properties of statistical tests; order statistics and theory of extremes; median tests; goodness of fit; tests based on ranks; location and scale parameter estimation; confidence intervals; association analysis; power and efficiency.

Prerequisites: BST 621 [Min Grade: C] and BST 631 [Min Grade: C]

BST 655. Categorical Data Analysis. 3 Hours.
Intermediate level course with emphasis on understanding the discrete probability distributions and the correct application of methods to analyze data generated by discrete probability distributions. The course covers contingency tables, Mantel-Haenszel test, measures of association and of agreement, logistic regression models; regression diagnostics; proportional odds; ordinal and polytomous logistic regression; Poison regression; log linear models; analysis of matched pairs; and repeated categorical data.

Prerequisites: BST 621 [Min Grade: B] and BST 622 [Min Grade: B]

BST 660. Applied Multivariate Analysis. 3 Hours.
Analysis and interpretation of multivariate general linear models including multivariate regression, multivariate analysis of variance/covariance, discriminant analysis, multivariate analysis of repeated measures, canonical correlation, and longitudinal data analysis for general and generalized linear models. Extensive use of SAS, SPSS, and other statistical software.

Prerequisites: BST 623 [Min Grade: B]

BST 661. Structural Equation Modelling. 3 Hours.
Basic principles of measurements; factor analysis and latent variable models; multivariate predictive models including mediation mechanisms and moderators effects; path analysis; integrative multivariate covariance models, methods of longitudinal analysis.

Prerequisites: BST 623 [Min Grade: C]

BST 665. Survival Analysis. 3 Hours.
Kaplan-Meier estimation; Parametric survival models; Cox proportional hazards regression models; sample size calculation for survival models; competing risks models; multiple events models.

Prerequisites: BST 622 [Min Grade: B] (Can be taken Concurrently)
BST 670. Sampling Methods. 3 Hours.
Simple random, stratified, cluster, ratio regression and systematic sampling; sampling with equal or unequal probabilities of selection; optimization; properties of estimators; non-sampling errors; sampling schemes used in population research; methods of implementation and analyses associated with various schemes.
Prerequisites: BST 631 [Min Grade: C]

BST 671. Meta-Analysis. 3 Hours.
Statistical methods and inference through meta analysis.
Prerequisites: BST 622 [Min Grade: C] and BST 632 [Min Grade: C]

BST 675. Introduction to Statistical Genetics. 3 Hours.
This class will introduce students to population genetics, genetic epidemiology, microarray and proteomics analysis, Mendelian laws, inheritance, heritability, test cross linkage analysis, QTL analysis, human linkage and human association methods for discrete and qualitative traits.
Prerequisites: BST 611 [Min Grade: C] or BST 621 [Min Grade: C]

BST 676. Genomic Data Analysis. 3 Hours.
The purpose of this class is to teach graduate students practical skills and statistics concepts and methods that underlie the analysis of high-dimensional genomic big data generated by high throughput technologies, as well as issues in the experimental design and implementation of these technologies. Lectures contents will be delivered often with live demonstrations. Afterwards, students will be immersed by practical problem solving sessions. The R language will be used for programming throughout the course.
Prerequisites: BST 611 [Min Grade: B] or BST 621 [Min Grade: B]

BST 680. Statistical Computing with R. 3 Hours.
This course is mainly focused on R and how to use R to conduct basic statistical computing. The course contains three themes: R programming, introduction to high performance computing, and basics of statistical computing.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 626 [Min Grade: C]

BST 685. Training in Biostatistics Teaching. 3 Hours.
Acquire skills for teaching in higher education, including syllabus design, communication skills for the classroom and office hours, creating assignments and rubrics, preparing and giving lectures, preparing nondidactic content, and effective grading. Prerequisites: Must have completed the course that you will be the TA, or similar course, in a prior semester with a grade of B or higher. Completed the Biostatistics Qualifying Exam at the applicable level, have an overall GPA of 3.0 or higher (be a student in good standing with the UAB Graduate School). Receive an invitation from the applicable faculty member to register for this course.

BST 690. Biostatistical Consulting and Applied Problems. 3 Hours.
Students will work individually to address, analyze and present the results of an applied problem or grant design each week. The presentation of approaches, solutions and designs will be conducted in a round table format. Students will be evaluated on the quality of solution and by their presentation and class participation.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C]

BST 691. Pre-Doctoral Seminar Series. 1 Hour.
Biostatistics Seminar Series. This course is restricted to Biostatistics in Public Health majors only. This course provides an opportunity for students to learn about ongoing research in the field of biostatistics, clinical trials, and statistical genetics.

BST 695. Special Topics. 1-3 Hour.
Special topics in Biostatistics not covered in regular 600 level courses, but suited for Masters students in Biostatistics and doctoral students in other related disciplines.

BST 698. Non Thesis Research. 1-12 Hour.
Independent non-thesis research with guidance of appropriate faculty. Restricted to Biostatistics Majors only or permission of instructor / department.

BST 703. Methods in Evidence-Based Public Health. 3 Hours.
This course introduces students to the Evidence-Based Public Health (EBPH) framework. The Evidence-Based Public Health framework will be used to collaborate with the Jefferson County Department of Health (JCDH) on: 1) identifying critical public health needs in our local area; 2) suggesting appropriate evidence-based policies and interventions to address these needs; 3) proposing an evaluation plan to assess the impact of the suggested policy or intervention.

BST 723. Theory of Linear Models. 3 Hours.
Multivariate normal distributions and quadratic forms; least square estimation; nested models; weighted least squares, testing contrasts; multiple comparison; polynomial regression; maximum likelihood theory of log linear models will be studied.
Prerequisites: BST 632 [Min Grade: B]

BST 724. Experimental Design. 3 Hours.
This course provides training for the design of experiments in biomedical research. BST 724 extends the intermediate training to delve into more theoretical justification and advanced applications. The course will cover classical experimental designs including factorial and nested (hierarchical) designs, Latin squares, incomplete block designs, fractional factorials, and mixture designs. It will use a matrix approach to analysis. In addition, it will emphasize statistical methodology and communication of procedures, results, and conclusions. BST 724 is intended for advanced graduate students in the Department of Biostatistics who have completed BST 621/22, 623, and 631/632.
Prerequisites: BST 621 [Min Grade: B] and BST 622 [Min Grade: B] and BST 623 [Min Grade: B] and BST 631 [Min Grade: B] and BST 632 [Min Grade: B]

BST 725. Advances Clinical Trials. 3 Hours.
This course will provide students with the tools to develop a basic understanding of the fundamental statistical principles involved in the design and conduct of clinical trials.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] or BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 625 [Min Grade: C]

BST 726. Advanced Clinical Trials II. 1 Hour.
This course builds on the knowledge gained in BST 725 in order to develop a more thorough understanding of the basic methodology behind important statistical concepts used in the design and analysis of large, randomized clinical trials. The class will involve discussions of publications dealing with current topics of interest in clinical trials.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 625 [Min Grade: C] and BST 631 [Min Grade: C] and BST 632 [Min Grade: C] and BST 725 [Min Grade: C]

BST 735. Advanced Inference. 4 Hours.
Stochastic convergence and fundamental inequalities; weak convergence and the central limit theorems; large sample behavior of the empirical distribution and order statistics; asymptotic behavior of estimators and tests with particular attention to LR, score and Wald tests.
Prerequisites: BST 631 [Min Grade: B] and BST 632 [Min Grade: B]
BST 740. Bayesian Analysis. 3 Hours.
To introduce the student to the basic principles and tools of Bayesian Statistics and most importantly to Bayesian data analysis techniques. A major goal is to establish a firm foundation in the discipline upon which the applications of statistical and epidemiologic inference will be built.
Prerequisites: BST 632 [Min Grade: C]

BST 741. Advanced Bayesian Analysis II. 3 Hours.
This course is intended to illustrate advanced Bayesian modeling and computation for variety of models and problems.
Prerequisites: BST 631 [Min Grade: B] and BST 632 [Min Grade: B]

BST 750. Stochastic Modeling. 3 Hours.
Poisson processes; random walks; simple diffusion and branching processes; recurrent events; Markov chains in discrete and continuous time; birth and death process; queuing systems; applications to survival and other biomedical models will be studied.
Prerequisites: BST 632 [Min Grade: C]

BST 760. Generalized Linear and Mixed Models. 3 Hours.
Generalized linear models; mixed models; and generalized estimating equations.
Prerequisites: BST 723 [Min Grade: B]

BST 765. Advanced Computational Methods. 3 Hours.
Numerical algorithms useful in biostatistics including likelihood maximization using the Newton-Raphson method, EM algorithm, numerical integration using quadrature and Monte-Carlo methods, interpolation using splines, random variate generation methods, data augmentation algorithm, and MCMC and Metropolis-Hastings algorithm; randomization tests; resampling plans including bootstrap and jackknife will be studied.
Prerequisites: BST 632 [Min Grade: B]

BST 775. Statistical Methods for Genetic Analysis I. 3 Hours.
This course will provide a statistical basis for describing variation in qualitative (disease) and quantitative traits. This will include decomposition of trait variation into components representing genes, environment and gene-environment interaction. Resemblance between relative and heritability will be described. Important topics of discussion will include oligogenic and polygenic traits, complex segregations analysis, methods of mapping and characterizing simple and complex trait loci. NOTE: It is assumed that students are comfortable with regression theory, covariance, correlation, and likelihood theory. Interested students are urged to contact the instructors with concerns regarding assumed knowledge.
Prerequisites: BST 623 [Min Grade: C] and BST 632 [Min Grade: C] and BST 675 [Min Grade: C]

BST 776. Statistical Methods for Genetic Analysis II. 3 Hours.
This course builds on the knowledge gained in BST 775 with rigorous mathematical & statistical treatment of methods for localizing genes and environmental effects involved in the etiology of complex traits using case-control and pedigree data. NOTE: Knowledge of SAS and programming languages such as C++, and basic knowledge of multivariate methods and Markov chain theory is highly recommended.
Prerequisites: BST 775 [Min Grade: C]

BST 790. DrPH Applied Practice Experience. 3-6 Hours.
All DrPH students will complete an applied practice experience (Practicum) in which the student will complete at least one project that is meaningful for a public health organization and to advanced public health practice.

BST 793. Post-doc Seminar Series. 3 Hours.
BST seminar series. Permission of instructor / department required.
ENH 612. Assessing & Managing Environmental Risks. 3 Hours.
The purpose of this course is to provide students with an overview of environmental policy, with a focus on demonstrating how toxicology and exposure measurements are used in environmental risk assessment and management. Students are presented with the basic elements of quantitative risk assessment including hazard identification, exposure assessment, dose-response assessment, and risk characterization. This course is designed to instill critical thinking regarding the often conflicting economic, social, and environmental tradeoffs inherent in environmental policy and management.
Prerequisites: ENH 650 [Min Grade: C] or ENH 650Q [Min Grade: C]

ENH 615. Environmental Justice and Ethics. 3 Hours.
This course will critically examine one of the fastest growing social movements in the United States, the movement for environmental justice, and will explore the relationships among environmentalism and ethics. We will discuss the ethical considerations underlying the placement of hazardous waste sites and toxic industries in poor communities and communities of color, as well as the economic and social issues that resulted from these actions. The course will also focus on Native American communities in the west, colonialism and global justice/human rights.

ENH 617. Sustainability and Public Health. 3 Hours.
Starting from a foundation of sustainability framed by the UN sustainable development goals, this course examines place-based examples of successes and challenges in sustainability and public health. Students will critically evaluate the intersecting factors contributing to and scientific/policy evidence underpinning socially, environmentally, and economically unsustainable elements of our local community, and how these situations impact human health and well-being. Particular areas of emphasis include the built environment, transportation, waste, food, supply chain, energy, and climate change. Course presentation will include lectures, readings, field experiences, community engagement, and videos/film.

ENH 621. Fundamentals of Industrial Hygiene. 3 Hours.
Chemical, physical and other hazards and stresses found in the work environment. Recognizing potential hazards by understanding industrial processes, toxicity of environmental contaminants and occupational disease processes. Study design and preparation for field evaluation, conduct of industrial hygiene surveys, and interpretation of survey results.

ENH 624. Control of Occupational Hazards. 2 Hours.
Importance of engineering controls in reducing occupational health hazards. Substitution of less toxic substances, modification of work processes, and design of local exhaust ventilation systems; proper selections and use of personal protective equipment, especially respirators, also considered.

ENH 625. Industrial Hygiene Case Studies. 2 Hours.
Integrates students' basic knowledge through consideration of real work-place situations. Step-by-Step analysis of case reports covering occupational health problems in representative industrial situations. Sequential presentation of overview of working conditions, survey strategies, interpretation of results, and recommendations.

ENH 626. Physical Agents. 2 Hours.
Sources, effects, and control of occupational and environmental noise, ionizing and non-ionizing radiation, and temperature extremes. Review of exposure standards and introduction of measurement equipment and techniques.

ENH 635. Foodborne and Waterborne Diseases: Causes and Prevention. 3 Hours.
This course provides a broad overview of the major foodborne and waterborne diseases. The course describes how information from surveillance is used to improve public health policy and practice in ways that contribute to the safety of our food and water. We focus on the pathogens responsible for food- and water-transmitted diseases, discussing the diseases they cause, their prevalence and relevance to public health in developed and developing nations; disease pathogenesis and clinical manifestations; reservoirs, modes of transmission, and strategies for detection and prevention.

ENH 650. Essentials of Environmental and Occupational Toxicology and Diseases. 3 Hours.
Serves as introductory graduate level course that focuses on multiple aspects of toxicology and disease processes associated with environmental and occupational exposures. Students learn basic terminology and concepts of environmental and occupational toxicology as well as occupational and environmental disease recognition, management and prevention. Emphasis is on scientific foundations rather than on addressing topical issues. The general course orientation is towards basic principles, organ system physiology, diseases and prevention. This is a designated service learning course.

ENH 660. Fundamentals of Air and Water Pollution. 3 Hours.
The course is an integrated introduction to air and water pollution, including its sources, transport and effects. The course focuses on the measurement and characterization of air pollutants and the assessment of water quality. Emphasis will also be given to the regulatory control of pollutants and to the technical aspects of engineering controls. The potential impact of air pollutants on the climate change will also be emphasized.

ENH 661L. Environmental Sampling and Analysis Laboratory. 3 Hours.
This course is designed to provide the students with a thorough understanding of the principles and practice of air and water sampling and familiarize them with the analytical methods used for air and water pollutant analysis. The course will focus on contaminant gases, vapors, suspended particulate material and dissolved chemicals in water. A basic understanding of chemistry and physics is a prerequisite.

ENH 670. Fundamentals of Occupational Safety. 3 Hours.
Basic principles of safety and loss control: emphasis on prevention of losses of people, property, and products in the work place. Developing competence in human-factors engineering, fire prevention, physical and behavioral science, product safety, and science of accident prevention.

ENH 680. Interdisciplinary Field Studies. 1 Hour.
In this course, students will be organized into interdisciplinary teams to include at least one representative of each occupational safety and health academic discipline and participate in team building activities to facilitate group interactions for the interdisciplinary course ENH 681 in the spring. Students will be exposed to basic concepts of occupational hygiene, learn to recognize different types of hazards (i.e. chemical, biological, physical agents) in the workplace and their health outcomes, conduct a walkthrough survey of an occupational setting, attend OHS seminars and meetings, work collaboratively with other OHS students and professionals on projects, and learn how collaborations with other health professionals with complementary skills can help them achieve a comprehensive occupational health and safety goal. Students enrolled in this course must be admitted to one of the academic programs of the Deep South Education and Research Center. This class is a requirement for all NIOSH trainees.
ENH 681. Interdisciplinary Worksite Evaluations. 2 Hours.
To assist students in developing critical thinking and analytical skills, provide them with experience in applying discipline-specific knowledge in a broad occupational health and safety context, and provide experience in working in interdisciplinary teams. The course consists of an overview of survey methodology and information sources, with emphasis on job safety analysis, a review of the occupational site or process to be evaluated and a report of the identified hazards and recommended controls.
Prerequisites: ENH 680 [Min Grade: C]

ENH 689. Environmental Health Sciences Integrative Learning Experience. 2 Hours.
The ENH ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of foundational and concentration competencies. This course will provide students with the opportunity to use skills gained during your MPH program to assess different aspects of a community’s assets, environment, or health. This course will offer insights on current research and practice, how policies influence health and allow students to identify root causes of public health issues. All MPH students must complete this capstone course to graduate during the final term of enrollment.
Prerequisites: PUH 688 [Min Grade: C]

ENH 690. Environmental Health Perspectives. 1 Hour.
ENH 690 represents a broad overview of Environmental Health from a variety of perspectives. All MPH students in the SOPH, regardless of departmental or program affiliation, must complete this course to graduate. This course provides all MPH students the opportunity to consider how the various disciplines in public health intersect with environmental health. The course will offer insights on current research and practice, how policies influence health, and give students the opportunity to identify root causes of public health issues within the context of environmental health.
Prerequisites: PUH 601 [Min Grade: C] and PUH 602 [Min Grade: C] and PUH 603 [Min Grade: C] and PUH 604 [Min Grade: C] and PUH 605 [Min Grade: C] and PUH 606 [Min Grade: C]

ENH 691. Current Topics in Environmental Health and Occupational Health and Safety. 1-3 Hour.
Development of communication skills through objectively reviewing scientific literature; presentations and summaries of research or professional activities.

ENH 695. Seminar on Selected Environmental Health Topics. 1-9 Hour.
This course will be used as faculty design and craft course topics based on specific interests. These courses will be taught on a masters level.

ENH 697. Internship. 3 Hours.
The internship provides an opportunity for each student to work in a public health setting in a position that carries responsibility and is of particular interest. In order to register for the internship course, students must have completed all public health core coursework. Usually, this means that students must wait until their 3rd semester to complete the internship. Students must complete a minimum of 180 contact hours with the organization during the semester in which they register for the internship.
Prerequisites: (BST 601 [Min Grade: C] or BST 601Q [Min Grade: C] or PUH 601 [Min Grade: C]) and (ENH 600 [Min Grade: C] or ENH 600Q [Min Grade: C] or PUH 602 [Min Grade: C]) and (EPI 600 [Min Grade: C] or EPI 600Q [Min Grade: C] or PUH 603 [Min Grade: C]) and (HB 600 [Min Grade: C] or HB 600Q [Min Grade: C] or PUH 604 [Min Grade: C]) and (HCO 600 [Min Grade: C] or PUH 605 [Min Grade: C] and PUH 606 [Min Grade: C] or HCO 600Q [Min Grade: C])

ENH 698. Masters Directed Research. 1-9 Hour.
Independent study with guidance of appropriate faculty.

Research for project under direction of research project committee.
Prerequisites: GAC M

ENH 700. Scientific Basis of Environmental Health. 3 Hours.
This is an overview course that is intended to provide doctoral students with a broad understanding of the scientific principles on which environmental health is based within the context of the interaction of human activities and ecosystems, and the reciprocal impact of those interactions on human health and global ecology.

ENH 701. Advanced Environmental Chemistry. 3 Hours.
The course will describe the underlying physicochemical and mathematical formulations governing environmental physico-chemical processes including the coupling with biological media. Specific attention will be paid in understanding the physical basis of the processes and critical variables rather than memorizing the mathematical equations. The kinetics and thermodynamics of chemical transformations including redox and photolysis reactions will be introduced. Subsequently, specific environmental cases involving aquatic and atmospheric environments will be thorough investigated. Students are strongly recommended to have: (1) understanding of organic chemistry and basic thermodynamics; (2) comfort with math.

ENH 705. Special Topics in Environmental and Occupational Health Occupational Hygiene Research - Journal Club. 1-9 Hour.
This course is designed to provide advanced (doctoral) students in Environmental Health Sciences in general, and Industrial hygiene in particular an overview of the research literature and introduction in advance topics such as nanomaterials, control banding, quantitative occupational exposure assessment, etc. Students will have the opportunity to present their own research, learn about the research conducted by their peers and conduct critical review of published research.

ENH 752. Biochemical and Molecular Toxicology. 3 Hours.
This advanced course serves to equip students to understand at the molecular and cellular levels how environmental and occupational agents exert their toxic properties against specific genetic backgrounds. This course assumes a strong foundational knowledge of cell biology, RNA and DNA metabolism, and gene function, structure and regulation. This course will prepare students to apply advanced toxicology principles to agents of disease in order to understand the molecular mechanism and where interventions may be appropriate. Prerequisite: Admission into a public health or biomedical PhD program or permission of the instructor.
ENH 763. Aerosol Technology. 3 Hours.
Defines properties and behavior of aerosols from industrial hygiene and environmental perspectives. Reviews fundamental particle descriptions and critical fluid properties affecting particle behavior. Methods of defining particle size and particle behavior. Methods of defining particle size and size distribution and theories of particle kinetics and their application to particle disposition and collection. This multidisciplinary course covers the fundamental principles that govern the formation, growth, measurement and modeling of particles behavior (both ambient and nanoparticles) with direct application to health sciences and engineering specialties. The course explores the quantitative evaluation of aerosol behavior including the physical and chemical parameters that govern it. Specific applications of atmospheric and occupational aerosol, bioaerosol and nanoparticles are included to link fundamental knowledge to practical implications in industrial hygiene, national security and materials technology.

ENH 770. Advanced Topics in Environmental Disasters in PUH. 3 Hours.
Examines emerging public health challenges posed by incidents involving chemicals, radiation and biological agents. Students are provided with the opportunity to undertake guided research on current topics in the field and discuss their findings with graduate students and faculty members. Course will be graded by letter. Prerequisites: ENH 610 [Min Grade: C] NOTE: If course prerequisite of ENH 610 is not met, permission of instructor is required.
Prerequisites: ENH 610 [Min Grade: C] (Can be taken Concurrently)

ENH 791. Journal Club. 1 Hour.
The purpose of this course is to provide a forum in which students become comfortable critically reviewing recent refereed publications in the fields of environmental health, toxicology, occupational health, and industrial hygiene. Students will also be expected to become comfortable answering and asking questions in a scientific setting.

ENH 790. Seminar: Current Topics in ENH Sciences Research. 1 Hour.
Interactive forum in which graduate students and faculty discuss dissertation research projects and topics related to the field of Environmental Health Sciences Research through presentation of journal articles. Course is designed to develop oral communication skills for presenting scientific material to peer groups. Presentations by graduate students are followed by discussion and questions. Preq: Permission of instructor required.

ENH 796. Environmental Toxicology Laboratory Rotations. 3 Hours.
Doctoral laboratory rotations in Environmental Health Sciences. Required for First and Second year PhD students in the Industrial Hygiene and Environmental Management and Policy foci. Preq: Permission of instructor required.

ENH 798. Doctoral Level Directed Res. 1-9 Hour.
Independent study with guidance of appropriate faculty.

Research for dissertation under the direction of the dissertation committee. Preq: Must be admitted to candidacy before registering for this course.
Prerequisites: GAC Z

EPI-Epidemiology Courses

EPI 600. Introduction to Epidemiology. 3 Hours.
EPI 600 is an introductory course designed to teach graduate level public health students the basic principles, methods, and applications of epidemiology. This course is a CORE requirement for non-Epidemiology MPH majors.

EPI 602. Epidemiology of Chronic Diseases. 3 Hours.
This course will explore the breadth and depth of the epidemiology of chronic diseases including classification, surveillance, frequency, distribution, etiology, natural history, risk factors, and control. It will address details of large-scale epidemiologic studies in cardiovascular diseases and cancer, and will discuss epidemiologic papers relating to the use of various study designs. The course will be presented in three modules: (1) Overview, Risk Factors and Control of Chronic Diseases; (2) Epidemiology of Cardiovascular Diseases; (3) Epidemiology of Cancer; and Other Chronic Diseases. Besides the course master, guest lecturers will participate in teaching the course.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 603. Injury-Epidemiologic Principles and Prevention Strategies. 3 Hours.
Concepts and methods of epidemiology applied to injury; epidemiology of major injury types, utilization of injury data sets; development and evaluation techniques of preventive strategies. EPI 600 or EPI 610 is a recommended prerequisite but is not required.

EPI 605. Epidemiology of Infectious Diseases. 3 Hours.
The course provides an introduction to basic principles of infectious disease epidemiology, surveillance, and control. Time is also dedicated to critical analysis of the magnitude, distribution, risk factors, and public health significance of selected infectious diseases in community and institutional settings. While the primary geographic focus is the U.S., international comparisons and perspectives are included. The course focuses on the major infectious diseases affecting developing nations and on diseases of major current interest. The course also provides an overview of vaccinology principles, current immunization strategies, their public health rationale, and use of vaccines in disease control and eradication.
Prerequisites: EPI 610 [Min Grade: C]

EPI 607. Fundamentals of Clinical Research. 3 Hours.
This course will provide an overview of principles and practices related to the study of determinants and outcomes of medical interventions. Methods for conducting epidemiologic research in the "clinic", assessing the validity of diagnostic and screening tests, measuring therapeutic efficacy and safety, and describing the natural history of disease will be reviewed. EPI 600 or EPI 610 is a recommended prerequisite but not required.

EPI 609. Introduction to Pharmacoepidemiology and Drug Safety. 3 Hours.
The purpose of the course is to 1) introduce to students the emerging field of pharmacoepidemiology (PE) and comparative effectiveness research (CER); 2) to have an overview of the shared and unique methodological issues that commonly and negatively affects the validity and interpretation of PE and CER research; and 3) to introduce methods in study design and data analysis to address such issues. The course is a requirement for the MSPH Pharmacoepidemiology and Comparative Effectiveness Research track. NOTE: Introductory training in epidemiology (EPI 610 or BST 611) is recommended but not required.

EPI 610. Principles of Epidemiologic Research. 3 Hours.
Concepts, philosophy, and methods of epidemiology. Measures of disease frequency, association and impact; study design and data analysis, indices of disease and health; overview of major categories of acute and chronic disease, outbreak investigations, and screening. EPI 610 is a track requirement for MPH - Epidemiology and MSPH - Epidemiology majors, and is also open to other graduate students at the instructor's discretion.
EPI 614. Epidemiologic Methods Applied to Comparative Effectiveness Research. 3 Hours.
This course will focus on methodological issues pertaining to the design, analysis and interpretation of comparative effectiveness research studies. Special focus will be placed on comparative effectiveness research studies using a non-experimental design and large data base analyses. This course is intended for Master of Science in Public Health and doctoral students in epidemiology, biostatistics, or health care and policy. Doctoral students in other disciplines as well as others interested in comparative effectiveness research are also welcome to enroll with the instructor's permission.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 616. Environmental Epidemiology. 3 Hours.
Design and conduct of studies examining health effects of environmental exposures. Strengths and limitations of research strategies and interpretation of study results. Areas of interest include air and water pollution, lead, and biological marker outcomes.
Prerequisites: EPI 610 [Min Grade: C]

EPI 618. Fieldwork in Public Health. 2 Hours.
Application of public health principles in communicable disease control and environmental health programs carried out at Jefferson County Department of Health.
Prerequisites: EPI 605 [Min Grade: C] and EPI 610 [Min Grade: C]

EPI 619. Infection Prevention and Hospital Epidemiology. 3 Hours.
The course will provide students with a basic understanding of the area of hospital epidemiology and infection prevention. Notably, the course will cover a review of basic epidemiological methodology, and will then focus on the main areas of surveillance that are critical to infection prevention in addition to methodologies that are specific to hospital epidemiology. Prerequisites: EPI 610 or equivalent introduction to epidemiology course as approved by the course director.
Prerequisites: EPI 610 [Min Grade: C]

EPI 621. HIV/AIDS and STDs. 3 Hours.
Basic biology and pathogenesis, historical and current trends, domestic and international epidemiology, determinants of spread, immunogenetics and host susceptibility, options for prevention, surveillance and control of sexually transmitted diseases (STD's) and HIV/AIDS. If not Public Health student permission of instructor is required.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 624. Introduction to Data Analysis with SAS. 2 Hours.
The purpose of this course is to introduce students to the basics of SAS programming. Topics covered will include creation/importation of datasets, working with SAS variables, manipulation of datasets (e.g., combining and subsetting datasets), and SAS syntax to produce descriptive statistics (e.g., frequencies, means) and perform basic statistical procedures (e.g., chi-square, t-test).
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 625. Quantitative Methods in Epidemiology. 3 Hours.
The course will provide students with the knowledge of how to perform basic analyses utilized in epidemiological research. The course will be segmented into four modules, with three modules covering how to properly analyze ecological, cross-sectional, cohort, and case control study designs. The course will focus heavily on performing the analyses in SAS, and will continue to expand upon many of the concepts in SAS programming covered in EPI 624. The statistical methods covered will include, but are not limited to, bivariate analyses such as chi-square, t-test, and ANOVA; correlation; and regression methods such as logistic regression, Poisson regression, and Cox proportional hazards regression.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] and (EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]) and EPI 624 [Min Grade: C]

EPI 627. Data Analysis and Presentation of Epidemiologic Studies. 3 Hours.
Analyze data from an epidemiologic study, addressing a specific questions, and prepare a manuscript from the analysis. There are 3 possibilities regarding choice of data: 1) from a list of the instructor's datasets, 2) public use data, 3) from the student's research. Students working on an MSPH or another degree project may use data for that degree-project with approval of their advisor and course master. Upon completion of the course, the student should be able to analyze data from an epidemiologic study and prepare a manuscript.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] and EPI 610 [Min Grade: C] and EPI 624 [Min Grade: C] and EPI 625 [Min Grade: C]

EPI 635. Genetics in Public Health. 2 Hours.
The purpose of this course is to introduce students to the basic principles and specific technical knowledge in a variety of areas relevant to the conduct of biological and behavioral investigation of human subjects. NOTE: Limited to health professionals planning clinical research careers who have been accepted into the MSPH in Clinical Research. This course begins in the Spring term and extends into the Summer term. Registration for this course is during the Summer semester. Please contact the Program Coordinator for the course syllabus and course schedule.

EPI 680. Topics in Clinical Research. 2 Hours.
Provide health sciences professionals interested in clinical trials, clinical epidemiology, and other forms of population research with both essential principles and specific technical knowledge in a variety of areas relevant to the conduct of biological and behavioral investigation of human subjects. NOTE: Limited to health professionals planning clinical research careers who have been accepted into the MSPH in Clinical Research. This course begins in the Spring term and extends into the Summer term. Registration for this course is during the Summer semester. Please contact the Program Coordinator for the course syllabus and course schedule.

EPI 681. Special Topics in Epidemiology Research. 1-3 Hour.
To engage infectious disease research practice encompassing design, conduct, analysis, and interpretation. Students participate in supervised research and/or in research design. Doctoral students are expected to engage in supervised research. NOTE: Permission of instructor.

EPI 682. Gorgas Course in Tropical Med. 3-9 Hours.
Hands-on exposure to tropical diseases and emerging pathogens in various teaching formats: didactic lectures, roundtables, laboratory work, clinical and hospital rounds, case conferences, computer training, field fied trips and independent study. Course is held in during the Spring Term in in Lima, Peru. NOTE: 9 hours (3 or Course can be taken for 3, 6 hours are also accepted with 9 hours; however, evaluation will be restricted to selected sections of the course). course. Spring (Freedman).
EPI 689. Epidemiology Integrative Learning Experience. 3 Hours.
The EPI ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of MPH foundational and epidemiology concentration competencies. Students will apply their epidemiology and biostatistics skills by designing, analyzing, and disseminating findings of a research project in the form of a high-quality written product. All MPH Epidemiology students must complete this course to graduate in the final term of the MPH program.
Prerequisites: EPI 625 [Min Grade: C] and PUH 688 [Min Grade: C]

EPI 690. Population and Health Outcomes Research Seminar Series. 1 Hour.
The purpose of this class is to provide an opportunity for students interested in population and health outcomes research to participate in seminars related to methodology and career development and to present their work.

EPI 695. Seminar on Selected Environmental Health Topics. 1-9 Hour.
This course will be used as faculty design and craft course topics based on specific interests. These courses will be taught on a masters level.

EPI 698. Master's Level Directed Research Epidemiology. 1-9 Hour.
Independent study with guidance of appropriate public health faculty.

Research for project under direction of research committee.
Prerequisites: GAC M

EPI 703. Grant Proposal Writing. 3 Hours.
To provide the student with information about grant writing and practice in preparing a grant proposal for submission. The proposal must relate to an epidemiologic topic. Human subjects issues are discussed. NOTE: Must be a doctoral student or obtain permission of instructor to enroll.

EPI 704. Advanced Epidemiologic Methods. 3 Hours.
This course provides an advanced introduction to fundamental epidemiologic concepts and methods, including causal inference, bias, and study design. This course is the first course in the sequence of the three required core epidemiology courses for doctoral students in epidemiology.

EPI 706. The Epidemiology of Cardiovascular Disease. 2 Hours.
The purpose of this course is to provide exposure to the epidemiology of cardiovascular disease.

EPI 710. Analysis of Case Control Studies. 3 Hours.
This course is designed to provide doctoral students in epidemiology with practical experience in the analysis and interpretation of data from case-control studies. Specific aims are: To outline a strategy for data analysis and review relevant methodologic issues and to apply stratified analysis methods and regression models in the study of diseases of multifactorial etiology. Preq: Requires permission of instructor.
Prerequisites: EPI 704 [Min Grade: C]

EPI 712. Nutritional Epidemiology. 3 Hours.
Nutritional epidemiology will cover core concepts in human nutrition including nutrient classification, nutrient sources, nutritional deficiencies, nutritional excesses, recommended daily allowances, basic anthropometry, dietary assessment methods in free-living populations, validation of dietary assessment methods, identification of biomarkers of dietary intake, study designs used in nutritional epidemiology, issues in the analysis and presentation of dietary data, diet-disease associations, gene-diet associations and special topics in nutrition (e.g., folic acid and neural tube defects, fatty acids and the metabolic syndrome, diet and obesity, vitamin A and immune function, vitamins and mother-to-child transmission of HIV, etc).

EPI 713. Cancer Epidemiology and Control. 3 Hours.
In this course students will learn what is known about the causes of cancer and the control measures used to decrease cancer incidence, decrease cancer mortality, extend cancer survival, and improve quality of life for cancer patients.

EPI 720. Analysis of Follow-Up Studies. 3 Hours.
This course is designed to provide doctoral students in epidemiology with practical experience in the analysis and interpretation of data from follow-up studies. Specific aims are: to outline a strategy for data analysis and review relevant methodologic issues and to apply stratified analysis methods and regression models in the study of diseases of multifactorial etiology.
Prerequisites: EPI 710 [Min Grade: C]

EPI 721. HIV/AIDS and STDs. 3 Hours.
The course will cover the epidemiology, prevention and control of Sexually Transmitted Diseases (STDs) including the human immune deficiency virus (HIV) infection in both the domestic and international settings. EPI 621 is intended as an elective for second year students and students who have a graduate degree in the Medical Health Professions who are enrolled in any degree track in the School of Public Health. It is considered an elective for the MPH and MSPH programs in Epidemiology. EPI 721 is intended only for doctoral students in the School of Public Health.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 731. Genetic Epidemiology. 4 Hours.
This course will cover core concepts of designs, methods and statistical tools in genetic epidemiology studies for determining the contribution of genes to disease risk. Methods for incorporating genetic markers into conventional epidemiologic study designs as risk factors including genetic risk models, familial correlations, migration and admixture, quantitative and qualitative traits, association and linkage analyses in family based designs, allele/haplotype frequency estimation, Hardy Weinberg Equilibrium and linkage disequilibrium and application in both family and population based studies will be discussed. Methods for gene-gene and gene-environment interaction assessment, genome wide association studies are also presented. Students not meeting the prerequisites must get permission from the instructor.
Prerequisites: EPI 610 [Min Grade: C] or BST 611 [Min Grade: C] or BST 621 [Min Grade: C]

EPI 781. Special Topics in Epidemiology Research. 3 Hours.
To engage infectious disease research practice, encompassing design, conduct, analysis, and interpretation. Students participate in supervised research and/or in research design.NOTE: Doctoral students are expected to engage in supervised research and must obtain permission of instructor.

EPI 790. Doctoral Seminar in Epidemiology. 2 Hours.
The purpose of the epidemiology seminar series is to provide a venue for faculty and students of epidemiology to participate in the presentation of a variety of topics and concepts related to the field of epidemiology, biostatistics and public health.

EPI 798. Doctoral Level Directed Research Epidemiology. 1-9 Hour.
Independent study with guidance of appropriate faculty.
GHS 600. Fundamentals of Global Health. 3 Hours.
This course is one of three integrated core courses in the UAB Certificate in Global Health designed to introduce students to the foundations of global health programs, policies and practices.

GHS 601. Global Health Partnerships and Development. 3 Hours.
Global health is an emerging and evolving field of health research and practice. Working in global health means that researchers, practitioners, and advocates work alongside and within a complex system of governance that has emerged over time and in response to very significant global health events. This course offers a critical analysis of global health programs and partnership initiatives over time and their impact on health and development. Using a historical lens to examine the growth of global health as a field of research and practice, this course examines the very significant paradigm shift from the field of international health to global health. By exploring key historical events and interventions, this course also explores why global health diplomacy is so important to cooperation among countries as well as global health security and how global health programs are funded, and programs and initiatives are implemented in various bilateral, multilateral, and private-public partnerships.

GHS 603. Immigrant, Migrant, Refugee Health. 3 Hours.
This course will introduce students to the inter-relationships between migration and health, focusing on the myriad of health issues experienced by migrant populations. The course will focus on both communicable and non-communicable health issues among migrating populations. The course will examine health issues among all types of migrant populations with a particular focus on the categories of ‘displaced peoples’, and the resultant state and humanitarian responses surrounding health and social (public health) services. This course frames global health in broad terms to include the underlying social and economic conditions, including climate change, economic underdevelopment, and political instability, which displace people, or motivates them to migrate, and which present barriers to achieving health, mental health, and wellbeing in immigrant, migrant, and refugee communities. We explore how violence, social suffering, health, disease, and mental health are intertwined with displacement and migration.

GHS 604. Infectious Diseases of Global Health Significance. 3 Hours.
The purpose of this course is to equip participants with up-to-date knowledge on major infections of global importance, and prevention and control strategies so that infections and large disease outbreaks can be prevented and/or easily contained.

GHS 605. Disabilities and Global Health. 3 Hours.
This course explores current paradigms and models for defining and categorizing disability based on various international agreements and documents.

GHS 606. Critical Issues in Global Maternal and Child Health. 3 Hours.
This course is an elective module for students enrolled in UAB Certificate in Global Health program. Mothers and children in developing countries are among the most vulnerable and disadvantaged sectors of the world’s population. This course defines the Maternal and Child Health (MCH) discipline, describes the current practices and challenges, and compares global strategies and potential solutions.

GHS 607. Global Health and Gender. 3 Hours.
Sex and gender are both important determinants of health. Biological sex and socially constructed gender interact to produce differential risks and vulnerability to ill health, differences in health seeking behavior, in health care providers’ response and in health outcomes for women and men. Gender differences in morbidity and mortality represent ‘avoidable¿ and/or ‘unfair¿ inequalities in health. Because gender is socially constructed, gender-based inequities in health are amenable to policy and program interventions. This course is designed to help public health students, policy makers, health care providers and health researchers understand concepts related to gender and to apply them in an analysis of specific policies and programs. The course will enable participants to identify the gendered nature of issues like violence and sexuality and how these affect health. The course provides participants with support to apply a gender perspective to program planning, policy analysis, or a research design as part of their final assignment.

GHS 608. Food and Nutrition in Resource Limited Settings. 2 Hours.
This course will provide to graduate and professional students a general overview of the facts, research finding underlying nutrition and the relationships to acute and chronic diseases worldwide and their impact productivity and economic development.

GHS 609. Environmental Health in Resource Limited Settings. 3 Hours.
Demonstrate an understanding and appreciation of the complex roles played by the environment as a major determinant of health and identify the major environmental health issues confronting populations in a resource-limited setting.

GHS 610. Refugee Health Care. 3 Hours.
This course is one of the elective courses of the UAB Global Health Studies Certificate program, and is designed for professionals undertaking the GHS continuing education certificate as well as UAB graduate students enrolled in the GHS graduate certificate program. The course addresses the issues of refugees and the agencies concerned with their protection, human rights, and coordination and provision of care.

GHS 611. International NGO Management. 3 Hours.
The course addresses issues for managers of NGOs primarily at the field level of operation with special emphasis on project management. It begins with the history of international organizations and their roles in aid, development, and human rights. It follows with analysis of NGO organizational structure and function, roles, and the responsibilities of various stakeholders at the macro and micro level. Project development, planning, implementation, and evaluation will be addressed. Management principles and skills will also include budget preparation and staff/human resource management.

GHS 620. Infect Dis Surveillance & Contr. 3 Hours.
The primary focus of the course is vector ecology and biology, infectious disease surveillance and control, and water and sanitation in a developing country, with an emphasis on field and community-based learning. This class will take place in Jamaica and you must be accepted by the Sparkman Center for Global Health.

GHS 629. Intensive Global Health Training - SIFAT. 3 Hours.
Become a better Global Citizen by learning critical issues on Household Energy use in the developing world that affect health, environmental sustainability, gender equity, economics, and the development of millions of families and communities globally. Learn what you can do to make a difference. Be a part of the solution for a better world!
GHS 630. Field Training in World Hunger and Malnutrition: Practical Skills to Make a Difference. 3-6 Hours.
This two week intensive field training course will take place at SIFAT’s 176-acre international training campus in Lineville, AL. Students will attend didactic sessions and participate in hands on activities and simulations. SIFAT trainers are experienced in international development and cross-cultural dynamics. On-site Field Training.

GHS 645. Comparative Health Systems and Policy. 3 Hours.
This course provides a comprehensive survey of a number of healthcare systems from low-, middle-, and high-income countries, situating the U.S. and other national experiences in a comparative cross-national frame. The course provides frameworks for students to analyze in diverse settings the different ways that health policy is developed and implemented, given the resources, capacities, and systems of each country. The course will also examine the ways in which health care is organized and delivered, along with underlying global public health principles and impacts. By comparing health systems and policies, globally, students will reflect on how a country’s social-historical context and values, geography, polity, and economy influence the way that health care is provided and its relationship with population health, as well as how health policies influence the quality of life.

