IhaveaDragonTrailJobsaccount!
Login             NewtoDragonTrailJobs?
CreateAccount
ThefollowingservicesandresourcesareaccessedthroughDragonTrailJobs.Clickontheheadingsformoreinformation.
 Searchthroughhundredsoflocalandnationaljobandinternshiplistingsfromemployers.DetailyoursearchbyapplyingfiltersbasedonyourpreferredIndustry,JobFunction,andmore.Applytopositionsutilizingyouruploadedresumes,coverlettersandadditionaldocuments.Organizeyourjobandinternshipsearchbyviewingyourcareeractivityhistoryatanytime.
 Logintoviewandregisterforupcomingcareereventsandfairs.Researchparticipatingemployersinadvancetoviewavailablepositionsandmajorsrecruited.
 Viewandregistertoattendemployerinformationsessions.Theseinformationsessionsofferinsightintotheprospectiveemployersandhelpsyoutostartbuildingrelationshipswithimportantrecruitingcontacts.Logintofindoutwhichemployerswillbehostinginformationsessionsoncampus.
 Seeemployersschedulesandregisterforon-campusinterviews.TheOCIjobsearchcandisplayonlytheInterviewsyouqualifyfor.Easilyapplytojobpostingsusingyourstoreddocuments.
 CareerandProfessionalDevelopmentServicesoffersavarietyofWorkshopsthroughouttheyeartohelpyoudevelopandrefineyourcareer-relatedskills.Frommockinterviews,todiscussingappropriatebusinessattire;Workshopsprovideallthetipsandskillsyouneedtoensurejobsearchsuccess.SimplylogintoviewupcomingWorkshops!
 OptimalResumeprovidesstudentsanonlinesourceinhelpingcreatetheirresumeandcoverletters.Career&ProfessionalDevelopmentServicesstaffwillcritiquethefirstresumetouseasadefaultresumeinDragonTrailJobs.OnceithasbeenapprovedinOptimalResume,ourstaffwilluploadittoDragonTrailforyou.
 InterviewStreamprovidesallUABstudentstheopportunitytoparticipateinapracticeinterviewsystemthatallowsstudentstheopportunitytosee&hearthemselvesonline.Usingawebcam,studentswillbeabletosimulatejobinterviewsbyrespondingtopre-recordedinterviewquestionsandpracticebothverbalandnon-verbalcommunicationskills.Afterwards,allinterviewsareimmediatelyaccessibleonlineforcounselorsandprofessorstoassessandleavefeedback.
 CareerShiftisanonlinesetofintegradedapplicationsproventohelpjobseekerssuccessfullyfindemployment.Search,selectandstorejoblistingsfromalljobboardsandallcompanyjobpostings.Getup-to-datecontactinformation,includinge-mailaddresses,formillionsofcompanies.Accessin-depthinformationaboutcontactsandcompaniespostingjobs.Record,saveandstoreyourcorrespondencehistoryrecordsautomatically.Createpersonalmarketingcampaigns,includingunlimitedresumesandcoverletterseasily,andsavethemtoaccess,printore-mail.ManageyourconfidentialCareerShiftaccountsecurelyfromanycomputer24/7,toupdate&maintainyourorganizedandrecordedjobsearch.

AdditionalJobSearchResources:
Thisonlinejobsearchsiteoffersover1.6millionjoblistings.Newjobsareposteddailyandyoucancreateadvancedsearchesbycompany,titlesandindustry.EnterHERE
FindGreatCaregiverJobsNearYou!Earnmoneyasababysitter,nanny,tutor,seniorcareprovider,petsitterorhousekeeper!CreateaprofileforFREE,hearfromfamilieswhoneedyourhelp,searchjoblistingsbytypeofcare,hourlyrate,&more.Applyforjobsthatmatchyourexperience&schedule.InformationSheet  EnterHERE
ThislistofonlinecareerresourcesitesoffersthelargepopularsitessuchasMonster.comtotheobscureWorkInSports.com.SearchbyIndustrythentitlesandifyoudon'tseeyourfavorite,letusknowandwe'lladdittothelist.EnterHERE

Formoreinformation,contactCareer&ProfessionalDevelopmentServicesat(205)934-4324oremailcareerservices@uab.edu.

