INTRODUCTION TO DRUG DISCOVERY AND ITS FUNDING including the Alabama Drug Discovery Alliance

Maaike Everts, PhD – Associate Director
Topics to Cover

The Drug Discovery and Development Pipeline
Funding Opportunities at NIH and Foundations
Funding Opportunities at UAB with the ADDA
Drug Discovery & Development

Source: http://dlab.cl/molecular-design/drug-discovery-phases/
The Drug Discovery Pipeline

1. Target ID
2. Target validation
3. Assay development
 - Primary screen
 - Secondary screen
 - Lead optimization
 - Preclinical development
 - Clinical development – phase I, II and III
 - Regulatory approval
Target ID and Validation

- Target ID
- Target validation
- Assay development
- Primary screen
- Secondary screen
- Lead optimization
- Preclinical development
- Clinical development – phase I, II and III
- Regulatory approval
How do you identify a target?

- Target: the naturally existing cellular or molecular structure involved in the disease that the drug-in-development is meant to act on

- So: you need to:
 - Understand the molecular mechanism of the disease of interest
 - Identify a therapeutic target in this mechanism (enzyme, gene, receptor, channel, etc)

- Comes out of basic research
How do you validate a target?

- Analysis in cell culture
 - For example using siRNA

- Analysis in mouse models
 - For example using knockout mice

- Clinical data (protein or gene expression)

- The best ‘validation’ is the existence of a drug that works in humans
 - ‘me too’ drugs
Target Evaluation Criteria

- Functional role played in tissue of Interest; KO phenotype
- **Novelty** (i.e. does it represent a therapeutic advance or is it an existing target for which, arguably, patentable new chemical entities need to be discovered?)
- **Druggability** of the target (enzymes, G-proteins, receptors are generally more “druggable”)
- Spectrum (for infectious disease targets)
- **Selectivity** (how selective is the target i.e. expressed exclusively in a particular tissue, such as a tumor?)
- Genetic essentiality (for infectious disease targets)
- Cellular location (60% of known targets are on the membrane)
- Amenable to HTS (can gene product be expressed & purified?)
- Amenable to rational drug design?
- **Intellectual property potential**, risk vs return, impact etc.

- Discussed in more detail on March 30
Assay development and HTS

1. Target ID
2. Target validation
3. Assay development
4. Primary screen
5. Secondary screen
6. Lead optimization
7. Preclinical development
8. Clinical development – phase I, II and III
9. Regulatory approval

Preclinical development → Clinical development – phase I, II and III → Regulatory approval
What is HTS?

- It is a **system** that uses specialized automation equipment and high density microtiter plates to screen a large number of “wells” in a short period of time.

- Throughput of 30,000 to 100,000 compounds per day is common.
Key System Components

- Compound management
- Precision robotics for liquid and plate handling
- Informatics
 - Associating data with a particular compound
 - Analyzing data from a screen
- Cheminformatics
- People

- More info about HTS on March 23 in Bob Bostwick’s lecture (next week)
Using microtiter plates

96-well
100-200μl

384-well
25-50μl

1536-well
4-10 μl

3456-well
1-2 μl
General Approach HTS Campaign

- Develop an assay; test in duplicate with 10k compounds
- Typical HTS screen within the ADDA: 100,000 – 300,000 compounds
- Eg 2,000 ‘hits’ identified
- Cherry-picking; dose-response testing
- Counterscreens? Eg related enzyme, toxicity?
- Chemists look at the structure of active compounds and generate a shortlist.
 - Depends on # of hits what happens next
 - Still a large number? Another medium throughput screen needed (that is different than the original HTS)
 - Smaller number that the PI can do in the lab? What is the # of compounds the PI can handle?
- Compounds are re-ordered and tested
- Fine-tuning list of attractive compounds is an ongoing process
Types of HTS Assays

- **Cell-based assays**
 - **Pro:** more physiologically relevant
 - Membrane penetration
 - Metabolism
 - **Con:** exclude compounds that would work with some ‘tweaking’; expensive; higher variability

- **Biochemical assays**
 - **Pro:** you know your compound hits your target; cheaper than cell-based
 - **Con:** you won’t know whether your compounds have undesired ‘off-target’ effects
Assay Development

Why is this a bottleneck?