GHS 649. Interprofessional Global Health Service Learning. 3 Hours.
This course provides students with an opportunity to work in small teams to address a global health problem in collaboration with a community partner. The global health problem to be addressed can be at a local site (with a local agency or partner), a site within the US, or an international site (with a US or non-domestic agency or partner). Interprofessional teams of 4-6 graduate and professional students will apply concepts and theories related to global health, interprofessional collaboration, team building, leadership, community partnerships, business models, and appropriate framework for developing and implementing a plan to address a specific global health problem with a community partner.

GHS 690. Special Topics in Global Health. 1-6 Hour.
This special topic course will be used in the graduate global health certificate program to cover emerging issues or specialized content not represented in the main curriculum. Prerequisites: Permission of instructor; other prerequisites may be required.

HB-Health Behavior Courses

HB 600. Social and Behavioral Sciences in Public Health. 3 Hours.
Social and behavioral science theories and strategies in public health will be discussed in relation to preventing disease and promoting health over the life course. The course is comprised of two major sections: (1) overview of fundamentals of social and behavioral sciences in public health and (2) social and behavioral science research and strategies and application of social and behavioral sciences in public health practice and policy.

HB 602. Alcohol and Drug Abuse. 3 Hours.
History and theory of human substance use and abuse. Empirical foundations of alcohol and drug abuse, diagnosis, assessment, treatment, and prevention. Course will be graded by letter. 3 hours.

HB 603. Obesity Prevention & Intervention. 3 Hours.
The aim of this course is to provide students with theoretical and practical knowledge required to develop, implement, and evaluate obesity intervention and prevention programs. The course covers both pediatric and adult obesity intervention and prevention with a focus on lifestyle (dietary intake, physical activity) and environmental factors. Course will be graded by letter. 3 hours.

HB 604. LGBTQ Health and Wellbeing Service Learning. 3 Hours.
The service-learning course will examine LGBTQ health and wellbeing. Specifically, it will take the knowledge learned from courses associated with the LGBTQ health and wellbeing certificate program and enable the students the opportunities to put it into practice. Students will have a range of opportunities to explore what LGBTQ health and wellbeing looks like in practice. Topics include issues related to LGBTQ risk and resilience, policy and programmatic approaches to LGBTQ health and health and wellbeing, as well as the concrete advocacy and leadership skills needed to address the most pressing inequities faced by LGBTQ communities in Alabama and the Deep South.
Prerequisites: HB 607 [Min Grade: C] or HB 707 [Min Grade: C]

HB 605. Physical Activity in Public Health. 3 Hours.
This seminar course is an introduction to research and practice related to physical activity promotion from a public health perspective and will describe health benefits, epidemiological data, national recommendations and plans, and global initiatives related to physical activity. Course will be graded by letter. 3 hours.

HB 607. Introduction to LGBTQ Health. 3 Hours.
This course will survey current LGBTQ health topics, including: 1) Defining evoking terms and concepts; 2) Risk and resilience - physical, mental, and behavioral health among LGBTQ individuals; 3) Theories guiding LGBTQ research; 4) Analytic considerations when conducting LGBTQ health inequity research; 5) Ways to improve the provision of services for LGBTQ individuals; 6) Overview of key, local, national, and global policies impacting LGBTQ individuals; and 7) Meaningful integration of LGBTQ communities in policy, programs, and research.

HB 609. African-American Health Issues. 3 Hours.
This is an intermediate level course that focuses on: epidemiological data illustrating the health risks experienced by African-Americans; sociocultural factors essential for understanding and enhancing the health of African-Americans; effective health-related prevention programs for African-Americans.

HB 611. Mental Health as a Public Health Issue. 3 Hours.
This course is designed to increase knowledge of mental illness at the individual, community, and population levels. It also covers historical and contemporary models and research on the etiology, diagnosis, assessment, treatment and prevention of mental and other behavioral health disorders.

HB 612. Examining Health Inequities in Social and Behavioral Sciences. 3 Hours.
This course is designed to provide a comprehensive overview of race/ethnic health disparities/health inequities in the U.S. Both historical context and more current perspectives of identified determinants of health will be discussed as contributors to current health inequities.

HB 613. Health Promotion Practices and Disability. 3 Hours.
This course will examine the population of people living with a disability and health promotion approaches at multiple levels (individual, social, environmental, and policy). One in five people in the U.S. has a disability and many people will be affected by disability, whether personally or through a loved one, during their lifetime. Advancements have been offered by the medical model of disability towards disability prevention; however, the addition of functional and social models of disability provide a more complete view of how to enhance the lives of millions of Americans and reduce economic burden.
HB 615. Homelessness, Housing and Health. 3 Hours.
The course will begin with a discussion of the concept of homelessness and housing instability and their impact on health. We will discuss how homelessness is defined and enumerated, pathways into homelessness, and multi-level interventions to prevent and end homelessness. We will also explore a series of special topics focusing on populations that may be particularly vulnerable to homelessness as well as the intersection between homelessness and experience of particular health conditions and outcomes.

HB 616. Psychophysiology and Public Health: The Interface of the Mind/Body Connection. 3 Hours.
Psychophysiology is a branch of neuroscience that analyses the interfaces of mental states and physiological responses, and how they interact to affect one another and subsequently drive behaviors. This course introduces students to basic knowledge about neuroanatomy, learning/cognition, neurological processes, memory, human development, brain disorders, response patterns, and behavior change strategies as they relate to public health issues such as sexual behavior, drug addiction, cigarette smoking/vaping, and obesity. The course will also introduce principles of stress management and neurofeedback techniques. A biopsychosocial framework will be applied to a range of public health domains, using Maslow’s Hierarchy of Needs to inform context and priorities for interventions.
Prerequisites: HB 624 [Min Grade: C] or HB 624Q [Min Grade: C]

HB 617. Implementation Science and Disability Health. 3 Hours.
The course provides lectures on implementation science and a deep dive into a premier, national program for people with disability. Implementation science helps researchers to understand how and why a program is effective in order for it to be translated into practice. Students will gain a better understanding of when and how to use implementation science methods through a series of lectures and multiple assignments including a grant proposal. In addition, this course provides experiential learning opportunities in disability health and community engagement.

HB 624. Advanced Social and Behavioral Science Theory. 3 Hours.
The aim of this course is to provide students with a broad understanding of theories of health behavior change with a strong focus on those theories that are most widely used in research and practice. Emphasis will be given to the discussion and elaboration of important theoretical concepts as well as their application in specific health behavior interventions. This class will take an ecological perspective and discuss theories that approach behavior change from various different levels. Basic theories that are covered in this course include individual level models (Health Belief Model, Theory of Planned Behavior, Transtheoretical Model), interpersonal level models (Social Cognitive Theory), and community level models (community organization and other participatory models like Community Based Participatory Research, Diffusion of Innovations). 3 hours.

HB 625. Dissemination and Implementation in Health. 3 Hours.
The course will offer an introduction to dissemination and implementation science, an interdisciplinary field focused on improving the transition of evidence-based health practices, programs, and interventions from research studies into “real-world” settings.
Prerequisites: HB 600 [Min Grade: C]

HB 630. Health Communications: Theory and Practice. 3 Hours.
This course is designed to investigate the role of communication theories and methods in promoting public health and preventing disease. Both theoretical background in communication and behavioral science and practical communication/intervention development methods will be addressed.

HB 636. Developing Interventions to Promote Public Health. 3 Hours.
This course is intended to provide students with a comprehensive understanding of the range and diversity of intervention approaches to behavior change and their application in public health. Emphasis will be placed on developing skills for designing interventions: a) in various public health settings, b) for specific population subgroups, c) based on determinants identified to be most influential and amenable to intervention, and d) within the confines of available resources.
Prerequisites: HB 624 [Min Grade: C] or HB 624Q [Min Grade: C]

HB 639. Survey Design and Analysis in the Social and Behavioral Sciences. 3 Hours.
This course provides an in-depth treatment of survey design and elementary data analysis procedures commonly associated with social and behavioral research. What are the best practices for asking individuals potentially uncomfortable questions about risky health behaviors? How do we measure the reliability and validity of self-reported behaviors? This course addresses these issues in addition to those of sampling hard-to-reach populations, best practices in questionnaire design, an overview of index and scale construction, and an elementary introduction to data entry and analysis of survey data using common software packages.

HB 641. Research Methods in Behavioral Science. 3 Hours.
Review of research methodology in behavioral sciences. Formulation of research questions, causality, experimental and quasi-experimental designs, reliability and validity, reporting findings. Course will be graded by letter.

HB 643. Health Program Evaluation. 3 Hours.
Principles and procedures to evaluate health promotion/disease prevention programs: data collection methods, instrument-scale development, measurement, evaluation designs and analysis of case studies of disease prevention literature on evaluation.
Prerequisites: HB 641 [Min Grade: C] or HB 641Q [Min Grade: C]

HB 660. Adolescent Health: A Social and Behavioral Perspective. 3 Hours.
Designed to provide students with the most current knowledge and analysis of issues influencing the health and well-being of adolescents. Theoretical frameworks that draw on an ecological perspective will provide a better understanding of how families, peers, schools, and neighborhoods influence risk and protective factors in youth. Emphasis will be placed on the relevance of adolescent health issues for the science of Health Behavior and the broader public health arena.

HB 681. MSPH Directed Research I. 3 Hours.
MSPH Directed Research I provides MSPH students with the opportunity to work closely with a faculty mentor in the design of a health behavior intervention and collection of data. This course is the first in a three-course sequence that culminates in the presentation of research findings to their faculty mentor and other faculty in a public forum. As such, HB 681 focuses on the development of a health behavior intervention in an area of the student’s expertise, including consideration of the PRECEDE/PROCEED model, study population, data collection methods, IRB approval, study registration, previous research, and other activities in consultation with their HB mentor.
HB 682. MSPH Directed Research II. 3 Hours.
MSPH Directed Research II provides MSPH students with the opportunity to work closely with a faculty mentor in the design of a health behavior intervention and collection of data. This course is the second in a three-course sequence that culminates in the presentation of research findings to their faculty mentor and other faculty in a public forum. As such, HB 682 focuses on collection and analysis of data, interpretation of results, and significant progress in the drafting of a scientific manuscript reporting the research project and preliminary results, and other activities in consultation with their HB mentor.
Prerequisites: HB 681 [Min Grade: P]

HB 683. MSPH Directed Research III. 3 Hours.
MSPH Directed Research III provides MSPH students with the opportunity to work closely with a faculty mentor in the design of a health behavior intervention and collection of data. This course is the third in a three-course sequence that culminates in the presentation of research findings to their faculty mentor and other faculty in a public forum. As such, HB 683 focuses on analysis of data, interpretation of results, completion of a scientific manuscript reporting the research project and preliminary results, other activities in consultation with their HB mentor, and the presentation of results in a public forum.
Prerequisites: HB 681 [Min Grade: P] and HB 682 [Min Grade: P]

HB 689. Health Behavior Integrative Learning Experience. 2 Hours.
The HB ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of foundational and concentration competencies. This course will provide students with the opportunity to use skills gained during the MPH Health Behavior program to develop a high-quality written product that addresses health disparities from a behavioral and social sciences perspective and is ideally useful for an identified stakeholder. All MPH Health Behavior students must complete this course to graduate in the final term of the MPH program.
Prerequisites: PUH 688 [Min Grade: C]

HB 692. Principles and Practices of Community Organization. 3 Hours.
Seminar designed as an integrative experience for persons working with community groups. The focus is on learning to use available resources and advocating change to maximize community involvement.

HB 695. Seminar on Selected Health Behavior Topics. 1-3 Hour.
Seminar covering a variety of health behavior topics.

HB 698. Master’s Level Directed Research Health Education. 1-9 Hour.
Independent study with guidance of appropriate faculty. Includes activities such as literature review and evaluation. Course will be graded as Pass/No Pass. 1 - 9 hours.

HB 699. Master’s Level Project Research Health Education. 1-9 Hour.
Research for project under direction of research project committee. Course will be graded as Pass/No Pass. 3-6 hours.
Prerequisites: GAC M

HB 701. Theory-Based Measurement Development. 3 Hours.
The aim of this course is to introduce students to measurement development based on well-specified behavioral theories. This course will review and discuss key issues related to measurement development such as item-scale development, number of factors to retain rotation options and statistical programs. Prerequisite: Requires knowledge of elementary probability and statistics for non-statistics majors and BST 611. Course will be graded by letter. 3 hours.
Prerequisites: BST 611 [Min Grade: C]

HB 703. Writing for the Behavioral Sciences. 3 Hours.
The aim of this course is to develop and fine-tune scientific writing proficiency. In this course, students will read and critique a variety of books, essays, and articles about science and medicine, and complete numerous writing assignments and participate in peer review.

HB 707. Introduction to LGBTQ Health. 3 Hours.
This course will survey current LGBTQ health topics, including 1) Defining evolving terms and concepts; 2) Risk and resiliency - physical, mental, and behavioral health among LGBTQ individuals; 3) Theories guiding LGBTQ research; 4) Analytic considerations when conducting LGBTQ health inequity research; 5) Ways to improve the provision of services for LGBTQ individuals; 6) Overview of key, local, national, and global policies impacting LGBTQ individuals; and 7) Meaningful integration of LGBTQ communities in policy, programs, and research.

HB 709. African American Health Issues. 3 Hours.
This course will explore issues of both physical and psychological issues of African Americans historically and today. Historical, sociocultural and economic factors that affect the quality and utilization of healthcare services in African American communities will be examined. We will examine the risk and protective factors for specific health conditions. We will also identify evidence-based ways to engage the community and draw on individual and community strengths in prevention and treatment. Students will be equipped and empowered with the knowledge and skills required to develop a Community Action Plan aimed to improve the effectiveness of interventions targeting the African American community.

HB 710. Mental Health Promotion and Professional Development. 1 Hour.
In this course, students will gain knowledge about mental health topics relevant for graduate students, professional students, and postdoctoral fellows and learn skills for managing personal mental health, supporting others’ mental health, and intervening when concerned about someone who may be considering suicide. In addition to course credit, students will earn a certificate in QPR Suicide Gatekeeper Training.

HB 711. Advanced Public Mental Health Promotion: Service Learning. 3 Hours.
This advanced course on mental health promotion focuses on evidence-based approaches, innovative service delivery models, and research-practice partnerships to address public mental health. Students acquire skills and hands-on experience related to thinking critically about evidence based approaches, innovative service delivery models, and research-practice partnerships to improve dissemination and implementation.

HB 712. Examining Health Inequities in Social and Behavioral Sciences. 3 Hours.
This course is designed to provide a comprehensive overview of race/ethnic health disparities/health inequities in the U.S. Both historical context and more current perspectives of identified determinants of health will be discussed as contributors to current health inequities.

HB 715. Examining Health Inequities in Social and Behavioral Sciences. 3 Hours.
This course is designed to provide a comprehensive overview of race/ethnic health disparities/health inequities in the U.S. Both historical context and more current perspectives of identified determinants of health will be discussed as contributors to current health inequities.
Prerequisites: HB 641 [Min Grade: C] and HB 643 [Min Grade: C]
HB 716. Psychophysiology and Public Health: The Interface of the Mind/Body Connection. 3 Hours.
Psychophysiology is a branch of neuroscience that analyses the interfaces of mental states and physiological responses, and how they interact to affect one another and subsequently drive behaviors. This course introduces students to basic knowledge about neuroanatomy, learning/cognition, neurological processes, memory, human development, brain disorders, response patterns, and behavior change strategies as they relate to public health issues such as sexual behavior, drug addiction, cigarette smoking/vaping, and obesity. The course will also introduce principles of stress management and neurofeedback techniques. A biopsychosocial framework will be applied to a range of public health domains, using Maslow’s Hierarchy of Needs to inform context and priorities for interventions.
Prerequisites: HB 624 [Min Grade: C] or HB 624Q [Min Grade: C]

HB 724. Advanced Social and Behavioral Science Theory. 3 Hours.
This course focuses on a thorough examination of theories and models of behavior change and their applications in both research and implementation in various fields of health promotion and public health. Basic knowledge of research methodology and statistics is required. Course will be graded by letter. 3 hours.

HB 730. Health Communication Research. 3 Hours.
This course is designed to investigate the role of communication theories and methods in promoting public health and preventing disease. Both theoretical background in communication and behavioral science and practical communication/intervention development methods will be addressed.

HB 733. Health, Place, and Society. 3 Hours.
Health, Place, and Society examines social, economic, and political trends within the context of contemporary public health outcomes. Class participants will have a detailed understanding of how the social determinants of health interface with 1) housing policy, 2) employment, 3) education opportunities, 4) economic policy, and 5) social movements. Special emphasis is placed on how these factors follow a measurable pattern affecting intangible outcomes including access to health-enhancing knowledge and tangible outcomes including neighborhood quality and proximity to clean air and healthy foods. Class activities and projects will take a solution-based approach.

HB 736. Advanced Research Intervention Design. 3 Hours.
This course is intended to provide doctoral students with expert knowledge and application skills for designing a range of public health interventions to change behavioral outcomes in various populations. Emphasis will be placed on skill-building for designing relevant, state-of-the-art interventions tailored to unique population subgroups, and adapting existing evidence-based interventions for use with new populations or in new settings. Students will use two textbooks in this course that they will also use in Part 2 of this course (HB-737: Advanced Intervention Implementation and Evaluation). In addition, weekly readings of scientific articles will be assigned. This course uses lecture and seminar format; class time will be structured around lectures, in-class activities, and class discussions of both the lecture and reading materials. Students will complete writing assignments and develop a comprehensive research intervention development and implementation plan that they will later build on and evaluate in HB-737. This course is required for PhD students in Health Behavior.
Prerequisites: HB 724 [Min Grade: C]

HB 737. Advanced Intervention Implementation and Evaluation. 3 Hours.
This course is the second in a series of courses intended to teach doctoral students how to develop, implement, and evaluate theory-based, consumer-driven behavioral interventions. Students will learn how to assess whether interventions worked, build evidence for effective interventions, and adapt, implement, and disseminate interventions. Assignments will include developing a comprehensive evaluation plan for a mock grant application and describing how to adapt an existing evidence-based intervention to a particular content area, outcome target, setting, or population; students will be expected to present their work in class.
Prerequisites: HB 736 [Min Grade: C]

HB 741. Advanced Research Methods in the Behavioral Sciences. 3 Hours.
This course provides an in-depth treatment of the major research designs used in the behavioral sciences. Emphasis is given to the randomized controlled trial as it forms the cornerstone of causal inference in scientific inquiry; however, other designs intended to approximate a randomized trial will be reviewed. The course will also examine methods of collecting, analyzing, and interpreting data. Other topics include evaluating published research that used the methods review in this course, writing research proposals and reports, and ethical considerations. Students must have taken HB 641: Research Methods in Behavioral Sciences or its equivalent as a prerequisite.

HB 742. Mediation and Moderation in Behavioral Science Research. 3 Hours.
This course is an elective course for doctoral students in public health and related fields, designed to provide an exposure to statistical mediation and moderation. Mediation and moderation are central in social and behavioral science research. Mediation explains and tests the underlying mechanisms by which the predictor variable affects the outcome variable, while moderation specifies under what conditions the predictor affects the outcome. Statistical techniques investigating mediation and moderation are among the most widely used data analysis techniques in a variety of disciplines. The primary goal of this course is to provide students with theoretical concepts of mediation and moderation and hands-on experience with relevant analytical techniques. Prerequisite: Students should have taken courses on multiple regression such as BST 611, BST or other equivalent courses. Course will be graded by letter. 3 hours.

HB 770. Doctoral Studies Seminar. 1-3 Hour.
The broad intent of the course is to review current issues relevant to the field of Health Promotion/Health Education, critically examine the relationship between scholarship, research, ethics and funding and reflect and discuss theoretical aspects of Health Promotion/Health Education.

HB 795. Seminar on Selected Health Behavior Topics. 1-3 Hour.
This course will be used as faculty design and craft course topics based on specific interests. These courses will be taught on a doctoral level.

HB 798. Doctoral-Level Directed Res. 1-9 Hour.
Independent study with guidance of senior public health faculty. Course will be graded as Pass/No Pass. 1 - 9 hours.

Research for dissertation under direction of dissertation committee. Course will be graded as Pass/No Pass. Prerequisite: Students must be admitted to candidacy in order to register for this class. 1 - 9 hours.
Prerequisites: GAC 2
HPO-Health Policy and Org Courses

HPO 600. Management and Policy in Public Health Systems and Services. 3 Hours.
The course focuses on the policy and organizational levels related to public health and the overall improvement of population health. This course content examines models of public health policy and the political context of policy making; the organization, financing, and delivery of public health systems and programs; and planning, management, and leadership concepts needed to improve the public’s health.

HPO 601. Health Economics. 3 Hours.
Economics is a systematic way of thinking about the use of resources. Health economics applies the tools of economics to issues of the organization, delivery and financing of health care. The objectives of this course are to: (1) develop a basic understanding of economic concepts and their relevance to the health care sector, (2) develop familiarity with the system of health care financing and delivery arrangements in the U.S., (3) develop a framework for analyzing health management and policy options using economic tools and perspectives.

HPO 602. MCH Evidence-Based Strategies Seminar. 1 Hour.
Building on the focus of the MPH core curriculum, this course will focus on using evidence-based and informed strategies in addressing maternal and child health issues in both domestic and global settings. Topics will include basic research principles, stages of research development, and practical issues of reviewing the literature and preparing and presenting at professional meetings. Students will use evidence to develop a policy memo around an MCH issue.

HPO 603. Public Health Policy. 3 Hours.
This course examines the role of government in health policy in the United States. The class is intended to provide students with a greater awareness of current health policy issues and the analytical skills necessary to evaluate policy options. We will begin the semester with a discussion of the rationales for health policy, followed by a discussion of the policy process and policy analysis. The second part of the semester will be devoted to U.S. health system reform–namely expanding insurance coverage and improving the value of health spending.

HPO 604. Health Economics and Public Health Policy. 3 Hours.
Economics is the study of choices in a world of scarcity. This course applies basic microeconomic principles to the study of the U.S. health care system and public health policy. The first goal of the course is to provide students with an understanding of the core economic concepts (scarcity, economic welfare and market failures) which shape health care and public health policy. Next, students will be introduced to two competing theories of government—public interest theory and the economic theory of regulation—which will serve as a foundation for thinking about the role of government in health policy. Finally, the remainder of the semester will provide students with a comprehensive overview of the U.S. health care system including public and private health insurance, hospitals, physicians, the pharmaceutical industry and current issues in health care reform.

HPO 605. Foundations of Maternal and Child Health: Programs and Policies for Women, Children, and Families. 3 Hours.
The purpose of this course is to provide students with knowledge about current major Maternal and Child Health (MCH) issues (health, social, economic, and environmental) and programs and policies designed to address these issues among women of reproductive age, infants, and children. This course will focus primarily on public health problems and solutions of MCH populations in the United States. In addition to introductory information on specific health issues related to children and families, the evolution, status, and future performance of selected federal, state, and community programs will be analyzed. Course work also includes a review of factors that influence policy development and program implementation, including: 1) research, 2) data issues, 3) current public policy reform movements, and 4) advocacy.

HPO 607. Public Health Law. 3 Hours.
An introductory course in public health law designed for graduate students in public health. There are no prerequisites for this course. The purpose of the course is to introduce non-lawyers to the United States legal system and to the basic principles of law relevant to public health practitioners. It is intended to provide students with basic legal knowledge to assist them in communicating with attorneys about potential legal issues that may arise in formulating policy and exercising managerial authority. An overarching theme of the course is the tension between community interests and individual rights.

HPO 608. Reproductive Health. 3 Hours.
This course is intended to provide students with a foundation in reproductive health. It examines reproductive health issues, problems, policies, programs and services primarily in low-to-middle income countries.

HPO 609. Public Health Program Planning, Implementation and Evaluation. 3 Hours.
The purposes of this course is (1) to introduce the needs assessment and program planning, implementation, and evaluation processes specifically related to public health; and (2) to provide practical educational experiences to develop skills in applying rigorous methods and essential skills needed to conduct needs assessments and use the information gathered to plan, direct, and evaluate public health programs and impact public health policies. This course is required for all HPO students.

HPO 610. Strategic Management in Health Programs. 3 Hours.
The overall goal of the course is to provide a framework for strategic management and an opportunity to think strategically through a case study. In addition, the course provides an opportunity to integrate the knowledge and experience students have acquired in previous courses and health care organizational settings into a broad theory of management.

HPO 611. Health Information in Technology and Policy. 3 Hours.
The overall purpose of this course is to familiarize students with current issues associated with health information technology and their impact on the U.S. healthcare system.

HPO 612. Finance for Health Professionals. 3 Hours.
The goal of this class is to teach the principles necessary for effective financial management in healthcare to individuals who are not experienced financial executives. The focus of the class is on tools and techniques that assist managers in creating information to support managerial decision making. The course uses the case method of instruction, case analysis, and lectures.
HPO 618. Management Concepts in Public Health Programs. 3 Hours.
Management Concepts in Public Health Programs is an overview of management concepts applied to public health agencies and programs. In recognition of public and private management's responsibility for organizational success the course approaches management by examining recurring themes in management thought. Selected readings are provided for each class session that apply the concepts examined to the health care, not-for-profit, and/or public sectors. Some of the articles relate to domestic (USA) organizations while others relate to management in the international context.

HPO 620. Health Insurance and Managed Care. 3 Hours.
This course provides an overview of health insurance, health insurance regulation, state healthcare reform efforts, and the Affordable Care Act. It begins with a history of the development of health insurance and its theoretical basis. It then turns to the problems of moral hazard and adverse selection. The role of managed care and employer sponsored health insurance are discussed. Regulation of private insurance and the Medicare and Medicaid programs are also reviewed. A significant part of the course will focus on the impact of the Affordable Care Act on private health insurance markets.

HPO 621. Clinical Decision Making and Cost-Effectiveness Analysis. 3 Hours.
Difficult choices must be made in areas such as patient care, clinical guideline development, and public health policy. These decisions often must be made in the face of great uncertainty. Decision analysis aims to formally evaluate those decisions and to make decisions from an informed perspective regarding expected outcomes. Cost-effectiveness analysis applies decision analysis to circumstances where both costs and outcomes are important criteria for making choices. This course will give students an understanding of the methods and uses of decision analysis and cost-effectiveness analysis, but should have basic familiarity with probability and statistics. The course will provide a thorough grounding in the fundamentals of decision analysis and cost-effectiveness analysis, and will introduce several intermediate-to-advanced topics. This course is open to Master's and Doctoral students from the School of Medicine, Nursing, and Health Professions as well as the School of Public Health.
Prerequisites: BST 611 [Min Grade: C] (Can be taken Concurrently) and BST 612 [Min Grade: C] (Can be taken Concurrently)

HPO 622. Design and Conduct of Cost-Effectiveness Research. 3 Hours.
The purpose of this course is to familiarize students with the design and implementation of cost-effectiveness and cost-benefit analysis.
Prerequisites: HPO 621 [Min Grade: C]

HPO 623. Pharmacoeconomics and Regulation. 3 Hours.
This course covers the principles of Pharmacoeconomics, defines the terminology used in pharmacoeconomic research, focuses on different types and measurement of pharmaceutical costs and outcomes, and investigates how they are analyzed in pharmacoeconomic techniques such as Cost-Benefit Analysis, Cost-Effective Analysis, Cost-Utility Analysis, Cost-Minimization Analysis, and Cost-Consequence Analysis. In addition, this course introduces the regulatory role of the FDA and some basic economic theories to understand the market of pharmaceutical products. Prerequisite BST 611 or Permission of Instructor.
Prerequisites: BST 611 [Min Grade: C]

HPO 625. Advanced Leadership and Practice in MCH Part I – Introduction to Leadership. 1 Hour.
The purpose of the course is to introduce students to leadership skills that are important for designing, advocating for, and leading community, state, and regional programs. The course is required for all MPH and DrPH students in the HPO/Maternal and Child Health Policy and Leadership track and is open to students from other tracks and departments. It is offered as three, one-hour courses that provide theory, skills, and practice with each subsequent course building upon previous courses. The courses will include lectures, group discussions, individual projects, and service-learning field-based activities.

HPO 626. Adv Leadership and Practice in MCH Module II – Collaborative Leadership and Advocacy. 1 Hour.
This is the second of a three-course sequence designed to equip students with the knowledge and skills needed to provide leadership in the development and delivery of needed programs and policies to promote the health and well-being of MCH populations.
Prerequisites: HPO 625 [Min Grade: C] (Can be taken Concurrently)

HPO 627. ADV Leadership and Practice in MCH Module III – Into the Streets: Lead/Field Experience. 1 Hour.
The purpose of this course sequence is to provide students with the leadership skills necessary to work effectively at a community, state or regional level in the capacity of designing and advocating for programs and policies necessary to promote the health of women, children and families.
Prerequisites: HPO 625 [Min Grade: C] and HPO 626 [Min Grade: C]

HPO 628. Qualitative and Mixed Methods Research in Public Health. 3 Hours.
The purpose of this course is 1) to familiarize students with basic qualitative research methods used by public health researchers and practitioners, with a specific focus on their use in the health sciences; 2) to provide practical educational experiences to develop skills in the planning of qualitative studies and in the collection and analysis of qualitative data; and 3) to introduce students to the concept of mixed methods research and applications in public health. This course is designed to familiarize students who have little or no experience in conducting qualitative research with the perspectives, methods, and techniques of a vast tradition of research. The course will cover some of the methods of data collection used in the conduct of qualitative inquiries, the analysis of textual data, the write-up of findings from qualitative studies, and the development of a qualitative research proposals and reports.

HPO 630. Health and Development: Life Course Approach. 2 Hours.
In developing, implementing, and evaluating effective maternal and child health programs and policies, it is critical to incorporate principles of development. Also critical is an understanding of how health trajectories of populations are influenced by broad social, economic, and environmental factors, a conceptual framework known as the life course perspective. This course covers 1) fundamental principles of human development; 2) how the central components of the life course perspective influence health and development; 3) how these stages of development are examined with research methodologies, using noted examples of data bases and studies; and 4) how these concepts can be incorporated into MCH programs and policies.
HPO 631. Public Health Demography. 3 Hours.
Demography (the study of population) has become more important across a range of academic disciplines. There is a growing call on demographers outside academia, such as for policy-making, health care planning and analysis, or business administration. Demographic changes play a critical, though often poorly understood role in influencing the social, economic, and health fabric of our lives. This course introduces the core concepts and methods used in demographic analysis. It also provides a basic understanding of population dynamics and its health and socio-economic implications. Students will gain a firm foundation in how to measure fertility, mortality and migration; how to analyze population change and project population growth; and how to interpret demographic trends, their determinants and consequences.

HPO 632. Leadership in Maternal and Child Health. 3 Hours.
The health of women, children, youth, and families is influenced by many factors, including health practices, availability of public health and health care resources, and the social determinants of health. To promote health and positively affect these factors at the individual, community, and policy levels, specific knowledge, skills, personal characteristics, and values are needed. The purpose of the course is to engage students in the development of their own leadership skills and the application of these skills in the design, delivery, and evaluation of MCH programs and policies.

HPO 633. Policy and Women’s Health. 3 Hours.
Across the lifespan, women face unique challenges related to their own health and wellbeing and are exposed to other historical and social influences that also affect their families and society. The purpose of this course is to examine women’s health from multidisciplinary and multidimensional perspectives, with specific focus on public health policies, programs, and prevention strategies that address women’s reproductive health and broader health and well-being within a life course framework that integrates biological determinants of health and the social, cultural, and economic contexts of women’s lives.

HPO 634. Health Care Innovation. 3 Hours.
This course focuses on sustainable and socially responsible health care innovations. Students will be introduced to the realities of problem identification and will provide a how-to framework and case studies of healthcare ventures.

HPO 636. Public Health and Healthcare Delivery Systems. 1 Hour.
The public health system is comprised of federal, state, and local organizations and agencies. These organizations work with other entities, public and private, such as health care systems, non-profits, and pharmaceutical companies to address and combat public health issues. In this course, students will examine the functions of governmental public health, systems collaboration between public health and health care delivery, and the role of government in public health. Students will apply previous knowledge of systems thinking to examine the contributions and challenges of the public health and health care delivery related to past and current public health events. By the end of this course, students will gain skills in distinguishing organizations and components of public health and health care delivery systems.

HPO 637. Design and Management of Complex Public Health Systems. 1 Hour.
Designing solutions or responses to complex public health issues require management and leadership skills to navigate within and across multiple sectors. The purpose of this course is to equip students with management and leadership techniques to engage appropriate partners in the design of a solution to a public health issue. Building on work in HPO 636, students will engage in case studies that provide insight into how public health leaders historically approached complex, multi-factorial issues that required a collaborative and coordinated response across multiple sectors. The culminating project will be developing a plan to address a public health issue that incorporates multiple agencies. Students also will identify associated leadership and management skills needed for this response.

HPO 638. Current Issues in Public Health Policy. 1 Hour.
With global public health events such as the Ebola outbreak and more recent COVID-19 pandemic, public health students’ benefit from understanding how social and health policy influence health; physical, mental, and social well-being. As the political landscape changes, domestically and globally, public health students should critically analyze the effect of policy on determinants that impact health outcomes among populations. Policy decisions, both locally and nationally, can shape public health practice and organization dynamics, progress the achievement of health equity, increase or decrease health disparities, and more. This course will allow students to consider current public health issues and evaluate how policies or the lack thereof influence population health. This course is an in-depth opportunity for students to explore controversial public health topics and assess the effectiveness of policy implementation. By the end of this course, students will have developed the skills of analyzing and evaluating public health policy. Prerequisite: HPO 604 (Health Economics & Health Policy) is recommended.

HPO 640. Disaster and Emergency Management. 3 Hours.
The course will provide a concerted look into the realm of disaster and emergency management. Discussions in this course will concentrate on how disaster and emergency management has changed since 9/11 including new legislation and governmental structures. The course will culminate with a look at the roles and responsibilities of the public health system in preparing for and responding to both natural and man-initiated disasters. This course is intended for advanced MPH or doctoral students with an interest in preparedness policy, emergency management, or public health preparedness.

HPO 641. Health Preparedness and Response Policy. 3 Hours.
Preparedness policy can be defined as the sum of national and subnational governmental activities with the intent to protect the public’s health and security. Discussions in this course will focus on policy and policy making in the U.S. and more particularly on preparedness policy and its evolution since 9/11. The purpose of this course will be to develop a skill set that will allow students to frame issues into social, cultural, regional, and ethical norms, consider historical and political influence policy choices. Courses is for advanced MPH or doctoral students with an interest in preparedness policy, emergency, management, or public health preparedness.
HPO 642. Preparedness and Agriculture. 3 Hours.
This course presents the potential effects of an animal disease outbreak, whether natural, accidental or deliberate, on the affected communities. Topics covering the prevention and diagnosis of and the response to an animal disease outbreak will be presented. Examples of the interaction of public health with other disciplines will be provided. This course is designed for MPH students with an interest in preparedness policy, emergency management, or public health preparedness.

HPO 643. Emergency Preparedness Exercises, Evaluation and Communication. 3 Hours.
This course will provide participants with an understanding of the psychological processes that occur during crises, how those processes impact human functioning, and how communication plays a critical role in the psychological outcomes of crisis situations.

HPO 645. Comparative Health Systems and Policy. 3 Hours.
This course provides a comprehensive survey of a number of healthcare systems from low-, middle-, and high-income countries, situating the U.S. and other national experiences in a comparative cross-national frame. The course provides frameworks for students to analyze in diverse settings the different ways that health policy is developed and implemented, given the resources, capacities, and systems of each country. The course will also examine the ways in which health care is organized and delivered, along with underlying global public health principles and impacts. By comparing health systems and policies, globally, students will reflect on how a country's social-historical context and values, geography, polity and economy influence the way that health care is provided and its relationship with population health, as well as how health policies influence the quality of life.

HPO 670. Social and Ethical Issues in Public Health. 3 Hours.
This class examines ethical issues related to public health research and practice, and explores the social issues that complicate ethical decision-making. There are no pre-requisites. This class is open to all students with graduate standing.

HPO 672. Perinatal Health: Issues, Data, and Policies. 3 Hours.
The purpose of this course is to provide students with knowledge related to perinatal health issues and policies. In addition, the course will allow students to gain basic skills in analysis of population-based data sets using SAS. This course at the 600 and 700 level is an elective for students seeking the Master of Public Health (MPH) degree and the Doctor of Public Health (DrPH). Other students interested in this area are encouraged to register. An introductory SAS course is recommended but not required.

HPO 677. Patient-Based Outcomes Measurement. 3 Hours.
This course will provide an in-depth overview of the concepts, methods, and instruments used to evaluate health from the perspective of the individual. The overall objective of this course is to provide a detailed examination of patient-based/centered outcomes measurement in the context of health care delivery systems and health care policy.

HPO 687. Empirical Methods for Health Research. 3 Hours.
The course aims to provide a thorough treatment of simple and multivariate regression models, simple binary dependent variable models, simple panel data models, and instrumental variables methods. Particular emphasis is placed on methods used to address omitted variable bias, such as difference-in-difference. The course is structured to provide students with ample opportunity to acquire hands-on experience in working with data by performing empirical analysis using the statistical software STATA.

HPO 689. HPO Integrative Learning Experience. 2 Hours.
The HPO ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of MPH foundational and concentration competencies. The HPO ILE, using a case-based educational methodology, will allow students to work in teams to create a comprehensive strategic plan for a public health program while developing a program plan and evaluation plans to address a specific health issue. Students will also address the policy implications associated with the health issue through a policy analysis. Students in the HPO-MCH concentration will focus specifically on an MCH-relevant issue in the ILE. MPH students should complete the ILE in the final term of the MPH program, after all core courses and the MPH internship experience are completed.

Prerequisites: PUH 688 [Min Grade: C]

HPO 691. Policy Analysis: Modeling and Simulation. 3 Hours.
This course shows how models are built and used for public policy making and clinical decision analysis. The goal is for you to develop basic skills with building various types of models. Models include the optimization method of linear programming, spreadsheets with various types of randomness, bootstrapping data to estimate how much a model's results may vary, discrete event modeling, queuing, Markov models, and an introduction to some advanced models using Netlogo and Python programming.

Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C]

HPO 692. Health Equity and Inclusion in Public Health Programs and Policies. 3 Hours.
The aim of this course is to engage students in critical thinking about the current paradigms for health disparities and equity research and public health practice and policies. As a part of this process, students will be challenged to think about the social, political, and economic determinants of health disparities for diverse health care consumers, to identify substantive trends and gaps in the health disparities literature, and to develop an innovative research or policy oriented strategy for reducing health disparities. We will discuss health and health care disparities according to race/ethnicity, sex, orientation, health status, and geographic location.

HPO 695. Seminar in Health Policy and Organization. 1-3 Hour.
Factors currently influencing finance and administration of public and private health programs; availability, accessibility, and utilization by selected population groups.

HPO 698. Master's Level Directed Research Health Policy and Organization. 1-9 Hour.
Independent study with guidance of appropriate faculty.

Research for project under direction of appropriate faculty and/or research project committee.

HPO 701. Health Economics. 3 Hours.
Economics is a systematic way of thinking about the use of resources. Health economics applies the tools of economics to issues of the organization, delivery and financing of health care. The objectives of this course are to: (1) develop a basic understanding of economic concepts and their relevance to the health care sector; (2) develop familiarity with the system of health care financing and delivery arrangements in the U.S., (3) develop a framework for analyzing health management and policy options using economic tools and perspectives.
HPO 703. Public Health Policy - Doctoral Level. 3 Hours.
This course examines the role of government in health policy in the United States. The class is intended to provide students with a greater awareness of current health policy issues and the analytical skills necessary to evaluate policy options. We will begin the semester with a discussion of the rationales for health policy, followed by a discussion of the policy process and policy analysis. The second part of the semester will be devoted to U.S. health system reform—namely expanding insurance coverage and improving the value of health spending.

HPO 704. Health Economics and Public Health Policy. 3 Hours.
Economics is the study of choices in a world of scarcity. This course applies basic microeconomic principles to the study of the US health care system and public health policy. The first goal of the course is to provide students with an understanding of the core economic concepts (scarcity, economic welfare and market failures) which shape health care and public health policy. Next, students will be introduced to two competing theories of government—public interest theory and the economic theory of regulation—which will serve as a foundation for thinking about the role of government in health policy. Finally, the remainder of the semester will provide students with a comprehensive overview of the US health care system including public and private health insurance, hospitals, physicians, the pharmaceutical industry and current issues in health care reform. Ideally, students will come away from the course with a better understanding of the role of economics in the US health care system, and an improved ability to analyze the motivations and consequences of government intervention in markets.

HPO 706. Strategic Management Theory/Research. 3 Hours.
The vision for the course is to develop highly competitive strategic management major graduates at that doctoral level. Strategic Management Theory and Research is to provide a forum for the introduction of the concepts and issues of strategic management in order to facilitate their understanding and communications.

HPO 708. Reproductive Health. 3 Hours.
This course is intended to provide students with a foundation in reproductive health. It examines reproductive health issues, problems, policies, programs and services, primarily in low-to-middle income countries.

HPO 714. Life Course Seminar. 3 Hours.
The purpose of this course is to expand knowledge and research skills around MCH life course issues. As guided by faculty, students will review and critique the literature in given areas around life course science and specific life span issues. Students will work with the library liaison to conduct extensive literature reviews and move toward writing a manuscript for submission to a peer-reviewed journal. It will serve as a foundation for skills needed in other courses as well as foundational knowledge related to maternal and child health science. The course is required for all HPO-MCH doctoral students. Other doctoral or higher level Masters’ students interested in a research path may register with the approval of the instructor. Prerequisites: Ideally, students will have taken all course work prior to taking this course. However, the DrPH director and course instructors may make exceptions.