JoinUABNationalAlumniSociety FrequentlyAskedQuestions

UAB News

  • Submit art now for Alabama high school Statewide Student Juried Art Show
    UAB Department of Art and Art History Chair Lauren Lake, MFA, is the juror for this year’s show. The deadline for entry is Feb. 28.

    Young artists in Alabama take heed: The deadline for entries to the 2016 Statewide Student Juried Art Show is midnight Sunday, Feb. 28.

    This year the show will be juried by Lauren Lake, MFA, chair of the University of Alabama at BirminghamCollege of Arts and SciencesDepartment of Art and Art History.

    The department, in partnership with the Shelby County Arts Council and the Alabama State Council on the Arts, will present the show. The exhibition will offer merit awards, and Phillip Forstall of Forstall Art Center will also give gift certificate awards.

    The exhibition provides a great opportunity for student work to be seen by college and university faculty during the Shelby County Arts Council College Preview Day on Sunday, April 10. The preview day will take place at the Shelby County Arts Council, 104 Mildred St., Columbiana.

    The show is open to all Alabama high school students in grades 10-12 for the 2015-2016 academic year. Categories for submission are painting (oil, acrylic and watercolor), drawing, photography, 3-D design and mixed media.

    Submissions should be sent to submission@shelbycountyartscouncil.com along with the completed PDF entry form. For each work, artists may submit up to two digital images (a general view and a detailed view). JPG images must be attached to the application

    email. Digital images should be sent as JPGs, 72dpi, should measure 1,000 pixels on the longest side and must be saved at “high” quality.There is no cost to enter. More information on the 2016 Statewide Student Juried Art Show is available online at www.shelbycountyartscouncil.com and on the Department of Art and Art History’s website at www.uab.edu/cas/art. Full entry instructions are included on the entry form.

    Lake received her MFA degree from the University of Wisconsin-Madison and her B.A. degree in art education at the University of Florida. She was the recipient of the 2007 Southeastern College Art Conference Excellence in Teaching Award, the 2008 University of Florida College of Fine Arts International Educator Award and the 2009 College of Fine Arts Teaching Award.

    For questions, contact Jared Ragland, DAAH visual media and outreach coordinator, at raglandj@uab.edu.

  • UAB launches adult PCD clinic
    UAB clinic to see adult patients with primary ciliary dyskinesia.

    The University of Alabama at Birmingham has opened a clinic treating adults with primary ciliary dyskinesia, or PCD. A similar new clinic for children with PCD was opened at Children’s of Alabama in November 2015.

    PCD is an inherited disorder of moving cilia — the structures lining the airways, ears and sinuses. Moving cilia are needed to keep the lungs, sinuses and ears free of debris that can cause infection and disease. Poor-functioning cilia in PCD patients can lead to chronic, recurring infections and permanent damage.

    It is estimated up to 25,000 Americans and 400,000 people worldwide suffer from PCD. There is no identified at-risk population in terms of race, ethnicity, heritage or gender. However, there appears to be a higher incidence of PCD in cultures where marriage between close relatives is allowed or where the society is isolated by geographic barriers.

    The UAB and Children’s of Alabama clinics are the only clinics in the region to provide access to both pediatric and adult care. Marty Solomon, M.D., oversees the UAB adult clinic, while Wynton Hoover, M.D., oversees the pediatric clinic. The clinic is approved as a clinical care center by the Minneapolis-based Primary Ciliary Dyskinesia Foundation.

  • Changes in shape and ‘squishiness’ can help drug-containing microcapsules reach tumors
    The properties of cubic or spherical shape and solid or elastic stiffness affect the fates of polymer microcapsules meant to carry chemotherapy to a tumor.

    University of Alabama at Birmingham researcher Eugenia Kharlampieva, Ph.D., makes polymer microcapsules meant to carry cancer drugs to the site of a tumor. Working in the UAB Department of Chemistry at the intersection of polymer chemistry, nanotechnology and biomedical science, she is creating novel “smart” particles that will provide controlled delivery for therapeutic drugs. Specifically, she has found that changes in shapes or elasticity of these tiny carriers greatly influence their ability to surmount the drug-delivery hurdles that lie between an injection into a vein and engulfment into a cancer cell.

