Concomitant Aortic Valve Procedures in Patients Undergoing Implantation of Continuous-Flow LVADs: An INTERMACS Database Analysis

April 11, 2014

Jason O. Robertson, M.D., M.S.; David C. Naftel, Ph.D., Sunil Prasad, M.D.; Akinobu Itoh, M.D.; Susan L. Myers; Gail Mertz, B.S., R.N., CCRC; James K. Kirklin, M.D.; and Scott C. Silvestry, M.D.

Disclosures: Robertson – none; Naftel – none; Prasad - none; Itoh – none; Myers – none; Mertz – none; Kirklin – none; Silvestry – Consultant for Thoratec and HeartWare

This project has been funded in whole or in part with federal funds from the National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN268201100025C
Aortic insufficiency (AI) compromises device support by creating a short circulatory loop, resulting in:

- Diminished systemic perfusion
- Elevated left heart filling pressures
- Increased LVAD flows

Existing mechanical valves may predispose to stroke.

Even minor AI worsens over time with device support.

Strategies to overcome these problems include:

- AV repair (AVr)
- AV closure
- AV replacement (AVR)

Deo SV, et al. ASAIO J. 2014;60:183-188
Types of Aortic Valve Procedures

Suture Repairs: Park’s/Frater’s Stitch, etc.
Closures: Suture-Based or Patch Closures
Aortic Valve Replacement

Outcomes Following Aortic Valve Procedures

- Previous studies are split on whether or not mortality is increased after concomitant aortic valve procedures.

- The largest of these analyzed data from the HeartMate II BTT and DT Trials (n=1,106), including:
 - 30 AVRs
 - 32 AV closures
 - 18 AV repairs

- Long term survival was significantly reduced with concomitant AV procedures compared to HMII implant alone:
 - 1-year Survival: 57% vs. 75%, p=0.001
 - 2-year Survival: 43% vs. 64%, p=0.001

Adamson RM, et al. JHLT. 2011; 30: 576-582
The purpose of this study is to compare outcomes between three strategies for management of the aortic valve: AV Closure, AV Repair and AV Replacement.

The Interagency Registry of Mechanically Assisted Devices (INTERMACS) was utilized.

Data on AV closures was obtained retrospectively through a database audit.
Question 1:
Did patients with documented moderate/severe AI without a documented aortic valve procedure (AVP) in fact have an AVP?

<table>
<thead>
<tr>
<th>Queried:</th>
<th>patients=113</th>
<th>hospitals=59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responded:</td>
<td>patients=86 (76%)</td>
<td>hospitals=47 (80%)</td>
</tr>
</tbody>
</table>

Question 2:
Did patients with documented AV repairs undergo closure or repair?:

<table>
<thead>
<tr>
<th>Queried:</th>
<th>patients=213</th>
<th>hospitals=62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responded:</td>
<td>patients=143 (67%)</td>
<td>hospitals=40 (65%)</td>
</tr>
<tr>
<td>Unconfirmed:</td>
<td>patients=70 (33%)</td>
<td>hospitals=19 (31%)</td>
</tr>
</tbody>
</table>

Total Patients queried = 326
Total Hospitals queried = 88
Total Patients with response = 229 (70%)
Total Hospitals responded = 63 (72%)

All patients implanted as of 12/31/2012
N=7,887

Pediatric Patients: N=79
(patients < 19 yrs of age at time of implant)

Adults: N=7,808

Pulsatile Flow: N=1,087

Continuous Flow: N=6,721

Bi VAD: N=179
LVAD: N=6,542

BiVAD: N=301
TAH: N=158
LVAD: N=628

Reduced Cohort:
Bi VAD: N=140
LVAD: N=5,204

Mean Follow-up = 12.3 months

Total Cohort: N=5,344
Aortic Valve Closure
- Total=125
- LVAD=121
- BiVAD=4

Aortic Valve Repair
- Total=95
- LVAD=93
- BiVAD=2

Aortic Valve Replacement
- Total=85
- LVAD=83
- BiVAD=2

No AV Procedure
- Total=5,039
- LVAD=4,907
- BiVAD=132
Preimplant Characteristics