HPO 715. Finance for Health Professionals. 3 Hours.
Financial management of public health care organizations. Emphasis on time value on money, capital raising methods, cost of capital, capital budgeting methods and working capital policy. Problem-solving orientation with applications to public health issues.

HPO 716. Advanced Leadership and Practice Seminar. 3 Hours.
This seminar provides a foundation for all doctoral students in the concepts and application of leadership and management in public health practice. Part I of the course will explore and discuss the nature and processes of doctoral education and academic teaching, scholarship, service, and other duties related to a traditional academic research or scholarly practice setting. Part II of the course allows doctoral students to enhance their leadership skills, through personal development activities as well as through interaction with public health leaders. In Part III, students will gain a deeper understanding of how research is applied in public health practice through the completion an interdisciplinary project that draws upon management and organizational skills. The course will be led by faculty members with across the department. Prerequisites: Ideally, students will have taken all course work prior to taking this course. However, the DrPH director and course instructors may make exceptions.

HPO 717. Seminar in Public Health Policy. 3 Hours.
The purpose of this course is to enhance doctoral students’ understanding of public health policy, including the policy making process and the role of various components of the public health system in the design and implementation of policy. The course will focus on the linkages between public health research and practice. The course will engage students in the discussion of contemporary public health issues and will focus heavily on the critical task of assessing these issues from multiple stakeholder and ideological perspectives. The course will also focus heavily on writing and the tools necessary for policy development, advocacy and implementation.

HPO 718. Management Concepts in Public Health Programs. 3 Hours.
Management Concepts in Public Health Programs is an overview of management concepts applied to public health agencies and programs. In recognition of public and private managements’ responsibility for organizational success the course approaches management by examining recurring themes in management thought. Selected readings are provided for each class session that apply the concepts examined to the health care, not-for-profit, and/or public sectors.

HPO 720. Health Insurance and Managed Care. 3 Hours.
This course provides an overview of health insurance, health insurance regulation, state healthcare reform efforts, and the Affordable Care Act. It begins with a history of the development of health insurance and its theoretical basis. It then turns to the problems of moral hazard and adverse selection. The role of managed care and employer sponsored health insurance are discussed. Regulation of private insurance and the Medicare and Medicaid programs are also reviewed. A significant part of the course will focus on the impact of the Affordable Care Act on private health insurance markets.
HPO 721. Clinical Decision Making and Cost Effectiveness Analysis. 3 Hours.
Difficult choices must be made in areas such as patient care, clinical guideline development, and public health policy. These decisions often must be made in the face of great uncertainty. Decision analysis aims to formally evaluate those decisions and to make decisions from an informed perspective regarding expected outcomes. Cost-effectiveness analysis applies decision analysis to circumstances where both costs and outcomes are important criteria for making choices. This course will give students an understanding of the methods and uses of decision analysis and cost-effectiveness analysis, but should have basic familiarity with probability and statistics. The course will provide a thorough grounding in the fundamentals of decision analysis and cost-effectiveness analysis, and will introduce several intermediate-to-advanced topics. This course is open to Master’s and Doctoral students from the School of Medicine, Nursing, and Health Professions as well as the School of Public Health.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C]

HPO 722. Design and Conduct of Cost-Effectiveness Research. 3 Hours.
The objective of this course is to familiarize students with the design and implementation of cost-effectiveness and cost-benefit analysis.
Prerequisites: HPO 721 [Min Grade: C]

HPO 723. Management of Complex Health Organizations. 3 Hours.
Complexity as related to management of health organizations. Academic health centers as models of complex organization. Incentive systems, organizational politics, and ownership and control within context of high complex health organizations.

HPO 728. Qualitative and Mixed Methods Research in Public Health. 3 Hours.
The purpose of this course is 1) to familiarize students with basic qualitative research methods used by public health researchers and practitioners, with a specific focus on their use in the health sciences; 2) to provide practical educational experiences to develop skills in the planning of qualitative studies and in the collection and analysis of qualitative data; and 3) to introduce students to the concept of mixed methods research and applications in public health. This course is designed to familiarize students who have little or no experience in conducting qualitative research with the perspectives, methods, and techniques of a vast tradition of research. The course will cover some of the methods of data collection used in the conduct of qualitative inquiries, the analysis of textual data, the write-up of findings from qualitative studies, and the development of a qualitative research proposals and reports.

HPO 730. Health and Development: Life Course Approach. 2 Hours.
In developing, implementing, and evaluating effective maternal and child health programs and policies, it is critical to incorporate principles of development. Also critical is an understanding of how health trajectories of populations are influenced by broad social, economic, and environmental factors, a conceptual framework known as the life course perspective. This course covers 1) fundamental principles of human development; 2) how the central components of the life course perspective influence health and development; 3) how these stages of development are examined with research methodologies, using noted examples of data bases and studies; and 4) how these concepts can be incorporated into MCH programs and policies.

HPO 740. Disaster and Emergency Management. 3 Hours.
The course will provide a concerted look into the realm of disaster and emergency management. Discussions in this course will concentrate on how disaster and emergency management has changed since 9/11 including new legislation and governmental structures. The course will culminate with a look at the roles and responsibilities of the public health system in preparing for and responding to both natural and man-initiated disasters. This course is intended for advanced MPH or doctoral students with an interest in preparedness policy, emergency management, or public health preparedness.

HPO 741. Health Preparedness and Response Policy. 3 Hours.
Preparedness policy can be defined as the sum of national and subnational governmental activities with the intent to protect the public’s health and security. Discussions in this course will focus on policy and policy making in the U.S. and more particularly on preparedness policy and its evolution since 9/11. The purpose of this course will be to develop a skill set that will allow students to frame issues into social, cultural, regional, and ethical norms, consider historical and political influence policy choices. Courses is for advanced MPH or doctoral students with an interest in preparedness policy, emergency, management, or public health preparedness.

HPO 742. Preparedness and Agriculture. 3 Hours.
This course presents the potential effects of an animal disease outbreak, whether natural, accidental or deliberate, on the affected communities. Topics covering the prevention and diagnosis of and the response to an animal disease outbreak will be presented. Examples of the interaction of public health with other disciplines will be provided. This course is designed for MPH students with an interest in preparedness policy, emergency, management, or public health preparedness.

HPO 743. Emergency Preparedness Exercise, Evaluation & Communication. 3 Hours.
This course will provide participants with an understanding of the psychological processes that occur during crises, how those processes impact human functioning, and how communication plays a critical role in the psychological outcomes of crisis situations.

HPO 772. Perinatal Health: Issues, Data, and Policies. 3 Hours.
The purpose of this course is to provide students with knowledge related to perinatal health issues and policies. In addition, the course will allow students to gain basic skills in analysis of population-based data sets using SAS. This course at the 600 and 700 level is an elective for students seeking the Master of Public Health (MPH) degree and the Doctor of Public Health (DrPH). Other students interested in this area are encouraged to register. An introductory SAS course is recommended but not required.

HPO 777. Patient-Based Outcomes Measurement. 3 Hours.
This course will provide an in-depth overview of the concepts, methods, and instruments used to evaluate health from the perspective of the individual. The overall objective of this course is to provide a detailed examination of patient-based/centered outcomes measurement in the context of health care delivery systems and health care policy.
HPO 781. Research Methods and Study Design. 3 Hours.
This course examines empirical methods utilized in health economics, policy and management research. The course supplements the material covered in HPO 787, with a focus on the application of econometric methods to contemporary topics in health research. The course begins with an overview of experimental and non-experimental research and the critical distinction between associative and causal relationships. The remainder of the course will focus on the difficulty of identifying causal relationships in non-experimental contexts, and the methods that are commonly used to overcome these challenges. At the end of the semester, students should come away with an improved grasp of the interdisciplinary language of health research and a deeper appreciation of the importance of research design in quantitative work.

HPO 787. Empirical Methods for Health Research. 3 Hours.
The objectives of the course are to provide thorough treatment of simple and multivariate regression models, simple binary dependent variable models, instrumental variables estimators, sample selection and two-part models, and simple panel data models. Course provides students with an opportunity to acquire hands-on software. This course is designed for students who have had limited experience with regression analysis but a working knowledge of simple statistics, probability distributions, and basic calculus. Students must have upper level undergraduate or graduate coursework in statistics and probability; basic calculus. Prerequisites: Senior Undergraduate or Graduate Course in Statistics & Probability Distributions.

HPO 791. Policy Analysis: Modeling & Simulation. 3 Hours.
This course shows how models are built and used for public policy making and clinical decision analysis. The goal is for you to develop basic skills with building various types of models. Models include the optimization method of linear programming, spreadsheets with various types of randomness, bootstrapping data to estimate how much a model’s results may vary, discrete event modeling, queuing, Markov models, and an introduction to some advanced models using Netlogo and Python programming.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C]

HPO 792. Health Equity and Inclusion in Public Health Programs and Policies. 3 Hours.
The aim of this course is to engage students in critical thinking about the current paradigms for health disparities and equity research and public health practice and policies. As a part of this process, students will be challenged to think about the social, political, and economic determinants of health disparities for diverse health care consumers, to identify substantive trends and gaps in the health disparities literature, and to develop an innovative research or policy oriented strategy for reducing health disparities. We will discuss health and health care disparities according to race/ethnicity, sex, orientation, health status, and geographic location.

HPO 793. DrPH Practicum. 3-6 Hours.
All DrPH students will complete an applied practice experience (Practicum) in which the student will complete at least one project that is meaningful for a public health organization and to advanced public health practice. In addition to self-reflection on the applied practice experience, the student will produce a final product that addresses the competencies listed below. This may take the form of a written report, portfolio, or other deliverable as determined by the student, advisor, and/or Practicum preceptor, according to departmental guidelines.

HPO 795. Directed Readings. 1-6 Hour.
The purpose of this course is to assist students in preparing literature reviews, manuscripts, or to complete other activities as deemed appropriate by the faculty member. Final objectives will be based upon the work between the student and advisor.

HPO 796. Doctoral Seminar in Health Policy and Organization. 1 Hour.
Doctoral students will be introduced to advanced topics in public health policy and practice, health services research methods and management research. In addition, topics directly related to doctoral studies (article critiques, literature reviews, manuscript preparation, dissertation protocol development, etc.) will be discussed.

HPO 797. Directed Readings for DrPH Comprehensive Examination. 3 Hours.
The Directed Readings for DrPH Comprehensive Examination in HPO is required for HPO DrPH students as part of their training. The primary aim of this course is to assist students in preparing for their comprehensive exams. Doctoral students may register for this course in the term in which they prepare for and take their comprehensive examination.

HPO 798. Doctoral Level Directed Research Health Policy and Organization. 3-9 Hours.
The purpose of this course is for students to develop dissertation research protocols that will be presented to their dissertation committee for final approval. Final objectives will be based upon the work between the student and advisor.

HPO 799. Dissertation Research HPO. 3-9 Hours.
Research for dissertation under direction of dissertation committee. Must be advanced to candidacy.

PUH-Public Health Courses

PUH 600. Overview of Public Health. 0-3 Hours.
The Overview of Public Health (OPH) course is intended to provide professional degree students in the School of Public Health (SOPH) a broad overview of the core areas of public health. This course was designed to address the foundational public health learning objectives. This course will introduce students to and facilitate their understanding of how public health relates to their discipline. As well as, how all disciplines relate to achieve the goals of public health.

PUH 601. This is Public Health. 1 Hour.
Understand the history, philosophy, and values of public health, including the structure and functions of organizing governmental public health.

PUH 602. Community Assessment. 3 Hours.
Becoming aware of current conditions through a community assessment is the first step to evidence-based public health. This course will introduce students to the various community assessments methods used to identify and prioritize community needs, concerns, and preferences, as well as to identify community assets, and inform the development of public health interventions. Students will be able to utilize a breadth of data sources commonly used to assess population health needs, assets and capacities that affect community health. Topics to be covered include the introduction to planning models, stakeholder identification, coalition building, quantitative data sources, quantitative and qualitative data collection methods, analysis of qualitative data, interpreting data, and framing community issues.
Prerequisites: PUH 601 [Min Grade: C][Can be taken Concurrently]
PUH 603. Quantitative Methods in Public Health. 3 Hours.
To appropriately address the needs of communities, we must be able to prioritize their leading health concerns. Quantitative methods allow us to examine the associations between various social, ecological, biological, and environmental factors and health outcomes, to identify populations at elevated risk for poor health outcomes, and to assess the effect of programs or policies implanted to improve health outcomes. This course introduces students to the broad range of epidemiologic and biostatistical methods used in public health, with particular attention to how quantitative results can be communicated clearly to scientific and non-scientific audiences.
Prerequisites: PUH 601 [Min Grade: C] (Can be taken Concurrently)

PUH 604. Programs and Policies. 3 Hours.
This course covers how to collect and apply evidence of community needs in order to identify and prioritize programs and policies for implementation. Public health programs and policies should improve the quality of life of persons and communities through the reduction or elimination in the incidence, prevalence, and rates of disease and disability as well as the promotion of human flourishing via the preservation and improvement of community health. In doing so, programs and policies should strive to improve conditions and access to resources for healthy living for all persons. Given the breadth and complexity of factors that influence health, public health has developed a rich toolkit to guide our efforts to improve community health. This course reviews key elements of that toolkit, including (1) methods and theoretical tools used to collaboratively and inclusively determine community priorities for promoting health; (2) planning models and theories used to guide the development of public health programs and influence health policy; and (3) strategies to frame public health issues with the ultimate goal of informing and successfully advocating for public health policies. From prioritizing goals and objectives to planning for successful implementation, this course explores the multiple dimensions of the successful adoption of public health policies and programs.
Prerequisites: PUH 601 [Min Grade: C] and PUH 602 [Min Grade: C] and PUH 603 [Min Grade: C]

PUH 605. Public Health Management and Evaluation. 3 Hours.
Applying effective management methods and principles and evaluating the impact of programs and policies to determine community cost and impact are essential components of evidence-based public health. This course includes an exploration of key management, governance, and leadership principles necessary for the successful implementation and evaluation of public health programs and policies. Managers and organizations often operate with limited resources, thus learning how to be good stewards of financial and human resources is essential. This requires the ability to develop budgets and evaluation plans, operate within and foster interprofessional collaboration, manage conflict, and ethical decision-making. A cornerstone of good management is the continuous and rigorous determination of the consequences of one’s choices and actions; did the program or policy have the desired effect? Did it have unintended consequences? This course introduces students to methods of process, formative, summative, and outcome evaluation, including experimental designs and participatory models of evaluation.
Prerequisites: PUH 601 [Min Grade: C] and PUH 602 [Min Grade: C] and PUH 603 [Min Grade: C]

PUH 606. Leadership for Evidence-Based Public Health. 1 Hour.
Developing competencies to provide effective leadership for evidence-based public health. Effective leadership for evidence-based public health requires competencies in advocacy, negotiation, communication, and collaboration, all within a “systems thinking” framework. This course includes an exploration of theoretical constructs and concepts in leadership, balanced with a series of case studies, presentations, and interviews with leaders that provide examples of the application of these leadership competencies in public health practice. Students will learn to advocate for programs and policies, apply negotiation skills, communicate using appropriate strategies for specific audiences, collaborate through interprofessional learning experiences, and apply systems thinking to a public health issue. Students will be assessed through papers, group projects, and participation.
Prerequisites: PUH 601 [Min Grade: C] and PUH 602 [Min Grade: C] and PUH 603 [Min Grade: C] and PUH 604 [Min Grade: C] (Can be taken Concurrently) and PUH 605 [Min Grade: C] (Can be taken Concurrently)

PUH 610. Population Health. 3 Hours.
This course introduces you to the field of population health. It is intended for students and those receiving training or already working in different aspects of health and social care who wish to improve their understanding of this interdisciplinary field. Population health is a relatively new term with many meanings, but at its core, it has three central concerns. These include assessing the range of health outcomes of population groups; understanding the multiple determinants of the levels and distributions of health within and across populations; and addressing those factors through policies and practices to improve health and ameliorate health disparities.

PUH 627. Writing & Reviewing Research for MPH Candidates. 3 Hours.
PUH 627 is a course that meets for ten three-hour sessions over the course of 10 weeks. Class time will be filled with discussion, group activities, tasks, writing, peer review, and presentations. By the end of this 10-week course, PUH 627 student writers will demonstrate a working grasp of academic research writing best practices, including ethics for authors, and gain knowledge and confidence as writers after completing weekly non-graded reading/writing activities, 3 rigorous graded writing assignments, and a final (a research proposal presentation) as measured by: 1) an average of grades on writing rubrics and 2) instructor evaluation.

PUH 688. Public Health Internship. 3 Hours.
All students in the MPH degree program are required to complete the three (3) credit hour public health internship (PUH 688) as a part of their curriculum. The internship provides an opportunity for each student to work in a public health setting with responsibilities similar to those in an entry-level MPH position. The internship cumulates with the submission of at least two work products developed by the student that benefit the agency/organization and allows the student to successfully demonstrate competency attainment in five (5) of the Foundational MPH competencies. Students should have completed the core classes before registering for an internship.
Prerequisites: PUH 601 [Min Grade: C] and PUH 602 [Min Grade: C] and PUH 603 [Min Grade: C] and PUH 604 [Min Grade: C] and PUH 605 [Min Grade: C] and PUH 606 [Min Grade: C]

PUH 690. Special Topics in Public Health. 1-6 Hour.
This is a general course that may be used for special topic lectures or directed readings.
Certificate Programs

The UAB School of Public Health has three certificate programs:

CERTIFICATE IN APPLIED BIOSTATISTICS AND EPIDEMIOLOGY

Interim Chair: Jeff Szychowski, Ph.D.
Contact Person: Nicole Cross, MA
Contact E-mail: nicolen@uab.edu
Phone: (205) 934-4358
Website: www.uab.edu/soph/home/departments/biostatistics

The Certificate in Applied Biostatistics and Epidemiology aims to provide applied knowledge and skills in common statistical analysis and introductory concepts of epidemiological methods. With both existing and continually emerging public health issues, there is a great demand for professionals with the skills to analyze and interpret real-world public health and healthcare-related data to solve problems in these fields and to research and analyze real-world public health and healthcare-related problems.

Program Format

The 5-course certificate will teach methods in applied biostatistics, including linear and categorical methods, research design, and an introduction to epidemiological methods. The certificate can be completed online or a blend of online and face-to-face courses. Students must maintain a 3.0 GPA to remain in good academic standing and to earn the certificate.

Admission Requirements

A UAB Graduate School admissions application must be completed in order to enroll in the Applied Biostatistics and Epidemiology certificate program: https://www.uab.edu/graduate/admissions.

Application Requirements

- Official transcripts from ALL higher education institutions you attended and received college credit.
- A Bachelor's degree with an undergraduate GPA of 3.0 or higher
- Resume/Curriculum Vitae
- Personal statement

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Requirements</td>
<td>9</td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
<td></td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td></td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td></td>
</tr>
<tr>
<td>Elective Biostatistics - choose 1</td>
<td>3</td>
</tr>
<tr>
<td>BST 613 Intermediate Statistical Analysis III</td>
<td></td>
</tr>
<tr>
<td>BST 625 Design/Conduct Clinical Trials</td>
<td></td>
</tr>
<tr>
<td>BST 626 Data Management and Reporting with SAS</td>
<td></td>
</tr>
<tr>
<td>Elective Epidemiology - choose 1</td>
<td>3</td>
</tr>
<tr>
<td>EPI 602 Epidemiology of Chronic Diseases</td>
<td></td>
</tr>
<tr>
<td>EPI 603 Injury-Epidemiologic Principles and Prevention Strategies</td>
<td></td>
</tr>
<tr>
<td>EPI 605 Epidemiology of Infectious Diseases</td>
<td></td>
</tr>
<tr>
<td>EPI 621 HIV/AIDS and STDs</td>
<td></td>
</tr>
<tr>
<td>Any other EPI Course (if prerequisites are met)</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>
Program Format

Students are required to take the 6 public health core courses from the Master of Public Health program (14 credit hours) and a 3 credit hour elective, for a total of 17 credit hours. Students must maintain a 3.0 GPA to remain in good academic standing and to earn the certificate. Certificate students may apply for the MPH or other degree programs within the UAB School of Public Health, and if admitted, the courses taken will be counted towards the completion of the degree program; the courses must have been completed in the last five years with a minimum grade of B. If you have questions about the program prior to enrolling, please reach out to KaShuHn Farmer at ksfarmer@uab.edu.

Admission Requirements

Applicants not currently enrolled at UAB should apply by completing an application through the UAB Graduate School: www.uab.edu/graduate/admissions.

Application Requirements

- A Bachelor’s degree from a regionally accredited institution
- GPA of 3.0 or higher
- Statement of Purpose

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Health Courses</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>Approved Elective Course</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours:</td>
<td>17</td>
</tr>
</tbody>
</table>

GLOBAL HEALTH STUDIES GRADUATE CERTIFICATE

Director: Janet M. Turan, PhD, MPH
Contact Person: Anna Helova, DrPH
Contact E-mail: ahelova@uab.edu
Phone: (205) 934-0567
Website: www.uab.edu/sparkmancenter/graduate-certificate

This 15-hour certificate program is offered to any UAB graduate student (degree seeking or non-degree seeking) who wishes to gain knowledge and skills in the field of global health. Students may choose from several online or classroom-based courses to meet the requirements for this program. Upon successful completion of program requirements, students will receive a certificate of completion awarded by the University of Alabama at Birmingham. In order to be enrolled in the graduate certificate program, you have to be enrolled as a student with the UAB graduate school (UAB Graduate Admissions). Undergraduate students may apply to the certificate program, but the certificate will not be awarded until a bachelor’s degree is earned.

Upon completion of the GHS certificate program, participants will be able to:

- Analyze the relationship between global health and development.
- Use appropriate methods to appraise global health challenges and health care systems, as well as responses to these challenges.
- Synthesize information from primary and secondary sources to help identify appropriate interventions and actions in the field of global health.
- Use research, planning and management methods to make efficient and effective use of available resources in field settings.
- Develop professional skills in program design, program monitoring, and evaluation.

Program Format

Students are required to complete the GHS 600 and GHS 601 courses for 6-credit hours, and an additional 9-credit hours of approved public health and global health courses for a total of 15-credit hours. Students must take a minimum of 6-credit hours from the selective GHS electives.

Admission Requirements

Admission to any UAB graduate program automatically meets entrance requirements for the GHS certificate program; however, an UAB Graduate School admissions application must be completed in order to enroll in the GHS certificate program, www.uab.edu/graduate/admissions.

Graduate students may enroll in the GHS certificate program at any time during their graduate course of study at UAB. Any student who wishes to enroll into the GHS Certificate Program is responsible for meeting with his or her departmental coordinator and with the GHS program coordinator to ensure that all administrative requirements have been met. Any student who does not maintain a “B” average in his or her certificate courses is subject to dismissal from the certificate program.

Undergraduate students must meet all requirements listed in the School of Public Health Accelerated Learning Opportunities:

- maintain a 3.5 GPA average in undergraduate courses
- completed 60 undergraduate credit hours, and at least 36 credit hours at UAB
- receive a B (or better) in the graduate courses taken while still an undergraduate student
- maintain full-time student status at UAB

Please see the program website for details about how to apply to the certificate program if you are an undergraduate student.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Health Studies Core (6 hours)</td>
<td></td>
</tr>
<tr>
<td>GHS 600 Fundamentals of Global Health</td>
<td>3</td>
</tr>
<tr>
<td>GHS 601 Global Health Partnerships and Development</td>
<td>3</td>
</tr>
<tr>
<td>Global Health Studies Electives (Minimum of 9 credit hours)</td>
<td></td>
</tr>
<tr>
<td>GHS 604 Infectious Diseases of Global Health Significance</td>
<td>3</td>
</tr>
<tr>
<td>GHS 603 Immigrant, Migrant, Refugee Health</td>
<td>3</td>
</tr>
<tr>
<td>GHS 605 Disabilities and Global Health</td>
<td>3</td>
</tr>
<tr>
<td>GHS 606 Critical Issues in Global Maternal and Child Health</td>
<td>3</td>
</tr>
<tr>
<td>GHS 608 Food and Nutrition in Resource Limited Settings</td>
<td>2</td>
</tr>
<tr>
<td>GHS 645 Comparative Health Systems and Policy</td>
<td>3</td>
</tr>
<tr>
<td>GHS 430/630 Global Health Training, SIFAT</td>
<td>6</td>
</tr>
<tr>
<td>Other Electives</td>
<td></td>
</tr>
<tr>
<td>ENH 610 Environmental Disasters</td>
<td>3</td>
</tr>
<tr>
<td>EPI 602 Epidemiology of Chronic Diseases</td>
<td>3</td>
</tr>
</tbody>
</table>
Interdisciplinary Programs

Master in Public Health with a Concentration in Population Health

The MPH with a Concentration in Population Health is a generalist degree that will train current public health or healthcare professionals to plan, design, implement, monitor, and evaluate public health programs and community-based interventions. This track is an individualized track that will allow students to pursue a public health degree that can be tailored to their own interests and career goals.

Upon admission into the program and under the guidance of their program coordinator, students will pick five unique competencies that best fit their personal and professional goals from amongst courses offered in each of the Departments. For additional information please see the program website: MPH in Population Health.

Coordinated Degrees with other Graduate Programs

We offer students a wide range of coordinated degree options. Students can combine a Public Health MPH with a maximum of 14 professional degrees such as business, engineering, law, medicine, nursing, optometry, pharmacy, public administration, or social work. Students are admitted separately to each program. Students must complete the MPH Core plus 7 to 10 credit hours of MPH focus courses for a minimum of 30 credit hours in addition to the other program’s curriculum requirements. Twelve credit hours from the other curriculum are credited toward the MPH degree for a total of 42 MPH credit hours. We also have a coordinated Master of Science in Public Health (MSPH) / MD with the UAB School of Medicine.

Students may complete the MPH degree program totally online, in class, or through a mix of online and in-class experiences. Out-of-state students taking online courses pay the same tuition rate as Alabama residents. The admissions processes are conducted separately, and admissions decisions are made independently by each school.

Program Coordinator Room Phone Number
Coordinated KaShunti Farmer, RPHB 130 (205) 934-2684
Degree Programs MPH, MPA

- (DVM/MPH) Coordinated Doctor of Veterinary Medicine (Auburn) / Master of Public Health (p. 534)
- (JD/MPH) Coordinated Juris Doctor / Master of Public Health (p. 535)
- (MBA/MPH) Coordinated Master of Business Administration / Master of Public Health (p. 535)
- (MD/MPH) Coordinated Doctor of Medicine / Master of Public Health (p. 536)
- (MD/MSPH) Coordinated Doctor of Medicine / Master of Science in Public Health (p. 536)
- (OD/MPH) Coordinated Doctor of Optometry / Master of Public Health (p. 539)
- (Pharm D/MPH) Coordinated Pharm D/ Master of Public Health (p. 541)
- (PhD/MPH) Coordinated Doctor of Philosophy in Civil Engineering / Master of Public Health

UAB has many degree programs (both face-to-face and online) that can lead to professional licensure or certification. Licensure requirements vary from state to state and by professional organization. Federal Regulations require UAB to provide public or general disclosures on educational programs designed to meet educational requirements for a specific professional license or certification, that is required for employment in an occupation, or is advertised as meeting such requirements. For a list of programs that customarily lead to professional licensure or certification, please visit the UAB Professional Licensure and Certification webpage.

Coordinated Doctor of Veterinary Medicine (Auburn) / Master of Public Health Program

The DVM/MPH coordinated degree program is offered through the Office of Research and Graduate Studies at the Auburn University College of Veterinary Medicine (AUCVM) and the UAB School of Public Health (SOPH). MPH focus courses may be customized to the experience and needs of the student. Below is the MPH curriculum for this program, for information about the DVM curriculum please click here.

Students must complete the MPH Core plus 7 credit hours of MPH focus courses for a total of 30 credit hours in addition to the required DVM curriculum requirements. Twelve credit hours from the DVM curriculum are credited toward the MPH degree for a total of 42 MPH credit hours. Students must complete the MPH degree program totally online, in class, or through a mix of online and in-class experiences.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>
Coordinated Juris Doctor / Master of Public Health Program

The School of Public Health offers a coordinated Master of Public Health and Juris doctor (MPH/JD) degree program in cooperation with the Cumberland School of Law at Samford University in Birmingham, Alabama. The purpose of the program is to offer future attorneys exposure to the broad areas of public health.

Curriculum

Students in this track must complete 43 credit hours. This includes the MPH Core, SOPH requirements, track requirements, electives and internship. A total of 90 credit hours of coursework are required for the coordinated JD/MPH. Normally, 42 credit hours are required for the MPH degree, however, because of the coordinated nature of the degree, 13 credit hours from the JD curriculum are credited to the MPH and 12 hours from the MPH curriculum are credited to the JD. Students may complete the MPH totally online, in class, or through a mix of online and in class experiences.

Requirements Hours
MPH Core Requirements: (14 hours)
PUH 601 This is Public Health 1
PUH 602 Community Assessment 3
PUH 603 Quantitative Methods in Public Health 3

Coordinated Master of Business Administration / Master of Public Health Program

This coordinated Master of Business Administration and Master of Public Health degree program is offered through the UAB Collat School of Business and the UAB School of Public Health. MPH focus courses may be customized to the experience and needs of the student.

The coordinated MBA/MPH program results in two advanced degrees providing students with skills necessary for a broad range of positions in health care management, entrepreneurship, and leadership. MPH coursework typically includes courses in the core public health disciplines as well as health economics, finance, accounting, management, strategic planning, health insurance, and health policy.

Curriculum

A total of 60 credit hours of coursework are required for the coordinated MBA/MPH. Courses include the Public Health Core plus 7 hours of Public Health elective courses as well 10 MBA courses. Normally, 42 credit hours are required for the MPH and 36 credit hours for the MBA. However, because of the coordinated nature of the degree, 12 credit hours from the MBA curriculum are credited to the MPH and six hours from the MPH are credited to the MBA. Students may complete either degree programs totally online, in class, or through a mix of online and in class experiences.
Coordinated Doctor of Medicine / Master of Public Health Program

This coordinated degree program is offered through the UAB School of Medicine and the UAB School of Public Health. MPH focus courses may be customized to the experience and needs of the student.

Students may choose between two program formats: a four-year program or a five-year program.

- The four-year program requires students to complete MPH coursework while also completing medical school coursework. Additionally, students in the four-year program may begin taking courses the summer before they begin medical school.
- The five-year program requires students to take a one-year leave of absence from medical school to concentrate on MPH coursework.

Students may complete the MPH degree program totally online, in class, or through a mix of online and in class experiences.

Coordinated Doctor of Medicine / Master of Science in Public Health Program

This MSPH/MD coordinated degree program is offered through the UAB School of Medicine and the UAB School of Public Health. The MSPH in Outcomes Research is offered in the Department of Health Policy and Organization and is an online program designed for medical students who also want to evaluate the effectiveness and cost-effectiveness of specific health care treatments.

Curriculum

The MSPH degree requires a minimum of 42 hours; however, 12 hours are shared from the Medical School curriculum.

Requirements

MSPH Core Requirements: (9 hours)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>Concentration Requirements: (21 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 604 Health Economics and Public Health Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

For additional information concerning the coordinated MD/MPH program contact the School of Public Health at sophe@uab.edu.
Coordinated Master of Public Administration/Master of Public Health Program

The coordinated Public Health/Public Administration (MPA) degree program is offered through the UAB School of Public Health and the UAB College of Arts and Sciences Department of Political Science and Public Administration. Students in this coordinated program earn an MPH with a focus in Population Health.

The MPH/MPA degree program provides students with the knowledge base of public health and the skills required to work effectively in a responsible, administrative position in the public sector. Through this coordinated degree program, students in the MPH program can satisfy some of their requirements through courses in the MPA program and vice versa.

Admission: Students entering this program must meet the minimum requirements for admission into the School of Public Health. The student must apply to and be admitted to both programs. The Graduate School should be contacted for MPA application materials and the School of Public Health should be contacted for MPH application materials.

Curriculum

The MPA/MPH program requires the satisfactory completion of 60 credit hours. Students must complete both MPA and MPH core requirements. This is a coordinated dual degree track and, as such, graduation from one program is contingent upon completion of all requirements for graduation from the other program as some credits are shared between programs. This credit sharing allows students to earn both degrees in reduced time and at reduced cost. Students may complete the MPH degree program totally online, in class, or through a mix of online and in class experiences.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement: (1 hour)</td>
<td></td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Population Health Degree Requirement: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (7 hours)</td>
<td></td>
</tr>
</tbody>
</table>

Select 7 credit hours of Public Health 600-699 level courses 7

Applied Practice Experience: (3 hours)
- PUH 688 Public Health Internship 3

Integrative Learning Experience: (2 hours)
- HB 689 Health Behavior Integrative Learning Experience 2
- or ENH 689 Environmental Health Sciences Integrative Learning Experience 2
- or EPI 689 Epidemiology Integrative Learning Experience 2
- or HPO 689 HPO Integrative Learning Experience 2

Total SOPH Hours: 30

Shared Hours from MPA Curriculum: (12 hours)
- MPA 601 The Public Policymaking Process 3
- MPA 602 Scope of Public Administration 3
- MPA 604 Human Resources Management 3
- MPA 607 Quantitative Methods for PA 3

Total Credit Hours for the MPH: 42

Remaining MPA Program Requirements: 18

Total Hours Earned for MPH/MPA Degree: 60

Coordinated Master of Science in Health Administration/Master of Public Health Program

The coordinated Master of Science in Health Administration and Master of Public Health (MSHA/MPH) degree program is offered through the UAB School of Health Professions and the UAB School of Public Health. MPH focus courses may be customized to the experience and needs of the student.

The coordinated MSHA/MPH program results in two advanced degrees providing students with management and leadership skills necessary for a broad range of administrative positions in health services organizations. The addition of an MPH to the MSHA degree provides students with a fuller and richer perspective of population and global health issues including the epidemiology of disease, health behavior, the impact of environmental and occupational factors on patient health, disease progression, management of disease states, drug and insurance policy issues, patient access to health care, as well as social, legal and ethical issues. In addition, the MPH degree broadens career opportunities, providing a foundation for positions in research, government, and international health as well as private industry.

Curriculum

Students must complete the MPH Core plus 7 credit hours of MPH focus courses for a total of 30 credit hours, in addition to the required DVM curriculum requirements. Twelve credit hours from the DVM curriculum are credited toward the MPH degree, for a total of 42 MPH credit hours. Students may complete the MPH program totally online, in class, or through a mix of online and in class experiences.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
</tbody>
</table>

Approved Electives: (7 hours)
Coordinated Master of Science in Nursing / Master of Public Health in Maternal & Child Health Policy

Coordinated Master of Science in Nursing / Master of Public Concentration in Health in Maternal & Child Health Policy & Leadership

The coordinated MPH/MSN degree is designed to address the dynamic health care needs of women and children. This program prepares nurse practitioners to participate in the development, implementation, and evaluation of innovative maternal and child health (MCH) programs and policies. This dual degree builds on the synergy generated through two complementary curriculum tracks. In this educational experience, advanced clinical skill is combined with expertise in program planning and evaluation.

Admissions: Students are admitted separately to the MPH and MSN degree programs and must meet admission requirements in both the School of Public Health and the School of Nursing at UAB.

Curriculum

Students in this track must complete 44 credit hours. This includes the MPH Core, SOPH requirements, track requirements, electives and internship. The coordinated MPH/MSN degree can be completed in 2-3 years of full-time study. Normally, a minimum of 44 credit hours are required for the MPH; however, because of the coordinated nature of the degree, 9 credit hours from the MSN curriculum are credited to the MPH degree. Students may complete the MPH totally online, in class, or through a mix of online and in class experiences.

Requirements

Total Hours for both MPH/MSHA Degrees: 89

1 HA 675: Health Administration Internship also fulfills the MPH internship requirement.

Coordinated MS in Nutrition Sciences, Dietetic Internship / Clinical Track/Master of Public Health

This coordinated (MPH/MS) degree program is offered through the UAB School of Health Professions, Department of Nutrition Sciences and the UAB School of Public Health. MPH focus courses may be customized to the experience and needs of the student.

Drawing upon its distinguished history and a multidisciplinary team of physician-scientists, PhD scientists, registered/licensed dietitians, and nurses working together in patient care, research, and education programs; the MS in Nutrition Sciences, Dietetic Internship/Clinical Track offers an accelerated Master of Science degree from the Department of Nutrition Sciences that enables students to sit for the national exam to become a Registered Dietitian Nutritionist (RDN). This accredited program is offered on-campus or off-campus and combines supervised clinical practice with online graduate coursework. The MPH at the UAB School of Public Health prepares students for careers to improve the health and well being of individuals, families, communities and populations, locally and globally. This complementary MS/MPH dual coordinated degree program provides students with a fuller and richer

Coordinated Master of Science in Nursing / Master of Public Health in Maternal & Child Health Policy

Coordinated Master of Science in Nursing / Master of Public Concentration in Health in Maternal & Child Health Policy & Leadership

<table>
<thead>
<tr>
<th>MPH 606</th>
<th>Leadership for Evidence-Based Public Health</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Degree Requirement: (1 hour)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENH 690</td>
<td>Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Population Health Degree Requirement: (3 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUH 610</td>
<td>Population Health</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (7 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 7 credit hours of Public Health 600-699 level courses</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Applied Practice Experience: (3 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA 675</td>
<td>Health Administration Internship</td>
<td>3</td>
</tr>
<tr>
<td>or PUH 688</td>
<td>Public Health Internship</td>
<td>3</td>
</tr>
<tr>
<td>Integrative Learning Experience: (2 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB 689</td>
<td>Health Behavior Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>or ENH 689</td>
<td>Environmental Health Sciences Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>or EPI 689</td>
<td>Epidemiology Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>or HPO 689</td>
<td>HPO Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>Total SOPH Hours:</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Shared Hours with MSHA Curriculum: (12 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA 605</td>
<td>Health Policy and Politics in the U.S.</td>
<td>3</td>
</tr>
<tr>
<td>HA 612</td>
<td>Essentials of Health and Human Disease</td>
<td>3</td>
</tr>
<tr>
<td>HA 613</td>
<td>Health Law</td>
<td>3</td>
</tr>
<tr>
<td>HA 620</td>
<td>Healthcare Financial Management I</td>
<td>3</td>
</tr>
<tr>
<td>Total Earned Hours for MPH:</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Total Hours Earned for MSHA Degree:</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Total Hours for both MPH/MSHA Degrees:</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

MPH Focus Courses (15 hours):

HCO 604	Health Economics and Public Health Policy	3
HCO 605	Foundations of Maternal and Child Health: Programs and Policies for Women, Children, and Families	3
HCO 609	Public Health Program Planning, Implementation and Evaluation	3
HCO 618	Management Concepts in Public Health Programs and Polices	3
HCO 625	Advanced Leadership and Practice in MCH Part I - Introduction to Leadership	1
HCO 626	Adv Leadership and Practice in MCH Module II - Collaborative Leadership and Advocacy	1
HCO 627	ADV Leadership and Practice in MCH Module III - Into the Streets: Lead/Field Experience	1

Applied Practice Experience: (3 hours)

| HCO 697 | Internship | 3 |

Integrative Learning Experience: (3 hours)

| PUH 695 | Environment and Health: The MPH Capstone | 3 |

Total SOPH Hours: 35

Electives shared with the School of Nursing (9 hours):

| NUR 606 | Translating Evidence into Practice | 3 |
| NUR 610 | Health Care Systems for Advanced Nursing Practice | 3 |

Nursing Course | 3 |

Total MPH Hours: 44
Students may complete the MPH degree program totally online, in class, or through a mix of online and in class experiences.

Requirements

MPH Core Requirements: (14 hours)
- PUH 601 This is Public Health 1
- PUH 602 Community Assessment 3
- PUH 603 Quantitative Methods in Public Health 3
- PUH 604 Programs and Policies 3
- PUH 605 Public Health Management and Evaluation 3
- PUH 606 Leadership for Evidence-Based Public Health 1

Population Health Degree Requirement: (3 hours)
- PUH 610 Population Health 3

Approved Electives: (7 hours)
- Select 7 credit hours of Public Health 600-699 level courses 7

Applied Practice Experience: (3 hours)
- NTR 589 Internship Practicum 1-12

Integrative Learning Experience: (2 hours)
- HB 689 Health Behavior Integrative Learning Experience 2
 or ENH 689 Environmental Health Sciences Integrative Learning Experience
 or EPI 689 Epidemiology Integrative Learning Experience
 or HPO 689 HPO Integrative Learning Experience

Total SOPH Hours: 30

Credit from OD Curriculum (12 hours):
- OPT 223 Clinical Ophthalmic Optics
- OPT 324 Business Aspects of Optometry
- CLN 222 Community Eye Care II
- CLN 233 Community Eye Care III

Total Credit Hours for the MPH: 42

Coordinated Doctor of Optometry / Master of Public Health Program

This MPH/OD coordinated degree program is offered through the UAB School of Optometry and the UAB School of Public Health. MPH focus courses may be customized to the experience and needs of the student.

Curriculum

Students must complete the MPH Core plus 7 credit hours of MPH focus courses for a total of 30 credit hours in addition to the required OD curriculum requirements. 12 credit hours from the OD curriculum are credited toward the MPH degree for a total of 42 MPH credit hours.

Coordinated PhD in Biomedical Science / Master of Public Health Program

PhD/MPH Coordinated PhD in Biomedical Science / Master of Public Health

Program Description

This coordinated degree program is offered through the UAB Graduate Biomedical Sciences (GBS) and the UAB School of Public Health. Students may focus their MPH in Environmental Health Science or Epidemiology. MPH focus courses may be customized to the experience and needs of the student.