    Alexander, JF; Kozlovskaya, V; Chen, J; Kuncewicz, T; Kharlampieva, E; and Godin, B; Cubical Shape Enhances the Interaction of Layer-by-Layer Polymeric Particles with Breast Cancer Cells. Advanced Healthcare Materials, 2015, Vol. 17, front cover. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

    In a recent paper, Kharlampieva and colleagues compared four different microcapsules — rigid cubes or spheres, and elastic cubes or spheres — to see how they perform against three challenges. The first is avoiding engulfment by healthy macrophage immune system cells that act as lookouts and first defenders against foreign pathogens entering the body. The second is the ability to squeeze through the tiny openings in the walls of unhealthy blood vessels to reach tumor cells. The third is getting taken up by tumor cells, where they can deliver their chemotherapy payload.

    In the in vitro experiments, the team found clear winners. For the macrophage challenge, the elastic spheres and cubes were far better at avoiding engulfment compared with the solid spheres and cubes. This potentially means less harm to the healthy immune system cells and a longer half-life in the bloodstream for the elastic therapeutic microcapsules.

    “We want them to stay away from macrophages, which are like the clearing soldiers of the bloodstream,” Kharlampieva said. “We found that the hollow particles are much more elastic, and they are not taken up by macrophages, which is fantastic.”

    In the challenge of squeezing through tiny openings, the elastic spheres and cubes again were far better than the solid microcapsules. The walls of the microscopic blood vessels in tumors have openings that range between 300 nanometers to 1.2 micrometers. The researchers found that the elastic microcapsules, which are 2 micrometers wide, could squeeze through pores that were two to three times smaller than the diameters of the particles. And after squeezing through, the microcapsules regained their shapes as spheres or cubes.

    In tests of uptake into breast cancer cells, the cubes — whether solid or elastic — showed greater uptake, possibly because the flat walls have greater surface area contact with the cells.

    Thus, overall, the researchers write, “Our data show that elastic cubical capsules possess important biological characteristics, which can warrant their further development for cancer therapy.”

    The next step for Kharlampieva and her colleagues will be testing the biological significance, looking at how changes in shapes and elasticity affect the fates and destinations of these polymer microcapsules in the bloodstreams of mice.

    Laser scanning confocal microscopy image of SUM159 human breast cancer cells incubated with cubic capsules for 24 hours. Cell nuclei are stained blue, cell skeleton is stained green, and the capsules are labeled with a red fluorophore. Credit: E. KharlampievaDetails

    To manufacture the spheres and cubes, Kharlampieva and colleagues start with solid scaffolds — either a spherical particle of silicon dioxide or a cubic crystal of manganese carbonate. They then coat the particles with five bilayers of polymers, using tannic acid and poly(N-vinylpyrrolidone). For the solid microcapsules, they leave the scaffolds in place. For the elastic microcapsules, they remove the scaffolds with either acid or a chelating agent.

    The resulting microcapsules are water-soluble, nontoxic and biodegradable, which suits them for the job of controlled drug delivery, and the polymer walls of these shapes are just 50 nanometers thick. Their elasticity is measured with an atomic force microscope, and they are so small that a line of 12,700 of the microcapsules would measure 1 inch.

    Kharlampieva’s investigation of the effects of shape and elasticity comes from the simple observation that cells of the body that travel through the bloodstream are not spherical and are quite elastic.

    The paper, “Cubical shape enhances the interaction of layer-by-layer polymeric particles with breast cancer cells,” was published in Advanced Healthcare Materials, and the cover art features the research. UAB authors of the study are Kharlampieva, Veronika Kozlovskaya, Ph.D., and Jun Chen, all of the Department of Chemistry. Authors at the Houston Methodist Research Institute are Jenolyn Alexander, Thomas Kuncewicz and Biana Godin, Ph.D. Kharlampieva and Godin are the corresponding authors. Alexander and Kozlovskaya are co-first authors.

    Financial support came from NIH U54CA143837, NIH 1U54CA151668-01 and NSFCAREER1350370.

More Items

UAB Career & Professional Development Twitter