<table>
<thead>
<tr>
<th>Preimplant Characteristics</th>
<th>No AVP N=5,039</th>
<th>AV Closure N=125</th>
<th>AV Repair N=95</th>
<th>AVR N=85</th>
<th>P (AVP vs. No AVP)</th>
<th>P (comparing interventions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>56.21</td>
<td>62.4</td>
<td>63.8</td>
<td>63.6</td>
<td><0.0001</td>
<td>0.58</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.7</td>
<td>27.2</td>
<td>25.2</td>
<td>27.9</td>
<td><0.0001</td>
<td>0.006</td>
</tr>
<tr>
<td>PASP (mmHg)</td>
<td>50.5</td>
<td>47.6</td>
<td>54.7</td>
<td>55.4</td>
<td>0.15</td>
<td>0.003</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.42</td>
<td>1.52</td>
<td>1.60</td>
<td>1.46</td>
<td>0.02</td>
<td>0.58</td>
</tr>
<tr>
<td>Bridge to Transplant (listed, %)</td>
<td>27.3</td>
<td>19.2</td>
<td>28.4</td>
<td>23.5</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Destination Therapy (%)</td>
<td>32.3</td>
<td>44.8</td>
<td>47.4</td>
<td>45.9</td>
<td><0.0001</td>
<td>0.93</td>
</tr>
<tr>
<td>INTERMACS Level 1 (%)</td>
<td>14.7</td>
<td>15.2</td>
<td>10.5</td>
<td>9.4</td>
<td>0.22</td>
<td>0.38</td>
</tr>
<tr>
<td>INTERMACS Level 2 (%)</td>
<td>40.5</td>
<td>36.8</td>
<td>48.4</td>
<td>34.1</td>
<td>0.77</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Survival by Type of Aortic Valve Procedure Performed

- No AV Procedure: n=5039, deaths=1078 (78.6%)
- AV Replacement: n=85, deaths=24 (71.8%)
- AV Repair: n=95, deaths=22 (76.8%)
- AV Closure: n=125, deaths=46 (61.6%)

Overall p = 0.0003
Survival for INTERMACS Level 1-2 Patients by Type of AVP

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>events</th>
<th>6 months</th>
<th>1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV Closure</td>
<td>65</td>
<td>25</td>
<td>67%</td>
<td>56%</td>
</tr>
<tr>
<td>AV Repair</td>
<td>56</td>
<td>16</td>
<td>85%</td>
<td>76%</td>
</tr>
<tr>
<td>AV Replacement</td>
<td>37</td>
<td>11</td>
<td>76%</td>
<td>67%</td>
</tr>
<tr>
<td>No AVP</td>
<td>2780</td>
<td>652</td>
<td>85%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Overall p=0.003
Survival for INTERMACS Level 3-7 Patients by Type of AVP

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>events</th>
<th>6 months</th>
<th>1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV Closure</td>
<td>60</td>
<td>21</td>
<td>85%</td>
<td>73%</td>
</tr>
<tr>
<td>AV Repair</td>
<td>39</td>
<td>6</td>
<td>86%</td>
<td>82%</td>
</tr>
<tr>
<td>AV Replacement</td>
<td>48</td>
<td>13</td>
<td>87%</td>
<td>75%</td>
</tr>
<tr>
<td>No AVP</td>
<td>2258</td>
<td>426</td>
<td>89%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Overall $p = 0.04$
Multivariate Model for Death After Implant

- Demographics
- Pre-implant laboratory analyses
- Degree of AV regurgitation
- Type of AV intervention
- INTERMACS Profile Levels
- Pre-implant support: ventilator requirement, IABP, ICD, dialysis
- Comorbidities
- Pre-implant hemodynamic variables: LVEF, RV failure, CI, inotrope requirement, cardiac output, RA pressure, LVEDD, PAWP, PASP, PADP, PVR, blood pressure
- Implant information: concomitant surgery, BiVAD, hospital effect
Multivariate Model for Death After Implant

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Hazard Ratio</th>
<th>Confidence Interval</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic Regurgitation</td>
<td>0.98</td>
<td>0.87-1.10</td>
<td>0.75</td>
</tr>
<tr>
<td>AV Repair</td>
<td>0.83</td>
<td>0.54-1.27</td>
<td>0.39</td>
</tr>
<tr>
<td>AVR</td>
<td>1.36</td>
<td>0.84-2.19</td>
<td>0.21</td>
</tr>
<tr>
<td>Closure</td>
<td>1.87</td>
<td>1.39-2.53</td>
<td><0.0001</td>
</tr>
<tr>
<td>INTERMACS Level 1</td>
<td>1.23</td>
<td>1.01-1.51</td>
<td>0.04</td>
</tr>
<tr>
<td>Preop Dialysis</td>
<td>1.85</td>
<td>1.32-2.58</td>
<td>0.0003</td>
</tr>
<tr>
<td>BiVAD</td>
<td>2.34</td>
<td>1.8-3.05</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Competing Outcomes for Patients without an AVP