A mission of UAB is to be a research university and academic health center that discovers, teaches and applies knowledge for the intellectual, cultural, social and economic benefit of Birmingham, the State and beyond. The MPH at the UAB School of Public Health prepares students for careers to improve the health and well being of individuals, families, communities and populations, locally and globally. Therefore, Biomedical Sciences and Public Health have aligned their educational strength in the PhD. degree in Biomedical Sciences with a Master’s Degree in Public Health, to offer a truly interdisciplinary approach to learning. In response to an NIH study on Graduate Education and Career Opportunities, we are
seeking graduate students with an entrepreneurial attitude and a strong will to succeed in an ever-changing scientific landscape.

Coordinated Master of Public Health and PHD Biomedical Sciences (MPH/PHD) Program

This coordinated degree program is offered through the UAB Graduate Biomedical Sciences (GBS) and the UAB School of Public Health. A mission of UAB is to be a research university and academic health center that discovers, teaches and applies knowledge for the intellectual, cultural, social and economic benefit of Birmingham, the State and beyond. The MPH at UAB prepares students for careers to improve the health and well being of individuals, families, communities and populations, locally and globally. Therefore, Biomedical Sciences and Public Health have aligned their educational strength in the Ph.D. degree in Biomedical Sciences with a Master’s Degree in Public Health, to offer a truly interdisciplinary approach to learning. In response to an NIH study on Graduate Education and Career Opportunities, we are seeking graduate students with an entrepreneurial attitude and a strong will to succeed in an ever-changing scientific landscape.

Curriculum

Students must complete the MPH Core plus 7 credit hours of MPH elective courses for a total of 30 credit hours in addition to the required GBS curriculum requirements. Twelve credit hours from the GBS curriculum are credited toward the MPH degree for a total of 42 MPH credit hours. Students may complete the MPH degree program totally online, in class, or through a mix of online and in class experiences.

Requirements

MPH Core Requirement: (23 hours)
- BST 601 Biostatistics 4
- ENH 600 Fundamentals of Environmental Health Science 3
- EPI 600 Introduction to Epidemiology 3
- HB 600 Social and Behavioral Sciences in Public Health 3
- PUH 697 Practice Placement / Internship 3
- PUH 695 Environment and Health: The MPH Capstone 3

PUH Electives: (7 hours)
- SOPH Elective 3
- SOPH Elective 3
- SOPH Elective 1

MPH Coursework Total: 30

Biomedical Electives: 12
- Biostatistics for Doctoral Students 2
- GRD 717 Principles of Scientific Integrity 3
- GBSC 726 Science Communication & Review 2
- GBS 798 Non-Dissertation Research 5

Total Hours Earned for MPH Degree: 42

Coordinated Master of Science in Physician Assistant Studies / Master of Public Health Program

The coordinated Master of Science in Physician Assistant Studies and Master of Public Health (MSPAS/MPH) degree program, offered through the UAB School of Health Professions and UAB School of Public Health, provides students with important skills for dealing with population health issues. MPH focus courses may be customized to the experience and needs of the student.

The coordinated graduate degree program provides opportunities for interdisciplinary collaboration and a public health practice experience with rural primary care clinical community partners. This innovative program enhances physician assistant education with integrated training in public health and primary care and thereby provides students with the information and skills needed to monitor and assess community health, develop and analyze programs and policies, coordinate and integrate care, and utilize appropriate population health measures in quality improvement strategies.

Curriculum

Students must complete the MPH Core plus 9 credit hours of MPH focus courses for a total of 32 credit hours in addition to the required MSPAS curriculum requirements. 12 credit hours from the MSPAS curriculum are credited toward the MPH degree for a total of 42 MPH credit hours. Students may complete the MPH degree program totally online, in class, or through a mix of online and in class experiences.

Requirements

MPH Core Requirements: (14 hours)
- PUH 601 This is Public Health 1
- PUH 602 Community Assessment 3
- PUH 603 Quantitative Methods in Public Health 3
- PUH 604 Programs and Policies 3
- PUH 605 Public Health Management and Evaluation 3
- PUH 606 Leadership for Evidence-Based Public Health 1

MPH Degree Requirement: (1 hour)
- ENH 690 Environmental Health Perspectives 1

Population Health Degree Requirement: (3 hours)
- PUH 610 Population Health 3

Approved Electives: (9 hours)
- Select 9 credit hours of Public Health 600-699 level courses

Applied Practice Experience: (3 hours)
- PUH 688 Public Health Internship 3

Integrative Learning Experience: (2 hours)
- Select 9 credit hours of Public Health 600-699 level courses

Total SOPH Hours: 32

Shared Hours from MSPAS Curriculum: (10 hours)
- PA 617 Applied Behavioral Medicine 3
- PA 618 Risk Management 1
- PA 619 Fundamentals of Clinical Research 2
- PA 620 Analysis of Professional Literature 2
- PA 633 Navigating Healthcare Delivery and Reimbursement Systems for Physician Assistants 2

Total Hours Earned for MPH Degree: 42

Coordinated MSW/MPH in Maternal & Child Health Policy & Leadership

The MPH/MSW degree program is coordinated between the School of Social Work at the University of Alabama (MSW) and the UAB School of
Public Health. MPH focus courses may be customized to the experience and needs of the student.

Curriculum

A total of 90 credit hours of coursework are required for the coordinated MPH/MSW program. Normally, 42 credit hours are required for the MPH and 60 credit hours for the MSW; however, because of the coordinated nature of the degrees, 12 credit hours from the MSW curriculum are credited to the MPH. This allows students to earn both degrees in reduced time and at reduced cost. Students may complete the MPH totally online, in class, or through a mix of online and in class experiences. Out-of-state online students pay the same tuition rate as Alabama residents.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement: (1 hour)</td>
<td></td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Population Health Degree Requirement: (3 hours)</td>
<td>3</td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (7 hours)</td>
<td></td>
</tr>
<tr>
<td>Select 7 credit hours of Public Health 600-699 level courses</td>
<td>7</td>
</tr>
<tr>
<td>Applied Practice Experience: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 688 Public Health Internship</td>
<td>3</td>
</tr>
<tr>
<td>Integrative Learning Experience: (2 hours)</td>
<td></td>
</tr>
<tr>
<td>HB 689 Health Behavior Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>or ENH 689 Environmental Health Sciences Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>or EPI 689 Epidemiology Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>or HPO 689 HPO Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>Total SOPH Hours:</td>
<td>30</td>
</tr>
<tr>
<td>Shared Hours from MSW Curriculum: (12 hours)</td>
<td>12</td>
</tr>
<tr>
<td>SW 525: Evaluation Research</td>
<td>3</td>
</tr>
<tr>
<td>SW Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>SW Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>SW Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit hours for MPH:</td>
<td>42</td>
</tr>
<tr>
<td>Remaining MSW Program Requirements:</td>
<td>48</td>
</tr>
<tr>
<td>Total Hours Completed for MSW/MPH:</td>
<td>90</td>
</tr>
</tbody>
</table>

1 Select 3 electives from the options below:

- SW 506, SW 513, SW 514, SW 515, SW 523, SW 528, SW 529, SW 536, SW 549

Coordinated Doctor of Philosophy (Psychology) and Masters of Science in Public Health

Coordinated Master of Science in Public Health / Doctor of Philosophy (MSPH/PhD) Program

The department offers coordinated Master of Science in Public Health and PhD degrees in cooperation with the Department of Psychology at the University of Alabama at Birmingham or at the University of Alabama (Tuscaloosa).

Curriculum

The MSPH degree requires a minimum of 43 hours. Students in this coordinated program will be waived from the biostatistics requirement upon documentation of successful completion of Advanced Statistics I and II in the PhD program. Students may emphasize health policy issues or outcomes research issues through 6 hours of approved electives. In addition, all students must complete a 9 credit hour research project. This is a coordinated dual degree track and, as such, graduation from one program is contingent on completion of all requirements for graduation from the other program.

Students receiving a MSPH are required to complete a 37 hour online course entitled “Overview of Public Health” by the end of their second semester. Students with prior public health education (coursework in each of the public health core disciplines) may be waived from this requirement by permission of the Associate Dean.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPH Core Requirements (10 hours):</td>
<td></td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td>4</td>
</tr>
<tr>
<td>PhD Track (18 hours):</td>
<td></td>
</tr>
<tr>
<td>Electives (6 hours):</td>
<td></td>
</tr>
<tr>
<td>Masters-Level Research (9 hours):</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td>43</td>
</tr>
</tbody>
</table>

Coordinated Pharm D (Auburn University Harrison School of Pharmacy) / Master of Public Health

This coordinated MPH/PharmD degree program is offered through the UAB School of Public Health and either the Auburn University Harrison School of Pharmacy or the Presbyterian College School of Pharmacy. MPH focus courses may be customized to the experience and needs of the student.

The Auburn Doctor of Pharmacy (PharmD) degree program is a four-year course of study that requires the completion of the pre-pharmacy curriculum prior to enrollment and includes course work in biomedical sciences; pharmaceutical sciences; behavioral, social, and administrative
Curriculum

Students must complete the MPH Core plus 7 credit hours of MPH focus courses for a total of 30 credit hours in addition to the required PharmD curriculum requirements. Twelve credit hours from the designated PharmD curriculum are credited toward the MPH degree for a total of 43 MPH credit hours. Students may complete the MPH degree totally online, in class, or through a mix of online and in class experiences.

Coordinated PhD in Sociology (HSOC) and MPH Program

This dual degree program is offered in cooperation with the University of Alabama (Tuscaloosa) Department of Psychology. This program enables students to obtain an MPH degree in Health Behavior simultaneously with a PhD in Sociology. This program of study prepares graduates to participate in the development, implementation, and evaluation of innovative health promotion and disease prevention programs and policies.

Curriculum

The MPH degree requires a minimum of 43 credit hours depending on the PhD concentration. Because this is a coordinated dual degree track, graduation from the MPH program is contingent on completion of all requirements for graduation from the PhD program. If a coordinated degree student drops out of the PhD program, he/she must apply for transfer to the MPH Health Behavior track and follow the requirements for that program.

PHRM 5209: Interprofessional Collaboration and Health Ethics 3
PHRM 7109: Clinical Research Design/ Biostatistics 3
PHRM 8121: Advanced Community Pharmacy Practice Experience 4
Total Credit Hours for the MPH/PharmD Degree: 43

Master of Public Health with a Concentration in Population Health

Including the Online Degree Program

The MPH in Population Health is a generalist degree that will train current public health or healthcare professionals to plan, design, implement, monitor, and evaluate public health programs. This individualized track...
will allow students to pursue a public health degree that can be tailored to their own interests and career goals.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement: (1 hour)</td>
<td></td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Population Health Degree Requirement: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 610 Population Health</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (19 hours)</td>
<td></td>
</tr>
<tr>
<td>Select 19 hours of 600-level or higher courses</td>
<td>19</td>
</tr>
<tr>
<td>Applied Practice Experience: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 688 Public Health Internship</td>
<td>3</td>
</tr>
<tr>
<td>Integrative Learning Experience: (2 hours)</td>
<td></td>
</tr>
<tr>
<td>HB 689 Health Behavior Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>or ENH 689 Environmental Health Sciences Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>or EPI 689 Epidemiology Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>or HPO 689 HPO Integrative Learning Experience</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours:</td>
<td>42</td>
</tr>
</tbody>
</table>

Upon admission into the program and under the guidance of their program coordinator, students will pick five unique competencies that best fit their personal and professional goals from amongst courses offered in each of the Departments.

Biostatistics

Degree Offered: M.S., M.S.P.H., Dr.P.H., Ph.D.
Interim Chair: Jeffery Szychowski, PhD
Phone: (205) 934-4905
E-mail: bstgrad@uab.edu
Website: www.uab.edu/soph/home/departments/biostatistics
Department Contact: Nicole Cross, MA
Department Contact Email: nicolen@uab.edu

Overview

The Department of Biostatistics at the University of Alabama at Birmingham (UAB) is one of five departments in the School of Public Health: Biostatistics, Environmental Health Sciences, Epidemiology, Health Behavior, and Health Policy and Organization.

Dr. Jeffery Szychowski is the Interim Chair of the department and Dr. Charity Morgan is the Director of Graduate Studies. The department currently has 20 faculty members and includes concentrations in research methods, statistical genetics and clinical trials. Members of the department conduct research in statistical methodology and applications, as well as in fundamental problems of modeling in biological systems. Much of the department’s research is collaborative in nature involving projects from basic science, genetics, clinical medicine, public health, and other health-related areas, both within and outside of UAB. Grant support for faculty in the department fall into four broad areas: 1) applied grants involving the application of statistical methods to health-related issues, 2) statistical coordinating centers for large multi-center randomized clinical trials, 3) methodological grants advancing statistical techniques, and 4) training grants for preparing the next generation of statisticians.

Degree Programs

- Doctor of Philosophy (PhD) in Biostatistics
- Doctor of Public Health (DrPH) concentration in Biostatistics
- Master of Science (MS) in Biostatistics
- Master of Science in Public Health (MSPH) concentration in Biostatistics
- Certificate in Applied Biostatistics and Epidemiology

Admissions

Entry Term	Deadline
Master Program | www.uab.edu/soph/home/apply/graduate
PhD Program | May 1 (U.S.), April 1 (International)

Number of Evaluation Forms Required: Three

Entrance Tests: GRE | www.uab.edu/soph/home/apply/graduate
TOEFL: | TOEFL is required for international applicants whose native language is not English.
GPA: | 3.0
International Transcripts: | International transcripts must be submitted to World Education Services (WES) or Educational Credential Evaluators (ECE) for an official course-by-course credential evaluation (document-by-document evaluations will not suffice).

SOPH Admissions: | www.uab.edu/soph/home/apply/graduate

UAB has many degree programs (both face-to-face and online) that can lead to professional licensure or certification. Licensure requirements vary from state to state and by professional organization. Federal Regulations require UAB to provide public or general disclosures on educational programs designed to meet educational requirements for a specific professional license or certification, that is required for employment in an occupation, or is advertised as meeting such requirements. For a list of programs that customarily lead to professional licensure or certification, please visit the UAB Professional Licensure and Certification webpage.

Master of Science in Biostatistics

The Department of Biostatistics offers an MS degree in Biostatistics. This program provides a balance between theory and application, the perspective being the role of statistics and modeling in scientific research. The objective is to produce research-oriented scientists who anticipate a career performing data management and statistical analysis. Further, the
MS program is the appropriate program to prepare students to enter the PhD program.

For admission to the program applicants should have a strong academic record and meet the minimum requirements for admission to the School of Public Health. In addition, the applicant’s prior collegiate curriculum must include a 2-semester sequence of calculus or equivalent and linear algebra. Proficiency in computing is preferred, as are additional advanced mathematics courses, e.g., differential equations, advanced calculus including special functions, and complex analysis. Some background in the natural sciences would be helpful. The Department of Biostatistics admits MS students in the fall term each year. Interested students should apply online through the UAB Graduate School.

Curriculum

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

Curriculum

Total Credit Hours: 45

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Requirements: (27 hours)</td>
<td></td>
</tr>
<tr>
<td>BST 621 - Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>BST 622 - Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>BST 623 - General Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>BST 626 - Data Management and Reporting with SAS</td>
<td>3</td>
</tr>
<tr>
<td>BST 631 - Statistical Theory I</td>
<td>4</td>
</tr>
<tr>
<td>BST 632 - Statistical Theory II</td>
<td>4</td>
</tr>
<tr>
<td>BST 655 - Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BST 691 - Pre-Doctoral Seminar Series 1</td>
<td>1</td>
</tr>
<tr>
<td>BST 691 - Pre-Doctoral Seminar Series</td>
<td>1</td>
</tr>
<tr>
<td>BST 691 - Pre-Doctoral Seminar Series</td>
<td>1</td>
</tr>
<tr>
<td>BST 691 - Pre-Doctoral Seminar Series</td>
<td>1</td>
</tr>
<tr>
<td>Biostatistics Electives: (Minimum 6 credit hours)</td>
<td></td>
</tr>
<tr>
<td>BST 665 - Survival Analysis (Highly Recommended)</td>
<td>3</td>
</tr>
<tr>
<td>BST courses of 624 or higher level</td>
<td>3</td>
</tr>
<tr>
<td>Required Public Health/Medical/Biological Electives: (Minimum 6 credit hours)</td>
<td></td>
</tr>
<tr>
<td>EPI 610 - Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>Other Elective</td>
<td>3</td>
</tr>
<tr>
<td>Master’s Directed Research: (Minimum of 6 credit hours)</td>
<td></td>
</tr>
<tr>
<td>BST 698 - Non Thesis Research</td>
<td>6</td>
</tr>
<tr>
<td>Total Credit Hours: 45</td>
<td></td>
</tr>
</tbody>
</table>

1 BST 691 - Minimum 4 hours required.

Master of Science in Public Health (MSPH) with a Concentration in Biostatistics

Master of Science in Public Health with a concentration in Biostatistics is an applied statistics degree with a focus on Public Health. This program is open to all qualified applicants with relevant undergraduate, masters, medical, or health science professional degree. For fellows and faculty members interested in developing skills required for clinical research, this program is an ideal post-medical or other health science degree training program. It is anticipated that this academic training will supplement extensive training in the content area in which the student is trained, and senior mentoring in the politics and policies of development and management. A graduate of this program will have the academic training to develop and lead independent research programs and projects.

For admission to the MSPH program applicants should have a strong academic record and meet the minimum requirements to the School of Public Health. In addition, the applicant’s undergraduate curriculum must include a 2-semester sequence of calculus or equivalent, linear algebra, and proficiency in computing. The Department of Biostatistics admits MSPH students in the fall term each year. Interested students should apply online through the Schools of Public Health Application Service (SOPHAS).

Curriculum

Total Credit Hours: 41

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPH Core Requirement: (20 hours)</td>
<td></td>
</tr>
<tr>
<td>BST 621 - Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>BST 622 - Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>BST 623 - General Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>BST 625 - Design/Conduct Clinical Trials</td>
<td>3</td>
</tr>
<tr>
<td>BST 655 - Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610 - Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>EPI 680 - Topics in Clinical Research 1</td>
<td>2</td>
</tr>
<tr>
<td>Masters Research Selectives: (Minimum of 9 credit hours)</td>
<td></td>
</tr>
<tr>
<td>BST 613 - Intermediate Statistical Analysis III</td>
<td>3</td>
</tr>
<tr>
<td>BST 626 - Data Management and Reporting with SAS</td>
<td>3</td>
</tr>
<tr>
<td>ENH 650 - Essentials of Environmental and Occupational Toxicology and Diseases</td>
<td>3</td>
</tr>
<tr>
<td>EPI 625 - Quantitative Methods in Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>EPI 703 - Grant Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>HB 624 - Advanced Social and Behavioral Science Theory</td>
<td>3</td>
</tr>
<tr>
<td>HPO 677 - Patient-Based Outcomes Measurement</td>
<td>3</td>
</tr>
<tr>
<td>Concentration Select BST Courses: (Minimum 3 credit hours)</td>
<td></td>
</tr>
<tr>
<td>BST courses of 624 or higher level</td>
<td>3</td>
</tr>
<tr>
<td>Master’s Directed Research: (Minimum 9 credit hours)</td>
<td></td>
</tr>
<tr>
<td>BST 698 - Non Thesis Research</td>
<td>9</td>
</tr>
<tr>
<td>Total Credit Hours: 41</td>
<td></td>
</tr>
</tbody>
</table>
EPI 680 is a two credit hour class which students attend and participate in lectures provided through the K40 Clinical Studies program at the School of Medicine. The grading is on a Pass/No Pass basis. To earn a grade of Pass, students must attend a minimum of 80% of the lectures over two semesters and participate in all discussions during which they are present (beginning the spring semester prior to registering for summer).

Doctor of Philosophy in Biostatistics

The Department of Biostatistics offers a PhD degree in biostatistics. This program provides a balance between theory and application, the perspective being the role of statistics and modeling in scientific research. The objective is to produce research-oriented scientists who can advance statistical and modeling theory and can interact effectively with scientists in other disciplines to advance knowledge in those fields.

For admission to the program applicants should have a strong academic record and meet the minimum requirements for admission to the School of Public Health. In addition, the applicant’s prior collegiate curriculum must include a 3-semester sequence of calculus or equivalent and linear algebra. Proficiency in computing is preferred, as are additional advanced mathematics courses, e.g., differential equations, advanced calculus including special functions, and complex analysis. Some background in the natural sciences would be helpful. In most cases, a prior MS in biostatistics, statistics, or related field are required for admission to the PhD program. Students with a bachelor’s degree are encouraged to pursue a MS degree in Biostatistics before applying to the PhD program. The Department of Biostatistics admits PHD students in the fall term each year. Interested students should apply online through the UAB Graduate School.

Curriculum

To earn the PhD degree in Biostatistics students must complete a minimum of 87 total credit hours of academic course work. Of these, 45 hours are required core courses and 3 hours are required Graduate School courses.

Students then select a minimum 9 credit hours of regular Biostatistics Elective courses of 624 or higher level; a minimum 6 graduate credit hours of outside electives must be taken from a non-quantitative field (i.e., Biology, Public Health or Medicine) with advisor’s approval and in some cases, also approval of instructor; and at least 24 credit hours of other related courses including dissertation research.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Requirements: (45 hours)</td>
<td></td>
</tr>
<tr>
<td>BST 621 Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>BST 622 Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>BST 623 General Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>BST 626 Data Management and Reporting with SAS</td>
<td>3</td>
</tr>
<tr>
<td>BST 631 Statistical Theory I</td>
<td>4</td>
</tr>
<tr>
<td>BST 632 Statistical Theory II</td>
<td>4</td>
</tr>
<tr>
<td>BST 655 Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BST 665 Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BST 691 Pre-Doctoral Seminar Series</td>
<td>1</td>
</tr>
<tr>
<td>BST 723 Theory of Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>BST 735 Advanced Inference</td>
<td>4</td>
</tr>
<tr>
<td>BST 760 Generalized Linear and Mixed Models</td>
<td>3</td>
</tr>
<tr>
<td>BST 765 Advanced Computational Methods</td>
<td>3</td>
</tr>
<tr>
<td>Other Related Courses including Research in Statistics (BST 698/798)</td>
<td></td>
</tr>
<tr>
<td>BST 798 Non-Dissertation Research</td>
<td>1-12</td>
</tr>
<tr>
<td>Other Related Courses including Dissertation Research (BST 799)</td>
<td></td>
</tr>
<tr>
<td>BST 799 Dissertation Research</td>
<td>1-12</td>
</tr>
<tr>
<td>Minimum Credit Hours:</td>
<td>87</td>
</tr>
</tbody>
</table>

1. BST 691 - minimum 6 hours required
2. At least one (1) course related to research ethics and scientific integrity. Does not count toward the required 24 credit hours of didactic course work.
3. Two semesters in candidacy and either (1) 24 credit hours of BST 799 or (2) 12 credit hours of BST 799 and 12 credit hours of research-based coursework (approved by Program Director)

Doctor of Public Health with a Concentration in Biostatistics

Biostatistics uses statistical reasoning and methods to address major problems in public health. Students who concentrate in biostatistics are interested in how data, population studies, and health intersect. They study advanced statistical methodologies and apply them to better understand health trends among populations. Biostatistics students interpret results of statistical analyses from public health studies and translate the information into easily understandable facts for scientific and non-scientific audiences.

Curriculum

The DrPH Concentration in Biostatistics consists of a minimum of 51 credit hours, depending upon the applicant prior academic history. For students with a graduate degree and/or public health experience, credits will range from 51-71 hours. For students with an undergraduate degree, credits will range from 71-90 hours. If applicants have an undergraduate Public Health Degree from UAB, and MPH, or other public health degree or 1 year of public health work experience, electives and potentially core requirements can be adjusted at the discretion of the Graduate Program Committee (minimum of 51 credit hours must be met, regardless of courses transferred or waived). Students entering with prior biostatistics graduate work may be able to waive some core biostatistics courses at the discretion of the Graduate Program Committee (GPC).
All degrees require 15 credit hours of Biostatistics or Public Health elective courses designed with the student, advisor, Graduate Program Committee and permission of instructor, where applicable. Students would need to meet prerequisites for all courses and some decisions would be made in conjunction with other Departments.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biostatistics Requirements: (23 hours) ¹</td>
<td></td>
</tr>
<tr>
<td>BST 621 Statistician Methods I</td>
<td>3</td>
</tr>
<tr>
<td>BST 622 Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>BST 623 General Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>BST 626 Data Management and Reporting with SAS</td>
<td>3</td>
</tr>
<tr>
<td>BST 630 Estimation & Inference</td>
<td>3</td>
</tr>
<tr>
<td>BST 655 Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BST 665 Survival Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EPI 680 Topics in Clinical Research ²</td>
<td>2</td>
</tr>
</tbody>
</table>

Public Health Electives: (Minimum 9 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 650 Essentials of Environmental and Occupational Toxicology and Diseases</td>
<td>3</td>
</tr>
<tr>
<td>EPI 625 Quantitative Methods in Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>EPI 703 Grant Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>HB 624 Advanced Social and Behavioral Science Theory</td>
<td>3</td>
</tr>
<tr>
<td>HPO 677 Patient-Based Outcomes Measurement</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Public Health/Biostatistics/Medical Science Selectives: (Minimum 15 credit hours)

Courses 600 level or higher, designed with Advisor & GPC 15

Other related courses including Dissertation Research (BST 799)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 625 Design/Conduct Clinical Trials</td>
<td>3</td>
</tr>
<tr>
<td>BST 790 DrPH Applied Practice Experience</td>
<td>3-6</td>
</tr>
<tr>
<td>BST 799 Dissertation Research</td>
<td>1-12</td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum Credit Hours: 71-80

¹ BST Requirements - prior graduate level BST courses may be waived at discretion of BST Graduate Program Committee

² EPI 680 is a two credit hour class which students attend and participate in lectures provided through the K40 Clinical Studies program at the School of Medicine. The grading is on a Pass/No Pass basis. To earn a grade of Pass, students must attend a minimum of 80% of the lectures over two semesters and participate in all discussions during which they are present (beginning the spring semester prior to registering for summer).

Courses

BST 601. Biostatistics. 4 Hours.
Logic and language of scientific methods in life science research; use of basic statistics in testing hypotheses and setting confidence limits. Simple and multiple regression and elementary experimental designs. BST 601 is a 4-credit course for MPH students. There are no formal prerequisites for this course; however, familiarity and comfort with basic mathematical concepts is essential. The minimum technical skills required include the ability to use Adobe Acrobat, Word, Excel, and PowerPoint. If you are deficient in any of these areas, it is your responsibility to improve your skills before starting the course.

BST 603. Introductory Biostatistics for Graduate Biomedical Sciences. 3 Hours.
This course will utilize current statistical techniques to assess and analyze health science related data.

BST 611. Intermediate Statistical Analysis I. 3 Hours.
Students will gain a thorough understanding of basic analysis methods, elementary concepts, statistical models and applications of probability, commonly used sampling distributions, parametric and non-parametric one and two sample tests, confidence intervals, applications of analysis of two-way contingency table data, simple linear regression, and simple analysis of variance. Students are taught to conduct the relevant analysis using current software such as the Statistical Analysis System (SAS).

BST 612. Intermediate Statistical Analysis II. 3 Hours.
This course will introduce students to the basic principles of tools of simple and multiple regression. A major goals is to establish a firm foundation in the discipline upon which the applications of statistical and epidemiologic inference will be built. If prerequisite is not met, permission of instructor is required.

Prerequisites: BST 611 [Min Grade: C]

BST 613. Intermediate Statistical Analysis III. 3 Hours.
This course will introduce students to additional general concepts in biostatistics beyond an introductory level to include study design, power and sample size estimation, mixed-models, survival analysis, survey design and interpretation of research results. We recommend a prior statistics/biostatistics course that included hypothesis testing for proportions and means, ANOVA, correlation, simple and multiple linear regression, and logistic regression (with approval of the instructor).

Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C]

BST 619. Data Collection and Management. 3 Hours.
Basic concepts of study design, forms design, quality control, data entry, data management and data analysis. Hands-on experience with data entry systems, e.g., DBASE, and data analysis software, e.g., PC-SAS. Exposure to other software packages as time permits. Previous computer experience or workshop on microcomputers highly recommended.

Note: If space permits, non-degree graduate students will be permitted to enroll. All students registered for the course must attend 1st class to remain enrolled. Previous computer experience or workshop on microcomputers highly recommended.

Prerequisites: BST 611 [Min Grade: C] or BST 621 [Min Grade: C]

BST 620. Applied Matrix Analysis. 3 Hours.
Vector and matrix definitions and fundamental concepts; matrix factorization and application. Eigen-values and eigen-vectors, functions of matrices, singular and ill-conditioned problems.

Prerequisites: BST 622 [Min Grade: C]
BST 621. Statistical Methods I. 3 Hours.
Mathematically rigorous coverage of applications of statistical techniques designed for Biostatistics majors and others with sufficient mathematical background. Statistical models and applications of probability; commonly used sampling distributions; parametric and nonparametric one and two sample tests and confidence intervals; analysis of two-way contingency table data; simple linear regression; simple analysis of variance designs with equal or proportional subclass members; use of contrasts and multiple comparisons procedures; introduction to survival analysis; multivariate methods. Interested students must have a year of calculus sequence before enrolling in BST 621.

Prerequisites: BST 621 (Min Grade: B)(Can be taken Concurrently)

BST 622. General Linear Models. 3 Hours.
Simple and multiple regression using matrix approach; weighted and non-linear regression; variable selection methods; modeling techniques; regression diagnostics and model validation; systems of linear equations; factorial designs; blocking; an introduction to repeated measures designs; Coding schemes.
Prerequisites: BST 622 (Min Grade: B)

BST 624. Experimental Design. 3 Hours.
BST 624 provides intermediate level training for the design of experiments in biomedical research. It will cover classical experimental designs including factorial and nested (hierarchical) designs, Latin squares, incomplete block designs, and fractional factorial designs. It will use a matrix approach to analysis. In addition, it will emphasize statistical methodology and communication of procedures, results, and conclusions. Students are expected to have prior coursework in calculus and matrix algebra. Additional prerequisites include successful completion (B or higher) in either the BST 621/622 sequence or the BST 611/612 sequence.
Prerequisites: (BST 621 [Min Grade: B] and BST 622 [Min Grade: B]) or (BST 611 [Min Grade: B] and BST 612 [Min Grade: B])

BST 625. Design/Conduct Clinical Trials. 3 Hours.
Concepts of clinical trials; purpose, design, implementation and evaluation. Examples and controversies presented.
Prerequisites: (BST 611 [Min Grade: B] and BST 612 [Min Grade: B]) or (BST 611Q [Min Grade: B] and BST 612Q [Min Grade: B]) or (BST 621 [Min Grade: B] and BST 622 [Min Grade: B])

BST 626. Data Management and Reporting with SAS. 3 Hours.
This course is designed to provide an introduction to data management and reporting using the SAS system.

BST 630. Estimation & Inference. 3 Hours.
This course is an introduction to probability concepts and statistical inference. Topics include counting techniques, discrete and continuous univariate and multivariate random variables & common distributions, probability, expectation, variance, confidence intervals, the Central Limit Theorem, and hypothesis testing. Restricted to MSPH and DrPH students. Preq: Calculus II.

BST 631. Statistical Theory I. 4 Hours.
Fundamentals of probability; independence; distribution and density functions; random variables; moments and moment generating functions; discrete and continuous distributions; exponential families, marginal and conditional distributions; transformation and change of variables; convergence concepts, sampling distributions. Point and interval estimation; hypothesis and significance testing; sufficiency and completeness; ancillary statistics; maximum likelihood and moment estimators; asymptotic properties of estimators and tests; introduction to Bayesian inference. Prerequisites: Proficiency in Algebra and calculus is required.

BST 632. Statistical Theory II. 4 Hours.
Fundamentals of probability; independence; distribution and density functions; random variables; moments and moment generating functions; discrete and continuous distributions; exponential families, marginal and conditional distributions; transformation and change of variables; convergence concepts, sampling distributions. Point and interval estimation; hypothesis and significance testing; sufficiency and completeness; ancillary statistics; maximum likelihood and moment estimators; asymptotic properties of estimators and tests; introduction to Bayesian inference.
Prerequisites: BST 631 [Min Grade: B]

BST 640. Nonparametric Methods. 3 Hours.
Properties of statistical tests; order statistics and theory of extremes; median tests; goodness of fit; tests based on ranks; location and scale parameter estimation; confidence intervals; association analysis; power and efficiency.
Prerequisites: BST 621 [Min Grade: C] and BST 631 [Min Grade: C]

BST 655. Categorical Data Analysis. 3 Hours.
Intermediate level course with emphasis on understanding the discrete probability distributions and the correct application of methods to analyze data generated by discrete probability distributions. The course covers contingency tables, Mantel-Haenszel test, measures of association and of agreement, logistic regression models; regression diagnostics; proportional odds; ordinal and polytomous logistic regression; Poison regression; log linear models; analysis of matched pairs; and repeated categorical data.
Prerequisites: BST 621 [Min Grade: B] and BST 622 [Min Grade: B]

BST 660. Applied Multivariate Analysis. 3 Hours.
Analysis and interpretation of multivariate general linear models including multivariate regression, multivariate analysis of variance/covariance, discriminant analysis, multivariate analysis of repeated measures, canonical correlation, and longitudinal data analysis for general and generalized linear models. Extensive use of SAS, SPSS, and other statistical software.
Prerequisites: BST 623 [Min Grade: B]

BST 661. Structural Equation Modelling. 3 Hours.
Basic principles of measurements; factor analysis and latent variable models; multivariate predictive models including mediation mechanisms and moderators effects; path analysis; integrative multivariate covariance models, methods of longitudinal analysis.
Prerequisites: BST 623 [Min Grade: C]

BST 665. Survival Analysis. 3 Hours.
Kaplan-Meier estimation; Parametric survival models; Cox proportional hazards regression models; sample size calculation for survival models; competing risks models; multiple events models.
Prerequisites: BST 622 [Min Grade: B](Can be taken Concurrently)
BST 670. Sampling Methods. 3 Hours.
Simple random, stratified, cluster, ratio regression and systematic sampling; sampling with equal or unequal probabilities of selection; optimization; properties of estimators; non-sampling errors; sampling schemes used in population research; methods of implementation and analyses associated with various schemes.
Prerequisites: BST 631 [Min Grade: C]

BST 671. Meta-Analysis. 3 Hours.
Statistical methods and inference through meta analysis.
Prerequisites: BST 622 [Min Grade: C] and BST 632 [Min Grade: C]

BST 675. Introduction to Statistical Genetics. 3 Hours.
This class will introduce students to population genetics, genetic epidemiology, microarray and proteomics analysis, Mendelian laws, inheritance, heritability, test cross linkage analysis, QTL analysis, human linkage and human association methods for discrete and qualitative traits.
Prerequisites: BST 611 [Min Grade: C] or BST 621 [Min Grade: C]

BST 676. Genomic Data Analysis. 3 Hours.
The purpose of this class is to teach graduate students practical skills and statistics concepts and methods that underlie the analysis of high-dimensional genomic big data generated by high throughput technologies, as well as issues in the experimental design and implementation of these technologies. Lectures contents will be delivered often with live demonstrations. Afterwards, students will be immersed by practical problem solving sessions. The R language will be used for programming throughout the course.
Prerequisites: BST 611 [Min Grade: B] or BST 621 [Min Grade: B]

BST 680. Statistical Computing with R. 3 Hours.
This course is mainly focused on R and how to use R to conduct basic statistical computing. The course contains three themes: R programming, introduction to high performance computing, and basics of statistical computing.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 626 [Min Grade: C]

BST 685. Training in Biostatistics Teaching. 3 Hours.
Acquire skills for teaching in higher education, including syllabus design, communication skills for the classroom and office hours, creating assignments and rubrics, preparing and giving lectures, preparing nondidactic content, and effective grading. Prerequisites: Must have completed the course that you will be the TA, or similar course, in a prior semester with a grade of B or higher. Completed the Biostatistics Qualifying Exam at the applicable level, have an overall GPA of 3.0 or higher (be a student in good standing with the UAB Graduate School). Receive an invitation from the applicable faculty member to register for this course.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 626 [Min Grade: C]

BST 690. Biostatistical Consulting and Applied Problems. 3 Hours.
Students will work individually to address, analyze and present the results of an applied problem or grant design each week. The presentation of approaches, solutions and designs will be conducted in a round table format. Students will be evaluated on the quality of solution and by their presentation and class participation.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C]

BST 691. Pre-Doctoral Seminar Series. 1 Hour.
Biostatistics Seminar Series. This course is restricted to Biostatistics in Public Health majors only. This course provides an opportunity for students to learn about ongoing research in the field of biostatistics, clinical trials, and statistical genetics.

BST 695. Special Topics. 1-3 Hour.
Special topics in Biostatistics not covered in regular 600 level courses, but suited for Masters students in Biostatistics and doctoral students in other related disciplines.

BST 698. Non Thesis Research. 1-12 Hour.
Independent non-thesis research with guidance of appropriate faculty. Restricted to Biostatistics Majors only or permission of instructor / department.

BST 703. Methods in Evidence-Based Public Health. 3 Hours.
This course introduces students to the Evidence-Based Public Health (EBPH) framework. The Evidence-Based Public Health framework will be used to collaborate with the Jefferson County Department of Health (JCDH) on; 1) identifying critical public health needs in our local area; 2) suggesting appropriate evidence-based policies and interventions to address these needs; 3) proposing an evaluation plan to assess the impact of the suggested policy or intervention.

BST 723. Theory of Linear Models. 3 Hours.
Multivariate normal distributions and quadratic forms; least square estimation; nested models; weighted least squares, testing contrasts; multiple comparison; polynomial regression; maximum likelihood theory of log linear models will be studied.
Prerequisites: BST 632 [Min Grade: B]

BST 724. Experimental Design. 3 Hours.
This course provides training for the design of experiments in biomedical research. BST 724 extends the intermediate training to delve into more theoretical justification and advanced applications. The course will cover classical experimental designs including factorial and nested (hierarchical) designs, Latin squares, incomplete block designs, fractional factorials, and mixture designs. It will use a matrix approach to analysis. In addition, it will emphasize statistical methodology and communication of procedures, results, and conclusions. BST 724 is intended for advanced graduate students in the Department of Biostatistics who have completed BST 621/622, 623, and 631/632.
Prerequisites: BST 621 [Min Grade: B] and BST 622 [Min Grade: B] and BST 623 [Min Grade: B] and BST 631 [Min Grade: B] and BST 632 [Min Grade: B]

BST 725. Advances Clinical Trials. 3 Hours.
This course will provide students with the tools to develop a basic understanding of the fundamental statistical principles involved in the design and conduct of clinical trials.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] or BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 625 [Min Grade: C]

BST 726. Advanced Clinical Trials II. 1 Hour.
This course builds on the knowledge gained in BST 725 in order to develop a more thorough understanding of the basic methodology behind important statistical concepts used in the design and analysis of large, randomized clinical trials. The class will involve discussions of publications dealing with current topics of interest in clinical trials.
Prerequisites: BST 621 [Min Grade: C] and BST 622 [Min Grade: C] and BST 625 [Min Grade: C] and BST 631 [Min Grade: C] and BST 632 [Min Grade: C] and BST 725 [Min Grade: C]

BST 735. Advanced Inference. 4 Hours.
Stochastic convergence and fundamental inequalities; weak convergence and the central limit theorems; large sample behavior of the empirical distribution and order statistics; asymptotic behavior of estimators and tests with particular attention to LR, score and Wald tests.
Prerequisites: BST 631 [Min Grade: B] and BST 632 [Min Grade: B]
BST 740. Bayesian Analysis. 3 Hours.
To introduce the student to the basic principles and tools of Bayesian Statistics and most importantly to Bayesian data analysis techniques. A major goal is to establish a firm foundation in the discipline upon which the applications of statistical and epidemiologic inference will be built.
Prerequisites: BST 632 [Min Grade: C]

BST 741. Advanced Bayesian Analysis II. 3 Hours.
This course is intended to illustrate advanced Bayesian modeling and computation for variety of models and problems.
Prerequisites: BST 631 [Min Grade: B] and BST 632 [Min Grade: B]

BST 750. Stochastic Modeling. 3 Hours.
Poisson processes; random walks; simple diffusion and branching processes; recurrent events; Markov chains in discrete and continuous time; birth and death process; queuing systems; applications to survival and other biomedical models will be studied.
Prerequisites: BST 632 [Min Grade: C]

BST 760. Generalized Linear and Mixed Models. 3 Hours.
Generalized linear models; mixed models; and generalized estimating equations.
Prerequisites: BST 723 [Min Grade: B]

BST 765. Advanced Computational Methods. 3 Hours.
Numerical algorithms useful in biostatistics including likelihood maximization using the Newton-Raphson method, EM algorithm, numerical integration using quadratic and Monte-Carlo methods, interpolation using splines, random variate generation methods, data augmentation algorithm, and MCMC and Metropolis-Hastings algorithm; randomization tests; resampling plans including bootstrap and jackknife will be studied.
Prerequisites: BST 632 [Min Grade: B]

BST 775. Statistical Methods for Genetic Analysis I. 3 Hours.
This course will provide a statistical basis for describing variation in qualitative (disease) and quantitative traits. This will include decomposition of trait variation into components representing genes, environment and gene-environment interaction. Resemblance between relative and heritability will be described. Important topics of discussion will include oligogenic and polygenic traits, complex segregations analysis, methods of mapping and characterizing simple and complex trait loci. NOTE: It is assumed that students are comfortable with regression theory, covariance, correlation, and likelihood theory. Interested students are urged to contact the instructors with concerns regarding assumed knowledge.
Prerequisites: BST 623 [Min Grade: C] and BST 632 [Min Grade: C] and BST 675 [Min Grade: C]

BST 780. DrPH Applied Practice Experience. 3-6 Hours.
All DrPH students will complete an applied practice experience (Practicum) in which the student will complete at least one project that is meaningful for a public health organization and to advanced public health practice.

BST 793. Post-doc Seminar Series. 3 Hours.
BST seminar series. Permission of instructor / department required.