Bottlenecks in drug discovery
Non-problematic steps in drug discovery
When you go from this:
What are you aiming for in an HTS assay:
To have a reasonable chance to believe the results of a single determination, i.e. one well

For that you need:
Reproducibility from well to well
Reproducibility from assay plate to assay plate
Reproducibility from day to day
Lead optimization and preclinical development

1. Target ID
2. Target validation
3. Assay development
4. Primary screen
5. Secondary screen
6. Lead optimization
7. Preclinical development
8. Clinical development – phase I, II and III
9. Regulatory approval
From hit to lead

> 100,000 compounds

More information in lecture on May 4 by Dr. Corinne Augelli-Szafran

Few interesting ‘scaffolds’ (hits)

Several ‘lead compounds’
Establish SAR

- Structure-Activity-Relationship
 - Analogues purchased or synthesized

- All analogues need to be tested for efficacy, selectivity, etc
 - Using one or more in vitro assays

- Data used for feedback to generate more analogues

- Promising compounds tested for
 - ADME (in vitro)
 - Initial PK (in vivo) – BEFORE TESTING FOR EFFICACY!!
SAR: effect on many parameters

Examples of ADME studies

- **In vitro:**
 - Absorption: Caco-2 permeability assay
 - Metabolic stability: liver microsomes or hepatocytes
 - CYP profiling
 - Which isoforms metabolize the compound
 - Which isoforms are inhibited by the compound
 - Which isoforms are induced by the compound

- **In vivo:**
 - Radiolabeled compound
 - Various routes of administration

- More info on April 6 in lecture by Dr. Ed Acosta about PK/ADME
Candidate selection

- Candidates selected for in vivo efficacy testing
- Most promising compound (plus backup compound) tested for toxicity in relevant animal species
 - Acute tox in 2 mammalian species
 - Repeat tox in rodent and non-rodent
 - Mimic clinical use of the compound
- More info in lecture on April 20 by Dr. Paul Bushdid
Summary Pre-clinical Development

- Things to consider, among others:
 - Hits the target/organ of choice
 - Efficacy in animals
 - Not toxic
 - Multiple species
 - Pharmacokinetic studies
 - ADME (Absorption, Distribution, Metabolism, Elimination)
 - Formulation studies

- Depends on the indication what tests need to be done, and how to do them

- Everything according to GLP before you can submit an IND: $$$!
The goal: an IND application

(Investigational New Drug)

The CCTS has an IND/IDE support office; Penny Jester and myself are available for consultation.

I will present regulatory issues and how to submit an IND on May 18.
Clinical development/Approval

Target ID → Target validation → Assay development

Primary screen → Secondary screen → Lead optimization

Preclinical development → Clinical development – phase I, II and III → Regulatory approval
Clinical Trials: Phase I

- 20-100 healthy volunteers
- Information learned
 - Absorption and metabolism
 - Effects on organs and tissues
 - Side effects as dose increases
Clinical Trials: Phase II

- Several 100 patients
- Information learned
 - Effectiveness in treating disease
 - Short-term side effects
 - Dose range
Clinical Trials: Phase III

- Several 1000 patients
- Information learned
 - Benefit vs risk
 - Less common and longer-term side effects
 - Labeling information

Lecture about clinical trials by Dr. Rich Whitley on April 13
NDA: New Drug Application

- Submit for approval to regulatory agencies
 - US: Food & Drug Administration (FDA)
 - Europe: European Medicines Agency (EMEA)
 - Others
- Approval
Drug Discovery Pipeline

1. **Target ID**
2. **Target validation**
3. **Assay development**
 - **Primary screen**
 - **Secondary screen**
 - **Lead optimization**
 - **Preclinical development**
 - **Clinical development – phase I, II and III**
 - **Regulatory approval**
After approval

- Phase IV Clinical Trials
 - Safety monitoring
- Additional indications
- Marketing
Success Rate in Clinic

NME Success Rates By Phase And Overall 2007-2011 Industry Portrait, Pure

Success Rate For Each Phase:
- Preclinical: 30.4% (64%)
- Phase 1: 19.4% (44%)
- Phase 2: 8.6% (22%)
- Phase 3: 1.9% (65%)
- Registration: 1.2% (83%)

Percent Calculated To Achieve 1 Approval:
- Preclinical: 3%
- Phase 1: 5%
- Phase 2: 12%
- Phase 3: 54%
- Registration: 83%
Cost to Develop a Drug

Cost for 1 compound: $263,5M
Who funds what?