<table>
<thead>
<tr>
<th>Outcome</th>
<th>% at 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive (device in place)</td>
<td>60%</td>
</tr>
<tr>
<td>Transplanted</td>
<td>23%</td>
</tr>
<tr>
<td>Dead</td>
<td>17%</td>
</tr>
<tr>
<td>Recovery</td>
<td>1%</td>
</tr>
</tbody>
</table>
Competing Outcomes for Patients with an AV Procedure

AVR or AVr Patients (n=180)

- **Dead**: 23%
- **Alive (device in place)**: 58%
- **Transplanted**: 19%
- **Recovery**: 0%

AV Closure Patients (n=125)

- **Dead**: 34%
- **Alive (device in place)**: 52%
- **Transplanted**: 14%
- **Recovery**: 0%
Other Postoperative Outcomes

Rehospitalization

$\ p = 0.32$

Right Heart Failure

$\ p = 0.10$

Stroke

$\ p = 0.58$

AV Closure
AV Repair
AV Replacement
No AV Procedure
Time to First Renal Dysfunction by Group

% First Renal Dysfunction

Groups n events at 1 year post implant
AV Closure 125 21 83%
AV Repair 95 14 85%
AV Replacement 85 16 82%
No AV Procedure 5039 568 89%

% Freedom from Renal Dysfunction at 1 year post implant

Overall $p = .02$

p (comparing interventions) = 0.79
Recurrence of Aortic Insufficiency Postoperatively by Group

Aortic Closure, n=112
Aortic Repair, n=85
Aortic Replacement, n=67
No AV Procedure, n=4,061

Note: If the total n for the group is < 20 then it is not plotted in this figure.

p (6 months) < 0.0001

Note: If the total n for the group is < 20 then it is not plotted in this figure.
Causes of Death

≥3 months post-implant:

<table>
<thead>
<tr>
<th>Primary Cause of Death</th>
<th>Closure % (n)</th>
<th>Repair % (n)</th>
<th>Replacement % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Failure</td>
<td>4.6 (1/22)</td>
<td>0.0 (0/13)</td>
<td>0.0 (0/14)</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>13.6 (3/22)</td>
<td>0.0 (0/13)</td>
<td>7.1 (1/14)</td>
</tr>
<tr>
<td>Device Malfunction</td>
<td>4.6 (1/22)</td>
<td>0.0 (0/13)</td>
<td>7.1 (1/14)</td>
</tr>
<tr>
<td>Sudden Unexplained Death</td>
<td>13.6 (3/22)</td>
<td>30.8 (4/13)</td>
<td>0.0 (0/14)</td>
</tr>
<tr>
<td>Neurological Dysfunction</td>
<td>9.1 (2/22)</td>
<td>7.7 (1/13)</td>
<td>7.1 (1/14)</td>
</tr>
<tr>
<td>Withdrawal of Support</td>
<td>13.6 (3/22)</td>
<td>0.0 (0/13)</td>
<td>0.0 (0/14)</td>
</tr>
<tr>
<td>MSOF</td>
<td>4.6 (1/22)</td>
<td>7.7 (1/13)</td>
<td>0.0 (0/14)</td>
</tr>
<tr>
<td>Major Infection</td>
<td>0.0 (0/22)</td>
<td>7.7 (1/13)</td>
<td>14.3 (2/14)</td>
</tr>
</tbody>
</table>
• Intraoperative echocardiographic data is not available

• We do not have information on management algorithms or why individual surgeons selected one aortic valve procedure over another

• We are unable to comment on who should receive an aortic valve procedure
Conclusions

• Aortic valve closure is an independent predictor of increased postoperative mortality, particularly for INTERMACS level 1-2 patients

• This results in fewer patients with AV closure reaching transplant

• The reasons for increased mortality are unclear but may be related to respiratory failure or major bleeding

• Aortic valve repairs, while associated with the lowest mortality, are less durable postoperatively