BST 795. Advanced Special Topics. 1-6 Hour.
This course is designed to cover advanced special topics in Biostatistics that are not covered in regular 700 level courses, but suited for doctoral students in Biostatistics.
Prerequisites: BST 622 [Min Grade: B] and BST 632 [Min Grade: B]

BST 798. Non-Dissertation Research. 1-12 Hour.
Non-dissertation research with the guidance of appropriate faculty. Research conducted before admission to candidacy for the doctoral degree. Biostatistics majors only or permission of instructor / department required.

BST 799. Dissertation Research. 1-12 Hour.
Doctoral Level Dissertation Research under the direction of the dissertation research committee. Reserved for Biostatistics only or permission of instructor /department. Admission to Candidacy required.
Prerequisites: GAC Z

Environmental Health Sciences

Degree Offered: M.P.H., M.S.P.H., Ph.D.
Chair: Jeffrey Wickliffe, PhD
Phone: (205) 934-6080
Website: www.uab.edu/soph/home/departments/ehs
Department Contact: Julie Brown, MS, MBA
Department Contact Email: jebrown@uab.edu

Overview
Environmental Health assesses factors in our environment to understand their role in the health of individuals and populations. This concentration addresses environmental risk factors, such as airborne pollutants, water contaminants, and heat, that pose threats to the health of communities, workers, and vulnerable populations. Additionally, the program evaluates issues in sustainability and population inequalities related to environmental exposures.

Students who study Environmental Health will become knowledgeable in a variety of approaches that are used to assess environmental hazards and the environmental risk to populations.

Degree Programs
- Doctor of Philosophy (PhD) in Environmental Health Sciences
- Master of Public Health (MPH) concentration in Environmental and Occupational Health - (Including the Fast Track Program, Accelerated Bachelors/Masters (ABM) and Online Degree Program)
- Master of Science in Public Health (MSPH) concentration in Environmental and Occupational Health Sciences
- Master of Science in Public Health (MSPH) concentration in Industrial Hygiene

Admission
Master Program Deadline: www.uab.edu/soph/home/apply/graduate
PhD Program Deadline: www.uab.edu/soph/home/apply/graduate
GPA 3.0
Number of Evaluation Forms: Three
UAB has many degree programs (both face-to-face and online) that can lead to professional licensure or certification. Licensure requirements vary from state to state and by professional organization. Federal Regulations require UAB to provide public or general disclosures on educational programs designed to meet educational requirements for a specific professional license or certification, that is required for employment in an occupation, or is advertised as meeting such requirements. For a list of programs that customarily lead to professional licensure or certification, please visit the UAB Professional Licensure and Certification webpage.

Master of Public Health with a Concentration in Environmental and Occupational Health

Including the MPH Fast Track Program, Accelerated Bachelors/Masters(ABM) and Online Degree Program

The degree of the Master of Public Health (MPH) with a concentration in Environmental and Occupational Health is intended to prepare students to practice environmental and occupational health, in government agencies, non-profit agencies, and industry. The MPH in Environmental and Occupational Health focuses on the identification and assessment of human health threats; on the prevention of disease and injury related to environmental and occupational agents; and, on the promotion of health among individuals, communities, and workers.

Curriculum

Students pursuing the MPH degree acquire knowledge of fundamental public health disciplines through the school’s core courses. This include 14 required hours in core courses. In addition, a student will complete the department core courses and specific program track courses and electives as required. Electives are chosen in consultation with the student’s academic advisor. Electives outside the SOPH must be approved by the student’s advisor.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUH 601</td>
<td>This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602</td>
<td>Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603</td>
<td>Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604</td>
<td>Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605</td>
<td>Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606</td>
<td>Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement (1 hour)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENH 690</td>
<td>Environmental Health Perspectives</td>
<td>1</td>
</tr>
</tbody>
</table>

Concentration Requirements: (18 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 600</td>
<td>Fundamentals of Environmental Health Science</td>
<td>3</td>
</tr>
<tr>
<td>ENH 612</td>
<td>Assessing & Managing Environmental Risks</td>
<td>3</td>
</tr>
<tr>
<td>ENH 615</td>
<td>Environmental Justice and Ethics</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Requirements: (14 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUH 601</td>
<td>This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602</td>
<td>Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603</td>
<td>Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604</td>
<td>Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605</td>
<td>Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606</td>
<td>Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
</tbody>
</table>

MPH Degree Requirement (1 hour)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 690</td>
<td>Environmental Health Perspectives</td>
<td>1</td>
</tr>
</tbody>
</table>

Environmental Health Sciences Integrative Learning Experience (2 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 689</td>
<td>Environmental Health Sciences Integrative Learning Experience</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours: 44

Master of Science in Public Health with a Concentration in Environmental and Occupational Health Sciences

The Master of Science in Public Health (MSPH) with a concentration in Environmental and Occupational Health Sciences provides an intensive educational and research experience. This degree prepares students for applying to doctoral programs, employment in research, government, and industry. MSPH students learn to understand how environmental pollutants affect the health of populations, learn specific approaches for assessing, preventing, and controlling environmental hazards, and learn to communicate scientific findings. Students are required to develop an interest area in environmental or occupational health, where they will conduct research and prepare a thesis.

Curriculum

In addition to the MSPH core courses and school-wide requirements, students take 20-21 hours of Environmental & Occupational Health Sciences courses and approved elective courses, 3 hours of directed research and 6 hours of project research for a total of 44-45 credit hours. Students in the MSPH program are required to do a masters’ thesis.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 611</td>
<td>Intermediate Statistical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>BST 612</td>
<td>Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ENH 600</td>
<td>Fundamentals of Environmental Health Science</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610</td>
<td>Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>ENH 689</td>
<td>Environmental Health Sciences Integrative Learning Experience</td>
<td>2</td>
</tr>
</tbody>
</table>

Concentration Requirements: (12 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 612</td>
<td>Assessing & Managing Environmental Risks</td>
<td>3</td>
</tr>
<tr>
<td>ENH 650</td>
<td>Essentials of Environmental and Occupational Toxicology and Diseases</td>
<td>3</td>
</tr>
<tr>
<td>ENH 660</td>
<td>Fundamentals of Air and Water Pollution</td>
<td>3</td>
</tr>
<tr>
<td>ENH 661L</td>
<td>Environmental Sampling and Analysis Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>
The Master of Science in Public Health with a Concentration in Industrial Hygiene

The Master of Science Public Health with a concentration in Industrial Hygiene will provide students with an option to focus on industrial hygiene topics and provide a dedicated research experience. Industrial hygiene professionals must be able to recognize, evaluate, and control occupational situations that may lead to disease or injuries. They may also require expertise in designing and conducting studies of occupational sites to assess the probability that exposures present a risk to workers, to define safe limits for human exposures and set in place control measures. The research aspect of this curriculum is conducted under the requirements of the UAB Graduate School, and includes: formation of a research committee, defense of a research proposal, conducting the research under adviser supervision, preparation of a formal thesis, and presentation and defense of the thesis. The industrial hygiene program is part of the Deep South Center for Occupational Health and Safety, one of 18 Education and Research Centers supported by the National Institute for Occupational Safety and Health (NIOSH).

Curriculum

Students must complete a minimum of 43 credit hours, including MSPH core courses, industrial hygiene concentration courses, and research. If a student is receiving NIOSH funding they will also be required to complete an internship so the number of hours will be a minimum of 46 hours. Students in the MSPH program are required to write and submit a master’s thesis.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPH Core Requirements: (6 hours)</td>
<td></td>
</tr>
<tr>
<td>BST 611</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610</td>
<td>3</td>
</tr>
<tr>
<td>School-Wide Requirements: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>GRD 717</td>
<td>3</td>
</tr>
</tbody>
</table>

Department Track Requirements: (6 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 660</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of Environmental Health Science</td>
<td>3</td>
</tr>
<tr>
<td>or ENH 660</td>
<td>3</td>
</tr>
<tr>
<td>or BST 612</td>
<td>3</td>
</tr>
<tr>
<td>Interdisciplinary Worksite Evaluations</td>
<td>3</td>
</tr>
<tr>
<td>Masters Directed Research (Minimum 4 hours)</td>
<td>3</td>
</tr>
<tr>
<td>Masters Project Research (Minimum of 6 hours once admitted to candidacy)</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours:</td>
<td>43</td>
</tr>
</tbody>
</table>

1 Students can select ENH 600 if they do not have a background in Environmental Health Sciences.

Doctor of Philosophy in Environmental Health Sciences

The PhD in Environmental Health Sciences is an academic research degree. The doctoral program prepares scientists for careers in research, environmental program management, risk assessment and policy, Didactic training and research in the identification, evaluation, and control of hazards to human health are emphasized in this program. Students may concentrate on a wide variety of areas including exposure assessment, toxicology, environmental chemistry, air and water pollution, risk assessment and management. In addition to understanding the advanced concepts of environmental health sciences, graduates of this program are expected to develop skills that will enable them to identify and define questions of environmental health importance, design research studies to address these questions, and to complete a program of research that demonstrates abilities as an independent investigator. Graduates are qualified to assume upper-level positions in the public or private sector in research, management, teaching, or consulting.

Curriculum

PhD students are expected to complete departmental required courses, electives and research. Other courses preparatory to dissertation research will be determined by the academic advisor or dissertation committee in consultation with the student.

Students who are admitted to the PhD program with a relevant master's degree will be required to complete a minimum of 72 hours. Students without a relevant master's degree will be required complete a minimum of 78 hours. The admissions committee will decide which schedule the student is required to follow. These are the minimum number of required hours; additional coursework that the dissertation committee deems necessary, or additional research hours needed to complete the dissertation may increase the total number of credit hours.
All students in an MSPH, MS, DrPH, or PhD program are required to complete **PUH 600: Overview of Public Health.** The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

PhD curriculum for students with a relevant masters degree.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Core Requirement (15 hours):</td>
<td></td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ENH 700 Scientific Basis of Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>EPI 616 Environmental Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>PUH 703 Public Health Grant Writing</td>
<td>3</td>
</tr>
<tr>
<td>or GRD 704 Specialized Instruction</td>
<td></td>
</tr>
<tr>
<td>or GRD 723 Writing Research for Academic Audiences</td>
<td></td>
</tr>
<tr>
<td>Department Core Requirement (8 hours):</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
</tr>
<tr>
<td>ENH 611 Environmental & Occupational Exposure Assessment</td>
<td></td>
</tr>
<tr>
<td>ENH 660 Fundamentals of Air and Water Pollution</td>
<td>3</td>
</tr>
<tr>
<td>ENH 661L Environmental Sampling and Analysis Laboratory</td>
<td></td>
</tr>
<tr>
<td>ENH 790 Seminar: Current Topics in ENH Sciences Research</td>
<td>1</td>
</tr>
<tr>
<td>ENH 790 Seminar: Current Topics in ENH Sciences Research</td>
<td>1</td>
</tr>
<tr>
<td>Electives (13 hours):</td>
<td>13</td>
</tr>
<tr>
<td>Selected through discussion between advisor, committee, and student; courses could be outside SOPH</td>
<td></td>
</tr>
<tr>
<td>Directed Research (minimum 12 hours):</td>
<td>1-9</td>
</tr>
<tr>
<td>ENH 798 Doctoral Level Directed Res</td>
<td></td>
</tr>
<tr>
<td>Dissertation Research (minimum 24 hours, at least 2 semesters of candidacy):</td>
<td>1-9</td>
</tr>
<tr>
<td>ENH 799 Dissertation Research</td>
<td></td>
</tr>
<tr>
<td>Minimum Credit Hours Earned for Degree:</td>
<td>72</td>
</tr>
</tbody>
</table>

PhD curriculum for students without a masters degree or relevant masters degree.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required for Students without Masters (6 hours):</td>
<td></td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>School Core Requirement (15 hours):</td>
<td></td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>ENH 700 Scientific Basis of Environmental Health</td>
<td>3</td>
</tr>
<tr>
<td>EPI 616 Environmental Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>PUH 703 Public Health Grant Writing</td>
<td>3</td>
</tr>
<tr>
<td>or GRD 704 Specialized Instruction</td>
<td></td>
</tr>
<tr>
<td>or GRD 723 Writing Research for Academic Audiences</td>
<td></td>
</tr>
<tr>
<td>Department Core Requirement (8 hours):</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
</tr>
<tr>
<td>ENH 611 Environmental & Occupational Exposure Assessment</td>
<td></td>
</tr>
<tr>
<td>ENH 660 Fundamentals of Air and Water Pollution</td>
<td>3</td>
</tr>
<tr>
<td>ENH 661L Environmental Sampling and Analysis Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 600. Fundamentals of Environmental Health Science. 3 Hours.</td>
</tr>
<tr>
<td>We live inextricably with our surroundings, including both the natural and built environments. And in these surroundings both natural and man-made components can impact how we live because they impact our health and our safety. This course will critically examine major factors found around us in our everyday lives and investigate how human health is impacted. Regulatory controls, risk, and preparedness will be discussed with respect to decreasing the negative environmental impacts on public health. Prerequisite: Admission into an MPH program, School of Public Health or special permission from the course director.</td>
</tr>
<tr>
<td>ENH 605. Remote Sensing and Public Hlth. 3 Hours.</td>
</tr>
<tr>
<td>Observing global patterns via satellites can help with research endeavors, this course will focus on the applications of remote sensing to both health and the social sciences. Hands on experience using satellite remote sensing will enrich the experience. This course will give students the chance to learn about a wide range of remote sensing applications in both classrooms and lab settings. The course will progress from basic remote sensing analysis techniques to the point where the students are responsible for their own research projects.</td>
</tr>
<tr>
<td>ENH 610. Environmental Disasters. 3 Hours.</td>
</tr>
<tr>
<td>Examines the worldwide problem of toxic disasters, particularly those involving invisible agents (chemicals, infectious disease agents, radiation). Theory, case studies, field experience, and current scientific research are reviewed, and the public health, environmental, human services and public policy implications of toxic disasters are discussed.</td>
</tr>
<tr>
<td>ENH 611. Environmental & Occupational Exposure Assessment. 3 Hours.</td>
</tr>
<tr>
<td>This course is intended to develop an understanding and appreciation of environmental exposure assessment and its role in providing the tools and information for toxicology, epidemiology, and risk management. The course material introduces the general concepts of first recognizing environmental exposures to chemicals in human populations, and then using sampling techniques to assess exposures. This is a designated service learning course.</td>
</tr>
<tr>
<td>ENH 612. Assessing & Managing Environmental Risks. 3 Hours.</td>
</tr>
<tr>
<td>The purpose of this course is to provide students with an overview of environmental policy, with a focus on demonstrating how toxicology and exposure measurements are used in environmental risk assessment and management. Students are presented with the basic elements of a quantitative risk assessment including hazard identification, exposure assessment, dose-response assessment, and risk characterization. This course is designed to instill critical thinking regarding the often conflicting economic, social, and environmental tradeoffs inherent in environmental policy and management. Prerequisites: ENH 650 [Min Grade: C][Can be taken Concurrently] or ENH 650Q [Min Grade: C]</td>
</tr>
</tbody>
</table>
ENH 615. Environmental Justice and Ethics. 3 Hours.
This course will critically examine one of the fastest growing social movements in the United States, the movement for environmental justice, and will explore the relationships among environmentalism and ethics. We will discuss the ethical considerations underlying the placement of hazardous waste sites and toxic industries in poor communities and communities of color, as well as the economic and social issues that resulted from these actions. The course will also focus on Native American communities in the west, colonialism and global justice/human rights.

ENH 617. Sustainability and Public Health. 3 Hours.
Starting from a foundation of sustainability framed by the UN sustainable development goals, this course examines place-based examples of successes and challenges in sustainability and public health. Students will critically evaluate the intersecting factors contributing to and scientific/policy evidence underpinning socially, environmentally, and economically unsustainable elements of our local community, and how these situations impact human health and well-being. Particular areas of emphasis include the built environment, transportation, waste, food, supply chain, energy, and climate change. Course presentation will include lectures, readings, field experiences, community engagement, and videos/film.

ENH 621. Fundamentals of Industrial Hygiene. 3 Hours.
Chemical, physical and other hazards and stresses found in the work environment. Recognizing potential hazards by understanding industrial processes, toxicity of environmental contaminants and occupational disease processes. Study design and preparation for field evaluation, conduct of industrial hygiene surveys, and interpretation of survey results.

ENH 624. Control of Occupational Hazards. 2 Hours.
Importance of engineering controls in reducing occupational health hazards. Substitution of less toxic substances, modification of work processes, and design of local exhaust ventilation systems; proper selections and use of personal protective equipment, especially respirators, also considered.

ENH 625. Industrial Hygiene Case Studies. 2 Hours.
Integrates students' basic knowledge through consideration of real work-place situations. Step-by-Step analysis of case reports covering occupational health problems in representative industrial situations. Sequential presentation of overview of working conditions, survey strategies, interpretation of results, and recommendations.

ENH 626. Physical Agents. 2 Hours.
Sources, effects, and control of occupational and environmental noise, ionizing and non-ionizing radiation, and temperature extremes. Review of exposure standards and introduction of measurement equipment and techniques.

ENH 635. Foodborne and Waterborne Diseases: Causes and Prevention. 3 Hours.
This course provides a broad overview of the major foodborne and waterborne diseases. The course describes how information from surveillance is used to improve public health policy and practice in ways that contribute to the safety of our food and water. We focus on the pathogens responsible for food- and water-transmitted diseases, discussing the diseases they cause, their prevalence and relevance to public health in developed and developing nations; disease pathogenesis and clinical manifestations; reservoirs, modes of transmission, and strategies for detection and prevention.

ENH 650. Essentials of Environmental and Occupational Toxicology and Diseases. 3 Hours.
Serves as introductory graduate level course that focuses on multiple aspects of toxicology and disease processes associated with environmental and occupational exposures. Students learn basic terminology and concepts of environmental and occupational toxicology as well as occupational and environmental disease recognition, management and prevention. Emphasis is on scientific foundations rather than on addressing topical issues. The general course orientation is towards basic principles, organ system physiology, diseases and prevention. This is a designated service learning course.

ENH 660. Fundamentals of Air and Water Pollution. 3 Hours.
The course is an integrated introduction to air and water pollution, including its sources, transport and effects. The course focuses on the measurement and characterization of air pollutants and the assessment of water quality. Emphasis will also be given to the regulatory control of pollutants and to the technical aspects of engineering controls. The potential impact of air pollutants on the climate change will also be emphasized.

ENH 661L. Environmental Sampling and Analysis Laboratory. 3 Hours.
This course is designed to provide the students with a thorough understanding of the principles and practice of air and water sampling and familiarize them with the analytical methods used for air and water pollutant analysis. The course will focus on contaminant gases, vapors, suspended particulate material and dissolved chemicals in water. A basic understanding of chemistry and physics is a prerequisite.

ENH 670. Fundamentals of Occupational Safety. 3 Hours.
Basic principles of safety and loss control; emphasis on prevention of losses of people, property, and products in the workplace. Developing competence in human-factors engineering, fire prevention, physical and behavioral science, product safety, and science of accident prevention.

ENH 680. Interdisciplinary Field Studies. 1 Hour.
In this course, students will be organized into interdisciplinary teams to include at least one representative of each occupational safety and health academic discipline and participate in team building activities to facilitate group interactions for the interdisciplinary course ENH 681 in the spring. Students will be exposed to basic concepts of occupational hygiene, learn to recognize different types of hazards (i.e. chemical, biological, physical agents) in the workplace and their health outcomes, conduct a walkthrough survey of an occupational setting, attend OHS seminars and meetings, work collaboratively with other OHS students and professionals on projects, and learn how collaborations with other health professionals with complementary skills can help them achieve a comprehensive occupational health and safety goal. Students enrolled in this course must be admitted to one of the academic programs of the Deep South Education and Research Center. This class is a requirement for all NIOSH trainees.

ENH 681. Interdisciplinary Worksite Evaluations. 2 Hours.
To assist students in developing critical thinking and analytical skills, provide them with experience in applying discipline-specific knowledge in a broad occupational health and safety context, and provide experience in working in interdisciplinary teams. The course consists of an overview of survey methodology and information sources, with emphasis on job safety analysis, a review of the occupational site or process to be evaluated and a report of the identified hazards and recommended controls.

Prerequisites: ENH 680 [Min Grade: C](Can be taken Concurrently) or ENH 680Q [Min Grade: C]
ENH 689. Environmental Health Sciences Integrative Learning Experience. 2 Hours.
The ENH ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of foundational and concentration competencies. This course will provide students with the opportunity to use skills gained during your MPH program to assess different aspects of a community's assets, environment, or health. This course will offer insights on current research and practice, how policies influence health and allow students to identify root causes of public health issues. All MPH students must complete this capstone course to graduate during the final term of enrollment.
Prerequisites: PUH 688 [Min Grade: C]

ENH 690. Environmental Health Perspectives. 1 Hour.
ENH 690 represents a broad overview of Environmental Health from a variety of perspectives. All MPH students in the SOPH, regardless of departmental or program affiliation, must complete this course to graduate. This course provides all MPH students the opportunity to consider how the various disciplines in public health intersect with environmental health. The course will offer insights on current research and practice, how policies influence health, and give students the opportunity to identify root causes of public health issues within the context of environmental health.
Prerequisites: PUH 601 [Min Grade: C] and PUH 602 [Min Grade: C] and PUH 603 [Min Grade: C] and PUH 604 [Min Grade: C] and PUH 605 [Min Grade: C] and PUH 606 [Min Grade: C]

ENH 691. Current Topics in Environmental Health and Occupational Health and Safety. 1-3 Hour.
Development of communication skills through objectively reviewing scientific literature; presentations and summaries of research or professional activities.

ENH 695. Seminar on Selected Environmental Health Topics. 1-9 Hour.
This course will be used as faculty design and craft course topics based on specific interests. These courses will be taught on a masters level.

ENH 697. Internship. 3 Hours.
The internship provides an opportunity for each student to work in a public health setting in a position that carries responsibility and is of particular interest. In order to register for the internship course, students must have completed all public health core coursework. Usually, this means that students must wait until their 3rd semester to complete the internship. Students must complete a minimum of 180 contact hours with the organization during the semester in which they register for the internship.
Prerequisites: (BST 601 [Min Grade: C] or BST 601Q [Min Grade: C] or PUH 601 [Min Grade: C]) and (ENH 600 [Min Grade: C] or ENH 600Q [Min Grade: C] or PUH 602 [Min Grade: C]) and (EPI 600 [Min Grade: C] or EPI 600Q [Min Grade: C] or PUH 603 [Min Grade: C]) and (HB 600 [Min Grade: C] or HB 600Q [Min Grade: C] or PUH 604 [Min Grade: C]) and (HCO 600 [Min Grade: C] or PUH 605 [Min Grade: C] or PUH 606 [Min Grade: C]) or (HCO 600Q [Min Grade: C])

ENH 698. Masters Directed Research. 1-9 Hour.
Independent study with guidance of appropriate faculty.

Research for project under direction of research project committee.
Prerequisites: GAC M

ENH 700. Scientific Basis of Environmental Health. 3 Hours.
This is an overview course that is intended to provide doctoral students with a broad understanding of the scientific principles on which environmental health is based within the context of the interaction of human activities and ecosystems, and the reciprocal impact of those interactions on human health and global ecology.

ENH 701. Advanced Environmental Chemistry. 3 Hours.
The course will describe the underlying physicochemical and mathematical formulations governing environmental physico-chemical processes including the coupling with biological media. Specific attention will be paid in understanding the physical basis of the processes and critical variables rather than memorizing the mathematical equations. The kinetics and thermodynamics of chemical transformations including redox and photolysis reactions will be introduced. Subsequently, specific environmental cases involving aquatic and atmospheric environments will be thorough investigated. Students are strongly recommended to have: (1) understanding of organic chemistry and basic thermodynamics; (2) comfort with math.

ENH 705. Special Topics in Environmental and Occupational Health.
Occupational Hygiene Research - Journal Club. 1-9 Hour.
This course is designed to provide advanced (doctoral) students in Environmental Health Sciences in general, and Industrial hygiene in particular an overview of the research literature and introduction in advance topics such as nanomaterials, control banding, quantitative occupational exposure assessment, etc. Students will have the opportunity to present their own research, learn about the research conducted by their peers and conduct critical review of published research.

ENH 752. Biochemical and Molecular Toxicology. 3 Hours.
This advanced course serves to equip students to understand at the molecular and cellular levels how environmental and occupational agents exert their toxic properties against specific genetic backgrounds. This course assumes a strong foundational knowledge of cell biology, RNA and DNA metabolism, and gene function, structure and regulation. This course will prepare students to apply advanced toxicology principles to agents of disease in order to understand the molecular mechanism and where interventions may be appropriate. Prerequisite: Admission into a molecular or biomedical PhD program or permission of the instructor.

ENH 763. Aerosol Technology. 3 Hours.
Defines properties and behavior of aerosols from industrial hygiene and environmental perspectives. Reviews fundamental particle descriptions and critical fluid properties affecting particle behavior. Methods of defining particle size and particle behavior. Methods of defining particle size and size distribution and theories of particle kinetics and their application to particle disposition and collection. This multidisciplinary course covers the fundamental principles that govern the formation, growth, measurement and modeling of particles behavior (both ambient and nanoparticles) with direct application to health sciences and engineering specialties. The course explores the quantitative evaluation of aerosol behavior including the physical and chemical parameters that govern it. Specific applications of atmospheric and occupational aerosol, bioaerosol and nanoparticles are included to link fundamental knowledge to practical implications in industrial hygiene, national security and materials technology.
ENH 770. Advanced Topics in Environmental Disasters in PUH. 3 Hours.
Examines emerging public health challenges posed by incidents involving
cemicals, radiation and biological agents. Students are provided with
the opportunity to undertake guided research on current topics in the field
and discuss their findings with graduate students and faculty members.
Course will be graded by letter. Prerequisites: ENH 610 [Min Grade:
C] NOTE: If course prerequisite of ENH 610 is not met, permission of
instructor is required.
Prerequisites: ENH 610 [Min Grade: C](Can be taken Concurrently)

ENH 781. Journal Club. 1 Hour.
The purpose of this course is to provide a forum in which students
become comfortable critically reviewing recent refereed publications in
the fields of environmental health, toxicology, occupational health, and
industrial hygiene. Students will also be expected to become comfortable
answering and asking questions in a scientific setting.

ENH 790. Seminar: Current Topics in ENH Sciences Research. 1 Hour.
Interactive forum in which graduate students and faculty discuss
dissertation research projects and topics related to the field of
Environmental Health Sciences Research through presentation of journal
articles. Course is designed to develop oral communication skills for
presenting scientific material to peer groups. Presentations by graduate
students are followed by discussion and questions. Preq: Permission of
instructor required.

ENH 796. Environmental Toxicology Laboratory Rotations. 3 Hours.
Doctoral laboratory rotations in Environmental Health Sciences. Required
for First and Second year PhD students in the Industrial Hygiene
and Environmental Management and Policy foci. Preq: Permission of
instructor required.

ENH 798. Doctoral Level Directed Res. 1-9 Hour.
Independent study with guidance of appropriate faculty.

Research for dissertation under the direction of the dissertation
committee. Preq: Must be admitted to candidacy before registering for
this course.
Prerequisites: GAC Z

Epidemiology

Degree Offered: M.P.H, M.S.P.H., Ph.D.
Chair: Cora E. Lewis, MD, MSPH
Phone: (205) 975-7699
Website: www.uab.edu/soph/home/ departments/epidemiology
Department Student Contact: Kimberly Hawkins King
Department Student Contact E-mail: hawkinsk@uab.edu

Overview
Epidemiology is the study of trends, patterns, and causes related to
disease in populations. Students who concentrate in epidemiology
are interested in how diseases spread among given populations.
Epidemiologists create complex analytical models to help us understand
the causes of and solutions to these diseases more clearly.

Graduates of the UAB Epidemiology program have found employment in
academia, research organizations and foundations, industry, public and
private health services delivery organizations, and international agencies.
Many of our doctoral graduates have faculty positions.

Degree Programs
- Master of Public Health (MPH) concentration in Epidemiology
 (Including the Fast Track Program, Accelerated Bachelors/Masters
 (ABM) and Online Degree Program)
- Master of Science in Public Health (MSPH) concentration in Applied
 Epidemiology
- Doctor of Philosophy (PhD) in Epidemiology

Admission Requirements
Applicants must meet the requirements for admission to the UAB School
of Public Health and must demonstrate their aptitude for biological
sciences and mathematics by virtue of their college transcripts and GRE
scores.

<table>
<thead>
<tr>
<th>Entry Term</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Program Deadline:</td>
<td>www.uab.edu/soph/home/apply/graduate</td>
</tr>
<tr>
<td>PhD Program Deadline:</td>
<td>May 15 (U.S.); April 1 (International); Deadline to apply for funding consideration is January 10</td>
</tr>
<tr>
<td>GPA:</td>
<td>3.0</td>
</tr>
<tr>
<td>Number of Letters of Recommendation Required:</td>
<td>Three</td>
</tr>
<tr>
<td>Entrance Tests: GRE</td>
<td>www.uab.edu/soph/home/apply/graduate</td>
</tr>
<tr>
<td>TOEFL:</td>
<td>TOEFL is required for international applicants whose native language is not English.</td>
</tr>
<tr>
<td>SOPH Admissions:</td>
<td>www.uab.edu/soph/home/apply/graduate</td>
</tr>
</tbody>
</table>

UAB has many degree programs (both face-to-face
and online) that can lead to professional licensure or
certification. Licensure requirements vary from state
to state and by professional organization. Federal
Regulations require UAB to provide public or general
disclosures on educational programs designed to meet
educational requirements for a specific professional license or
certification, that is required for employment in an
occupation, or is advertised as meeting such requirements.
For a list of programs that customarily lead to professional
licensure or certification, please visit the UAB Professional
Licensure and Certification webpage.

Master of Public Health with a Concentration in Epidemiology
Including the Fast Track Program, Accelerated Bachelors/Masters
(ABM) and Online Degree Program

This MPH in Epidemiology program is intended for persons who
anticipate careers in public health practice. In addition, students who wish
to enter doctoral-level training should consider majoring in epidemiology
at the master's level. Graduates of the MPH in Epidemiology may
assume faculty or research positions in academia or management
positions in government or industry if they have other professional degrees (e.g., MD, DDS) as well. Graduates of the program without professional credentials generally assume mid-level positions in academia, industry or government. The MPH in Epidemiology in-person program typically takes 4 semesters or 16 months of full-time coursework to complete. Part-time coursework generally takes students at least 6-8 semesters to complete.

Curriculum

For full-time students in our MPH program, and for those students who opt to complete our accelerated graduation plan, all core courses can be completed within the first two semesters of enrollment except for EPI 689: Integrative Experience, which MUST be taken in the last semester of enrollment or graduation term (with the exception of graduation in the Summer term, when students would register for EPI 689 in the Spring term).

Requirements

MPH Core Requirements: (14 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUH 601</td>
<td>This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602</td>
<td>Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603</td>
<td>Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604</td>
<td>Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605</td>
<td>Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606</td>
<td>Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
</tbody>
</table>

MPH Degree Requirement: (1 hour)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENH 690</td>
<td>Environmental Health Perspectives</td>
</tr>
</tbody>
</table>

Concentration Requirements: (14 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 610</td>
<td>Principles of Epidemiologic Research</td>
</tr>
<tr>
<td>EPI 624</td>
<td>Introduction to Data Analysis with SAS</td>
</tr>
<tr>
<td>EPI 625</td>
<td>Quantitative Methods in Epidemiology</td>
</tr>
<tr>
<td>BST 611</td>
<td>Intermediate Statistical Analysis I</td>
</tr>
<tr>
<td>BST 612</td>
<td>Intermediate Statistical Analysis II</td>
</tr>
</tbody>
</table>

Applied Practice Experience: (3 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUH 688</td>
<td>Public Health Internship</td>
</tr>
</tbody>
</table>

EPI Required Electives: (3 hours - choose one of the following)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 602</td>
<td>Epidemiology of Chronic Diseases</td>
</tr>
<tr>
<td>EPI 605</td>
<td>Epidemiology of Infectious Diseases</td>
</tr>
</tbody>
</table>

Approved Electives: (6 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 603</td>
<td>Injury-Epidemiologic Principles and Prevention Strategies</td>
</tr>
<tr>
<td>EPI 607</td>
<td>Fundamentals of Clinical Research</td>
</tr>
<tr>
<td>EPI 609</td>
<td>Introduction to Pharmacoepidemiology and Drug Safety</td>
</tr>
<tr>
<td>EPI 614</td>
<td>Epidemiologic Methods Applied to Comparative Effectiveness Research</td>
</tr>
<tr>
<td>EPI 616</td>
<td>Environmental Epidemiology</td>
</tr>
<tr>
<td>EPI 619</td>
<td>Infection Prevention and Hospital Epidemiology</td>
</tr>
<tr>
<td>EPI 621</td>
<td>HIV/AIDS and STDs</td>
</tr>
<tr>
<td>EPI 627</td>
<td>Data Analysis and Presentation of Epidemiologic Studies</td>
</tr>
<tr>
<td>EPI 635</td>
<td>Genetics in Public Health</td>
</tr>
<tr>
<td>EPI 690</td>
<td>Population and Health Outcomes Research Seminar Series</td>
</tr>
<tr>
<td>EPI 695</td>
<td>Epidemiology Seminar</td>
</tr>
<tr>
<td>EPI 698</td>
<td>Master's Level Directed Research Epidemiology</td>
</tr>
<tr>
<td>BST 626</td>
<td>Data Management and Reporting with SAS</td>
</tr>
</tbody>
</table>

Integrative Learning Experience: (3 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 689</td>
<td>Epidemiology Integrative Learning Experience</td>
</tr>
</tbody>
</table>

Total Credit Hours: 44

Master of Science in Public Health with a Concentration in Applied Epidemiology

The MSPH with a concentration in Applied Epidemiology program is an academic degree designed for students who wish to receive education and training in epidemiologic research methods. Completion of didactic course work and a thesis research project and final defense are required. This degree can be completed in as little as 4 semesters or 16 months of full-time coursework.

Curriculum

A total of 42 credit hours must be earned to receive the MSPH in Applied Epidemiology degree. Of these 42 total hours, 14 hours are taken to complete the core and school-wide requirements. Students complete 3 semester hours of masters directed research (EPI 698) and 6 hours of masters project research (EPI 699 - after admission to candidacy). Students must consult with their academic advisor for approval of track-specific relevant elective credits. During the last term of enrollment or final graduation term, the student is required to complete his/her final thesis project defense and presentation. A final publishable paper is required for graduation.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

Requirements

MSPH Core Requirements: (11 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 611</td>
<td>Intermediate Statistical Analysis I</td>
</tr>
<tr>
<td>BST 612</td>
<td>Intermediate Statistical Analysis II</td>
</tr>
<tr>
<td>EPI 610</td>
<td>Principles of Epidemiologic Research</td>
</tr>
<tr>
<td>EPI 624</td>
<td>Introduction to Data Analysis with SAS</td>
</tr>
</tbody>
</table>

School-Wide Requirement: (3 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 717</td>
<td>Principles of Scientific Integrity</td>
</tr>
</tbody>
</table>

Concentration Requirements: (6 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 625</td>
<td>Quantitative Methods in Epidemiology</td>
</tr>
<tr>
<td>EPI 627</td>
<td>Data Analysis and Presentation of Epidemiologic Studies</td>
</tr>
</tbody>
</table>

EPI Required Elective: (3 hours - choose one of the following)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 602</td>
<td>Epidemiology of Chronic Diseases</td>
</tr>
<tr>
<td>EPI 605</td>
<td>Epidemiology of Infectious Diseases</td>
</tr>
</tbody>
</table>

Approved Electives: (10 hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST 625</td>
<td>Design/Conduct Clinical Trials</td>
</tr>
<tr>
<td>EPI 603</td>
<td>Injury-Epidemiologic Principles and Prevention Strategies</td>
</tr>
<tr>
<td>EPI 607</td>
<td>Fundamentals of Clinical Research</td>
</tr>
<tr>
<td>EPI 609</td>
<td>Introduction to Pharmacoepidemiology and Drug Safety</td>
</tr>
<tr>
<td>EPI 614</td>
<td>Epidemiologic Methods Applied to Comparative Effectiveness Research</td>
</tr>
<tr>
<td>EPI 616</td>
<td>Environmental Epidemiology</td>
</tr>
<tr>
<td>EPI 619</td>
<td>Infection Prevention and Hospital Epidemiology</td>
</tr>
<tr>
<td>EPI 621</td>
<td>HIV/AIDS and STDs</td>
</tr>
</tbody>
</table>
Doctor of Philosophy in Epidemiology

The PhD in Epidemiology emphasizes epidemiologic study design and data analysis. The program is designed to prepare exceptionally qualified individuals for a career of research and teaching. Admission is competitive. Applicants should have earned a Master of Public Health (MPH), Master of Science in Public Health (MSPH), Master of Science (MS) degree or equivalent, with a strong background in epidemiology and statistics. Students who complete the degree will master the skills required for conducting independent research in epidemiology, with a firm background in epidemiology, biostatistics, and information management. Specific areas of concentration include chronic diseases, infectious diseases, molecular epidemiology, and injury epidemiologic methods. Further details about the PhD-EPI program may be obtained by contacting the Program Director, Dr. Marguerite Ryan Irvin at irvinr@uab.edu. You may also contact the Coordinator of Graduate Academic Programs, Kimberly Hawkins King at hawkinsk@uab.edu, or (205) 975-9749. For funding questions regarding our PhD program, please contact Dr. Marguerite Ryan Irvin or the program assistant Kate Sreenan at ksreenan@uab.edu or by calling (205) 934-7184.

Curriculum

To earn the PhD degree in Epidemiology students must complete a minimum of 60 total credit hours of academic course work. Of this 60 credit hour minimum, 18 semester hours are required and include Biostatistics and Epidemiology courses. 27 semester hours must be earned in doctoral level didactic Epidemiology courses and/or advanced Biostatistics courses. GRD 717 Principles of Scientific Integrity is also a required course that students take in the program. Students must also complete at least 12 semester hours of directed research (EPI 798) and 12 semester hours of dissertation research (EPI 799). Additionally, students must complete at least two semesters in candidacy (of EPI 799) before being allowed to graduate.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Requirements: (21 hours)</td>
<td></td>
</tr>
<tr>
<td>BST 621 Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>BST 622 Statistical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>EPI 704 Advanced Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>EPI 635 Genetics in Public Health</td>
<td>2</td>
</tr>
<tr>
<td>EPI 690 Population and Health Outcomes Research Seminar Series</td>
<td>1</td>
</tr>
<tr>
<td>EPI 695 Epidemiology Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Masters Directed Research: (Minimum 3 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 698 Master's Level Directed Research Epidemiology</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Masters Project Research: (Minimum 6 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 699 Master's Level Project Research Epidemiology</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Total Credit Hours: 42

1 EPI 699 Masters Level Project Research must be taken after admission to candidacy.

1 Other courses may be available in Biostatistics, with your advisor's approval. Please check the course catalog.

2 Must be taken at least twice (2 times)

3 EPI 798: Doctoral-Level Directed Research - Register prior to admission to candidacy; Must have at least 12 hours.

4 EPI 799: Dissertation Research - Register after admission to candidacy; Must have at least 12 hours and at least 2 semesters.

Courses

EPI 600. Introduction to Epidemiology. 3 Hours.

EPI 600 is an introductory course designed to teach graduate level public health students the basic principles, methods, and applications of epidemiology. This course is a CORE requirement for non-Epidemiology MPH majors.
EPI 602. Epidemiology of Chronic Diseases. 3 Hours.
This course will explore the breadth and depth of the epidemiology of chronic diseases including classification, surveillance, frequency, distribution, etiology, natural history, risk factors, and control. It will address details of large-scale epidemiologic studies in cardiovascular diseases and cancer, and will discuss epidemiologic papers relating to the use of various study designs. The course will be presented in three modules: (1) Overview, Risk Factors and Control of Chronic Diseases; (2) Epidemiology of Cardiovascular Diseases; (3) Epidemiology of Cancer; and Other Chronic Diseases. Besides the course master, guest lecturers will participate in teaching the course.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 603. Injury-Epidemiologic Principles and Prevention Strategies. 3 Hours.
Concepts and methods of epidemiology applied to injury; epidemiology of major injury types, utilization of injury data sets; development and evaluation techniques of preventive strategies. EPI 600 or EPI 610 is a recommended prerequisite but is not required.

EPI 605. Epidemiology of Infectious Diseases. 3 Hours.
The course provides an introduction to basic principles of infectious disease epidemiology, surveillance, and control. Time is also dedicated to critical analysis of the magnitude, distribution, risk factors, and public health significance of selected infectious diseases in community and institutional settings. While the primary geographic focus is the U.S., international comparisons and perspectives are included. The course focuses on the major infectious diseases affecting developing nations and on diseases of major current interest. The course also provides an overview of vaccinology principles, current immunization strategies, their public health rationale, and use of vaccines in disease control and eradication.
Prerequisites: EPI 610 [Min Grade: C]

EPI 607. Fundamentals of Clinical Research. 3 Hours.
This course will provide an overview of principles and practices related to the study of determinants and outcomes of medical interventions. Methods for conducting epidemiologic research in the "clinic", assessing the validity of diagnostic and screening tests, measuring therapeutic efficacy and safety, and describing the natural history of disease will be reviewed. EPI 600 or EPI 610 is a recommended prerequisite but is not required.

EPI 609. Introduction to Pharmacoepidemiology and Drug Safety. 3 Hours.
The purpose of the course is to 1) introduce to students the emerging field of pharmacoepidemiology (PE) and comparative effectiveness research (CER); 2) have an overview of the shared and unique methodological issues that commonly and negatively affects the validity and interpretation of PE and CER research; and 3) to introduce methods in study design and data analysis to address such issues. The course is a requirement for the MSPH Pharmacoepidemiology and Comparative Effectiveness Research track. NOTE: Introductory training in epidemiology (EPI 610 or BST 611) is recommended but not required.