Investigational New Drug (IND) Application

New Drug Application (NDA)

Clinical Trials
 Phase 1
 Phase 2
 Phase 3

Basic Research
 Funding: Largely Public
 Example: NIH, DoD
 Variable

Translational Research
 Funding: Mix of Government & Private
 Underfunded Area
 1-6 years

Clinical Development
 Funding: Largely Industry & For-Profit
 FDA Oversight
 5-10 years

FDA Review & Approval
 1-2 years

Source: Parkinson's Action Network
Topics to Cover

- The Drug Discovery and Development Pipeline
- Funding Opportunities at NIH and Foundations
- Funding Opportunities at UAB with the ADDA
Funding Opportunities at NIH

- NCATS initiatives: https://ncats.nih.gov/funding/open
 - NCATS is accepting proposals on an ongoing basis to collaborate with scientists supporting the Bridging Interventional Development Gaps (BrIDGs) and Therapeutics for Rare and Neglected Diseases (TRND) programs

- NCI: Chemical Biology Consortium
 - NExT library
 - Development Therapeutics Program

- Other institutes sometimes have drug discovery programs or opportunities
Foundations

- Examples
 - CF Foundation funding screening of FDA-approved drugs library
 - Michael J Fox Foundation Therapeutic Pipeline Program
 - Alzheimer’s Drug Discovery Foundation
 - Children’s Tumor Foundation Drug Discovery Initiative
Topics to Cover

- The Drug Discovery and Development Pipeline
- Funding Opportunities at NIH and Foundations
- Funding Opportunities at UAB with the ADDA
Funding Opportunities at UAB:

The Alabama Drug Discovery Alliance

a Collaboration between UAB and Southern Research
What is the ADDA?

A partnership between:

• Southern Research (SR): not for profit research institute
• UAB School of Medicine
• UAB CCC
• UAB CCTS

With the goal to:

• Harness UAB’s large and productive research base towards discovery of new therapeutic agents
 • Generate new Intellectual Property (IP)
 • License IP to pharmaceutical companies
The Drug Discovery Pipeline

Pipeline:
- Basic Research
- Drug Discovery
- Drug Development
- Clinical Trials

UAB:
- Basic Research
- Drug Discovery
- Drug Development
- Clinical Trials

SR:
- Basic Research
- Drug Discovery
- Drug Development
- Clinical Trials

ADDA:
- Basic Research
- Drug Discovery
- Drug Development
- Clinical Trials
Who funds what?

ADDAG

Investigational New Drug (IND) Application

New Drug Application (NDA)

Clinical Trials

Phase 1

Phase 2

Phase 3

Basic Research

Funding: Largely Public
Example: NIH, DoD

Variable

1-6 years

Translational Research

Funding: Mix of Government & Private
Underfunded Area

1-6 years

Clinical Development

Funding: Largely Industry & For-Profit
FDA Oversight

5-10 years

FDA Review & Approval

1-2 years

Source: Parkinson’s Action Network
The Pilot Grant Process

Request for Applications:
- Scientific rationale
- IP aspects
- (Commercialization potential)

Identify scientific reviewers
- Three reviewers per application
- UAB and SR scientists

Review applications for IP and commercialization aspects
- UAB IIE and SR

Determine awardees
- ADDA Advisory Board

With PI, identify project team members
- Scientific input (UAB and SR faculty)
- IP and commercialization input (UAB IIE and SR)
- Meet quarterly; develop Compound Progression Pathway

2-stage process:
1) Pre-application (2 pages)
2) Full application (9 pages)
Organizational Aspects Projects

- All projects have teams built around them with expertise in:
 - Basic cell biology
 - Pathology
 - High Throughput Screening and Assay Development
 - Medicinal Chemistry
 - Preclinical Animal Models
 - Clinical Applications
 - Intellectual Property

- Project teams meet on a quarterly basis
 - Discuss what has been done in the last quarter
 - Discuss what will be done in the coming months
 - Develop a Compound Progression Pathway
Compound Progression Pathway

1. Target Identification and Validation (PI)
2. HTS Assay Development (PI in close contact with SR personnel)
3. Screen and Confirm Hits in 2° and 3° Assays (SR/PI’s lab)
4. Lead Optimization – Iterative Med Chem; Prelim PK (SR)
5. Preclinical Development – POC In Vivo; ADME/Tox
6. Clinical Development - Phase I, II, III
Pilot grants are for $50,000 per year (direct costs) for 2 years, with funding of year 2 depending on progress in year 1.

For assay development projects, these funds cover costs incurred at UAB; SR funds the actual screen and potentially downstream medicinal chemistry efforts.

An agreement between UAB (IIE) and SR is in place to facilitate easy transfer of materials and ideas/IP.

If sufficiently attractive, additional funds can be invested past 2 years.
Next Lecture’s Topic: High Throughput Screening

Bob Bostwick – March 23 (next week)