EPI 610. Principles of Epidemiologic Research. 3 Hours.
Concepts, philosophy, and methods of epidemiology. Measures of disease frequency, association and impact; study design and data analysis, indices of disease and health; overview of major categories of acute and chronic disease, outbreak investigations, and screening. EPI 610 is a track requirement for MPH - Epidemiology and MSPH – Epidemiology majors, and is also open to other graduate students at the instructor's discretion.

EPI 614. Epidemiologic Methods Applied to Comparative Effectiveness Research. 3 Hours.
This course will focus on methodological issues pertaining to the design, analysis and interpretation of comparative effectiveness research studies. Special focus will be placed on comparative effectiveness research studies using a non-experimental design and large data base analyses. This course is intended for Master of Science in Public Health and doctoral students in epidemiology, biostatistics, or health care and policy. Doctoral students in other disciplines as well as others interested in comparative effectiveness research are also welcome to enroll with the instructor's permission.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 616. Environmental Epidemiology. 3 Hours.
Design and conduct of studies examining health effects of environmental exposures. Strengths and limitations of research strategies and interpretation of study results. Areas of interest include air and water pollution, lead, and biological marker outcomes.
Prerequisites: EPI 610 [Min Grade: C]

EPI 618. Fieldwork in Public Health. 2 Hours.
Application of public health principles in communicable disease control and environmental health programs carried out at Jefferson County Department of Health.
Prerequisites: EPI 605 [Min Grade: C] and EPI 610 [Min Grade: C]

EPI 619. Infection Prevention and Hospital Epidemiology. 3 Hours.
The course will provide students with a basic understanding of the area of hospital epidemiology and infection prevention. Notably, the course will cover a review of basic epidemiological methodology, and will then focus on the main areas of surveillance that are critical to infection prevention in addition to methodologies that are specific to hospital epidemiology. Prerequisites: EPI 610 or equivalent introduction to epidemiology course as approved by the course director.
Prerequisites: EPI 610 [Min Grade: C]

EPI 621. HIV/AIDS and STDs. 3 Hours.
Basic biology and pathogenesis, historical and current trends, domestic and international epidemiology, determinants of spread, immunogenetics and host susceptibility, options for prevention, surveillance and control of sexually transmitted diseases (STD's) and HIV/AIDS. If not Public Health student permission of instructor is required.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 624. Introduction to Data Analysis with SAS. 2 Hours.
The purpose of this course is to introduce students to the basics of SAS programming. Topics covered will include creation/importation of datasets, working with SAS variables, manipulation of datasets (e.g., combining and subsetting datasets), and SAS syntax to produce descriptive statistics (e.g., frequencies, means) and perform basic statistical procedures (e.g., chi-square, t-test).
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]
EPI 625. Quantitative Methods in Epidemiology. 3 Hours.
The course will provide students with the knowledge of how to perform basic analyses utilized in epidemiological research. The course will be segmented into four modules, with three modules covering how to properly analyze ecological, cross-sectional, cohort, and case control study designs. The course will focus heavily on performing the analyses in SAS, and will continue to expand upon many of the concepts in SAS programming covered in EPI 624. The statistical methods covered will include, but are not limited to, bivariate analyses such as chi-square, t-test, and ANOVA; correlation; and regression methods such as logistic regression, Poisson regression, and Cox proportional hazards regression.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] and (EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]) and EPI 624 [Min Grade: C]

EPI 627. Data Analysis and Presentation of Epidemiologic Studies. 3 Hours.
Analyze data from an epidemiologic study, addressing a specific questions, and prepare a manuscript from the analysis. There are 3 possibilities regarding choice of data: 1) from a list of the instructor's datasets, 2) public use data, 3) from the student's research. Students working on an MSPH or another degree project may use data for that degree-project with approval of their advisor and course master. Upon completion of the course, the student should be able to analyze data from an epidemiologic study and prepare a manuscript.
Prerequisites: BST 611 [Min Grade: C] and BST 612 [Min Grade: C] and EPI 610 [Min Grade: C] and EPI 624 [Min Grade: C] and EPI 625 [Min Grade: C]

EPI 635. Genetics in Public Health. 2 Hours.
This course will provide a topical overview of issues in public health genetics. The purpose of this course is to introduce students to the complex issues involved in applying and integrating genetic technology and information into public health. Must have permission of instructor to register.

EPI 680. Topics in Clinical Research. 2 Hours.
Provide health sciences professionals interested in clinical trials, clinical epidemiology, and other forms of population research with both essential principles and specific technical knowledge in a variety of areas relevant to the conduct of biological and behavioral investigation of human subjects. NOTE: Limited to health professionals planning clinical research careers who have been accepted into the MSPH in Clinical Research. This course begins in the Spring term and extends into the Summer term. Registration for this course is during the Summer semester. Please contact the Program Coordinator for the course syllabus and course schedule.

EPI 681. Special Topics in Epidemiology Research. 1-3 Hour.
To engage infectious disease research practice encompassing design, conduct, analysis, and interpretation. Students participate in supervised research and/or in research design. Doctoral students are expected to engage in supervised research. NOTE: Permission of instructor.

EPI 682. Gorgas Course in Tropical Med. 3-9 Hours.
Hands-on exposure to tropical diseases and emerging pathogens in various teaching formats: didactic lectures, roundtables, laboratory work, clinical and hospital rounds, case conferences, computer training, field fied trips and independent study. Course is held in during the Spring Term in in Lima, Peru. NOTE: 9 hours (3 or Course can be taken for 3, 6 hours are also accepted with or 9 hours; however, evaluation will be restricted to selected sections of the course). course. Spring (Freedman).

EPI 689. Epidemiology Integrative Learning Experience. 3 Hours.
The EPI ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of MPH foundational and epidemiology concentration competencies. Students will apply their epidemiology and biostatistics skills by designing, analyzing, and disseminating findings of a research project in the form of a high-quality written product. All MPH Epidemiology students must complete this course to graduate in the final term of the MPH program.
Prerequisites: EPI 625 [Min Grade: C] and PUH 688 [Min Grade: C]

EPI 690. Population and Health Outcomes Research Seminar Series. 1 Hour.
The purpose of this class is to provide an opportunity for students interested in population and health outcomes research to participate in seminars related to methodology and career development and to present their work.

EPI 695. Seminar on Selected Environmental Health Topics. 1-9 Hour.
This course will be used as faculty design and craft course topics based on specific interests. These courses will be taught on a masters level.

EPI 698. Master’s Level Directed Research Epidemiology. 1-9 Hour.
Independent study with guidance of appropriate public health faculty.

Research for project under direction of research committee.
Prerequisites: GAC M

EPI 703. Grant Proposal Writing. 3 Hours.
To provide the student with information about grant writing and practice in preparing a grant proposal for submission. The proposal must relate to an epidemiologic topic. Human subjects issues are discussed. NOTE: Must be a doctoral student or obtain permission of instructor to enroll.

EPI 704. Advanced Epidemiologic Methods. 3 Hours.
This course provides an advanced introduction to fundamental epidemiologic concepts and methods, including causal inference, bias, and study design. This course is the first course in the sequence of the three required core epidemiology courses for doctoral students in epidemiology.

EPI 706. The Epidemiology of Cardiovascular Disease. 2 Hours.
The purpose of this course is to provide exposure to the epidemiology of cardiovascular disease.

EPI 710. Analysis of Case Control Studies. 3 Hours.
This course is designed to provide doctoral students in epidemiology with practical experience in the analysis and interpretation of data from case-control studies. Specific aims are: To outline a strategy for data analysis and review relevant methodologic issues and to apply stratified analysis methods and regression models in the study of diseases of multifactorial etiology. Preq: Requires permission of instructor.
Prerequisites: EPI 704 [Min Grade: C]

EPI 712. Nutritional Epidemiology. 3 Hours.
Nutritional epidemiology will cover core concepts in human nutrition including nutrient classification, nutrient sources, nutritional deficiencies, nutritional excesses, recommended daily allowances, basic anthropometry, dietary assessment methods in free-living populations, validation of dietary assessment methods, identification of biomarkers of dietary intake, study designs used in nutritional epidemiology, issues in the analysis and presentation of dietary data, diet-disease associations, gene-diet associations and special topics in nutrition (e.g., folic acid and neural tube defects, fatty acids and the metabolic syndrome, diet and obesity, vitamin A and immune function, vitamins and mother-to-child transmission of HIV, etc).
EPI 713. Cancer Epidemiology and Control. 3 Hours.
In this course students will learn what is known about the causes of cancer and the control measures used to decrease cancer incidence, decrease cancer mortality, extend cancer survival, and improve quality of life for cancer patients.

EPI 720. Analysis of Follow-Up Studies. 3 Hours.
This course is designed to provide doctoral students in epidemiology with practical experience in the analysis and interpretation of data from follow-up studies. Specific aims are: to outline a strategy for data analysis and review relevant methodologic issues and to apply stratified analysis methods and regression models in the study of diseases of multifactorial etiology.
Prerequisites: EPI 710 [Min Grade: C]

EPI 721. HIV/AIDS and STDs. 3 Hours.
The course will cover the epidemiology, prevention and control of Sexually Transmitted Diseases (STDs) including the human immune deficiency virus (HIV) infection in both the domestic and international settings. EPI 621 is intended as an elective for second year students and students who have a graduate degree in the Medical Health Professions who are enrolled in any degree track in the School of Public Health. It is considered an elective for the MPH and MSPH programs in Epidemiology. EPI 721 is intended only for doctoral students in the School of Public Health.
Prerequisites: EPI 610 [Min Grade: C] or EPI 610Q [Min Grade: C]

EPI 731. Genetic Epidemiology. 4 Hours.
This course will cover core concepts of designs, methods and statistical tools in genetic epidemiology studies for determining the contribution of genes to disease risk. Methods for incorporating genetic markers into conventional epidemiologic study designs as risk factors including genetic risk models, familial correlations, migration and admixture, quantitative and qualitative traits, association and linkage analyses in family based designs, allele/haplotype frequency estimation, Hardy Weinberg Equilibrium and linkage disequilibrium and application in both family and population based studies will be discussed. Methods for gene-gene and gene-environment interaction assessment, genome wide association studies are also presented. Students not meeting the prerequisites must get permission from the instructor.
Prerequisites: EPI 610 [Min Grade: C] and BST 611 [Min Grade: C] or BST 621 [Min Grade: C]

EPI 781. Special Topics in Epidemiology Research. 3 Hours.
To engage infectious disease research practice, encompassing design, conduct, analysis, and interpretation. Students participate in supervised research and/or in research design. NOTE: Doctoral students are expected to engage in supervised research and must obtain permission of instructor.

EPI 790. Doctoral Seminar in Epidemiology. 2 Hours.
In depth study of several areas of epidemiologic methodology not covered in other courses. Students responsible for selecting and presenting topics. Considerable reading and outside preparation required. NOTE: Requires permission of instructor.

EPI 795. Epidemiology Seminar. 1 Hour.
The purpose of the epidemiology seminar series is to provide a venue for faculty and students of epidemiology to participate in the presentation of a variety of topics and concepts related to the field of epidemiology, biostatistics and public health.

EPI 798. Doctoral Level Directed Research Epidemiology. 1-9 Hour.
Independent study with guidance of appropriate faculty.

Research for dissertation under direction of dissertation committee.
Prerequisites: GAC Z

Health Behavior

Degrees Offered: M.P.H., Ph.D.
Department Chair: Kevin Fontaine, PhD
Phone: (205) 934-6020
Department Contact: Julie Brown, MS, MBA
Department Contact E-mail: jebrown@uab.edu
Website: www.uab.edu/soph/home/departments/health-behavior

Overview
The Department of Health Behavior aims to train health promotion specialists/behavioral scientists to conduct research, develop and evaluate programs, implement and disseminate programs, and integrate ethical, cultural and social justice topics as they address the public's health.

Health Behavior MPH and PhD students learn to use theories and methods from the social and behavioral sciences to develop programs that encourage healthy behaviors. They learn state-of-the-art techniques and methods for research and program evaluation. Doctoral students study these topics in depth as they apply their knowledge and skills in conducting research, writing grant applications, analyzing data, and presenting, publishing, and translating findings. Our research covers obesity prevention including lifestyle interventions, family and child/adolescent health issues, health disparities, homelessness, prevention and control of addictive behaviors, sexual health risks including HIV/AIDS prevention and treatment, community based health promotion, health communication, LGBTQ health and well-being, and dissemination and implementation science.

Degree Programs
- Master of Public Health (MPH) concentration in Health Behavior
 (Including the Fast Track Program, Accelerated Bachelors/Masters (ABM) and Online Degree Program)
- Doctor of Philosophy (PhD) in Health Behavior

Admissions Information

Master Program Deadline: www.uab.edu/soph/home/apply/graduate
PhD Program Deadline: February 15
GPA 3.0
Number of Letters of Recommendation Required: Three
Entrance Tests: GRE www.uab.edu/soph/home/apply/graduate
TOEFL TOEFL is required for international applicants whose native language is not English.
UAB has many degree programs (both face-to-face and online) that can lead to professional licensure or certification. Licensure requirements vary from state to state and by professional organization. Federal Regulations require UAB to provide public or general disclosures on educational programs designed to meet educational requirements for a specific professional license or certification, that is required for employment in an occupation, or is advertised as meeting such requirements. For a list of programs that customarily lead to professional licensure or certification, please visit the UAB Professional Licensure and Certification webpage.

Master of Public Health with a Concentration in Health Behavior

Including the Fast-Track and Accelerated Bachelors/Masters (ABM), and Online Degree Program

The MPH degree in Health Behavior addresses the behavioral, social, and cultural factors related to individual and population health and health disparities. Students in our program will apply social and behavioral science theories to public health problems, develop evidence-based health promotion interventions and disease prevention programs, and apply principles of evaluating health promotion interventions and disease prevention programs. We emphasize the importance of community based participatory research and the application findings through a variety of behavioral and social science health promotion strategies.

Classes are engaging, interactive, and relevant to current health behavior issues. Graduates of our health behavior program are well positioned for opportunities in local, state, and federal agencies, nonprofit/community based organizations, private research foundations, as well as the academic setting.

Curriculum

In addition to the MPH core requirements, students take 15 hours of health behavior track courses, a 3 hour internship, 9 hours of electives, and the integrative learning experience.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement (1 hour)</td>
<td></td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Concentration Requirements: (15 hours)</td>
<td></td>
</tr>
<tr>
<td>HB 600 Social and Behavioral Sciences in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>HB 624 Advanced Social and Behavioral Science Theory</td>
<td>3</td>
</tr>
<tr>
<td>HB 636 Developing Interventions to Promote Public Health</td>
<td>3</td>
</tr>
<tr>
<td>HB 641 Research Methods in Behavioral Science</td>
<td>3</td>
</tr>
<tr>
<td>HB 643 Health Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>Applied Practice Experience: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>For additional information please contact Julie Brown, MS, MBA (jebrown@uab.edu, phone: 205-975-8075)</td>
</tr>
</tbody>
</table>

Doctor of Philosophy in Health Behavior

The PhD in Health Behavior at the University of Alabama at Birmingham offers an enriching and engaging doctoral curriculum in health behavior combined with world-class research opportunities across Alabama, the United States, and globally. Students are trained to become health behavior scientists in academia, government, industry, or other organizations. Students are equipped to use theories and methods from the social and behavioral sciences to increase our understanding of the determinants of human health behaviors and translate that knowledge into programs, interventions, and policies that encourage healthy behaviors and improve the public's health. Our doctoral students learn state-of-the-art techniques and methods for research and program evaluation that can be applied to a variety of employment opportunities located locally, nationally, and globally in many different sectors.

Curriculum

The PhD program requires completion of a minimum of 72 hours of graduate credit, satisfactory performance on the qualifying exam, and completion of a doctoral dissertation. All PhD students must meet the graduation requirements of their department and the UAB Graduate School.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Requirements: (24 hours)</td>
<td></td>
</tr>
<tr>
<td>HB 703 Writing for the Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>HB 712 Examining Health Inequities in Social and Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>HB 724 Advanced Social and Behavioral Science Theory</td>
<td>3</td>
</tr>
<tr>
<td>HB 736 Advanced Research Intervention Design</td>
<td>3</td>
</tr>
<tr>
<td>HB 737 Advanced Intervention Implementation and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HB 741 Advanced Research Methods in the Behavioral Sciences</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717 Principles of Scientific Integrity</td>
<td>3</td>
</tr>
<tr>
<td>PUH 703 Public Health Grant Writing</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Research & Stats Methods Courses: (12 hours)</td>
<td></td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>A Qualitative or Mixed Methods Research Course</td>
<td>3</td>
</tr>
<tr>
<td>Health Behavior Electives: (minimum 12 hours)</td>
<td>12</td>
</tr>
<tr>
<td>Health Behavior Directed Research: (minimum 12)</td>
<td></td>
</tr>
<tr>
<td>HB 798 Doctoral-Level Directed Res</td>
<td>1-9</td>
</tr>
</tbody>
</table>
Health Behavior Dissertation Research: (minimum 12 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB 799</td>
<td>Doctoral Dissertation Research</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Minimum Credit Hours Earned: 72

Courses

HB 600. Social and Behavioral Sciences in Public Health. 3 Hours.
Social and behavioral science theories and strategies in public health will be discussed in relation to preventing disease and promoting health over the life course. The course is comprised of two major sections: (1) overview of fundamentals of social and behavioral sciences in public health and (2) social and behavioral science research and strategies and application of social and behavioral sciences in public health practice and policy.

HB 602. Alcohol and Drug Abuse. 3 Hours.
History and theory of human substance use and abuse. Empirical foundations of alcohol and drug abuse, diagnosis, assessment, treatment, and prevention. Course will be graded by letter. 3 hours.

HB 603. Obesity Prevention & Intervention. 3 Hours.
The aim of this course is to provide students with theoretical and practical knowledge required to develop, implement, and evaluate obesity intervention and prevention programs. The course covers both pediatric and adult obesity intervention and prevention with a focus on lifestyle (dietary intake, physical activity) and environmental factors. Course will be graded by letter. 3 hours.

HB 604. LGBTQ Health and Wellbeing Service Learning. 3 Hours.
The service-learning course will examine LGBTQ health and wellbeing. Specifically, it will take the knowledge learned from courses associated with the LGBTQ health and wellbeing certificate program and enable the students the opportunities to put it into practice. Students will have a range of opportunities to explore what LGBTQ health and wellbeing looks like in practice. Topics include issues related to LGBTQ risk and resilience, policy and programmatic approaches to LGBTQ health and health and wellbeing, as well as the concrete advocacy and leadership skills needed to address the most pressing inequities faced by LGBQ communities in Alabama and the Deep South.
Prerequisites: HB 607 [Min Grade: C] or HB 707 [Min Grade: C]

HB 605. Physical Activity in Public Health. 3 Hours.
This seminar course is an introduction to research and practice related to physical activity promotion from a public health perspective and will provide a more complete view of how to enhance the lives of millions of Americans and reduce economic burden.
Prerequisites: HB 624 [Min Grade: C] or HB 624Q [Min Grade: C]

HB 607. Introduction to LGBTQ Health. 3 Hours.
This course will survey current LGBTQ health topics, including: 1) Defining evolving terms and concepts; 2) Risk and resilience - physical, mental, and behavioral health among LGBTQ individuals; 3) Theories guiding LGBTQ research; 4) Analytic considerations when conducting LGBTQ health inequity research; 5) Ways to improve the provision of services for LGBTQ individuals; 6) Overview of key, local, national, and global policies impacting LGBTQ individuals; and 7) Meaningful integration of LGBTQ communities in policy, programs, and research.

HB 609. African-American Health Issues. 3 Hours.
This is an intermediate level course that focuses on: epidemiological data illustrating the health risks experienced by African-Americans; sociocultural factors essential for understanding and enhancing the health of African-Americans; effective health-related prevention programs for African-Americans.

HB 611. Mental Health as a Public Health Issue. 3 Hours.
This course is designed to increase knowledge of mental illness at the individual, community, and population levels. It also covers historical and contemporary models and research on the etiology, diagnosis, assessment, treatment and prevention of mental and other behavioral health disorders.

HB 612. Examining Health Inequities in Social and Behavioral Sciences. 3 Hours.
This course is designed to provide a comprehensive overview of race/ethnic health disparities/health inequities in the U.S. Both historical context and more current perspectives of identified determinants of health will be discussed as contributors to current health inequities.

HB 613. Health Promotion Practices and Disability. 3 Hours.
The course will examine the population of people living with a disability and health promotion approaches at multiple levels (individual, social, environmental, and policy). One in five people in the U.S. has a disability and many people will be affected by disability, whether personally or through a loved one, during their lifetime. Advancements have been offered by the medical model of disability towards disability prevention; however, the addition of functional and social models of disability provide a more complete view of how to enhance the lives of millions of Americans and reduce economic burden.

HB 615. Homelessness, Housing and Health. 3 Hours.
The course will begin with a discussion of the concept of homelessness and housing instability and their impact on health. We will discuss how homelessness is defined and enumerated, pathways into homelessness, and multi-level interventions to prevent and end homelessness. We will also explore a series of special topics focusing on populations that may be particularly vulnerable to homelessness as well as the intersection between homelessness and experience of particular health conditions and outcomes.

HB 616. Psychophysiology and Public Health: The Interface of the Mind/Body Connection. 3 Hours.
Psychophysiology is a branch of neuroscience that analyses the interfaces of mental states and physiological responses, and how they interact to affect one another and subsequently drive behaviors. This course introduces students to basic knowledge about neuroanatomy, learning/cognition, neurological processes, memory, human development, brain disorders, response patterns, and behavior change strategies as they relate to public health issues such as sexual behavior, drug addiction, cigarette smoking/vaping, and obesity. The course will also introduce principles of stress management and neurofeedback techniques. A biopsychosocial framework will be applied to a range of public health domains, using Maslow’s Hierarchy of Needs to inform context and priorities for interventions.

HB 617. Implementation Science and Disability Health. 3 Hours.
The course provides lectures on implementation science and a deep dive into a premier, national program for people with disability. Implementation science helps researchers to understand how and why a program is effective in order for it to be translated into practice. Students will gain a better understanding of when and how to use implementation science methods through a series of lectures and multiple assignments including a grant proposal. In addition, this course provides experiential learning opportunities in disability health and community engagement.
HB 624. Advanced Social and Behavioral Science Theory. 3 Hours.
The aim of this course is to provide students with a broad understanding of theories of health behavior change with a strong focus on those theories that are most widely used in research and practice. Emphasis will be given to the discussion and elaboration of important theoretical concepts as well as their application in specific health behavior interventions. This class will take an ecological perspective and discuss theories that approach behavior change from various different levels. Basic theories that are covered in this course include individual level models (Health Belief Model, Theory of Planned Behavior, Transtheoretical Model), interpersonal level models (Social Cognitive Theory), and community level models (community organization and other participatory models like Community Based Participatory Research, Diffusion of Innovations). 3 hours.

HB 625. Dissemination and Implementation in Health. 3 Hours.
The course will offer an introduction to dissemination and implementation science, an interdisciplinary field focused on improving the transition of evidence-based health practices, programs, and interventions from research studies into “real-world” settings.
Prerequisites: HB 600 [Min Grade: C]

HB 630. Health Communications: Theory and Practice. 3 Hours.
This course is designed to investigate the role of communication theories and methods in promoting public health and preventing disease. Both theoretical background in communication and behavioral science and practical communication/intervention development methods will be addressed.

HB 636. Developing Interventions to Promote Public Health. 3 Hours.
This course is intended to provide students with a comprehensive understanding of the range and diversity of intervention approaches to behavior change and their application in public health. Emphasis will be placed on developing skills for designing interventions: a) in various public health settings, b) for specific population subgroups, c) based on determinants identified to be most influential and amenable to intervention, and d) within the confines of available resources.
Prerequisites: HB 624 [Min Grade: C] or HB 624Q [Min Grade: C]

HB 639. Survey Design and Analysis in the Social and Behavioral Sciences. 3 Hours.
This course provides an in-depth treatment of survey design and elementary data analysis procedures commonly associated with social and behavioral research. What are the best practices for asking individuals potentially uncomfortable questions about risky health behaviors? How do we measure the reliability and validity of self-reported behaviors? This course addresses these issues in addition to those of sampling hard-to-reach populations, best practices in questionnaire design, an overview of index and scale construction, and an elementary introduction to data entry and analysis of survey data using common software packages.

HB 641. Research Methods in Behavioral Science. 3 Hours.
Review of research methodology in behavioral sciences. Formulation of research questions, causality, experimental and quasi-experimental designs, reliability and validity, reporting findings. Course will be graded by letter.

HB 643. Health Program Evaluation. 3 Hours.
Principles and procedures to evaluate health promotion/disease prevention programs: data collection methods, instrument-scale development, measurement, evaluation designs and analysis of case studies of disease prevention literature on evaluation.
Prerequisites: HB 641 [Min Grade: C] or HB 641Q [Min Grade: C]

HB 660. Adolescent Health: A Social and Behavioral Perspective. 3 Hours.
Designed to provide students with the most current knowledge and analysis of issues influencing the health and well-being of adolescents. Theoretical frameworks that draw on an ecological perspective will provide a better understanding of how families, peers, schools, and neighborhoods influence risk and protective factors in youth. Emphasis will be placed on the relevance of adolescent health issues for the science of Health Behavior and the broader public health arena.

HB 681. MSPH Directed Research I. 3 Hours.
MSPH Directed Research I provides MSPH students with the opportunity to work closely with a faculty mentor in the design of a health behavior intervention and collection of data. This course is the first in a three-course sequence that culminates in the presentation of research findings to their faculty mentor and other faculty in a public forum. As such, HB 681 focuses on the development of a health behavior intervention in an area of the student’s expertise, including consideration of the PRECEDE/PROCEED model, study population, data collection methods, IRB approval, study registration, previous research, and other activities in consultation with their HB mentor.
Prerequisites: HB 681 [Min Grade: P]

HB 682. MSPH Directed Research II. 3 Hours.
MSPH Directed Research II provides MSPH students with the opportunity to work closely with a faculty mentor in the design of a health behavior intervention and collection of data. This course is the second in a three-course sequence that culminates in the presentation of research findings to their faculty mentor and other faculty in a public forum. As such, HB 682 focuses on collection and analysis of data, interpretation of results, and significant progress in the drafting of a scientific manuscript reporting the research project and preliminary results, and other activities in consultation with their HB mentor.
Prerequisites: HB 681 [Min Grade: P] and HB 682 [Min Grade: P]

HB 683. MSPH Directed Research III. 3 Hours.
MSPH Directed Research III provides MSPH students with the opportunity to work closely with a faculty mentor in the design of a health behavior intervention and collection of data. This course is the third in a three-course sequence that culminates in the presentation of research findings to their faculty mentor and other faculty in a public forum. As such, HB 683 focuses on analysis of data, interpretation of results, completion of a scientific manuscript reporting the research project and preliminary results, other activities in consultation with their HB mentor, and the presentation of results in a public forum.
Prerequisites: HB 681 [Min Grade: P] and HB 682 [Min Grade: P]

HB 689. Health Behavior Integrative Learning Experience. 2 Hours.
The HB ILE or capstone course represents a culminating experience that allows students to demonstrate synthesis of foundational and concentration competencies. This course will provide students with the opportunity to use skills gained during the MPH Health Behavior program to develop a high-quality written product that addresses health disparities from a behavioral and social sciences perspective and is ideally useful for an identified stakeholder. All MPH Health Behavior students must complete this course to graduate in the final term of the MPH program.
Prerequisites: PUH 688 [Min Grade: C]

HB 692. Principles and Practices of Community Organization. 3 Hours.
Seminar designed as an integrative experience for persons working with community groups. The focus is on learning to use available resources and advocating change to maximize community involvement.

HB 695. Seminar on Selected Health Behavior Topics. 1-3 Hour.
Seminar covering a variety of health behavior topics.
HB 698. Master’s Level Directed Research Health Education. 1-9 Hour.
Independent study with guidance of appropriate faculty. Includes activities such as literature review and evaluation. Course will be graded as Pass/No Pass. 1 - 9 hours.

HB 699. Master’s Level Project Research Health Education. 1-9 Hour.
Research for project under direction of research project committee. Course will be graded as Pass/No Pass. 3-6 hours.
Prerequisites: GAC M

HB 701. Theory-Based Measurement Development. 3 Hours.
The aim of this course is to introduce students to measurement development based on well-specified behavioral theories. This course will review and discuss key issues related to measurement development such as item/scale development, number of factors to retain rotation options and statistical programs. Prerequisite: Requires knowledge of elementary probability and statistics for non-statistics majors and BST 611. Course will be graded by letter. 3 hours.
Prerequisites: BST 611 [Min Grade: C]

HB 703. Writing for the Behavioral Sciences. 3 Hours.
The aim of this course is to develop and fine-tune scientific writing proficiency. In this course, students will read and critique a variety of books, essays, and articles about science and medicine, and complete numerous writing assignments and participate in peer review.

HB 707. Introduction to LGBTQ Health. 3 Hours.
This course will survey current LGBTQ health topics, including 1) Defining evolving terms and concepts; 2) Risk and resilience - physical, mental, and behavioral health among LGBTQ individuals; 3) Theories guiding LGBTQ research; 4) Analytic considerations when conducting LGBTQ health inequity research; 5) Ways to improve the provision of services for LGBTQ individuals; 6) Overview of key, local, national, and global policies impacting LGBTQ individuals; and 7) Meaningful integration of LGBTQ communities in policy, programs, and research.

HB 709. African American Health Issues. 3 Hours.
This course will explore issues of both physical and psychological issues of African Americans historically and today. Historical, sociocultural and economic factors that affect the quality and utilization of healthcare services in African American communities will be examined. We will examine the risk and protective factors for specific health conditions. We will also identify evidence-based ways to engage the community and draw on individual and community strengths in prevention and treatment. Students will be equipped and empowered with the knowledge and skills required to develop a Community Action Plan aimed to improve the effectiveness of interventions targeting the African American community.

HB 710. Mental Health Promotion and Professional Development. 1 Hour.
In this course, students will gain knowledge about mental health topics relevant for graduate students, professional students, and postdoctoral fellows and learn skills for managing personal mental health, supporting others’ mental health, and intervening when concerned about someone who may be considering suicide. In addition to course credit, students will earn a certificate in QPR Suicide Gatekeeper Training.

HB 711. Advanced Public Mental Health Promotion: Service Learning. 3 Hours.
This advanced course on mental health promotion focuses on evidence-based approaches, innovative service delivery models, and research-practice partnerships to address public mental health. Students acquire skills and hands-on experience related to thinking critically about evidence based approaches, innovative service delivery models, and research-practice partnerships to improve dissemination and implementation.

HB 712. Examining Health Inequities in Social and Behavioral Sciences. 3 Hours.
This course is designed to provide a comprehensive overview of race/ethnic health disparities/health inequities in the U.S. Both historical context and more current perspectives of identified determinants of health will be discussed as contributors to current health inequities.

HB 715. Examining Health Inequities in Social and Behavioral Sciences. 3 Hours.
This course is designed to provide a comprehensive overview of race/ethnic health disparities/health inequities in the U.S. Both historical context and more current perspectives of identified determinants of health will be discussed as contributors to current health inequities.
Prerequisites: HB 641 [Min Grade: C] and HB 643 [Min Grade: C]

HB 716. Psychophysiology and Public Health: The Interface of the Mind/Body Connection. 3 Hours.
Psychophysiology is a branch of neuroscience that analyzes the interfaces of mental states and physiological responses, and how they interact to affect one another and subsequently drive behaviors. This course introduces students to basic knowledge about neuroanatomy, learning/cognition, neurological processes, memory, human development, brain disorders, response patterns, and behavior change strategies as they relate to public health issues such as sexual behavior, drug addiction, cigarette smoking/vaping, and obesity. The course will also introduce principles of stress management and neurofeedback techniques. A biopsychosocial framework will be applied to a range of public health domains, using Maslow’s Hierarchy of Needs to inform context and priorities for interventions.
Prerequisites: HB 624 [Min Grade: C] or HB 624Q [Min Grade: C]

HB 724. Advanced Social and Behavioral Science Theory. 3 Hours.
This course focuses on a thorough examination of theories and models of behavior change and their applications in both research and implementation in various fields of health promotion and public health. Basic knowledge of research methodology and statistics is required. Course will be graded by letter. 3 hours.

HB 730. Health Communication Research. 3 Hours.
This course is designed to investigate the role of communication theories and methods in promoting public health and preventing disease. Both theoretical background in communication and behavioral science and practical communication/intervention development methods will be addressed.
HB 733. Health, Place, and Society. 3 Hours.
Health, Place, and Society examines social, economic, and political trends within the context of contemporary public health outcomes. Class participants will have a detailed understanding of how the social determinants of health interface with 1) housing policy, 2) employment, 3) education opportunities, 4) economic policy, and 5) social movements. Special emphasis is placed on how these factors follow a measurable pattern affecting intangible outcomes including access to health-enhancing knowledge and tangible outcomes including neighborhood quality and proximity to clean air and healthy foods. Class activities and projects will take a solution-based approach.

HB 736. Advanced Research Intervention Design. 3 Hours.
This course is intended to provide doctoral students with expert knowledge and application skills for designing a range of public health interventions to change behavioral outcomes in various populations. Emphasis will be placed on skill-building for designing relevant, state-of-the-art interventions tailored to unique population subgroups, and adapting existing evidence-based interventions for use with new populations or in new settings. Students will use two textbooks in this course that they will also use in Part 2 of this course (HB-737: Advanced Intervention Implementation and Evaluation). In addition, weekly readings of scientific articles will be assigned. This course uses lecture and seminar format; class time will be structured around lectures, in-class activities, and class discussions of both the lecture and reading materials. Students will complete writing assignments and develop a comprehensive research intervention development and implementation plan that they will later build on and evaluate in HB-737. This course is required for PhD students in Health Behavior.
Prerequisites: HB 724 [Min Grade: C]

HB 737. Advanced Intervention Implementation and Evaluation. 3 Hours.
This course is the second in a series of courses intended to teach doctoral students how to develop, implement, and evaluate theory-based, consumer-driven behavioral interventions. Students will learn how to assess whether interventions worked, build evidence for effective interventions, and adapt, implement, and disseminate interventions. Assignments will include developing a comprehensive evaluation plan for a mock grant application and describing how to adapt an existing evidence-based intervention to a particular content area, outcome target, setting, or population; students will be expected to present their work in class.
Prerequisites: HB 736 [Min Grade: C]

HB 741. Advanced Research Methods in the Behavioral Sciences. 3 Hours.
This course provides an in-depth treatment of the major research designs used in the behavioral sciences. Emphasis is given to the randomized controlled trial as it forms the cornerstone of causal inference in scientific inquiry; however, other designs intended to approximate a randomized trial will be reviewed. The course will also examine methods of collecting, analyzing, and interpreting data. Other topics include evaluating published research that used the methods review in this course, writing research proposals and reports, and ethical considerations. Students must have taken HB 641: Research Methods in Behavioral Sciences or its equivalent as a prerequisite.

HB 742. Mediation and Moderation in Behavioral Science Research. 3 Hours.
This course is an elective course for doctoral students in public health and related fields, designed to provide an exposure to statistical mediation and moderation. Mediation and moderation are central in social and behavioral science research. Mediation explains and tests the underlying mechanisms by which the predictor variable affects the outcome variable, while moderation specifies under what conditions the predictor affects the outcome. Statistical techniques investigating mediation and moderation are among the most widely used data analysis techniques in a variety of disciplines. The primary goal of this course is to provide students with theoretical concepts of mediation and moderation and hands-on experience with relevant analytical techniques. Prerequisite: Students should have taken courses on multiple regression such as BST 611, BST or other equivalent courses. Course will be graded by letter. 3 hours.

HB 770. Doctoral Studies Seminar. 1-3 Hour.
The broad intent of the course is to review current issues relevant to the field of Health Promotion/Health Education, critically examine the relationship between scholarship, research, ethics and funding and reflect and discuss theoretical aspects of Health Promotion/Health Education.

HB 795. Seminar on Selected Health Behavior Topics. 1-3 Hour.
This course will be used as faculty design and craft course topics based on specific interests. These courses will be taught on a doctoral level.

HB 798. Doctoral-Level Directed Res. 1-9 Hour.
Independent study with guidance of senior public health faculty. Course will be graded as Pass/No Pass. 1 - 9 hours.

Research for dissertation under direction of dissertation committee. Course will be graded as Pass/No Pass. Prerequisite: Students must be admitted to candidacy in order to register for this class.1 - 9 hours.
Prerequisites: GAC Z

Health Care Organization and Policy

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Fulfilled By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Offered:</td>
<td>M.P.H., M.S.P.H., Dr.PH.</td>
</tr>
<tr>
<td>Chair:</td>
<td>Martha S. Wingate, DrPH, MPH</td>
</tr>
<tr>
<td>Phone:</td>
<td>(205) 934-3939</td>
</tr>
<tr>
<td>Website:</td>
<td>www.uab.edu/soph/home/departments/hcop</td>
</tr>
<tr>
<td>Department Contact:</td>
<td>Brenda Campbell</td>
</tr>
<tr>
<td>Department Contact Email:</td>
<td>bcampbel@uab.edu</td>
</tr>
</tbody>
</table>

Overview

Programs in **Health Policy and Organization** provide training and education at the master's and doctoral level. At the master's level, programs are available for those desiring a career in the analysis of health services policy or in the management of public health services resources. At the doctoral level, our program offers rigorous training in research methods and evidence-based public health practice suitable for careers in public health leadership, or academic settings. Our programs require mastering major concepts of health economics, public health management and planning, health policy, and outcomes research. Master of Public Health (M.P.H.) degrees are offered in health policy and organization and maternal and child health policy.
and leadership. The Master of Science in Public Health (M.S.P.H.) in outcomes research, and the Doctor of Public Health (DrPH) degree has concentrations in health policy and organization, outcomes research or maternal and child health policy.

Degree Programs

- Master of Public Health (MPH) concentration in Health Policy and Organization (Including the Fast Track Program, Accelerated Bachelors/Masters (ABM) and Online Degree Program)
- Master of Public Health (MPH) concentration in Maternal and Child Health Policy and Leadership (Including the Fast Track Program, Accelerated Bachelors/Masters (ABM) and Online Degree Program)
- Master of Science in Public Health (MSPH) concentration in Outcomes Research Online
- Doctor of Public Health (DrPH) concentration in Health Policy and Organization
- Doctor of Public Health (DrPH) concentration in Maternal and Child Health Policy
- Doctor of Public Health (DrPH) concentration in Outcomes Research

Admissions

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Fulfilled By:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Program Deadline:</td>
<td>www.uab.edu/soph/home/apply/</td>
</tr>
<tr>
<td></td>
<td>graduate</td>
</tr>
<tr>
<td>DrPH Program Deadline:</td>
<td>April 1</td>
</tr>
<tr>
<td>GPA:</td>
<td>3.0</td>
</tr>
<tr>
<td>Number of Evaluation Forms Required:</td>
<td>Three</td>
</tr>
<tr>
<td>Entrance Tests: GRE</td>
<td>www.uab.edu/soph/home/apply/</td>
</tr>
<tr>
<td></td>
<td>graduate</td>
</tr>
<tr>
<td>SOPH Admissions:</td>
<td>www.uab.edu/soph/home/apply/</td>
</tr>
<tr>
<td></td>
<td>graduate</td>
</tr>
</tbody>
</table>

UAB has many degree programs (both face-to-face and online) that can lead to professional licensure or certification. Licensure requirements vary from state to state and by professional organization. Federal Regulations require UAB to provide public or general disclosures on educational programs designed to meet educational requirements for a specific professional license or certification, that is required for employment in an occupation, or is advertised as meeting such requirements. For a list of programs that customarily lead to professional licensure or certification, please visit the UAB Professional Licensure and Certification webpage.

Master in Public Health with a Concentration in Health Policy and Organization

Including the Fast-Track, Accelerated Bachelors/Masters (ABM) and Online Degree Program

This program is designed for individuals who are planning on management-focused careers in public health. Perhaps you aspire to be the Executive Director of a non-profit charitable organization or a senior-level manager in a health department or federal agency. Perhaps you are a physician, nurse, pharmacist, or other clinician who wants to move from direct patient care into a supervisory position with a broad focus on the health of a community. Students in this program are introduced to the public health system and the fundamental skills necessary for practice in the public health sector and managing health care organizations. Required coursework includes basic management disciplines and selected content in economics, finance, marketing, law, and health insurance.

Curriculum

Students in this track must complete 44 credit hours. This includes the MPH core, SOPH requirements, departmental track requirements, electives and internship. Full-time students generally complete this degree in 2 years or less (4-5 semesters). Part-time students may take up to 5 years.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement: (1 hour)</td>
<td></td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Department Requirements: (9 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 603 Public Health Policy</td>
<td>3</td>
</tr>
<tr>
<td>HPO 609 Public Health Program Planning, Implementation and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HPO 615 Finance for Health Professionals</td>
<td>3</td>
</tr>
<tr>
<td>HPO Concentration Requirements: (9 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 601 Health Economics</td>
<td>3</td>
</tr>
<tr>
<td>HPO 612 Strategic Management in Health Programs</td>
<td>3</td>
</tr>
<tr>
<td>HPO 636 Public Health and Healthcare Delivery Systems</td>
<td>1</td>
</tr>
<tr>
<td>HPO 637 Design and Management of Complex Public Health Systems</td>
<td>1</td>
</tr>
<tr>
<td>HPO 638 Current Issues in Public Health Policy</td>
<td>1</td>
</tr>
<tr>
<td>Applied Practice Experience: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 688 Public Health Internship</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (6 hours)</td>
<td></td>
</tr>
<tr>
<td>Select 6 hours from 600-level or higher (HPO) courses</td>
<td>6</td>
</tr>
<tr>
<td>Integrative Learning Experience: (2 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 689 HPO Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>44</td>
</tr>
</tbody>
</table>
and leadership and demonstrate their application in problem solving and systems development.

Curriculum

Students in this track must complete 44 credit hours. This includes the MPH core, SOPH requirements, departmental track requirements, electives and internship. Full-time students generally complete this degree in 2 years or less (4-5 semesters). Part-time students may take up to 5 years.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core Requirements: (14 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 601 This is Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PUH 602 Community Assessment</td>
<td>3</td>
</tr>
<tr>
<td>PUH 603 Quantitative Methods in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PUH 604 Programs and Policies</td>
<td>3</td>
</tr>
<tr>
<td>PUH 605 Public Health Management and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PUH 606 Leadership for Evidence-Based Public Health</td>
<td>1</td>
</tr>
<tr>
<td>MPH Degree Requirement (1 hour)</td>
<td></td>
</tr>
<tr>
<td>ENH 690 Environmental Health Perspectives</td>
<td>1</td>
</tr>
<tr>
<td>Department Requirements: (9 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 603 Public Health Policy</td>
<td>3</td>
</tr>
<tr>
<td>HPO 609 Public Health Program Planning, Implementation and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HPO 615 Finance for Health Professionals</td>
<td>3</td>
</tr>
<tr>
<td>MCH Concentration Requirements: (9 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 602 MCH Evidence-Based Strategies Seminar</td>
<td>1</td>
</tr>
<tr>
<td>HPO 605 Foundations of Maternal and Child Health: Programs and Policies for Women, Children, and Families</td>
<td>3</td>
</tr>
<tr>
<td>HPO 630 Health and Development: Life Course Approach</td>
<td>2</td>
</tr>
<tr>
<td>HPO 632 Leadership in Maternal and Child Health</td>
<td>3</td>
</tr>
<tr>
<td>Choose one of the following methods courses: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 608 Reproductive Health</td>
<td></td>
</tr>
<tr>
<td>HPO 633 Women’s Health</td>
<td></td>
</tr>
<tr>
<td>HPO 672 Perinatal Health: Issues, Data, and Policies</td>
<td></td>
</tr>
<tr>
<td>Applied Practice Experience: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>PUH 688 Public Health Internship</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>Select 3 hours from 600-level or higher (HPO) courses</td>
<td>3</td>
</tr>
<tr>
<td>Integrative Learning Experience: (2 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 689 HPO Integrative Learning Experience</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>44</td>
</tr>
</tbody>
</table>

Applied Practice Experience

The health care field is placing increasing emphasis on the identification and measurement of clinical decision-making and cost/utility analysis. Continuing pressure for the development and measurement of both efficient and effective protocols and health care policies is the driving force underlying this emphasis. Increasingly, employers are seeking qualified analysts to study treatment effectiveness. This program is designed for individuals who want to evaluate the effectiveness and cost-effectiveness of specific health care treatments. You may be a physician who plans on a career in clinical research and wants to determine not only that a treatment works but that it is better than some alternatives after taking into account both cost and a patient’s own treatment preferences. You may also be a non-clinician who likes solving complicated modeling problems that may involve simulation or clinical process modeling. Graduates of this track will work in clinical settings, government agencies, managed care organizations, insurance companies, health associations, pharmaceutical firms, and consulting firms analyzing cost effectiveness, utilization, and treatment effectiveness.

Curriculum

Students in this track must complete 42 credit hours. This includes the MSPH core, Outcomes Research track requirements, electives and project research. Full-time students generally complete this degree in 2 years or less (4-5 semesters). Part-time students may take up to 5 years.

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSPH Core Requirements: (9 hours)</td>
<td></td>
</tr>
<tr>
<td>BST 611 Intermediate Statistical Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>BST 612 Intermediate Statistical Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>EPI 610 Principles of Epidemiologic Research</td>
<td>3</td>
</tr>
<tr>
<td>Outcomes Research Track: (21 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 604 Health Economics and Public Health Policy</td>
<td>3</td>
</tr>
<tr>
<td>HPO 621 Clinical Decision Making and Cost-Effectiveness Analysis</td>
<td>3</td>
</tr>
<tr>
<td>HPO 623 Pharmacoeconomics and Regulation</td>
<td>3</td>
</tr>
<tr>
<td>HPO 670 Social and Ethical Issues in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>HPO 677 Patient-Based Outcomes Measurement</td>
<td>3</td>
</tr>
<tr>
<td>HPO 687 Empirical Methods for Health Research</td>
<td>3</td>
</tr>
<tr>
<td>HPO 691 Policy Analysis: Modeling and Simulation</td>
<td>3</td>
</tr>
<tr>
<td>Approved Electives: (3 hours)</td>
<td></td>
</tr>
<tr>
<td>Select 3 hours of 600-level or higher (HPO) courses</td>
<td></td>
</tr>
<tr>
<td>Master’s Directed Research (9 credit):</td>
<td></td>
</tr>
<tr>
<td>HPO 698 Master’s Level Directed Research Health Policy and Organization</td>
<td>9</td>
</tr>
<tr>
<td>Total Hours</td>
<td>42</td>
</tr>
</tbody>
</table>

Doctor of Public Health with a Concentration in Health Policy and Organization

The DrPH degree is the highest professional degree in public health. The DrPH program in the Department of Health Policy and Organization develops leaders and research faculty who have proficiency in data analysis, management, critical thinking, teaching, and translating research into policy and practice. Students will be exposed to complex practical problems facing public health practitioners and policy-makers. The DrPH program has three concentrations: (1) Health Policy and Organization, (2) Maternal and Child Health Policy, and (3) Outcomes Research.

Curriculum

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be
completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

A minimum of 62 credit hours are required to complete the degree. Students will complete at least 12 credit hours of analytical or methodological courses; 6 hours of DrPH core course, 12 hours of HPO concentration courses, 12 hours of any 700-level electives (as approved by advisor). Students must also complete the doctoral seminars (HPO 796) comprehensive examination (HPO 797), practicum (HPO 793), dissertation proposal/Proposal development (HPO 798), and dissertation research (HPO 799).

Students in the Health Policy and Organization concentration will be required to meet concentration specific prerequisites (or their equivalent as determined by the program director and advisor). These credits do not count towards the total degree hours:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO 604 Health Economics and Public Health Policy</td>
<td>3</td>
</tr>
<tr>
<td>HPO 609 Public Health Program Planning, Implementation and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HPO 636 Public Health and Healthcare Delivery Systems</td>
<td>1</td>
</tr>
<tr>
<td>HPO 637 Design and Management of Complex Public Health Systems</td>
<td>1</td>
</tr>
<tr>
<td>HPO 638 Current Issues in Public Health Policy</td>
<td>1</td>
</tr>
<tr>
<td>HPO 670 Social and Ethical Issues in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>HPO 720 Health Insurance and Managed Care</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 15

DrPH Concentration in Health Policy and Organization Degree Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrPH Core Requirements: (6 hours)</td>
<td></td>
</tr>
<tr>
<td>HPO 716 Advanced Leadership and Practice Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HPO 717 Seminar in Public Health Policy</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration Core: (12 hours)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO 706 Strategic Management Theory/Research</td>
<td>3</td>
</tr>
<tr>
<td>HPO 715 Finance for Health Professionals</td>
<td>3</td>
</tr>
<tr>
<td>HPO 718 Management Concepts in Public Health Programs</td>
<td>3</td>
</tr>
</tbody>
</table>

PUH 703 Public Health Grant Writing

Methods Core (12 hours):

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO 728 Qualitative and Mixed Methods Research in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>HPO 781 Research Methods and Study Design</td>
<td>3</td>
</tr>
<tr>
<td>HPO 787 Empirical Methods for Health Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional 700 Level Methods Elective

Approved Electives: (12 hours)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 12 hours of approved 700-level courses</td>
<td>12</td>
</tr>
</tbody>
</table>

Doctoral Seminar: (Minimum 2 hours)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO 796 Doctoral Seminar in Health Policy and Organization</td>
<td>1</td>
</tr>
</tbody>
</table>

DrPH Practicum and Research: (18 hours)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO 793 DrPH Practicum</td>
<td>6</td>
</tr>
</tbody>
</table>

Doctor of Public Health with a Concentration in Maternal and Child Health Policy

The DrPH degree is the highest professional degree in public health. The DrPH program in the Department of Health Policy and Organization develops leaders and research faculty who have proficiency in data analysis, management, critical thinking, teaching, and translating research into policy and practice. Students will be exposed to complex practical problems facing public health practitioners and policy-makers. The DrPH program has three concentrations (1) Health Policy and Organization, (2) Maternal and Child Health Policy, and (3) Outcomes Research.

Curriculum

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.

A minimum of 62 credit hours are required to complete the degree. Students will complete at least 12 credit hours of analytical or methodological courses; 6 hours of DrPH core course, 12 hours of HPO concentration courses, 12 hours of any 700-level electives (as approved by advisor). Students must also complete the doctoral seminars (HPO 796) comprehensive examination (HPO 797), practicum (HPO 793), dissertation proposal/Proposal development (HPO 798), and dissertation research (HPO 799).

Students in the Maternal and Child Health Policy concentration will be required to meet concentration-specific prerequisites (or their equivalent as determined by the program director and advisor). These credits do not count towards the total degree hours:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPO 602 MCH Evidence-Based Strategies Seminar</td>
<td>1</td>
</tr>
<tr>
<td>HPO 604 Health Economics and Public Health Policy</td>
<td>3</td>
</tr>
<tr>
<td>HPO 605 Foundations of Maternal and Child Health: Programs and Policies for Women, Children, and Families</td>
<td>3</td>
</tr>
<tr>
<td>HPO 609 Public Health Program Planning, Implementation and Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HPO 630 Health and Development: Life Course Approach</td>
<td>2</td>
</tr>
<tr>
<td>HPO 670 Social and Ethical Issues in Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 15
DrPH Concentration in Maternal and Child Health Degree Requirements

Requirements Hours
DrPH Core: (6 hours)
HPO 716 Advanced Leadership and Practice Seminar 3
HPO 717 Seminar in Public Health Policy 3

Concentration Core: (12 hours)
HPO 714 Life Course Seminar 3
HPO 718 Management Concepts in Public Health Programs 3
HPO 720 Health Insurance and Managed Care 3
PUH 703 Public Health Grant Writing 3

Methods Core: (12 hours)
HPO 728 Qualitative and Mixed Methods Research in Public Health 3
HPO 781 Research Methods and Study Design 3
HPO 787 Empirical Methods for Health Research 3

Additional 700 Level Methods Elective 3

Approved Elective: (12 hours)
Select 12 hours of additional 700 level electives 12

Doctoral Seminar: (Minimum 2 hours)
HPO 796 Doctoral Seminar in Health Policy and Organization 1
HPO 796 Doctoral Seminar in Health Policy and Organization 1

DrPH Practicum & Research: (18 hours)
HPO 793 DrPH Practicum 6
HPO 797 Directed Readings for DrPH Comprehensive 3
 Examination
HPO 798 Doctoral Level Directed Research Health Policy and Organization 3
HPO 799 Dissertation Research HPO 6

Total Hours 62

1 Must be 700 level & may be selected from anywhere within the university with advisor approval.

DrPH Concentration in Outcomes Research

Requirements Hours
DrPH Core: (6 hours)
HPO 716 Advanced Leadership and Practice Seminar 3
HPO 717 Seminar in Public Health Policy 3

Concentration Core: (12 hours)
HPO 721 Clinical Decision Making and Cost EffectivenessAnalysis 3
HPO 777 Patient-Based Outcomes Measurement 3
HPO 791 Policy Analysis: Modeling & Simulation 3
PUH 703 Public Health Grant Writing 3

Methods Core: (12 hours)
HPO 728 Qualitative and Mixed Methods Research in Public Health 3
HPO 781 Research Methods and Study Design 3
HPO 787 Empirical Methods for Health Research 3

Additional 700 Level Methods Elective 3

Approved Electives: (12 hours)
Select 12 hours of any 700-level electives 12

Doctoral Seminar: (Minimum 2 hours)
HPO 796 Doctoral Seminar in Health Policy and Organization 1
HPO 796 Doctoral Seminar in Health Policy and Organization 1

DrPH Practicum & Research: (Minimum 18 hours)
HPO 793 DrPH Practicum 6
HPO 797 Directed Readings for DrPH Comprehensive 3
 Examination
HPO 798 Doctoral Level Directed Research Health Policy and Organization 3
HPO 799 Dissertation Research HPO 6

Total Hours 62

1 Must be 700 level & may be selected from anywhere within the university with advisor approval.

A minimum of 62 credit hours are required to complete the degree. Students will complete at least 12 credit hours of analytical or methodological courses; 6 hours of DrPH core course, 12 hours of HPO concentration courses, 12 hours of any 700-level electives (as approved by advisor). Students must also complete the doctoral seminars (HPO 796) comprehensive examination (HPO 797), practicum (HPO 793), dissertation proposal/Proposal development (HPO 798), and dissertation research (HPO 799).

Students in the Outcomes Research concentration will be required to meet concentration-specific prerequisites (or their equivalent as determined by the program director and advisor). These credits do not count towards the total degree hours:

Requirements Hours
CONCENTRATION PREREQUISITES (9 hours)
HPO 604 Health Economics and Public Health Policy 3
HPO 670 Social and Ethical Issues in Public Health 3
HPO 720 Health Insurance and Managed Care 3

Total Hours 9

DrPH Concentration in Outcomes Research

Requirements Hours
DrPH Core: (6 hours)
HPO 716 Advanced Leadership and Practice Seminar 3
HPO 717 Seminar in Public Health Policy 3

Concentration Core: (12 hours)
HPO 721 Clinical Decision Making and Cost EffectivenessAnalysis 3
HPO 777 Patient-Based Outcomes Measurement 3
HPO 791 Policy Analysis: Modeling & Simulation 3
PUH 703 Public Health Grant Writing 3

Methods Core: (12 hours)
HPO 728 Qualitative and Mixed Methods Research in Public Health 3
HPO 781 Research Methods and Study Design 3
HPO 787 Empirical Methods for Health Research 3

Additional 700 Level Methods Elective 3

Approved Electives: (12 hours)
Select 12 hours of any 700-level electives 12

Doctoral Seminar: (Minimum 2 hours)
HPO 796 Doctoral Seminar in Health Policy and Organization 1
HPO 796 Doctoral Seminar in Health Policy and Organization 1

DrPH Practicum & Research: (Minimum 18 hours)
HPO 793 DrPH Practicum 6
HPO 797 Directed Readings for DrPH Comprehensive 3
 Examination
HPO 798 Doctoral Level Directed Research Health Policy and Organization 3
HPO 799 Dissertation Research HPO 6

Total Hours 62

1 Must be 700 level & may be selected from anywhere within the university with advisor approval.

Doctor of Public Health with a Concentration in Outcomes Research

The DrPH degree is the highest professional degree in public health. The DrPH program in the Department of Health Policy and Organization develops leaders and research faculty who have proficiency in data analysis, management, critical thinking, teaching, and translating research into policy and practice. Students will be exposed to complex practical problems facing public health practitioners and policy-makers. The DrPH program has three concentrations (1) Health Policy and Organization, (2) Maternal and Child Health Policy, and (3) Outcomes Research.

Curriculum

All students in an MSPH, MS, DrPH, or PhD program are required to complete PUH 600: Overview of Public Health. The course must be completed in a single semester (Fall or Spring); students must complete the course by the end of their second semester in the program. Students with prior public health education (BS in Public Health or MPH) or extensive public health experience (5+ years in public health practice) may be waived from this requirement by permission of the Associate Dean for Academic Affairs, but this is rare.
The Graduate School

Today’s professionals face an increasingly competitive world. In addition to demonstrating mastery in their fields of study, employers expect graduates to demonstrate competencies and leadership skills as well as the ability to foster and contribute to equitable and inclusive workplaces. Institutions and industries seek employees with skills in areas of research communication, university teaching and academic advising, writing and publishing, interdisciplinary collaboration, leadership, and mentoring. Indeed, many leading institutions view these abilities as prerequisites for career advancement. This is why the UAB Office of Professional Studies and Experiential Learning (OPSEL) offers ongoing support for students, post-doctoral fellows, faculty, and staff who want to take advantage of the school’s resources to enhance their skills.

OPSEL offers a plethora of academic and professional development learning opportunities including two interdisciplinary master’s degrees, certificates, courses, seminars, day-long workshops, and free mini-workshops in a variety of areas, such as:

- Interdisciplinary Graduate Studies – MS and MS degrees available
- Academic Advising - Certificate available
- Diversity, Equity, Inclusion, & Advocacy - Certificate available
- Leadership & Professional Development - Certificate available
- Mentoring & Leadership - Certificate available
- Research Communication - Certificate available
- Research Laboratory Management - Certificate available
- Teaching at the College Level - Certificates available
- Critical Thinking
- Job Search
- Presentation and Discussion Skills
- Responsible Conduct of Research

Check out the Current Class Schedule for a list of available offerings, or visit the OPSEL webpage for detailed information on our free mini-workshops.

AADV-Academic Advising Courses

AADV 600. Academic Advising History and Practices. 3 Hours.
The purpose of this course is to provide current or aspiring academic advising professionals with a learning environment to enhance their understanding and ability to apply historical developments and theoretical foundations to their advising practices. Students will demonstrate their understanding of NACADA’s core conceptual and informational competencies as well as their ability to apply core relational components of the academic advising profession, the pillars of academic advising, and CAS Standards within the practice.

AADV 601. Professional Writing for Academic Advisors. 1 Hour.
AADV 601 prepares Academic Advisors with professional writing skills important to success as advisors and advising program administrators. You will engage in self as well as peer review processes to facilitate your professional writing abilities. Expect to develop draft, review, finalize and submit a variety of professional writing samples including, yet not limited to, recommendation letters, emails, meeting agendas, and an academic advising project proposal.

AADV 605. Prioritization and Decision-Making in Academic Advising. 1 Hour.
AADV 605 prepares Academic Advisors with opportunities to apply skills associated with evaluating and prioritization processes to efficiently make effective and purpose-informed decisions. Additionally, learners will practice skills associated with supporting the development of prioritization skills among others.

AADV 606. Emotional Intelligence in Academic Advising. 1 Hour.
AADV 606 prepares Academic Advisors with opportunities to self-assess and apply skills associated with emotional intelligence as well as the role that it plays in academic advising processes. Additionally, learners will practice skills associated with supporting the development of emotional intelligence among others.

AADV 610. Assessment in Academic Advising. 3 Hours.
The purpose of this course is to enhance learners’ understanding of and ability to apply assessment within academic advising practices. Learners will articulate why individual and programmatic assessment is important to academic advising practices and will demonstrate their ability to synthesize assessment data into meaningful suggestions for academic advising practice, procedures, and/or policy development.

Prerequisites: AADV 600 [Min Grade: B]

AADV 620. Diversity, Equity, Inclusion, and Advocacy in Academic Advising. 3 Hours.
This course explores the relevance and value of diversity, equity, inclusion, and advocacy within the academic advising profession. Learners will study the skills and environmental factors associated with developing inclusive and equitable academic advising experiences for diverse student populations. A strong component of this course is preparing learners about principles of advocacy so that they are prepared to foster efficacious academic advising sessions, practices, programs, and policies in their campuses.

AADV 625. Resilience in Academic Advising. 2 Hours.
AADV 625 prepares Academic Advisors with opportunities to self-assess and apply skills associated with resilience and leadership as well as the role that it plays in academic advising processes. Additionally, learners will practice skills associated with supporting the development of resilience among others.

AADV 630. Special Topics Seminar in Academic Advising. 1-3 Hour.
This course will provide you with opportunities to practice a specific skill or competency associated with career success or advancement within the academic advising field. Academic Advisors serve to support the academic, career, and personal development and success of students as they persist towards degree completion. The purpose of this seminar is to provide you with opportunities to enhance your abilities to support students in developmentally appropriate ways that align with their academic, career, and/or personal goals. The primary difference between AADV 630 and AADV 640 relates to the learning activity formats and modes of content delivery. Seminars are facilitated by the instructor and delivered/created through the discourse and engagement of learners in the course. Workshops are designed with structured hands-on, skill practice sessions delivered by the instructor and experienced by the learners.

AADV 631. Academic Advising and Transfer Students. 2 Hours.
Academic Advisors serve to support the academic, career, and personal development and success of students as they persist towards degree completion. The purpose of this seminar is to provide you with opportunities to enhance your abilities to support transfer students in developmentally appropriate ways that align with their academic, career, and/or personal goals.
AADV 640. Special Topics Workshop in Academic Advising. 1-3 Hour.
This course will provide you with opportunities to practice a specific skill or competency associated with career success or advancement within the academic advising field. Academic Advisors serve to support the academic, career, and personal development and success of students as they persist towards degree completion. The purpose of this seminar is to provide you with opportunities to enhance your abilities to support students in developmentally appropriate ways that align with their academic, career, and/or personal goals. The primary difference between AADV 630 and AADV 640 relates to the learning activity formats and modes of content delivery. Seminars are facilitated by the instructor and delivered/created through the discourse and engagement of learners in the course. Workshops are designed with structured hands-on, skill practice sessions delivered by the instructor and experienced by the learners.

AADV 644. Conflict Resolution in Academic Advising. 1 Hour.
AADV 644 prepares Academic Advisors with opportunities to learn about and apply skills associated with conflict resolution and feedback as well as the role that it plays in academic advising processes. Additionally, learners will practice skills associated with supporting the development of associated communication skills among others.

Diversity Equity Inclusion Advocacy Courses

DEIA 510. Diversity Policy Politics and Practice. 3 Hours.
Diversity and Inclusion are popular terms. This course is an exploration of the origins, historical landmarks, scholarship, and practices of the field of Diversity and Inclusion.

DEIA 520. Equity and Inclusion. 3 Hours.
Diversity, Equity and Inclusion offices have been established in many corporate, government and higher education environments. While the term diversity is common and more widely understood in organizations, equity and inclusion are somewhat more elusive and require intentional effort. This course will address approaches to equity and inclusion in organizations.

DEIA 530. Leadership in Social Justice Advocacy, Self and Others. 3 Hours.
In this course we will examine leadership and advocacy issues, models, competencies and approaches related to the practice of diversity, equity and inclusion. Topics include social justice, advocacy and empowerment obligations, both to the profession and to the individuals served by professional diversity practitioners.

DEIA 590. Engaged Scholarship in Diversity, Equity, Inclusion, and Advocacy. 1-4 Hour.
This course is an upper-division research practicum focused on integration of previous DEI certification courses. The Advancing Equity in DEI Engaged Scholarship practicum serves as the link between knowledge gained in the classroom and the practice of inclusive excellence from an advanced generalist perspective. The purpose of this course is three-fold: (a) to enhance the student's ability to apply diversity, equity, and inclusion values, theory, concepts, skills, and knowledge to a broad range of systems; (b) to provide opportunities for students to learn to foster one's own mindfulness and empowerment among vulnerable populations; and (c) to provide a setting in which the mission and goals of the curriculum of the University of Alabama at Birmingham may be actualized. Students have the opportunity to apply and refine values, knowledge, and skills under the guidance of experienced focus area practitioners who serve as Field Supervisors. The practicum requirements are structured within four areas and field settings to ensure that students gain experience in developing a full range of advanced equity work. These four areas are: (1) Education equity, (2) health equity, (3) Community based engagement, and (4) Organizational equity and well-being.

GRD Graduate School Courses

GRD 520. Special Topics. 1-4 Hour.
This course addresses topics of current interest related to professional development.

GRD 542. Leading Diverse Teams. 1-2 Hour.
This course provides students with opportunities to comprehend, articulate and apply skills related to leading and building professionally diverse teams.

GRD 600. Core Issues in Aging. 3 Hours.
A multidisciplinary approach will be used to consider dimensions of the aging process. This course explores individual and societal meanings of aging and old age through the study of the biological, psychological and sociological changes accompanying aging as well as current issues and controversies in the study of aging.

GRD 617. Critical Thinking and Scientific Integrity for Masters Students. 3 Hours.
This course will give masters students an introduction to the rules of logic and reason that are necessary for effective scientific discourse and debate. In addition, students will be introduced to best practices in the responsible conduct of research, including rigor and reproducibility.

GRD 620. Special Topics. 1-4 Hour.
This course addresses topics of current interest related to professional development.

GRD 647. Navigating the Job Market. 1-3 Hour.
This course explores the academic and non-academic job markets and the documents and professional skills needed to navigate them effectively.
GRD 690. IGS Capstone: Research to Practice. 3 Hours.
This is the Capstone course for the Interdisciplinary Graduate Studies degree. The course addresses the research to practice cycle for professional practitioners. Focuses on developing skills and knowledge for understanding, critiquing, and applying research to practice, as well as the role of practitioners in identifying additional areas of needed research. Course may only be taken during the semester in which the learner is completing their IGS program. Learners will demonstrate their understanding, as well as abilities to apply and evaluate, critical thinking skills, deconstruct research reports, and synthesize a program or project proposals in order to facilitate success within their professional field. Learners are required to engage in readings, discussions, learning activities, and ultimately disseminate their final program, project, practice or policy proposal publicly.

GRD 701. Presentation and Discussion Skills. 3 Hours.
Develops professional communication skills, including public speaking skills, conversation management, adapting to audience, and overall comprehensibility. Presentations critiqued by self, peers, and instructor.

GRD 703. Special Topics. 1-4 Hour.
This course addresses topics of current interest related to professional development.

GRD 704. Specialized Instruction. 1-9 Hour.
This individualized course addresses particular communication needs of students actively writing theses, dissertations, articles for publication, and grant proposals. Individual plans approved by instructor are required.

GRD 705. Teaching at the College Level. 2-3 Hours.
Introduces many of the basic principles needed to teach effectively at the college level and addresses current issues relevant to college teaching. Topics include creating a learning environment, course and syllabus design, active learning approaches, evaluation and grading, and using technology to enhance learning.

GRD 706. Grants and Fellowships 101. 1 Hour.
Introduces the extramural funding process. Topics include types of awards, funding sources, components of an application, the review process, and writing effective grant proposals. One-day workshop.

GRD 707. Presenting Effectively. 1 Hour.
Provides an overview of giving effective oral presentations in academic and professional settings. Topics include analyzing audience and purpose, characteristics of an effective delivery, strategies for planning and design, handling questions and answers, boosting confidence, and using technology in presentations. One-day workshop.

GRD 708. Writing Successfully. 1 Hour.
Addresses issues involved in writing for academic and professional settings. Topics include analyzing audience and purpose, addressing common writing problems, developing effective writing practices, writing for publication, communicating research to the general public, and productivity strategies for writers. One-day workshop.

GRD 709. Writing Fellowships. 3 Hours.
Participants are introduced to ways to construct a biosketch, search for funding sources, how to construct a fellowship budget, and grant-related administrative policies. The importance of peer review and how to respond to reviewer critiques is covered as well as training plans, team-building and peer-review skills.

GRD 710. Career Workshop for Graduate Students. 1 Hour.
This workshop introduces a variety of career choices for students working on advanced degrees in the life sciences. Topics may include sources of career information, self-assessment, resume construction, interviewing, using new technologies in job searches, career choices, the hidden job market, networking, and negotiating.

GRD 711. Special Topics. 1-3 Hour.
This course addresses topics of current interest related to professional communication, career development, and ethics.

GRD 713. Mentoring 101. 1 Hour.
This seminar will cover the science and theory on mentoring, including the mentor-mentee relationship, issues of gender, culture, age, and other power differentials; contemporary mentoring strategies as they relate generally and specifically to situations and fields; applying different mentoring models to real life/workplace.

GRD 715. Preparing TAs to Be Effective Teachers. 2 Hours.
Prepares teaching assistants to meet the educational needs of undergraduate students by developing effective teaching practices. Topics include preparing to teach, presenting material effectively, handling questions, handling difficult students and situations, leading laboratory sections, and ethical issues related to teaching.

GRD 716. Developing a Teaching Portfolio. 2 Hours.
This hybrid course guides students in developing a Teaching Portfolio for improving teaching practices and enhancing job search potential. The web-based curriculum introduces essential elements of the portfolio and guides students in drafting a personal Philosophy of Teaching.

GRD 717. Principles of Scientific Integrity. 3 Hours.
Surveys ethical issues and principles in the practice of science.

GRD 719. Introduction to Mentoring & Leadership. 3 Hours.
This course covers the principles of mentoring and leadership, focusing on the student's ability to demonstrate, analyze, and evaluate contemporary mentoring and leadership practices. Application positions students to tailor practices to their respective fields, articulate a mentoring and leadership philosophy and develop new career skill sets while producing a mentoring and leadership portfolio.

GRD 722. Writing Research for Broad Audiences. 3 Hours.
Introduces students to effectively writing about research for broad audiences, including the media, policy makers, and general public. Students learn to write various genres of texts, such as blog posts, press releases, letters-to-the-editor, and feature articles.

GRD 723. Writing Research for Academic Audiences. 3 Hours.
Introduces students to effectively writing about research for academic, scientific, and specialist audiences. Students learn to write various genres of texts, such as abstracts, reviews, and research papers.

GRD 727. Writing & Reviewing Research. 3 Hours.
Introduces writers to research writing "best practices," criteria for evaluating writing, plus editing and peer review. Writers analyze and write short, strategic texts (on their own topics) in 5 research genres – critiques, annotated bibliographies, introductions, empirical, and review articles – based on peer and instructor feedback, for a draft presentation or proposal. For anyone writing course papers, theses, and/or proposals.
GRD 728. Professional Writing & Publishing. 3 Hours.
Introduces writers to “best practices” in academic/professional writing and publishing, plus editing, and peer review. Writers analyze and write short, strategic texts (in their own topics) in 7 academic/professional genres: abstracts, scholarly/empirical articles, review/historical articles, book chapters, opinion, professional philosophy statements, and digital journalism (writing for the public), based on peer review and instructor feedback, to produce a draft submission and publishing plan. For anyone writing for publication (including a dissertation).

GRD 729. Writing Your Journal Article in 12 Weeks. 3 Hours.
Introduces writers to a systematic approach to writing a journal article, including essential structures, stylistic conventions, and smart strategies for planning and completing projects under a deadline. Writers begin with their own working manuscripts (unpublished course paper, thesis, dissertation, etc.), identify a target journal, and draft short, strategic sections, based on peer review and instructor feedback, to create a final submission, per author’s guidelines. For anyone with active publishing goals.

GRD 730. Developing and Managing Your Professional Image. 3 Hours.
This course is designed to raise student awareness of their professional image. Topics include professional perception, polishing professional image, adjusting to professional contexts, and professional image and social media.

GRD 733. Managing & Leading Teams. 1 Hour.
This workshop will cover the latest science in managing and leading teams across disciplines, focusing on team building, the students' development of team presentations, peer discussion and review.

GRD 734. Ethical Leadership Development. 3 Hours.
Designed for those who want to apply evidence-based models to ethical decisions in a professional setting, this course positions students to tailor practice to their own careers, articulate an ethical philosophy for a portfolio, and model ethics as a leader in their respective fields.

GRD 735. Leadership 101. 1 Hour.
This seminar covers organizational leadership theory, as well as contemporary leadership models and strategies as they relate generally and specifically to situations and fields.

GRD 739. Research Communication Portfolio. 3 Hours.
This Science Communication Portfolio course focuses on the student's compilation of course experiences in key areas, such as science journalism, science public relations, medical writing, and entrepreneurship.

GRD 740. UAB Prep Scholar Workshop. 2 Hours.
This course will provide writing and other enrichment activities to prepare UAB PREP Scholars for entry into graduate school.

GRD 741. UAB PREP Scholar Workshop I. 1-3 Hour.
This course will provide writing and other enrichment activities to prepare UAB PREP Scholars for entry into graduate school.

GRD 742. UAB PREP Scholar Workshop II. 1 Hour.
This course will provide writing and other enrichment activities to prepare UAB PREP Scholars for entry into graduate school.

GRD 743. Critical Thinking and Quantitative Concepts. 3 Hours.
The goal of this course is to enhance students' critical thinking skills in the context of rigorous experimental design and quantitative analysis. Specifically, students will engage in activities that explore robust and unbiased approaches toward analysis, interpretation, and reporting of experimental results.

GRD 744. Leadership Survival Skills. 1 Hour.
In this course, participants explore the day-to-day activities of leaders, including organizational mission, vision, values, and goals, budgeting, human resources, and project management. Case studies are used to help students reflect on and discuss solutions from a leader's perspective.

GRD 745. Communication and Diversity Leadership. 3 Hours.
Upon completion of the course, students will be able to explain, analyze, and apply approaches to leading and communicating in diverse communities.

GRD 746. Critical Decisions in Mentoring & Leadership. 3 Hours.
This course explores the critical thinking skills related to the decision making processes for mentors and leaders.

GRD 747. Navigating the Job Market. 3 Hours.
This course explores the academic and non-academic job markets and the documents and professional skills needed to navigate them effectively.

GRD 748. Faculty Mentoring in Higher Education. 1 Hour.
In this one-day workshop, faculty will explore the mentor/mentee relationship in higher education, as well as peer mentoring, role modeling, coaching, and formal/informal mentoring structures.

GRD 749. Improvisational Techniques to Improve Leadership, Teaching, and Research Communication. 1 Hour.
This workshop engages participants through improvisational and theatrical techniques in order to build confidence and improve as leaders, teachers, and/or researchers.

GRD 750. CIRTL Seminar in Learning. 2 Hours.
CIRTL seminar provides opportunities for students to read and discuss basics of effective teaching and learning.

GRD 751. CIRTL Teaching Methods. 2 Hours.
This CIRTL seminar provides opportunities for students to read and discuss teaching as research projects.

GRD 752. Introduction to Evidence-based Teaching. 2 Hours.
This CIRTL Network seminar is designed for graduate students and postdoctoral scholars who plan to teach undergraduate STEM (science, technology, engineering, and mathematics) courses. It addresses a range of topics focused on enhancing STEM teaching.

GRD 753. CIRTL Seminar on STEM Academic Teaching Careers. 1-3 Hour.
This CIRTL Network seminar provides an overview of types of academic teaching positions and addresses topics related to academic careers.

GRD 754. Advanced Evidence-based Teaching. 2 Hours.
This CIRTL Network course explores effective research-based teaching approaches for enhancing learning in STEM (science, technology, engineering, and math) courses. Approaches such as collaborative learning, team-based learning, flipped classrooms, inquiry science, case studies, and problem-based learning will be considered.

GRD 755. CIRTL Teaching Practicum. 3 Hours.
This CIRTL course provides students a structured observation and practicum experience in which they shadow a faculty member as he/she teaches a semester-long course and engage in a variety of guided teaching activities.

GRD 756. CIRTL The College Classroom. 2 Hours.
This CIRTL Network course provides students with the basics of effective teaching with an emphasis on the learning-centered classroom and the interconnected cycle of teaching, assessment, and learning.
GRD 757. CIRTL Effective Use of Technology in Teaching and Learning. 2 Hours.
This CIRTL Network course provides students with strategies and technological choices and tools for effective use of instructional technology in their teaching practices.

GRD 758. CIRTL Diversity in the College Classroom. 2 Hours.
This CIRTL Network course addresses different aspects of diversity, particularly in STEM (science, technology, engineering, and math) education, with the underlying principle of equitable access and enhanced learning of all students. Topics include gender, race, culture, disability, first-generation college students, ethnically diverse students (men of color, Latino/as, and international students), and learning style/environment.

GRD 759. CIRTL Teaching-as-Research in STEM Courses. 3 Hours.
This CIRTL course introduces Teaching-as-Research project design and guides students through the TAR planning process.

GRD 760. CIRTL Teaching-as-Research Project. 3 Hours.
This CIRTL course is designed for students who are conducting a Teaching-as-Research project.

GRD 761. CIRTL Special Topics. 1-5 Hour.
This CIRTL course addresses topics of current interest related to college teaching.

GRD 762. CIRTL Individualized Seminar. 1-3 Hour.
This CIRTL seminar addresses teaching and learning projects related to STEM (science, technology, engineering, and math). Individual plans approved by the instructor are required.

GRD 763. CIRTL Individualized Teaching and Learning Project. 1-3 Hour.
This CIRTL individualized course provides students with opportunities to engage in teaching and learning projects related to STEM education. Individual plans approved by the instructor are required.

GRD 764. CIRTL Individualized Teaching Experience I. 1-5 Hour.
This CIRTL individualized course provides students with opportunities to teach and reflect on these experiences in a variety of teaching contexts. Co-instructor students serve as “Teaching Fellows”. Individual plans approved by the instructor are required.

GRD 765. CIRTL Individualized Teaching Experience II. 1-5 Hour.
This CIRTL individualized course provides students with opportunities to teach for more extended periods and to reflect on these experiences in a variety of teaching contexts. Individual plans approved by the instructor are required.

GRD 766. Introduction to Online Teaching. 1 Hour.
Learn basics of developing and teaching an online course including how to structure content, effective interaction and communication, active online engagement techniques and assessments.

GRD 770. Intro to Biostats. 2-3 Hours.
This course is intended to provide graduate students with an introduction to biostatistics. The emphasis in this course will be upon understanding statistical concepts and applying and interpreting tests of statistical inference. Content will include but not be limited to: choosing the correct test for a given research design, data and data files, data screening, scaling, visual representations of data, descriptive statistics, correlation and simple regression, sampling distributions, and the assumptions associated with and the application of selected inferential statistical procedures (including t-tests, Chi-square, and ANOVA). Computer software (SPSS) will be employed to assist in the analysis of data for this course. Students should have access to a computer, SPSS software, and the Internet.

GRD 771. ePortfolio Workshop. 1 Hour.
Learn how to Build a personalized website to host your Teaching and/or Mentoring Portfolio or for personal branding/ promotion.

GRD 772. Emotionally Intelligent Leadership. 1-2 Hour.
This course provides students with opportunities to explore the relationships among emotional intelligence (EI), leadership, and professional development.

GRD 773. Research Lab Management. 3 Hours.
By successfully completing this course, enrolled participants should be able to i) construct a start-up budget; ii) design a safe research laboratory environment; iii) hire, mentor and manage research lab staff and trainees; and iv) develop and implement a research lab management plan. Submission of a completed research lab management plan will be used to measure attainment of learning objectives.

GRD 774. Introduction to Regulatory Compliance. 1 Hour.
Enrolled participants will examine regulatory compliance issues related to basic research needs, including but not limited to animal use, human subjects and export control. Completion of in-class activities will be used to measure attainment of learning objectives.

GRD 775. Research Lab Safety. 1 Hour.
Enrolled participants will examine general laboratory safety practices and should be able to i) design a safe laboratory plan; and ii) develop lab safety-related standard operating procedures. Completion of in-class activities will be used to measure attainment of learning objectives.

GRD 776. Blazer Fellows Introduction to Professional Development. 3 Hours.
GRD 776 is a 3-credit course for Blazer Fellows to introduce professional development tools and skills that will be necessary and useful for doctoral students' professional career.

GRD 790. Research/Lab Rotation. 1-10 Hour.
Graduate Lab Rotation Used by MD/PhD Students first summer semester.
IGS-Interdisc Graduate Courses

IGS 690. Capstone: Research to Practice. 3 Hours.
This is the Capstone course for the Interdisciplinary Graduate Studies degree. The course addresses the research to practice cycle for professional practitioners. Focuses on developing skills and knowledge for understanding, critiquing, and applying research to practice, as well as the role of practitioners in identifying additional areas of needed research. Course may only be taken during the semester in which the learner is completing their IGS program. Learners will demonstrate their understanding, as well as abilities to apply and evaluate, critical thinking skills, deconstruct research reports, and synthesize a program or project proposals in order to facilitate success within their professional field. Learners are required to engage in readings, discussions, learning activities, and ultimately disseminate their final program, project, practice or policy proposal publicly.

LEAD-Leadership Courses

LEAD 500. Introduction to Leadership Behaviors, Characteristics and Theories. 3 Hours.
This course introduces students to the study of leadership and behaviors associated with core career readiness and advancement. Students will identify personal strengths and areas for growth relative to employer expectations.

LEAD 501. Professional Writing for Leadership. 1 Hour.
This course provides students with opportunities to comprehend professional writing expectations as well as practice writing various documents critical to success within professional settings.

LEAD 502. Professional Presentations for Leaders. 1 Hour.
This course provides students with opportunities to apply skills associated with developing and delivering professional presentations.

LEAD 503. Professional Interview and Interviewing Skills for Leaders. 1 Hour.
This course provides students with opportunities to apply skills associated with engaging in professional interviews as well as developing and conducting interviews.

LEAD 504. Introduction to Organizational Change Processes. 1-2 Hour.
This course provides students with opportunities to gain knowledge and competencies related to understanding, navigating, and supporting others during organizational change.

LEAD 505. Prioritization and Decision Making for Leadership. 1 Hour.
This course provides students with opportunities to apply skills associated with evaluating and prioritization processes in order to efficiently make effective and purpose-informed decisions.

LEAD 506. Emotionally Intelligent Leadership. 1 Hour.
This course provides students with opportunities to explore the relationships among emotional intelligence (EI), leadership, and professional development.

LEAD 520. Ethics in the Workplace. 3 Hours.
This course introduces students to ethical leadership and work ethics. Skills discussed and practiced include but are not limited to decision making, prioritization, reasoning, and values clarification.

LEAD 521. Servant Leadership. 1-2 Hour.
This course provides students with opportunities to gain knowledge and competencies related to Servant Leadership philosophies and approaches.

LEAD 522. Followership. 1-2 Hour.
This course provides students with opportunities to gain knowledge and competencies related to followership philosophies and approaches.

LEAD 523. Gender Dynamics and Leadership. 1-2 Hour.
This course provides students with opportunities to gain knowledge related to the influence that gender and gender dynamics have relative to leadership and professional development opportunities.

LEAD 524. Inter-generational Leadership. 1-2 Hour.
This course provides students with opportunities to comprehend, articulate and apply skills related to generational dynamics within leadership and professional development opportunities.

LEAD 525. The Resilient Leader - Self and Others. 1-2 Hour.
This course provides students with opportunities to comprehend, articulate and apply skills related to resilience in leadership and professional development.

LEAD 526. Goal Setting for Leaders. 1 Hour.
This course provides students with opportunities to learn about and practice goal setting strategies associated with personal and professional success.

LEAD 540. Team Development and Dynamics. 2 Hours.
This course introduces students to the benefits of teams and teamwork. Students will practice leadership competencies associated with developing productive teams, and assessing team dynamics.

LEAD 541. Building Effective Teams. 1-2 Hour.
This course provides students with opportunities to comprehend, articulate and apply skills related to building effective and professional teams.

LEAD 543. Planning and Leading a Meeting for Leaders. 1 Hour.
This course provides students with opportunities to apply skills associated with planning and facilitating a meeting for a team or group of individuals in a professional or leadership setting.

LEAD 544. Conflict Negotiation in Leadership. 1 Hour.
This course provides students with opportunities to apply skills associated with managing conflict and facilitating productive conversations in professional and/or leadership settings.

LEAD 545. Planning and Facilitating a Retreat. 1-2 Hour.
This course provides students with opportunities to comprehend, articulate and apply skills related to planning and facilitate a leadership and/or professional development retreat.

LEAD 560. Leadership and Professional Development Workshop. 1-3 Hour.
Subject matter in this course will vary to in order to promote workshop specific leadership skill acquisition not addressed in other LEAD courses based upon assessed needs.

LEAD 570. Leadership Development Seminar. 1-3 Hour.
Subject matter in this course will vary to in order to promote seminar specific leadership skill acquisition not addressed in other LEAD courses based upon assessed needs.

LEAD 590. Leadership by Design. 2 Hours.
This course provides students with an opportunity to learn about and apply the Designed Thinking process to propose a solution for an industry specific issue. Students choose the industry for which they design a solution. This is the capstone course for the LEAD graduate certificate program.

Prerequisites: LEAD 500 [Min Grade: C] and LEAD 520 [Min Grade: C] and LEAD 540 [Min Grade: C]
MENT-Mentoring Leadership Courses

MENT 719. Introduction to Mentoring & Leadership. 3 Hours.
This course covers the principles of mentoring and leadership, focusing on the student's ability to demonstrate, analyze, and evaluate contemporary mentoring and leadership practices. Application positions students to tailor practices to their respective fields, articulate a mentoring and leadership philosophy and develop new career skill sets while producing a mentoring and leadership portfolio.

MENT 730. Developing and Managing Your Professional Image. 3 Hours.
This course is designed to raise student awareness of their professional image. Topics include professional perception, polishing professional image, adjusting to professional contexts, and professional image and social media.

MENT 746. Critical Decisions in Mentoring & Leadership. 3 Hours.
This course explores the critical thinking skills related to the decision making processes for mentors and leaders.

RECM-Research Communication Courses

RECM 701. Presentation and Discussion Skills. 3 Hours.
Develops professional communication skills, including public speaking skills, conversation management, adapting to audience, and overall comprehensibility. Presentations critiqued by self, peers, and instructor.

RECM 707. Presenting Effectively. 1 Hour.
Provides an overview of giving effective oral presentations in academic and professional settings. Topics include analyzing audience and purpose, characteristics of an effective delivery, strategies for planning and design, handling questions and answers, boosting confidence, and using technology in presentations. One-day workshop.

RECM 708. Writing Successfully. 1 Hour.
Addresses issues involved in writing for academic and professional settings. Topics include analyzing audience and purpose, addressing common writing problems, developing effective writing practices, writing for publication, communicating research to the general public, and productivity strategies for writers. One-day workshop.

RECM 722. Writing Research for Broad Audiences. 3 Hours.
Introduces students to effectively writing about research for broad audiences, including the media, policy makers, and general public. Students learn to write various genres of texts, such as blog posts, press releases, letters-to-the-editor, and feature articles.

RECM 727. Writing & Reviewing Research. 3 Hours.
Introduces writers to research writing "best practices," criteria for evaluating writing, plus editing and peer review. Writers analyze and write short, strategic texts (on their own topics) in 5 research genres – critiques, annotated bibliographies, introductions, empirical, and review articles – based on peer and instructor feedback, for a draft presentation or proposal. For anyone writing course papers, theses, and/or proposals.

RECM 729. Writing a Journal Article in 12 Weeks. 3 Hours.
Introduces writers to a systematic approach to writing a journal article, including essential structures, stylistic conventions, and smart strategies for planning and completing projects under a deadline. Writers begin with their own working manuscripts (unpublished course paper, thesis, dissertation, etc.), identify a target journal, and draft short, strategic sections, based on peer review and instructor feedback, to create a final submission, per author's guidelines. For anyone with active publishing goals.

RECM 739. Research Communication Portfolio. 3 Hours.
This Science Communication Portfolio course focuses on the student's compilation of course experiences in key areas, such as science journalism, science public relations, medical writing, and entrepreneurship.

RECM 745. Communication and Diversity Leadership. 3 Hours.
Upon completion of the course, students will be able to explain, analyze, and apply approaches to leading and communicating in diverse communities.

RECM 749. Improvisational Techniques to Improve Leadership, Teaching and Research Communication. 1 Hour.
This workshop engages participants through improvisational and theatrical techniques in order to build confidence and improve as leaders, teachers, and/or researchers.

RLM-Research Lab Management Courses

RLM 773. Research Lab Management. 3 Hours.
By successfully completing this course, enrolled participants should be able to i) construct a start-up budget; ii) design a safe research laboratory environment; iii) hire, mentor and manage research lab staff and trainees; and iv) develop and implement a research lab management plan. Submission of a completed research lab management plan will be used to measure attainment of learning objectives.

RLM 774. Introduction to Regulatory Compliance. 1 Hour.
Enrolled participants will examine regulatory compliance issues related to basic research needs, including but not limited to animal use, human subjects and export control. Completion of in-class activities will be used to measure attainment of learning objectives.

RLM 775. Research Lab Safety. 1 Hour.
Enrolled participants will examine general laboratory safety practices and should be able to i) design a safe laboratory plan; and ii) develop lab safety-related standard operating procedures. Completion of in-class activities will be used to measure attainment of learning objectives.

Office of Professional Studies and Experiential Learning

Program director: Lisa Schwiebert
Phone: (205) 975-4521
Email: OPSEL@uab.edu
Website: https://www.uab.edu/graduate/students/current-students/career-development/opsel

OPSEL Information

OPSEL courses, seminars and workshops are offered to improve the academic and professional communication skills of graduate students, postdoctoral fellows, faculty, and staff with the goals of supporting scholarship, research integrity, productivity, effective communication, mentoring and leadership, college teaching, and the development and refinement of professional skills.

Those interested in pursuing the Interdisciplinary Graduate Studies (IGS) degree (MA or MS) will find information about the program and how to apply on the IGS webpage at: Master of Arts and Master of Science in Interdisciplinary Graduate Studies - Graduate School | UAB.
Similarly, individuals interested in pursuing any of the following graduate-level certificates through OPSEL will find more information about the programs and how to apply at: Office of Professional Studies and Experiential Learning - Graduate School | UAB.

Upon completion, graduate certificates earned through OPSEL will appear on official UAB transcripts. For more information regarding the course requirements click on the hyperlinks below.

Interdisciplinary Graduate Studies – MS and MA degrees available

UAB offers two master’s degrees in Interdisciplinary Graduate Studies (IGS): The Master of Arts and the Master of Science. Both IGS degrees are designed to provide students with opportunities to blend two areas of expertise in order to best meet the needs of contemporary hybrid careers. The IGS degree allows students to personalize a master’s degree to align with their professional, academic, and personal goals. Students may choose to combine any two (2) UAB graduate certificates that have affiliated with the IGS program in order to gain knowledge and skills they want as they seek professional advancement or personal development.

Academic Advising - Certificate available

The graduate certificate in Academic Advising (AADV) is designed to provide current and prospective academic advisors with opportunities to gain knowledge, skills, and competencies required to advance their academic advising practices in manners that best support students in their academic success and persistence towards degree completion. Scholars who complete the Academic Advising graduate certificate will display their knowledge of and ability to apply desirable competencies within, yet not limited to, individual advising and academic support sessions and group advising sessions as well as environments associated with appreciative admissions, orientation, academic transitions, major discoveries, and career preparations. Courses in the AADV graduate certificate program are offered in the standard letter grading format and may be incorporated into the IGS degree. The program is also available as a track in the Master of Science in Higher Education Administration.

Diversity, Equity, Inclusion, & Advocacy - Certificate available (email: DiversityEd@uab.edu (inclusion@uab.edu))

The graduate certificate in Diversity, Equity, Inclusion, and Advocacy (DEIA) is designed to provide learners with opportunities to gain knowledge, skills, and competencies associated with advancing personal, social, and cultural initiatives to combat interpersonal and systemic inequities as well as foster cultures of inclusion and justice. Learners who complete the DEIA graduate certificate will display their knowledge of and ability to apply desirable competencies within, yet not limited to, post-secondary education institutions, civic engagement, nonprofit, and politically minded organizations, health care providers, as well as the business and industry sectors. Courses in the DEIA graduate certificate program are offered in the standard letter grading format and may be incorporated into the IGS degree.

Leadership & Professional Development - Certificate available

The LEAD certificate is designed to provide students with opportunities to master leadership and professional development competencies. The dynamic nature of today’s society and economy requires us all to think critically, communicate effectively, and transfer skills into multiple environments. LEAD facilitates learning and competencies required for academic, career, and personal success. Courses in the LEAD graduate certificate program are offered in the standard letter grading format and may be incorporating into the IGS degree.

Mentoring & Leadership - Certificate available

The Mentoring and Leadership certificate is designed to provide students with opportunities to build strong mentoring and leadership skills while exploring what it takes to be a mentoring leader. The certificate offers courses in mentoring, leadership, communication skills, and more.

Courses in the Mentoring and Leadership graduate certificate are offered in the pass/no pass grading format.

Research Communication - Certificate available

The graduate certificate in Research Communication (RECM) is a graduate-level credential that is designed to provide foundational knowledge and applicable experience in effective communication of research and key research findings to academic audiences, professional audiences, and to the general public across different communicative platforms. The RECM certificate focuses on developing current UAB graduate students, postdoctoral fellows, faculty, and employees in both science and non-science fields to learn how to effectively communicate research and research findings. The certificate offers courses in presentation and discussion skills, academic writing, grant writing, writing for broad audiences, and more. Courses in the RECM graduate certificate program are offered in the Pass/No Pass as well as standard letter grading format. The standard letter grade format courses may be incorporated into the IGS degree.

Research Laboratory Management - Certificate available

The Research Laboratory Management certificate prepares graduate students, postdoctoral fellows, faculty and staff, who are engaged in science-related research, to effectively lead and manage all aspects of an active scientific laboratory. Managing laboratory needs, such as budgetary and regulatory / safety compliance, is essential for career success in today’s research marketplace. Courses in the Research Laboratory Management graduate certificate are offered in the pass/no pass as well as the standard letter grading formats. Graded courses may be incorporated into the IGS degree.

Teaching at the College Level - Certificates available

UAB offers two CIRTL graduate certificates designed to provide you with opportunities to improve your teaching. Graduate students, postdoctoral fellows, faculty, employees, and community members are welcome to take one or more CIRTL courses. CIRTL@UAB is part of the Center for the Integration of Research, Teaching and Learning (CIRTL) Network. Built around the core values of Learning through Diversity, Teaching as Research, and Interdisciplinary Learning Communities, CIRTL is dedicated to preparing the next generation of college faculty. UAB offers two CIRTL certificates:

1. CIRTL Practitioner (15 credits) requires courses to help you gain teaching skills to prepare learners to develop, deliver, and assess learning opportunities for diverse populations.
2. CIRTL Scholar (21 credits) builds on the Practitioner certificate and guides participants in developing and implementing a Teaching-As-Research (TAR) project to enhance teaching effectiveness. If you choose to complete the CIRTL Scholar certificate, you will also be awarded the CIRTL Practitioner certificate.
Admission to the Certificate Programs

Current UAB graduate students - fill out and submit the “Intent to Pursue” form located on each of the certificate’s webpage.

For new students – click here to complete the UAB Graduate School Application indicating which certificate you wish to pursue.

Registration

For more information on how to register for classes, visit https://www.uab.edu/students/academics/register-for-classes.

Graduate Certificate in Academic Advising

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Classes</td>
<td></td>
</tr>
<tr>
<td>AADV 600</td>
<td>3</td>
</tr>
<tr>
<td>HEA 660</td>
<td>3</td>
</tr>
<tr>
<td>AADV 610</td>
<td>3</td>
</tr>
<tr>
<td>AADV 620</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>AADV 630</td>
<td></td>
</tr>
<tr>
<td>AADV 640</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Certificate in College Teaching - Practitioner

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Classes</td>
<td></td>
</tr>
<tr>
<td>GRD 705</td>
<td>2-3</td>
</tr>
<tr>
<td>GRD 716</td>
<td>2</td>
</tr>
<tr>
<td>GRD 750</td>
<td>2</td>
</tr>
<tr>
<td>GRD 751</td>
<td>2</td>
</tr>
<tr>
<td>GRD 755</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses:</td>
<td>5</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD/MENT</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Certificate in College Teaching - Scholar

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Classes</td>
<td></td>
</tr>
<tr>
<td>GRD 705</td>
<td>2-3</td>
</tr>
<tr>
<td>GRD 716</td>
<td>2</td>
</tr>
<tr>
<td>GRD 750</td>
<td>2</td>
</tr>
<tr>
<td>GRD 751</td>
<td>2</td>
</tr>
<tr>
<td>GRD 755</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses:</td>
<td>5</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD/MENT</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD 754</td>
<td></td>
</tr>
<tr>
<td>GRD 766</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 16-17

Graduate Certificate in College Teaching - Scholar

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Classes</td>
<td></td>
</tr>
<tr>
<td>GRD 705</td>
<td>2-3</td>
</tr>
<tr>
<td>GRD 716</td>
<td>2</td>
</tr>
<tr>
<td>GRD 750</td>
<td>2</td>
</tr>
<tr>
<td>GRD 751</td>
<td>2</td>
</tr>
<tr>
<td>GRD 755</td>
<td>3</td>
</tr>
<tr>
<td>Elective Courses:</td>
<td>5</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
<tr>
<td>GRD/MENT</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 22-23
Graduate Certificate in Diversity, Equity, Inclusion & Advocacy

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEIA 510</td>
<td>3</td>
</tr>
<tr>
<td>DEIA 520</td>
<td>3</td>
</tr>
<tr>
<td>DEIA 530</td>
<td>3</td>
</tr>
<tr>
<td>DEIA 590</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Elective</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>13-16</td>
</tr>
</tbody>
</table>

Certificate Leadership and Professional Development

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAD 500</td>
<td>3</td>
</tr>
<tr>
<td>LEAD 520</td>
<td>3</td>
</tr>
<tr>
<td>LEAD 540</td>
<td>2</td>
</tr>
<tr>
<td>LEAD 590</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Elective</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Graduate Certificate in Mentoring and Leadership

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD/MENT 719</td>
<td>3</td>
</tr>
<tr>
<td>GRD 735</td>
<td>1</td>
</tr>
<tr>
<td>GRD 713</td>
<td>1</td>
</tr>
</tbody>
</table>

Choose ten (10) credit hours from the following electives:

<table>
<thead>
<tr>
<th>Elective</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Graduate Certificate in Postdoctoral Professional Development

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD 709</td>
<td>3</td>
</tr>
<tr>
<td>GRD 717</td>
<td>3</td>
</tr>
<tr>
<td>GRD 773</td>
<td>3</td>
</tr>
</tbody>
</table>

Certificate Electives

<table>
<thead>
<tr>
<th>Elective</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Certificate in Research Communication

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD/RECM 701</td>
<td>3</td>
</tr>
<tr>
<td>GRD/RECM 722</td>
<td>3</td>
</tr>
<tr>
<td>GRD/RECM 739</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Elective</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hours</td>
<td>15</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Presenting Effectively</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Writing Successfully</td>
</tr>
<tr>
<td>GRD 723</td>
<td>Writing Research for Academic Audiences</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Writing & Reviewing Research</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Writing Your Journal Article in 12 Weeks</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Communication and Diversity Leadership</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Improvisational Techniques to Improve Leadership, Teaching, and Research Communication</td>
</tr>
<tr>
<td>MBA 616</td>
<td>Web Analytics</td>
</tr>
</tbody>
</table>

Total Hours 17

Certificate in Research Lab Management

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Coursework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD/RLM 773</td>
<td>Research Lab Management</td>
<td>3</td>
</tr>
<tr>
<td>MBA 631</td>
<td>Management and Organizations</td>
<td>3</td>
</tr>
<tr>
<td>GRD 706</td>
<td>Grants and Fellowships 101</td>
<td>1</td>
</tr>
<tr>
<td>GRD/RLM 774</td>
<td>Introduction to Regulatory Compliance</td>
<td>1</td>
</tr>
<tr>
<td>GRD/RLM 775</td>
<td>Research Lab Safety</td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MBA 601</td>
<td>Accounting and Finance for Managers</td>
<td></td>
</tr>
<tr>
<td>MBA 681</td>
<td>From Idea to IPO</td>
<td></td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Presentation and Discussion Skills</td>
<td>701</td>
</tr>
<tr>
<td>GRD/MENT</td>
<td>Introduction to Mentoring & Leadership</td>
<td>719</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Communication and Diversity Leadership</td>
<td>745</td>
</tr>
<tr>
<td>GRD/RECM</td>
<td>Writing & Reviewing Research</td>
<td>727</td>
</tr>
</tbody>
</table>

Total Hours 15

MA/MS in Interdisciplinary Graduate Studies

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate I 1</td>
<td></td>
<td>12-21</td>
</tr>
<tr>
<td>Certificate II 1</td>
<td></td>
<td>12-21</td>
</tr>
<tr>
<td>GRD/IGS 690</td>
<td>IGS Capstone: Research to Practice 2</td>
<td>3</td>
</tr>
<tr>
<td>3.0 Overall GPA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80% Standard Letter Grade Coursework Earning a Minimum Grade of "B."

Minimum Hours (30 semester hours) 3

1 Grade of B or better required
2 At least 30 semester hours are required to complete the MA/MS in Interdisciplinary Graduate Studies

Participating Certificates include:

- Business Analytics (p. 37)
- Clinical Exercise Physiology (p. 270)
- Clinical Informatics (p. 395)
- Cybersecurity Management (p. 37)
- Diversity Equity Inclusion and Advocacy (p. 578)
- Foundations of Business Administration
- Global Health Studies (p. 532)
- Health Coaching
- Health Education
- Health Promotion across the Lifespan
- Healthcare Leadership (p. 395)
- Healthcare Quality and Safety (p. 412)
- Healthcare Simulation (p. 395)
- Higher Education Administration (p. 268)
- Information Technology Management (p. 37)
- Leadership and Professional Development (p. 578)
- Low Vision Rehabilitation (p. 424)
- Nonprofit Management (p. 126)
- Nutrition for Community Health
- Public Health (p. 532)
- Public Management (p. 126)
- Research Communication (p. 578)
- Research Laboratory Management (p. 578)
- Social and Behavioral Statistics (p. 54)
- Social Media (p. 37)
- Supporting Individuals with Exceptionalities (p. 236)
- Teaching Multilingual Learners (p. 239)
Program Index

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting (M.Ac.)</td>
<td>Graduate Certificate in Academic Advising (p. 578)</td>
</tr>
<tr>
<td>Administration Health Services (D.Sc., Ph.D.)</td>
<td>Graduate Certificate in Diversity, Inclusion & Advocacy (p. 578)</td>
</tr>
<tr>
<td>Advanced Safety Engineering and Management (M.Eng.)</td>
<td>Graduate Certificate in Social Media (p. 37)</td>
</tr>
<tr>
<td>Anthropology (M.A.)</td>
<td>Graduate Certificate in Technology Commercialization and Entrepreneurship (p. 37)</td>
</tr>
<tr>
<td>Art History (M.A.)</td>
<td>Graduate School Professional Development Program (p. 576)</td>
</tr>
<tr>
<td>Arts Education (M.A.Ed.)</td>
<td>Health Administration (M.S.H.A.) (p. 400)</td>
</tr>
<tr>
<td>Biology (M.S., Ph.D.)</td>
<td>Health Behavior (M.P.H., M.S.P.H., Ph.D.) (p. 560)</td>
</tr>
<tr>
<td>Biomedical and Health Sciences (M.S.)</td>
<td>Health Care Organization and Policy (M.P.H., M.S.P.H., Dr.P.H.) (p. 565)</td>
</tr>
<tr>
<td>Biomedical Engineering (M.S.B.M.E., Ph.D.)</td>
<td>Health Education and Health Promotion (Ph.D.) (p.)</td>
</tr>
<tr>
<td>Biomedical Sciences: Biochemistry, Structural and Stem Cell Biology Theme (p. 173)</td>
<td>Health Focused Patient/Client Management for Physical and Occupational Therapists (p. 372)</td>
</tr>
<tr>
<td>Biomedical Sciences: Cancer Biology Theme (p. 174)</td>
<td>Health Informatics (M.S.H.I.) (p. 404)</td>
</tr>
<tr>
<td>Biomedical Sciences: Cell, Molecular, and Developmental Biology Theme (p. 175)</td>
<td>Healthcare Quality and Safety (M.S.) (p. 411)</td>
</tr>
<tr>
<td>Biomedical Sciences: Genetics, Genomics, and Bioinformatics Theme (p. 176)</td>
<td>Healthcare Simulation (M.S.)</td>
</tr>
<tr>
<td>Biomedical Sciences: Immunology Theme (p. 177)</td>
<td>High School and Middle School Education (M.A.Ed.) (p. 227)</td>
</tr>
<tr>
<td>Biomedical Sciences: Microbiology Theme (p. 178)</td>
<td>Higher Education Administration (M.S.) (p. 267)</td>
</tr>
<tr>
<td>Biomedical Sciences: Neuroscience Theme (p. 178)</td>
<td>History (M.A.) (p. 107)</td>
</tr>
<tr>
<td>Biomedical Sciences: Pathobiology and Molecular Medicine Theme (p. 179)</td>
<td>Information Engineering Management (M.Eng.)</td>
</tr>
<tr>
<td>Biostatics (M.P.H., M.S., M.S.P.H., Ph.D.)</td>
<td>Instructional Design and Development (M.S.)</td>
</tr>
<tr>
<td>Biotechnology (M.S.)</td>
<td>Interdisciplinary Engineering (Ph.D.)</td>
</tr>
<tr>
<td>Biotechnology and Regulatory Affairs Certificate (p. 382)</td>
<td>Interdisciplinary Programs (M.PH/MDM, MPH/MD, MPH/PHD) (p. 534)</td>
</tr>
<tr>
<td>Business Administration (M.B.A.)</td>
<td>Kinesiology (M.S.) (p.)</td>
</tr>
<tr>
<td>Chemistry (M.S., Ph.D.)</td>
<td>Management of Information Systems (M.S.)</td>
</tr>
<tr>
<td>Civil Engineering (M.S.C.E., Ph.D.)</td>
<td>Materials Engineering (M.S.M.T.E., Ph.D.) (p. 353)</td>
</tr>
<tr>
<td>Clinical Laboratory Sciences (M.S.)</td>
<td>Mathematics (M.S.) (p. 108)</td>
</tr>
<tr>
<td>Clinical Medical Social Work (M.S.W.)</td>
<td>Mathematics, Applied (Ph.D.)</td>
</tr>
<tr>
<td>Clinical Pathology Assistant (M.S.)</td>
<td>Mechanical Engineering (M.S.M.E.)</td>
</tr>
<tr>
<td>Communication Management (M.A.)</td>
<td>Medical Scientist Training Program (M.D., Ph.D.) (p. 449)</td>
</tr>
<tr>
<td>Community Health and Human Services (M.A.Ed.)</td>
<td>Medical Sociology (Ph.D.)</td>
</tr>
<tr>
<td>Computer Engineering (Ph.D.)</td>
<td>Multidisciplinary Biomedical Sciences (M.S.)</td>
</tr>
<tr>
<td>Computer Forensics and Security Management (M.S.)</td>
<td>Nuclear Medicine & Molecular Science (M.S.)</td>
</tr>
<tr>
<td>Computer Science (M.S., Ph.D.)</td>
<td>Nurse Anesthesia (M.S.N.) (p. 459)</td>
</tr>
<tr>
<td>Construction Engineering Management (M.Eng.)</td>
<td>Nursing (AMNP) (p. 454)</td>
</tr>
<tr>
<td>Counselor Education (M.A.)</td>
<td>Nursing (D.N.P.) (p. 461)</td>
</tr>
<tr>
<td>Criminal Justice (M.S.C.J.)</td>
<td>Nutrition Sciences (M.S., Ph.D.) (p. 418)</td>
</tr>
<tr>
<td>Data Science (M.S.)</td>
<td>Occupational Therapy (M.S.) (p. 424)</td>
</tr>
<tr>
<td>Dentistry (M.S.)</td>
<td>Physical Therapy (D.P.T.) (p. 435)</td>
</tr>
<tr>
<td>Education (Ed.S.) Multiple Concentrations</td>
<td>Physician Assistant Studies (M.S.P.A.S.) (p. 390)</td>
</tr>
<tr>
<td>Educational Studies in Diverse Populations (Ph.D.)</td>
<td>Psychology (Ph.D.) (p. 129)</td>
</tr>
<tr>
<td>Electrical Engineering (M.S.E.E., Ph.D.)</td>
<td>Public Administration (M.P.A.) (p. 123)</td>
</tr>
<tr>
<td>Elementary Education (M.A.Ed.)</td>
<td>Reading Education (M.A.Ed.) (p. 232)</td>
</tr>
<tr>
<td>Engineering Management (M.S.E.M)</td>
<td>Rehabilitation Science (Ph.D.) (p. 375)</td>
</tr>
<tr>
<td>English (M.A.)</td>
<td>School Psychometry (M.A.Ed.) (p. 234)</td>
</tr>
<tr>
<td>English as a Second Language (M.A.Ed.)</td>
<td>Sociology (M.A.)</td>
</tr>
<tr>
<td>Environmental Health Sciences (M.P.H., M.S.P.H., Ph.D.)</td>
<td>Special Education (M.A.Ed.) (p. 235)</td>
</tr>
<tr>
<td>Epidemiology (M.P.H., M.S.P.H., Ph.D.)</td>
<td>Teacher Leadership (Ed.S.)</td>
</tr>
<tr>
<td>Forensic Science (M.S.F.S.)</td>
<td>Teaching English to Speakers of Other Languages - TESOL (Ed.S) (p. 238)</td>
</tr>
<tr>
<td>Genetic Counseling (M.S.)</td>
<td>Vision Science (M.S., O.D./M.S., Ph.D.) (p. 505)</td>
</tr>
<tr>
<td>Gerontology</td>
<td>Sociology (M.A.)</td>
</tr>
</tbody>
</table>
Course Index

A
- AC-Accounting
- AH-Administration Health Services
- AH-Health Administration
- AHD-Administration Health Services DSc
- ANSC-Anatomical Science
- ANTH-Anthropology
- ARH-Art History
- ARS-Art Studio
- ASEM-Advanced Safety Engineering & Management

B
- BHS-Biomedical & Health Sciences
- BME-Biomedical Engineering
- BMEM-Biomedical Engineering
- BST-Biostatistics
- BT-Biotechnology
- BTR-Biotechnology & Regulatory Affairs
- BY-Biology

C
- CB-Cell Biology
- CD-Clinical Dentistry
- CDS-Clinical & Diagnostic Science
- CE-Civil Engineering
- CECM-Construction Engineering Management
- CESC-Sustainable Smart Cities
- CESE-Structural Engineering
- CH-Chemistry
- CHHS-Community Health & Human Services
- CJ-Criminal Justice
- CLS-Clinical Laboratory Science
- CM-Communication Management
- CPA-Clinical Pathologist Assistant
- CS-Computer Science

E
- Early Childhood Education
- ECG-Counseling, Human Service
- ECT-Collaborative Teacher Education
- ECY-Special Education
- EDA-Art Education
- EDC-Curriculum Education
- EDF-Foundations of Education
- EDL-Educational Leadership
- EDR-Reading Education
- EE-Electrical & Computer Engineering
- EEC-Elementary and Early Childhood Education
- EESL-Elementary as a Second Language
- EGR-Engineering
- EH-English
- EHS-High School Education
- ENH-Environmental Health
- EPI-Epidemiology
- EPR-Educational Psychology
- ESP-Education School Psychometry

F
- FR-French
- FS-Forensic Science

G
- GBS-Graduate Biomedical Science
- GC-Genetic Counseling
- GER-Gerontology
- GHS-Global Health Studies
- GRD-Graduate School

H
- HB-Health Behaviour
- HCI-Healthcare Innovation
- HCS-Healthcare Simulation
- HI-Health Informatics
- HPO - Health Policy and Organization
- HQS-Healthcare Quality & Safety
- HRP-Health Professions
- HY-History

I
- IEM-Information Engineering Management
- IGS-Interdisciplinary Graduate Studies
- INFO-Bioinformatics
- IS-Information Systems

K
- KIN-Kinesiology

L
- LEAD-Leadership

M
- MA-Mathematics
- MBA-Master of Business Administration
- MBS-Multidisciplinary Biomedical Science
- ME-Mechanical Engineering
- MENT-Mentoring & Leadership
- MHP-Health Physics
- MIC-Microbiology
- MPA-Master of Public Administration
- MSE-Materials Science & Engineering
- MSEM-Engineering Management
- MSTP-Medical Science Training Program
N
• NA-Nursing-Nurse Anesthesia
• NAH-Nursing-Adult Health
• NBB-Nursing-Biobehavioral
• NBL-Neurobiology
• NCA-Nursing-Critical Care
• NCC-Nursing-Child/Adolescent
• NCH-Nursing-Child Health
• NCL-Nursing-Clinical Nurse Leader
• NCS-Nursing-Clinical Specialty
• NCV-Nursing-Cardiovascular
• NDP-Nursing-Dual Pediatric
• NFA-Nursing-RN First Assist
• NFH-Nursing-Family
• NGN-Nursing-Gerontological
• NHSA-Nursing-Health Administration
• NMD-Nursing-Diabetes Management
• NMT-Nuclear Medicine Technology
• NNE-Nursing-Neonatal
• NNI-Nursing-Informatics
• NOH-Nursing-Occupational Health
• NPA-Nursing-Palliative Care
• NPE-Nursing-Pediatrics
• NPN-Nursing-Psychiatric/Mental Health
• NPR-Nursing-Promotion/Protection/Restorative Health
• NRM-Nursing-Research Methods
• NST-Nursing Statistical Methods
• NTC-Nursing-Teaching
• NTR-Nutrition Science
• NUR-Nursing
• NWH-Nursing-Women's Health

O
• OT-Occupational Therapy

P
• PA-Physician Assistant
• PH-Physics
• PHR-Pharmacology
• PSDO-Physician Scientist Development
• PT-Physical Therapy
• PTC-Health Focused Patient/Client Management
• PUH-Public Health
• PY-Psychology

R
• RECM-Research Communication
• RHB-Rehabilitation Science
• RLM-Research Lab Management

S
• SOC-Sociology
• SPA-Spanish
• SW-Social Work

T
• TMS-Translational & Molecular Science
• TOX-Toxicology

V
• VIS-Vision Science
Addenda

Master of Science in Global Health
Approved June 9, 2023

Thesis Option

Requirements	Hours
GHM 601 Global Health Foundations I | 3
GHM 602 Global Health Foundations II | 3
GHS 600 Fundamentals of Global Health | 3
PUH 600 Overview of Public Health | 3
IDGH 620 Global Health Ethics | 3
IDGH 690 Writing for Global Health | 5
GHM 604 Global Health Research Methods | 3
IDGH 699 Master's Directed Research | 6
Global Health Electives | 9

Total Hours 38

Non-Thesis Option

Requirements	Hours
GHM 601 Global Health Foundations I | 3
GHM 602 Global Health Foundations II | 3
GHS 600 Fundamentals of Global Health | 3
PUH 600 Overview of Public Health | 3
IDGH 620 Global Health Ethics | 3
IDGH 690 Writing for Global Health | 5
GHM 604 Global Health Research Methods | 3
IDGH 687 Global Health Scholarly Prep | 3
IDGH 688 Scholarly Project Directed Research | 4
Global Health Electives | 6

Total Hours 36

Higher Education Administration - Diversity, Equity, Inclusion & Advocacy Track
Approved June 10, 2023

Requirements	Hours
HEA 600 Administration of Higher Education | 3
HEA 610 History of Higher Education | 3
HEA 630 Higher Education Law | 3
HEA 650 Assessment & Evaluation of Higher Education | 3
HEA 660 College Student Development | 3
HEA 670 Strategic Partnerships in Academic & Student Affairs | 3

Concentration Courses

DEIA 510 Diversity Policy Politics and Practice | 3
DEIA 520 Equity and Inclusion | 3
DEIA 530 Leadership in Social Justice Advocacy, Self and Others | 3
DEIA 590 Engaged Scholarship in Diversity, Equity, Inclusion, and Advocacy | 3

Concentration Electives | 3

Research Courses

EPR 594 Introduction to Educational Research Design | 3

Total Hours 36

Education Specialist (Ed.S.) in School Psychology
Approved April 14, 2023

Requirements	Hours
Instructional Support Area
ESP 630 Applied Neuropsychology in the School | 3
ESP 631 Crisis Intervention & Prevention in Schools | 3
ESP 632 Consultation & Intervention for Learning & Behavior Problems | 3
ESP 627 Practicum in Schil Psychometry | 1

Survey of Special Education Course
ECY 600 Introduction to Exceptional Learner | 0-3
EDC 732 Culturally and Linguistically Responsive Instruction | 3

Internship
ESP 689 Internship in School Psychometry and Psychology | 12

Additional Courses
ECT 527 Collaborative Processes | 3
ECT 619 Methods of Reading Assessment, Instruction, and Intervention | 3
ECY 689 Advanced Topics in Special Education/ School Psychometry | 1
EPR 608 Introduction to Statistical Methods in Educational Research | 3

Total Hours 35-38

Graduate Certificate in Industry Genetics and Genomics
Approved March 10, 2023

Requirements	Hours
IGC 620 Applied Advanced Medical Genetics and Genomics | 3
or IGC 624 Genetics and Genomics Diagnostics Regulation
IGC 621 Clinical Genomic Testing Technologies and Methodologies | 3
IGC 622 Clinical Tools for Genomic Variant Curruration and Analysis | 3
IGC 623 Genomic Variant Interpretation Using Clinical Application | 3
IGC 625 Implementation of Variant Interpretation Practices in the Genetics and Genomics Industry | 3

Total Hours 15

Graduate Certificate in LGBTQ Health and Wellbeing
Approved March 10, 2023

Requirements	Hours
HB 604 LGBTQ Health and Wellbeing Service Learning | 3
or HB 707 Introduction to LGBTQ Health

Electives | 9

ECG 628 Social and Cultural Diversity
HB 600 Social and Behavioral Sciences in Public Health
HB 615 Homelessness, Housing and Health

Total Hours 36
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 762</td>
<td>Computational Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PH 518</td>
<td>Computational Solid State Physics</td>
<td>3</td>
</tr>
<tr>
<td>PH 653</td>
<td>Advanced Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PH 610</td>
<td>Classical Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PH 650</td>
<td>Electromagnetic Theory I</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>PH 587</td>
<td>Nanoscale Science and Applications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 525</td>
<td>Applications of Contemporary Optics I</td>
<td>3</td>
</tr>
<tr>
<td>PH 526</td>
<td>Applications of Contemporary Optics II</td>
<td>3</td>
</tr>
<tr>
<td>Physics Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>PH 581</td>
<td>Laser Physics I</td>
<td></td>
</tr>
<tr>
<td>PH 582</td>
<td>Laser Physics II</td>
<td></td>
</tr>
<tr>
<td>PH 525</td>
<td>Applications of Contemporary Optics I</td>
<td></td>
</tr>
<tr>
<td>PH 586</td>
<td>Semiconductor Materials in Modern Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 655</td>
<td>Advanced Solid State Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>PH 586</td>
<td>Semiconductor Materials in Modern Technology</td>
<td></td>
</tr>
<tr>
<td>PH 587</td>
<td>Nanoscale Science and Applications</td>
<td></td>
</tr>
</tbody>
</table>
Index

A
- About UAB .. 3
- Academic and Student Services 10
- Academic Calendar .. 10
- Academic Progress .. 14
- Accounting .. 40
- Accreditation .. 4
- Addenda ... 584
- Administration Health Services 397
- Admissions .. 10
- Anatomical Science ... 162
- Anthropology .. 54
- ARISE MD ... 443
- Art History .. 61
- Artificial Intelligence in Medicine 442
- Arts Education .. 209

B
- Behavioral Neuroscience .. 133
- Biochemistry & Structural Biology Theme 173
- Biology .. 68
- Biomedical and Health Sciences 376
- Biomedical Engineering ... 313
- Biostatistics .. 543
- Biotechnology .. 378
- Biotechnology Regulatory Affairs Certificate 382
- Business Administration ... 43

C
- Cancer Biology Theme .. 174
- Cell, Molecular & Developmental Biology Theme 175
- Certificate Programs .. 532
- Chemistry .. 76
- Civil, Construction and Environmental Engineering 318
- Clinical and Diagnostic Sciences 375
- Clinical Laboratory Sciences .. 383
- Collat School of Business ... 37
- College of Arts & Sciences ... 53
- Communication Studies ... 83
- Community Health and Human Services 256
- Completion of a Degree .. 17

D
- Computer Engineering .. 347
- Computer Science ... 85
- Counseling ... 262
- Course Index .. 582
- Criminal Justice .. 95
- Criminal Justice .. 98
- Cultural Heritage Studies ... 66
- Curriculum and Instruction .. 193
- Cyber Security ... 53
- Dentistry ... 186
- Developmental Psychology ... 134
- Digital Healthcare .. 442
- DMD/PhD Program ... 190
- Doctor of Medicine / Master of Public Health Program 536
- Doctor of Medicine / Master of Science in Public Health Program 536
- Doctor of Optometry/Master of Public Health Program 539
- Doctor of Philosophy (Psychology) and Masters of Science in Public Health 541
- Doctor of Veterinary Medicine (Auburn) / Master of Public Health Program 534

E
- Early Childhood Education .. 213
- Educational Leadership ... 265
- Educational Studies .. 219
- Electrical and Computer Engineering 337
- Electrical Engineering ... 342
- Elementary Education ... 220
- Engineering Management .. 300
- English ... 103
- English as a Second Language 223
- Enrollment ... 13
- Environmental Health Sciences 549
- Epidemiology ... 555

F
- Financial Information ... 22
- Forensic Science .. 101

G
- General Information .. 4
- Genetic Counseling .. 386
- Genetics, Genomics & Bioinformatics Theme 176
- Gerontology ... 448
Graduate Program

- Master of Public Health with a Concentration in Population Health
- Kinesiology
- Juris Doctor / Master of Public Health Program
- Interdisciplinary Programs
 - Interdisciplinary Engineering
 - Health Informatics
 - Health Physics
 - Health Services Administration
 - Healthcare Leadership
 - Healthcare Quality and Safety
 - Healthcare Simulation
 - Heersink Biomedical Innovation
 - High School Education
 - Higher Education Administration
 - History
 - Human Studies
- **H**
 - Health Administration
 - Health Behavior
 - Health Care Policy and Organization
 - Health Focused Patient/Client Management for Physical and Occupational Therapists
 - Health Informatics
- **I**
 - Immunology Theme
 - Instructional Design & Development
 - Interdisciplinary Engineering
 - Interdisciplinary Graduate Studies
 - Interdisciplinary Programs
- **J**
 - Joint Health Sciences
 - Juris Doctor / Master of Public Health Program
- **K**
 - Kinesiology
- **M**
 - Management Information Systems
 - Master of Business Administration / Master of Public Health Program
 - Master of Engineering
 - Master of Public Administration/Master of Public Health Program
 - Master of Public Health with a Concentration in Population Health
- Master of Science in Health Administration/Master of Public Health Program
- Master of Science in Nursing / Master of Public Health in Maternal & Child Health Policy
- Master of Science in Nutrition Sciences, Dietetic Internship / Clinical Track/Master of Public Health
- Master of Science in Physician Assistant Studies / Master of Public Health Program
- Materials Engineering
- Materials Science
- Materials Science and Engineering
- Mathematics
- Mechanical Engineering
- Medical Scientist Training Program
- Medical/Clinical Psychology
- Microbiology Theme
- MSW/MPH in Maternal & Child Health Policy & Leadership
- Multidisciplinary Biomedical Science
- Music
- **N**
 - Neuroengineering
- Neuroengineering
- Neuroscience Theme
- Non Academic Policies
- Nuclear Medicine and Molecular Imaging Sciences
- Nuclear Medicine Technology
- Nutrition Sciences
- **O**
 - Occupational Therapy
- Office of Professional & Experiential Learning
- **P**
 - Pathobiology, Pharmacology & Physiology
 - Pharm D (Auburn University Harrison School of Pharmacy) / Master of Public Health
 - PhD in Biomedical Science / Master of Public Health Program
 - PhD in Psychology (HBPY) or Sociology (HSOC) and MPH Program
 - Physical Therapy
 - Physician Assistant Studies
 - Physics
 - Political Science and Public Administration
 - Program Index
 - Psychology
R
Reading ... 232
Rehabilitation Science ... 373

S
School of Dentistry .. 186
School of Education ... 192
School of Engineering ... 272
School of Health Professions 371
School of Medicine .. 440
School of Nursing .. 454
School of Optometry ... 505
School of Public Health ... 508
School Psychometry .. 234
Social Behavioral Statistics, Certificate 54
Social Work .. 136
Sociology ... 142
Special Education .. 235
Student Life .. 25
Student Services and Facilities 26

T
Teaching English to Speakers of Other Languages 238
The Graduate School ... 570
Translation of Biomedical Innovation to Clinical Practice 443
Trustees & Administration ... 8

U
UAB Sustainability .. 34

V
Vision Sciences .. 505
Visual Arts ... 212

W
World Languages and Literature 147